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Abstract

Whole-brain electromagnetic recordings such as electroencephalography (EEG) and magnetoencephalography (MEG) are
widely used in both clinical and research settings to investigate brain dynamics. While these techniques provide excellent
temporal resolution, accurately localizing the spatial origin of brain activity requires solving the ill-posed electromagnetic
inverse problem. In this work, I present subspace-based source localization as an efficient and versatile class of methods
that leverage linear analysis techniques to extract the signal of interest prior to localization. I focus in particular on the
well-known MUSIC algorithm, which uses principal component analysis (PCA) to estimate the signal subspace. Empirical
results demonstrate that although MUSIC is not the least-squares optimal solution to the dipole localization problem, it can
be more robust to noise than traditional dipole fitting approaches. I also explore the use of alternative linear methods for
subspace extraction, which broadens the applicability of the approach. In the multiple dipole case, I compare MUSIC to
recursively applied dipole fitting and show that subspace methods can offer performance advantages. I further examine
whether Independent Component Analysis (ICA) can improve source unmixing within the subspace, offering an alternative
to standard recursive strategies such as RAP-MUSIC. Finally, I provide theoretical connections between subspace-based
methods and classical dipole fitting, clarifying their similarities and differences within a unified framework.
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� Introduction

�. Background Improving the spatial resolution of magneto-encephalography (MEG) and electro-
encephalography (EEG) is a promising avenue for expanding these recording meth-
ods to new clinical and laboratory applications, allowing for a more precise analysis
of the spatio-temporal dynamics of brain activity. The source localization problem
consists in determining the position of an electromagnetic source inside the skull
based on the activity recorded at the surface. This is a severely ill-posed problem,
and various approaches aim to obtain a unique solution by applying regulariza-
tion techniques, such as beamforming, dipole fitting, and minimum-norm current
estimation.

�. Method of
interest

Zero-Set Imaging (ZSI) is a novel approach that leverages linear analysis to identify
both source activity and localization. Linear analysis methods, such as Principal
Component Analysis (PCA), enhance source activity through linear transforma-
tions of the recorded activity vector. A key feature of these methods is the deriva-
tion of a large set of orthogonal transformations—referred to as null filters—that
effectively cancel source activity. These null filters are expected to exhibit zero
gain for signals originating from the true source location. Through forward model-
ing, a rectangular gain matrix can be constructed to map activity from the source
space to the sensor space. The zero-set of the null filter corresponds to the set of
locations that yield zero gain when mapped to sensor activity and projected onto
the null-filter direction. The true source location is necessarily at the intersection
of these zero-sets. This intersection can be determined by minimizing the location
gain over the source space, providing a novel and potentially robust approach to
source localization.

�. Research
Question

This project aims to evaluate the robustness of the method with respect to noise
and forward model accuracy, as well as to compare it with classical approaches.
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�. Hypothesis We hypothesize that this method will provide perfect localization estimates under
favorable conditions (high signal-to-noise ratio (SNR), accurate forward model).
However, we expect noise and forward model approximations to affect the precision
of the approach. Its robustness, relative to other methods, remains unknown and
will be investigated. Putative estimators of the model uncertainty will also be
evaluated.

� Experimental design

�. Study type Benchmarking, numerical experiment

�. Study Design The robustness of ZSI and three other techniques (beamforming, dipole fitting,
minimum-norm estimation) will be empirically evaluated on randomly generated
synthetic data with known point-like sources. The capabilities of Zero-Set Imaging
on real data will be assessed using high-quality benchmarking datasets available
in the literature.

� Data

�. Synthetic Data Each technique will be evaluated across a wide range of simulated conditions,
including varying SNR levels, number of sources, source proximity, and forward
model accuracy. Source activity will be modeled as an Ornstein–Uhlenbeck process
at a specific location. Activity at both source and silent locations will be corrupted
by white noise according to the expected SNR. Additional signal types (Wiener
process, deterministic signals, filtered noise) may later be considered to better
approximate real conditions. Multiple trials will be conducted for each method
to mitigate noise-driven accuracy variability. The sensor-space projection will be
obtained by applying linear transformations derived from a precise forward model.
Various levels of forward model accuracy (source space resolution, head geometry
approximations) will then be used for source localization.

�. Sample Size For each fixed set of experimental conditions, at least 20 trials per source location
and five different source locations will be considered.

�. Real Data We will use the WWU DUNEuro reference dataset for combined EEG/MEG source
analysis, as well as similar data on visually evoked potentials from the same au-
thors. These datasets provide high-quality, trial-averaged activity and anatomical
data that enable precise forward modeling. While ground truth source locations
are not accessible in real data, we will compare ZSI predictions with those from
state-of-the-art localization methods mentioned earlier. Biases arising from for-
ward model inaccuracies can also be quantified using this dataset.
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� Analysis

��. E�ective SNR The effective SNR is defined as the ratio of the measured signal variance to the
measured noise variance in the sensor space. This metric may differ from the
expected SNR used for data generation due to random variability and signal am-
plification at source locations. The validity of a putative estimator for this met-
ric—the ratio between the cumulative variance of the top signal components and
that of the null-filter components—will be evaluated.

��. Accuracy Metrics The accuracy of source localization will be assessed using multiple metrics:

• Pairwise Euclidean distance between the estimated sources and their closest
true sources, measured either on the flattened cortical surface or in the brain
volume.

• Average index of the true source locations, when sources are ranked by in-
creasing loss.

��. Uncertainty An estimation of uncertainty, based on the depth of the loss minima, will be con-
sidered. In particular, we will investigate whether this metric serves as a reliable
indicator of localization accuracy.
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1. Introduction

1.1. The inverse problem in electromagnetic brain recording

Pushing the spatial resolution limit Non-invasive brain recording and imaging techniques
are essential tools for conducting ethical neuroscience research on human subjects. Among
these, metabolism-based imaging methods such as functional magnetic resonance imaging
(fMRI) are renowned for their excellent spatial resolution—approximately 1 mm. How-
ever, their limited temporal resolution (around 5 seconds) poses a signi�cant challenge for
studying fast-paced brain dynamics [8]. In contrast, electroencephalography (EEG) and
magnetoencephalography (MEG) record �uctuations in electric potentials and magnetic
�elds generated by parallel ion currents resulting from the simultaneous �ring of hundreds
of neurons. These techniques o�er much �ner temporal resolution—on the order of 100 mil-
liseconds—making them particularly well-suited for capturing rapid neural activity [1], [2].
By aligning recordings to speci�c stimuli and averaging across trials—a process known as
*stimulus-locked averaging*—researchers can isolate event-related activity with an improved
signal-to-noise ratio, gaining valuable insights into brain dynamics associated with particular
tasks.

At this stage, however, the signal takes the form of a multidimensional time series re-
�ecting local electromagnetic activity recorded at the scalp surface. Basic physical intuition
suggests that sensors closer to active brain regions will detect stronger evoked responses,
o�ering a rough proxy for the source location of neural activity. Nevertheless, even an expert
cannot accurately determine the location of brain signals based solely on raw sensor data
(see Figure 1 for an extrapolated map of sensor recordings on the scalp). This limitation
underscores the need for advanced methods that enhance the spatial resolution of electro-
magnetic brain recordings.

The necessity of a forward model To obtain precise images of brain activity from an
array of sensor recordings, one must solve the inverse problem of electromagnetism [20].
As with any inverse problem—i.e., one concerned with inferring unknown causes from
observed e�ects—a prerequisite is the construction of a forward model that maps these
causes to their observable consequences. Speci�cally, the forward model should describe
how electromagnetic activity originating from any potential source within the brain projects
onto the signals measured at the scalp.

Given the vast number of neurons in the brain, the space of possible sources must
be reduced to render the problem tractable. It is widely accepted that macro-columns
of aligned cortical pyramidal cells constitute the primary generators of measurable brain
electromagnetic activity. These putative sources are typically modeled as current dipoles,
characterized by their spatial position, orientation, and intensity [12]. The electromagnetic
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�eld produced by such a dipole is fully described by the quasi-static form of Maxwell’s
equations [14], which are linear with respect to the dipole’s intensity. Consequently, for a
system with � sensors and a dipole de�ned by a set of 5 parameters—3 for position and 2 for
orientation—denoted �, the forward model yields a �-dimensional vector �(�).

Contemporary software tools, leveraging anatomical information derived from non-
functional brain imaging, can construct highly accurate forward models [11]. These tools
typically discretize the cortical surface into a dense grid of locations and compute the
mapping from dipole moments (de�ned by orientation and intensity) at each location to the
recorded sensor data. To accommodate arbitrary dipole orientations, the forward model at
each location is generally composed of three vectors, corresponding to the gain associated
with each orthogonal direction in Cartesian space.

Due to the linearity of the electromagnetic �eld with respect to dipole moment, the
forward vector for any arbitrary orientation can be expressed as a linear combination of
the forward vectors corresponding to three orthogonal unit dipoles. A common simpli�ca-
tion assumes that all dipole orientations are normal to the cortical surface—a biologically
reasonable approximation given the organization of pyramidal cell columns.

While later sections will consider the case of unconstrained dipole orientations, I adopt
the normal-orientation assumption here for the sake of algebraic clarity. Under this hypoth-
esis, the forward model can be represented by a gain matrix �, where each row maps the
activity at a given cortical location to each sensor in the recording device. Letting �(�) � ��

denote a column vector representing dipole activity at each of the � source locations at time
�, the observed sensor data�(�) is obtained via the forward equation:

�(�) = ��(�) (1)

The ill-posedness of the inverse problem Now that we have established an expression
linking source space activity to sensor space measurements, the inverse problem can be
formulated in algebraic terms. In the forward problem, the goal is to compute�(�) given the
source activity �(�). In contrast, the inverse problem aims to estimate the unknown brain
activity time course �(�) from observed sensor recordings�(�).

The possible positions of dipoles within the cortex are typically discretized at a resolution
on the order of 1mm, resulting in tens of thousands of candidate source locations. Meanwhile,
only a few hundred magnetic or electric �eld sensors are available at the scalp surface,
rendering the problem fundamentally ill-posed: multiple distinct con�gurations of brain
activity can produce the exact same recorded signal. This ill-posedness is further exacerbated
by the existence of magnetically and/or electrically silent sources [6].

Here, the term “con�guration” refers to any combination of dipoles with arbitrary po-
sitions and moments. However, not all such con�gurations are physiologically plausible
or equally interpretable from a neuroscienti�c perspective. Several approaches have been
proposed to model brain activity in a manner that is both interpretable and biologically
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plausible.
In Bayesian terms, onemay argue that incorporating prior knowledge or hypotheses about

brain function allows for the identi�cation ofmore plausible con�gurations, thereby enabling
a unique and optimal solution under speci�c assumptions. This procedure is known in data
science as regularization of the problem. Part of the regularization already occurs in the
forward modeling step, where the source space is reduced to a �nite set of discrete positions
and, in some cases, constrained dipole orientations. Additional assumptions about the
nature of brain activity can be introduced at the inverse stage, leading to di�erent solutions
depending on the chosen priors. In the following subsection, I review the foundational
principles behind several historical approaches.

1.2. Major approaches to the inverse problem

Solutions to the inverse problem can be broadly divided into two categories: parametric
approaches, which aim to explain the data using a small number of dipoles whose parameters
are estimated; and imaging approaches, which estimate a distribution of currents over the
full cortical surface. This thesis focuses on a speci�c class of parametric methods and
therefore does not cover imaging approaches, althoughmethods such as eLORETA [21] have
demonstrated their e�ectiveness. Instead, I present the two principal families of parametric
solutions: dipole �tting and beamforming.

Equivalent current dipole �tting (ECD) A natural approach to modeling brain activity is
to �x a number � of point-like current dipoles and �t their positions and moments to best
explain the observed data. This can be formalized in Bayesian terms. The model equation
extends the forward equation (1) as follows:

�(�) =
��

�=1
�(��)��(�) + �(�) = �(�)�(�) + �(�) (2)

Here, �(�) = {��(�)}��=1 denotes the set of dipole positions and orientations to be estimated
at each time step, �(�) is the gain matrix with rows corresponding to sensor gains from
each dipole, and �(�) is the vector of dipole intensities. The term �(�)models residual noise,
accounting for discrepancies between the model and the observed data.

One may assume either that both dipole intensities and positions vary over time (the
*moving dipole* model), in which case the parameters are �tted independently for each
time point, or that dipole positions are �xed over time (the �xed dipole model). This section
focuses on the moving dipole case; the �xed dipole hypothesis will be revisited in the �nal
section.

Since the noise term introduces stochasticity, parameter estimation relies on Bayesian
inference. A common Bayesian strategy is to solve the maximum likelihood problem:

max
�,�

� (�(�) � �,�) (3)
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Assuming the noise is spherical Gaussian white noise, the maximum likelihood estimate
corresponds to the solution of a nonlinear least squares problem:

min
�,�

��(�) � �(�)�(�)�22 (4)

In practice, aside from external sources and artifacts—which can often be mitigated by
hardware design [6] or preprocessing methods [9], [19]—the dominant source of noise is
intrinsic "resting-state" brain activity. This noise is correlated, both due to underlying neural
dynamics and the non-orthogonal projections of brain activity onto sensor space. For the
least squares solution to remain valid, one must either weight the residuals appropriately [4]
or whiten the data [24].

To avoid the computational cost of brute-force optimization over all parameters, the
problem is generally approached via variable separation. For any �xed spatial con�guration
�, the optimal dipole activity vector ���(�) can be computed via linear regression. This yields
the closed-form solution given by theMoore–Penrose pseudoinverse�+(�) of the gainmatrix
[14]:

���(�) = �+(�)�(�) =
�
��(�)�(�)

��1 ��(�)�(�) (5)

For further simpli�cation, when dipole orientations are not constrained, the estimated
activity �(�) is typically a � ◊ 3matrix, where each row encodes the dipole moment com-
ponents along the Cartesian axes. In this case, the matrix � is independent of orientation
and contains the lead�elds corresponding to each unit dipole direction. The optimization
in Equation (4) thus reduces to a nonlinear search over spatial parameters, often solved
using derivative-free iterative algorithms. While suchmethods may converge to local optima,
modern computational resources permit exhaustive search over �nely discretized source
spaces—up to tens of thousands of candidate positions.

A key limitation of dipole �tting methods is that the number of dipoles must be speci�ed
a priori. Modern approaches address this through a sequential �tting procedure [23]: a �rst
dipole is �tted, its contribution subtracted from the data, and a second dipole is then �tted to
the residual signal. While increasing the number of dipoles generally improves the model’s
�t by increasing the rank of the data explained, it also raises the risk of over�tting, potentially
introducing spurious dipoles that model noise rather than genuine neural activity. Bayesian
criteria and expert knowledge about plausible activation patterns can help guide this choice,
although the statistical reliability of such decisions remains a matter of debate.

Beamforming Another important class of approaches relies on spatial �ltering to isolate
signals originating from a speci�c location of interest. Such a �lter is called a beamformer.
An ideal beamformer would achieve unit gain at the target location and zero gain elsewhere.
However, this ideal response is unattainable due to the limited degrees of freedom imposed
by the number of sensors.
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A classical solution to approximate this goal is the linearly constrained minimum vari-
ance (LCMV) beamformer. This technique minimizes the output power of the spatial
�lter—suppressing signals from all directions—while enforcing a unit-gain constraint at the
target location. Formally, the LCMV beamformer for a given spatial position � is obtained
by solving the constrained optimization problem:

min
�

���(�)� subject to ��(�) = �, (6)

where �(�) � �� is the vector of sensor measurements at time �, �(�) is the lead�eld
matrix at source location �,� is the spatial �lter (i.e., the beamformer weights), and � is the
identity matrix, which is scalar in the �xed-orientation case and 3◊ 3 in the free-orientation
case.

Let � = �[�(�)�(�)�] denote the sensor covariance matrix. Solving the problem using
Lagrange multipliers yields:

� =
�
�(�)���1�(�)

��1 �(�)���1 (7)

This expression ensures unit gain at location �—passing the signal from that location
without attenuation—while minimizing contributions from all other directions.

In the free-orientation case, �(�) � ��◊3 models dipoles oriented along three orthogonal
directions (typically the Cartesian axes), and� � �3◊� contains three corresponding spatial
�lters. In the �xed-orientation case, each location is assigned a single orientation (e.g.,
normal to the cortical surface), so �(�) � �� is a column vector and the constraint becomes
scalar.

The beamformer output at location � is then given by:

�(�;�) =��(�), (8)

which provides an estimate of the source time series at that location. The norm of �(�;�),
either at each time point or over the full time course, can be used to localize sources in space.

We have now established that parametric approaches can follow two distinct strategies:
either �tting a projection that explains the largest portion of the data (dipole �tting), or
scanning the source space to �nd the position that exhibits the highest activity while sup-
pressing contributions from all other locations (beamforming). Both approaches share the
assumption that sources correspond to local maxima of data-related power, and both allow
the derivation of explicit measures of goodness-of-�t at a given location.

In fact, the operations applied to the lead�elds to evaluate source activity (see Equations 7
and 5) are structurally similar. However, while dipole �tting typically relies on the noise co-
variance matrix for pre-whitening, beamforming uses the data covariance matrix to suppress
activity in unrelated regions. This re�ects the beamformer’s underlying assumption that
brain signals at di�erent locations are geometrically uncorrelated. As a result, beamforming
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has been reported to perform poorly when attempting to separate sources with correlated
lead�eld geometries [17].

1.3. Subspace-based methods

Motivation This internship project is based on the idea that, through linear decomposition
of high-dimensional data, one can obtain both a vector basis for the signal subspace and a
basis for its orthogonal complement. The vectors that project the data onto the orthogonal
subspace can be considered as null �lters for the source of interest. In other words, signals
originating from the source of interest are completely extinguished by these null �lters. The
source generating the signal is said to belong to the zero-set of locations for any projection
into the orthogonal subspace. With the help of a forward model, one can therefore estimate
the source location through a simple cost minimization.

This approach, which we initially referred to as zero-set imaging, is in fact already
implemented in the MUSIC algorithm and its variants. While we do not claim to introduce
a completely novel methodology, we frame the MUSIC algorithm as part of a broader class
of subspace-based methods. In this subsection, we outline the general principles of such
methods, with particular emphasis on the speci�c case of the MUSIC algorithm.

Linear analysis Linear analysis refers to a class of techniques that generate informative
projections of observed data. Based on linear algebra and statistical principles, thesemethods
yield powerful data representations and are widely used in signal processing and data science.
In signal processing, when observed data are assumed to result from linear combinations of
underlying sources and additive noise, linear analysis enables the computation of unmixing
transformations to recover the original sources—an instance of the blind source separation
problem. In EEG and MEG applications, this linearity assumption is often reasonable,
making linear analysis a compelling approach for extracting meaningful signals from raw
recordings.

Notable examples include principal component analysis (PCA), which identi�es orthog-
onal directions of maximal variance, and independent component analysis (ICA), which
seeks statistically independent components in the data. These methods rely on di�erent
assumptions about the mixing process and o�er distinct strengths and limitations.

For example, PCA is e�ective at identifying low-rank signals embedded in Gaussian
white noise, provided the signal strength exceeds the largest noise eigenvalue. However, due
to its orthogonality constraint, geometrically correlated sources are not represented by a
single principal component, but rather distributed across the signal subspace.

In contrast, ICA aims to maximize the non-Gaussianity of the signal projections in
order to recover statistically independent sources. According to the central limit theorem,
mixtures of independent variables tend to appear more Gaussian; hence, maximizing non-
Gaussianity—often through higher-order statistical moments—facilitates the separation

7



Grégoire Degobert-Yasmine Subspace-based methods for extraction of meaningful spatio-temporal data from electro-magnetic imaging

of independent components. Although ICA is designed for noise-free environments, it can
be combined with PCA-based pre-denoising and has demonstrated strong performance in
separating components that may correspond to distinct, spatially localized brain sources.

While PCA and ICA are foundational examples that will be examined in this report, it is
important to note that other linear subspace extraction methods are especially well suited to
the problem of isolating brain source activity from MEG and EEG data. These methods vary
in their assumptions about the mixing process, the statistical criteria they rely on, and the
application scenarios in which they are most e�ective. In particular, we will present the joint
diagonalization method, a linear analysis technique derived from PCA, which incorporates
additional hypotheses about the signal of interest to enhance source extraction. We will also
introduce ICA-based subspace localization as a means to address source mixing in linear
analysis of data containing multiple simultaneous sources.

Subspace-based localization The linear analysis framework enables the decomposition of
sensor-level data into two orthogonal subspaces: the signal subspace, which emphasizes
components of interest (e.g., neural activity) while attenuating irrelevant or noisy com-
ponents, and its orthogonal complement, which ideally suppresses the signal of interest.
Projectors onto the signal subspace thus act as spatial �lters that enhance activity originating
from speci�c locations in the brain, whereas the orthogonal complement projectors serve as
spatial null �lters that cancel out contributions from sources at those locations.

Assume that the linear analysis correctly identi�es a low-rank signal subspace, denoted
by�. Let � be the associated orthonormal projectionmatrix, whose � rows span the subspace.
The orthogonal complement of this projection is denoted by � = ��, which projects data
onto the subspace � orthogonal to the signal. This subspace is generally referred to as
the noise subspace, although noise may also be present within the signal subspace. For
simplicity, we consider a constrained source model in which the dipole orientation is �xed
to be orthogonal to the cortical surface. In this case, a source is fully characterized by its
spatial location �� and amplitude parameter �.

Under this assumption, each row of the orthogonal projector de�nes a zero-set condition
for the true source’s associated lead�eld vector ��, expressed as:

�� � {1,… , � � �}
��

�=1
������ = 0 (9)

or more compactly using the �2 norm:

�����2 = 0 (10)

This implies that the gain vector corresponding to the true source location satis�es a
system of homogeneous equations, each de�ning a hyperplane in the signal space. Ideally,
the correct source location lies at the intersection of these hyperplanes (zero-sets). However,
a unique solution is not guaranteed: any gain vector lying entirely within the signal subspace
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will satisfy this condition, resulting in a low-dimensional solution space and potentially
multiple candidate locations. Nonetheless, if the linear analysis has successfully isolated the
true signal, the corresponding source position �� will lie within this intersection.

In practice, anatomical constraints—namely, that sources must lie within the brain
volume—signi�cantly reduce the likelihood of spurious solutions. However, the higher
the dimensionality of the signal subspace, the greater the chance that unrelated positions
may also satisfy the zero-set conditions. Furthermore, due to numerical errors and the
imperfect nature of subspace estimation under noisy conditions, exact zero solutions are
rarely observed. As a result, source localization is typically reformulated as a minimization
problem over a discrete set of candidate positions. The following loss function is evaluated
at each candidate location �:

�(�) = 1
����22

�

���
��, ���2 =

�����22
����22

(11)

Here, �� denotes the gain vector at location �, and the sum is taken over the orthonormal
basis vectors of the orthogonal complement �. Minimizing this loss yields the position with
the smallest projection onto the noise subspace—that is, the most likely origin of the signal.
If the signal subspace is multidimensional, the signal is likely generated by multiple distinct
sources, and several local minima will typically be observed. A brute-force search over �
candidate source locations has a computational complexity of �(�), which remains tractable
even for high-resolution source spaces exceeding 10,000 locations. The full cost map can
also be visualized; sharp and deep local minima provide strong evidence for likely active
source locations.

MUSIC, related methods, and beyond The idea of estimating a low-dimensional subspace
that captures the signal of interest and identifying source locations that lie within this
subspace has a long history. As withmanyMEG source localization techniques, theMUltiple
SIgnal Classi�cation (MUSIC) algorithm originates from the �eld of array signal processing,
where it was originally developed to estimate the number and direction of arrival of signals
impinging on a sensor array [3]. In the MEG context, MUSIC was adapted as an e�ective
method for localizing multiple active sources by identifying locations whose lead�elds
lie within the estimated signal subspace. The signal subspace is typically estimated via a
singular value decomposition (SVD) of the data covariance matrix. Source locations are
then identi�ed by minimizing a cost function such as Equation (11), which quanti�es the
orthogonality between candidate lead�elds and the noise subspace [5].

Building on this framework, Sekihara et al. [15] proposed a method that projects a
linearly constrained minimum variance (LCMV) beamformer onto the signal subspace.
This subspace-projected beamformer exhibits improved robustness to noise and source
correlation compared to the standard LCMV approach. A key re�nement of MUSIC was
introduced with the Recursively Applied MUSIC (RAP-MUSIC) algorithm [10], designed
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to better handle multiple simultaneously active sources. While classical MUSIC relies on
identifying local minima in the source space—a process that can be unstable in the presence
of source correlations—RAP-MUSIC proceeds iteratively. After identifying a source, it
projects the signal subspace onto the orthogonal complement of the subspace spanned by
the corresponding lead�eld. This recursive out-projection aims to isolate the contributions
of the remaining sources in subsequent iterations.

However, RAP-MUSIC’s recursive projection scheme is susceptible to error propagation,
particularly in the presence of noise or forward model inaccuracies. To address this, Mäkelä
et al. [25] introduced Truncated RAP-MUSIC (TRAP-MUSIC), which improves robustness
by not only projecting out the identi�ed source subspace but also reducing the dimension-
ality of the remaining signal subspace. Speci�cally, after projection, only the dominant
remaining components—those associated with the largest singular values—are retained.
This truncation step mitigates the accumulation of modeling errors and prevents weak or
noise-aligned components from in�uencing subsequent iterations.

As in dipole �tting, pre-whitening has been proposed to improve PCA-based signal
subspace extraction, since PCA is Bayes-optimal only under the assumption that noise is
white [7]. Additional enhancements, such as frequency �ltering to isolate speci�c frequency
bands, have also been explored to improve signal extraction [13].

This thesis combines a comparison of subspace-based methods with the standard dipole
�tting paradigm and an exploration of non-standard subspace extraction methods for source
localization. These ideas are examined through a comprehensive study using realistic syn-
theticMEG data. I compare the standardMUSIC algorithmwith classical dipole �tting in the
single-source setting and show that, while both approaches exhibit comparable performance,
MUSIC is generally more robust to low noise levels. I also evaluate each method’s sensitivity
to forward model inaccuracies. The results suggest that PCA-derived methods incorporating
signal-speci�c hypotheses can yield alternative subspaces and may outperform standard
MUSIC under certain conditions.

In the multiple-source setting, I show that MUSIC is consistently more robust than
dipole �tting, particularly in scenarios involving spatially correlated sources. To address the
challenge of sourcemixing in this setting, I explorewhether independent component analysis
(ICA) can replace recursive strategies such as RAP-MUSIC to disentangle the sources’ time
courses.

The results indicate that linear analysis methods speci�cally designed to enhance the
signal-to-noise ratio can lead tomore accurate subspace estimation and, consequently, higher
localization precision.

I then address the multiple-dipole case by comparing an ICA-based source separation
strategy with the standard RAP-MUSIC approach. Finally, I provide a theoretical analysis
comparing subspace-based localization with dipole �tting, highlighting both their method-
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ological similarities and their fundamental di�erences.

2. Methods
2.1. Data generation

Source positions To compare the accuracy of various source localization methods, I gener-
ated realistic data mimicking sensory-evoked �elds. For single-source localization, I focused
on sources located in the auditory cortex of one hemisphere. For multiple-source local-
ization, source positions were selected either within the same auditory cortex—resulting
in high spatial correlation between sources—or in distinct areas (e.g., left auditory cortex
and right visual cortex), resulting in lower correlation. To ensure meaningful comparisons,
con�gurations that returned too low a correlation in the high-correlation condition (and
vice versa) were excluded.

I used a realistic source model by discretizing the cortical surface based on MRI-derived
anatomical data from the MNE-Python software [22]. For auditory-related responses, source
locations were selected arbitrarily from a subset of 164 vertices in the right auditory cortex.
For visual-related responses, a similar process was applied using a subset of 58 vertices in
the right visual cortex. Except when evaluating the free-orientation case, dipole orientations
were constrained to be normal to the cortical surface at the given location.

Forwardmodelling UsingMNE-Python and the anatomical and registration data described
above, I computed a forward model for a subset of 7432 cortical vertices, based on the bound-
ary element method (BEM) [16]. This resulted in a lead�eld tensor of shape [3, 7432, 203],
representing the gain vectors for each of the three orthogonal dipole moment directions
at each vertex, mapping to the 203 MEG gradiometer channels. For simplicity, I used only
gradiometers, as they typically o�er higher spatial sensitivity than magnetometers and avoid
complications related to unit scaling. MNE-Python also allows for simpli�cation to a normal-
orientation forward model, yielding a lead�eld matrix with a single projection per source
location.

Noise-free data To generate noise-free data, I �rst constructed a time course of activity
for each active source. These typically consist of a stereotyped sine-exponential bump
peaking at an arbitrary latency. The peak time could be identical across sources—resulting
in temporally correlated time courses—or distinct. Each dipole signal was then projected
into sensor space using the corresponding lead�eld vector (in the normal-orientation case)
or a moment-weighted combination of the three lead�eld vectors (in the free-orientation
case).

Additive noise Realistic sensor noise was added using the noise covariancematrix provided
in the MNE sample dataset, which was computed from resting-state measurements and
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Figure 1. Generated data example. A Time course of the simulated dipole moment norm, peaking
around 0.2 s post-stimulus, representing the temporal pro�le of the synthetic source. B Ground-truth
source location used for data simulation, shown in MNI space across axial, coronal, and sagittal slices.
C Topographic map of the simulated magnetic �eld gradients (fT/cm) at the peak response, projected
onto the sensor array and scalp. D Simulated MEG gradiometer signals from 203 channels, showing
trial-averaged evoked responses (� = 78). The inset displays the sensor layout with color-coded
traces.

thus re�ects a realistic sensor noise correlation structure. Noise samples were generated
as independent realizations from a centered multivariate Gaussian distribution with this
covariance. To further increase realism, we �ltered the generated noise using a �nite impulse
response (FIR) �lter, with parameters �tted to resting-state data.

Epoching and averaging In noisy simulations, the signal-to-noise ratio was controlled by
repeating the signal of each dipole periodically, with timing locked to a symbolic, periodic
stimulus onset. The dipole signals were repeated without variation across trials. While
the signal magnitude remains constant, the noise magnitude decreases with the square
root of the number of averaged trials. Averaging was performed using the MNE-Python
environment.

2.2. Linear analysis

Pre-whitening Many data analysis methods rely on the assumption that the signal is
contaminated by Gaussian white noise, which justi�es the need for pre-whitening. In this
study, pre-whitening was performed using the exact same noise covariance matrix that was
used to generate the data, rather than an empirical estimate, in order to avoid introducing
additional bias during processing. The eigenvalue decomposition of the noise covariance
matrix � = ���� was computed using NumPy. Given � � ��, a single data vector, pre-
whitening was applied via the transformation
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�whit = ��� 1
2���,

such that if � contains only noise, the transformed data has unit expected covariance.
While this transformation can lead to some distortion of the signal, it improves the perfor-
mance of subsequent linear analysis methods.

Principal ComponentAnalysis PCAwas performed usingNumPy’s standard singular value
decomposition algorithm, which is more numerically stable than computing the eigenvalue
decomposition of the covariance matrix, especially when the number of samples is small
or the data is rank-de�cient (i.e., fewer samples than dimensions). The data was always
pre-whitened before applying PCA, ensuring optimal recovery of low-rank signals corrupted
by additive spherical noise.

Independent Component Analysis Independent Component Analysis was carried out us-
ing the FastICA implementation from the scikit-learn library with standard parameters.
Instead of performing full whitening internally, we used the same pre-whitening transfor-
mation as described above, based on the known noise covariance matrix. FastICA aims to
decompose the signal into statistically independent components. Based on the intuition
that the sum of independent, identically distributed variables is more Gaussian than the
individual variables themselves, FastICA seeks to maximize the non-Gaussianity of the
components. Speci�cally, it maximizes the expected value of the logarithm of the hyperbolic
cosine function applied to the components, which serves as a proxy for the negentropy.

Joint Decorrelation Joint Decorrelation was used as a versatile technique for isolating
components under stronger assumptions than PCA. Assuming that a transformation in the
temporal domain � improves the signal-to-noise ratio, the method proceeds by iteratively
identifying orthogonal spatial projections � that maximize the ratio:

�����2
����2

, (12)

which reduces to solving a generalized eigenvalue problem. In this study, we applied
Joint Decorrelation using di�erent forms of �, including stimulus-locked averaging and
frequency �ltering followed by averaging.

2.3. Source localization

Forwardmodel In general, the forwardmodel used to solve the inverse problem is identical
to the one that generated the data, in order to eliminate modelling-related errors. To assess
robustness to modelling inaccuracies, I also used alternative forward models: either a three-
compartment spherical model with the same vertex positions provided by anatomical data,
or a reduced-resolution source model.
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Normally-oriented dipole hypothesis After extracting a signal subspace, the orthogonal
complement of the signal-enhancing projection matrix was estimated using SciPy. The
subspace-based loss function de�ned in Equation (11) was then computed for each vertex
in the forward model, allowing for direct search minimization across candidate source
locations.

Free-orientation dipole While the normal-orientation hypothesis simpli�es the source
localization problem, several parametric methods—such as equivalent current dipole �tting
and beamforming—can provide estimates of both the position and orientation of active
dipoles [14]. Relaxing the orientation constraint can be valuable in cases where the source
of electromagnetic activity is not restricted to cortical pyramidal cells, when attempting to
localize deep sources, or when using a volumetric source model. Furthermore, loosening
this constraint has been shown to improve robustness to forward model inaccuracies such
as limited resolution and head misalignment [18].

To accommodate such scenarios, I developed an e�cient algorithm that �rst estimates
the optimal dipole orientation for each candidate location before minimizing the subspace-
based loss using the selected orientation. The algorithm still assumes that dipole orientation
remains �xed over time and is therefore not suitable for modeling rotating dipoles.

Let � = [��, ��, ��] be the unit-norm orientation vector of the dipole, and let �(�) =
[���, ���, ���] be the lead�eld matrix at position �, with columns corresponding to the three
Cartesian orientations. The loss to be minimized now includes the orientation dependence:

�(�, ��, ��, ��) =
1

������ + ����� + ������22

�

���

�
�, ����� + ����� + �����

�2
(13)

or, more compactly using matrix notation:

�(�, �) =
���(�)��22
��(�)��22

(14)

As in Equation (11), the normalization accounts for systematic variations in gain due to
position and orientation. In particular, radial dipole activity is more easily detected by MEG
sensors, which is corrected for by the denominator.

Minimizing this loss is a mixed optimization problem, involving a discrete search over
positions and a continuous search over orientation vectors. However, for a �xed position �,
the orientation minimization problem

min
�

���(�)��22
��(�)��22

subject to ���2 = 1 (15)

reduces to a generalized eigenvalue problem for 3 ◊ 3 covariance matrices. The optimal
orientation �� is given by the eigenvector associated with the smallest generalized eigenvalue,
which corresponds to the minimum of the loss ratio. This problem can be e�ciently solved
using NumPy’s linear algebra tools, yielding both the optimal orientation and the associated
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loss for each candidate position. An exhaustive search over positions can then be performed
to identify the most likely source location.

2.4. Multiple source handling

RAP-MUSIC Although linear analysis methods enable extraction of the signal subspace, in
the multiple dipole case the activity time courses of individual sources are generally mixed
within the signal components. RAP-MUSIC was used to handle the multiple-source case in
a sequential fashion. After localizing each source, the gain vector �� corresponding to the
newly identi�ed dipole is projected out of the signal subspace using:

��� = � �
�����
��� ��

To prevent re-localizing the same source, the lead�eld matrix � used in subsequent
iterations is modi�ed by applying the projection:

�� = ��� �

This operation orthogonalizes each candidate lead�eld vector with respect to ��, en-
suring that the MUSIC cost function no longer responds to components already explained
by the previously identi�ed dipole. Since MUSIC evaluates the alignment between the
signal subspace and each candidate source topography, this step ensures that only novel,
unaccounted-for components are tested for alignment.

ICA-based subspace decomposition As an alternative to RAP-MUSIC, we developed an
approach that leverages Independent Component Analysis (ICA) to directly extract direction
vectors, each ideally corresponding to a distinct source. This is feasible because ICA is specif-
ically designed to separate independent sources from observed mixtures. After identifying
the ICA components, each was treated individually: instead of projecting onto the full signal
subspace, we localized sources associated with each ICA component separately.

Recursively applied dipole �tting (RAP-ECD) Similar in spirit to RAP-MUSIC, Recursively
Applied Dipole Fitting (RAP-ECD) extends the standard equivalent current dipole (ECD)
�tting approach to the multiple-source case through a sequential strategy. After each dipole
is localized via least squares minimization, its corresponding gain vector �� is projected
out of the forward model to prevent it from being re-selected. This is done using the same
outprojection operator de�ned in Equation (2.4.0.1) on the lead�eld before continuing
the analysis. By recursively applying this projection after each step, the �tting algorithm
ensures that subsequent dipoles explain new variance in the data, rather than re-explaining
already-modeled components.

2.5. Single dipole
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Sensitivity to noise I investigated the robustness of subspace-based methods to noise in
the single-dipole case. As a starting point, I compared the standard PCA-based MUSIC
algorithm with the time-�xed dipole �tting approach. The source was placed arbitrarily in
the left auditory cortex, and the emitted signal consisted of a stereotyped exponential bump
peaking around 200 ms post-stimulus, as illustrated in Figure 1. The number of stimulus
repetitions �ave was varied between 5 and 250. Since signal-to-noise ratio improves with the
square root of the number of averages, �ave served as a proxy for SNR.

To reduce stochastic variability and ensure statistical power, I repeated the simulation 100
times for each value of �ave, with the source location randomly sampled within the auditory
cortex. Both MUSIC and ECD localization methods were applied to each generated dataset
using the exact forward model and noise covariance matrix employed in the simulation,
ensuring no modelling errors were introduced (see Methods). Under these ideal conditions,
both methods should be theoretically capable of perfect localization in the absence of noise.

As shown in Figure 2, both methods perform similarly across a wide range of �ave

values, transitioning from high precision at large �ave to total failure in very low-SNR

Figure 2. Comparison of the robustness of MUSIC and dipole �tting (ECD) to low signal-to-noise
ratios. A:Median localization error (in cm) as a function of the number of averaged trials. Shaded
areas represent inter-subject variability. MUSIC performs worse than ECD at low �ave, but con-
sistently outperforms it as the number of averages increases. The horizontal axis is shared with
B. B: Percentage of perfect localizations as a function of �ave. Both methods perform similarly at
low averaging levels, but ECD plateaus early while MUSIC continues to improve with additional
averaging. C: Percentage of cases in which ECD yields smaller localization error than MUSIC across
averaging levels. The frequency of ECD outperforming MUSIC decreases with increasing �ave. D:
Paired comparisons of localization errors for MUSIC and ECD at three representative values of �ave
(13: low-SNR regime; 73: intermediate; 198: high-SNR). Each line connects the results of a single
test for MUSIC (left) and ECD (right). Pie charts indicate the proportion of cases where each method
was superior, in line with trends from C.
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regimes. Notably, MUSIC outperforms dipole �tting for higher SNR levels, as evidenced by
a greater number of perfect localizations. A Wilcoxon signed-rank test revealed that MUSIC
signi�cantly outperformed ECD (at � < 0.01) when �ave > 83, while ECD was signi�cantly
better than MUSIC only in the range �ave � [13, 33] (see supplementary �gures).

In the theoretical supplement, I demonstrate that the performance similarity arises from
deep mathematical connections between the two methods—particularly in the single-source
case—even though they can yield di�erent predictions in practice. The better performance
of MUSIC in low-noise regimes suggests that isolating the signal subspace prior to evaluating
source alignment increases robustness relative to direct �tting.

Interestingly, the minimum value of the MUSIC loss function becomes substantially
shallower in noisy settings compared to noise-free conditions (e.g., roughly 1 ◊ 10�2 in the
noise-free case vs. 0.15 with 100 averaged trials), even when the localization is exact. A more
systematic analysis showed that shallow minima can still correspond to accurate localiza-
tions, but deep minima were never associated with incorrect results (see supplementary
�gures). This indicates that the depth of the MUSIC loss minimum is a conservative but
reliable proxy for localization con�dence, assuming a perfect forward model.

Improvements using other linear analysis methods We show that, beyond simple PCA,
other linear analysis methods can improve signal subspace detection by incorporating ad-
ditional assumptions about the signal. While PCA is Bayes-optimal under the assumption
of additive spherical noise and no prior knowledge about the signal, it does not leverage
domain-speci�c hypotheses—such as temporal structure—that could guide signal extraction.

As an illustrative example, we constructed a scenario in which the signal-to-noise ratio
was too low for standard methods to succeed, but where prior knowledge of the signal’s
frequency content could be exploited. A single source was placed arbitrarily in the auditory
cortex and assigned a 75 Hz sine-wave time course, mimicking Gamma-band neural activity.
The signal amplitudewas reduced such that, even after averaging over 100 trials, bothMUSIC
and ECD failed to localize the source accurately.

To overcome this, we performed signal subspace extraction using Joint Decorrelation
(see Methods), applying a 50–100 Hz band-pass �lter as a temporal transformation. The
extracted components correspond to orthogonal spatial directions whose variance is maxi-
mally increased by this �ltering. Localizing this signal subspace using the standard MUSIC
loss function resulted in a perfectly accurate dipole localization.

Sensitivity to forward modelling accuracy We complemented the previous results by
comparing the robustness of MUSIC and Dipole Fitting to inaccuracies in the forward model.
Two types of model mismatch were considered: one with the same anatomical geometry
used for data generation but a reduced-resolution source model (0.01 downsampling ratio),
and another with the same source model but a simpli�ed 3-compartment spherical head
model.
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Figure 3. Band-pass Joint Decorrelation analysis improves localization of a blurred signal with known
frequency. A: Simulated dipole moment time course with oscillatory activity at 75 Hz. B:MEG sensor-
level data showing magnetic �eld �uctuations across time and channels. The signal is not visible to
the naked eye, indicating a very low signal-to-noise ratio. C: Reconstructed source amplitude time
courses using three localization methods: MUSIC (blue), Joint Decorrelation subspace localization
with a 50–100 Hz band-pass �lter (green), and Dipole Fitting (red). While standard methods fail
due to the low SNR, joint decorrelation successfully reconstructs the source activity. Bottom panels:
estimated dipole positions and orientations for each method, shown in coronal, axial, and sagittal
brain slices. Colored arrows indicate localized dipole directions: MUSIC (blue), Joint Decorrelation
(green), and Dipole Fitting (red), highlighting the improved accuracy of the frequency-informed
method.

In a single-source, noise-free simulation, both inaccurate forward models led MUSIC to
localization errors on the order of 1 cm. Contrary to expectations from previous �ndings [18],
switching from the normal-orientation hypothesis to the free-orientation model further
degraded localization accuracy (see supplementary �gures).

The MUSIC loss at the estimated location remained slightly higher than in the ideal
forward model case but was still on the order of 10�2, indicating that moderate loss values
do not necessarily imply poor head modelling. Instead, shallow minima in the MUSIC loss
landscape are more likely to re�ect poor signal subspace estimation, typically due to noise
or artifacts.

Interestingly, Dipole Fitting yielded exactly the same predictions as MUSIC when using
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identical forwardmodels. This result is consistent with theoretical expectations: in the single-
dipole, noise-free case, both methods are strictly equivalent (see the theoretical complement
for a detailed proof).

2.6. Multiple dipole case

MUSIC vs. Dipole Fitting in themultiple dipole case I compared the ability of bothMUSIC
andDipole Fittingmethods to handlemultiple dipoles using recursive application algorithms.
After each dipole localization, the data explained by the previously identi�ed source was
projected out, and the localization algorithmwas reapplied to the residual data (RAPMUSIC
and RAP Dipole Fitting).

Two con�gurations involving two dipoles were considered. In the �rst scenario, one
dipole was placed in the left auditory cortex and the other in the right visual cortex, resulting
in near-orthogonal lead�elds (cosine similarity < 0.05). In this case, source time courses
are expected to be easily separable, and recursive localization algorithms are expected to
perform well. In the second scenario, both dipoles were located in the left auditory cortex,
leading to substantial spatial correlation between their lead�elds (cosine similarity > 0.2).

To account for variability due to speci�c source positions, 100 random con�gurations
were generated in each scenario. No noisewas added to the simulations, allowing us to isolate
algorithmic performance. As shown in Figure 4, RAP MUSIC signi�cantly outperformed
RAP Dipole Fitting when the dipoles were spatially correlated, particularly for the second
localization: RAP ECD produced errors greater than 1 cm in 75% of trials, whereas RAP
MUSIC achieved errors below 1 cm in 75% of cases (� < 0.001). For the �rst localized dipole
in this con�guration, RAP MUSIC was also signi�cantly more accurate (� < 0.01).

When dipoles were spatially uncorrelated, both methods yielded comparable results with
generally low localization errors. Nonetheless, RAP MUSIC still signi�cantly outperformed
RAP ECD for the �rst localization (� < 0.001).

Overall, these �ndings suggest that RAP MUSIC is more robust than RAP Dipole Fitting
in the presence of spatially correlated sources. In the noise-free two-dipole case, MUSIC loss
minima were higher than in the single-dipole case but remained below 0.05 for both sources,
indicating that multiple sources do not inherently cause shallow minima—provided the
subspace dimension is correctly set and out-projections are properly applied.

ICA as an alternative to RAP—or the dangers of source separation When applying PCA in
the multiple-source case, and if the sources’ lead�elds are not perfectly orthogonal, source
mixing is inevitable. This occurs because PCA produces an orthogonal basis for the signal
subspace, which cannot perfectly separate correlated sources. RAP and TRAP MUSIC
address this issue by spatially �ltering out the activity associated with previously identi�ed
sources, e�ectively isolating new sources in the residual data. However, as discussed in
the paragraph on beamforming, spatial �ltering cannot perfectly isolate punctual sources,

19



Grégoire Degobert-Yasmine Subspace-based methods for extraction of meaningful spatio-temporal data from electro-magnetic imaging

Figure 4. Comparison of RAPMUSIC and RAP Dipole Fitting in two-dipole con�gurations.
A: Left: example source locations in distant areas (left auditory cortex and right visual cortex).
Right: distribution of lead�eld correlations between the two sources. B: Localization errors for both
methods in the distant-source scenario. Diamond: mean; central line: median; whiskers: 10th and
90th percentiles. Signi�cance: *** � < 0.001, ** � < 0.01, n.s. not signi�cant (Wilcoxon signed-rank
test). C: Pairwise comparison for the same con�gurations. Pie charts indicate the proportion of
simulations where each method performed better. D–F: Same analyses for the correlated-source
scenario (both sources in the left auditory cortex).

especially in the presence of spatial correlations. Consequently, residual source leakage can
introduce localization errors when sources are too spatially correlated.

One might conjecture that if a linear decomposition method perfectly recovers the time
courses of each source, then localizing the source associated with each component indepen-
dently—using a subspace-based loss function—should yield accurate spatial localization.
To challenge this reasoning, we compared ICA-based component-wise subspace localization
(see Methods) with the standard RAP MUSIC and RAP Dipole Fitting approaches in a
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scenario involving correlated dipole lead�elds.
As shown in Figure 5, ICA e�ectively separates the individual source time courses (panel

F), whereas PCA yields mixed components (panel C). RAP MUSIC estimates time courses
by projecting the data onto the lead�eld of each localized source: the �rst component is
derived from a projection onto the �rst estimated lead�eld, while the second is obtained by
projecting the residual data—orthogonalized with respect to the �rst lead�eld—onto the
second lead�eld (panel D). As a result, only the second time course is correctly unmixed due
to the explicit outprojection. Similar behavior is observed for RAP Dipole Fitting (panel E).

Counterintuitively, panelG reveals that ICA component-wise localization fails to correctly
localize either dipole. The theoretical explanation is that projecting the data onto the
correct lead�eld does not guarantee unmixed time courses, particularly when lead�elds are
correlated. In this example, even the time course estimated using RAP MUSIC with the
correct lead�eld (panel D) shows evidence of source mixing. This behavior is expected due to
the correlation between dipoles. While ICA successfully recovers time courses by excluding
projections aligned with the lead�elds of other sources, this means that the gain vectors
associated with each ICA component are no longer aligned with the true lead�elds. As a
consequence, localization via ICA-derived subspaces points to erroneous locations—neither
corresponding to the true sources.

Therefore, ICA should be understood as a tool for unmixing source time courses rather
than estimating spatial signal subspaces. A model-based and computationally e�cient
strategy to improve time course unmixing in RAP MUSIC would be to recursively project
out the lead�elds of all other sources from each subspace used for time course estimation.
In panel D, this was done only for the second source. To improve the estimate of the �rst
source’s time course, the lead�eld of the second source should also be projected out from
the subspace used to reconstruct the �rst source’s activity.

2.7. Real data example

To demonstrate the applicability of the MUSIC algorithm to real data, we used the MNE
sample dataset, which consists of averaged auditory evoked �elds (AEFs) recorded following
a right-ear auditory stimulus. The data represent an average over 73 trials. We �rst per-
formed principal component analysis (PCA) on the evoked data and compared the resulting
eigenvalues with the theoretical upper bound of the Mar�enko–Pastur distribution, which
describes the limiting spectrum of a white noise randommatrix with the same aspect ratio as
our data matrix. Three components exceeded this threshold, suggesting a three-dimensional
signal subspace.

We then applied RAP MUSIC using these three top principal components to estimate
successive source locations. After each source was localized, its associated lead�eld was
projected out of the subspace before proceeding to the next step. The values of the subspace-
based loss function at the optimal positions were 0.33 for the �rst dipole, 0.35 for the second,
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Figure 5. Source mixing in localization methods. A: Simulated time courses. The lead�elds of
the two dipoles had a correlation of 0.2 (cosine similarity). B: Resulting sensor data. Similar sensors
are activated throughout the epoch. C: Principal component analysis of the data. Time courses
are mixed across components. D: Time courses estimated using RAP MUSIC. The �rst component
is obtained by projection onto the �rst lead�eld; the second is extracted from residual data after
outprojecting the �rst lead�eld. Only the second time course is correctly unmixed. E: Time courses
estimated using RAP ECD. As with MUSIC, the second time course is derived from residual data.
Both time courses exhibit mixing. F: Time courses obtained from ICA closely match the ground truth
with minimal mixing. G: Source localization results. RAP MUSIC yields accurate positions with
minor error on the second dipole; RAP ECD performs poorly, especially on the second source; ICA
fails to correctly localize either source.
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Figure 6. MUSIC applied to real data. Top left: eigenvalues associated with the top components of
the data. Top right: �rst few principal components of the data (cropped around the region of highest
variance). Bottom left: dipole locations for the �rst two steps of RAP MUSIC. Bottom right: third
estimated dipole location, with shallower loss indicating lower reliability.

and 0.58 for the third. The substantial increase in the loss minimum after the second dipole
suggests that the third localization is less reliable, likely corresponding to noise or model
mis�t rather than a true dipole. We therefore retained only the �rst two localized dipoles.

The two identi�ed sources were located in the left and right auditory cortices, respectively.
This is consistent with the expected bilateral auditory processing pathway. To estimate the
time courses of the localized sources, we followed the approach described in Section 3.2: for
each dipole, the evoked data were projected onto its lead�eld after removing the contribution
from the other source via orthogonal projection. The resulting time courses revealed a strong
positive de�ection in the right auditory cortex and a smaller negative de�ection in the
left auditory cortex, which aligns with the known predominance of contralateral auditory
projections.

3. Theoretical Complement
3.1. Subspace-based methods as dipole fitting on pre-processed data

Reformulation of the subspace-based loss In this section, I demonstrate that subspace-
based approaches such as MUSIC can be interpreted within the framework of dipole �tting.
Intuitively, minimizing the subspace loss function in Equation (11) amounts to identifying a
forward model vector �� that is maximally orthogonal to the noise subspace. Equivalently,
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this corresponds to �nding the direction with the largest projection onto the signal subspace.
I provide an algebraic justi�cation for this interpretation, concluding that selecting the
best dipole location using the signal subspace is e�ectively equivalent to �tting a dipole to
denoised data. For clarity, the proof is restricted to the �xed-orientation dipole case, although
the generalization to free orientations is straightforward.

Assume a �-dimensional signal subspace. Let � = {�1,… ,��} denote an orthonormal
basis for the signal subspace and� = {�1,… ,����} for the noise subspace. Together, � =
� � � forms an orthonormal basis of the full sensor space. Any vector � � �� can then be
decomposed as:

� =
�

���
��,��� =

�

���
��,��� +

�

���
��,��� = �� + ��, (16)

where� and� are the orthogonal projectionmatrices onto the noise and signal subspaces,
respectively (i.e., whose rows are the vectors of� and �).

Using the Pythagorean theorem, the squared norm of � can be expressed in terms of its
projections onto the signal and noise subspaces:

���22 =
�

���
��,��2 = ����22 + ����22. (17)

This identity allows us to rewrite the subspace loss de�ned in Equation (11) as:

�(�) =
�����22
����22

= 1 �
�����22
����22

. (18)

Hence, minimizing the loss amounts to maximizing the energy of the forward model
projected onto the signal subspace. In other words, the optimal dipole is the one whose
lead�eld vector lies most strongly within the signal subspace.

Dipole �tting loss maximizes average cosine similarity between data and lead�eld vector
By combining Equations (5) and (4), the dipole �tting loss at time � can be expressed as:

�(�)� =
�������(�) � �(�)

�
�(�)��(�)

��1 �(�)��(�)
������
2

2
, (19)

where �(�) is the lead�eld matrix associated with spatial parameters �, and�(�) is the
sensor data at time �.

In the constrained orientation case, �(�) reduces to a single column vector ��, and �
corresponds solely to the position index �. The loss becomes:

�(�)� =
��������
�(�) � 1

����22
���,�(�)���

��������

2

2
. (20)

Expanding and simplifying the expression yields:

�(�)� = ��(�)�22 �
1

����22
���,�(�)�2. (21)

Extending this to the time-�xed dipole case, the Frobenius norm over the entire data
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matrix� = [�(1),… ,�(�)] � ��◊� allows summing across all time points:

�(�) = ���2� �
1

����22
������22. (22)

The loss thus ranges from 0 (when �� is collinear to all �(�)) to ���2� (when �� is
orthogonal to all�(�)).

We now de�ne the normalized loss:

��(�) = �(�)
���2�

= 1 �
������22

����22���2�
. (23)

This normalized loss resembles the reformulated subspace-based loss in Equation (18),
with two key di�erences: dipole �tting seeks to maximize alignment between the forward
model and the observed data, whereas subspace-based methods maximize alignment be-
tween the forward model and the estimated signal subspace basis vectors.

Equivalence up to a pre-processing step I now show that applying a speci�c pre-processing
transformation �, derived from the signal subspace projection matrix �, followed by dipole
�tting, yields results equivalent to the MUSIC method. Let �� = �� denote the pre-
processed data. The normalized dipole �tting loss on�� reads:

���(�) = 1 �
���� ����22 + ��������22
����22

�
�����22 + �����22

� , (24)

where � and � are the projection matrices onto the signal and noise subspaces, respec-
tively.

Let� be the data whitening matrix such that the whitened data has identity covariance:

��(��)� = �. (25)

Now de�ne the pre-processing matrix as:

� = ����, (26)

i.e., whitening the data, projecting it onto the signal subspace, and projecting back to sensor
space. Applying dipole �tting to this low-rank pre-processed data yields:

���(�) = 1 �
���� �������22 + �����������22
����22

�
��������22 + ��������22

� . (27)

Since ��� = � (orthogonal projection) and ��� = 0 (signal and noise subspaces are
orthogonal), the expression simpli�es to:

���(�) = 1 �
���� ����22

����22�����22
. (28)

Finally, since�� has identity covariance and thus does not alter norms up to a constant
factor, the loss becomes:
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���(�) = 1 �
���� ��22

����22���2�
, (29)

where ���2� is constant across all �. Therefore, minimizing this loss is equivalent (up to
a constant scaling) to minimizing the reformulated subspace-based loss in Equation (18).

This result con�rms that MUSIC and similar subspace-based methods can be interpreted
as dipole �tting performed on whitened, low-rank data constrained to the signal subspace.

Subspace-based dipole �tting as a weighted subspace-based method In the previous para-
graph, I showed that whitening the data before projecting it onto a low-dimensional subspace
is necessary to retrieve the subspace-based loss formulation. This whitening step removes
the in�uence of the data’s variance structure, which is a key aspect of the dipole �tting
method. While this allowed us to bridge the two approaches, it also highlighted a funda-
mental di�erence: subspace-based methods like MUSIC search for directions lying in the
signal manifold, whereas dipole �tting applied to low-rank approximations also accounts
for the data’s variance structure along each direction of that manifold.

Let us now consider the low-rank approximation of the data without whitening, namely:

�� = ����.

The arguments leading to Equation (??) still hold, yielding:

���(�) = 1 �
���� ���22

����22����22
. (30)

However, in this case, � cannot be factored out of the denominator. Expanding the
numerator reveals the role of each direction � � � of the signal subspace:

���� ���22 =
�

���
���,��2 � �����22. (31)

Thus, minimizing the loss in Equation (30) is equivalent to maximizing the following
expression:

1
����22

�

���
���,��2 � �����22. (32)

This formulation clari�es the critical distinction between performing dipole �tting on
subspace-reduced data and standard subspace-based localization. The term in Equation (32)
corresponds to a weighted version of the subspace-based loss, where alignment with each
component � is scaled by the corresponding projected energy �����22. In a classical MUSIC
framework where the signal subspace is derived via PCA, this energy corresponds to the
eigenvalue associated with eigenvector �.

Empirically, our results showed that the variance-based weighting induce a bias in the
multiple source case leading to potential mislocations of the dipoles.
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3.2. Similarities and differences between MUSIC and dipole fitting

In the previous section, I showed that subspace-based methods share structural similarities
with dipole �tting. In the speci�c case of the standard PCA-based MUSIC algorithm, and
under the assumption of a single dipole source, the link becomes particularly close. MUSIC
�rst identi�es the top principal component of the data and selects the lead�eld vector that
aligns best with this component. In contrast, dipole �tting directly �nds the lead�eld vector
that aligns best with the full data. If the set of candidate lead�eld vectors densely spanned
the entire sensor space, both methods would yield identical results. However, this is not the
case in MEG source localization, where lead�eld vectors lie on a discrete and constrained
manifold within the sensor space. This can lead to di�erences: dipole �tting may select the
vector best aligned with the full data matrix, while MUSIC may prefer the one best aligned
with the top component of variance.

To illustrate this potential divergence, consider a toy example in a 2-dimensional sensor
space with two time steps. Let the data matrix� � �2◊2 have covariance eigenvalues �1 = 2,
�2 = 1, with corresponding eigenvectors �1 = (1, 0), �2 = (0, 1). Assume the data has full
rank due to additive noise.

Suppose we evaluate two unit-norm candidate lead�elds:

�1 = �1 = �10�
, �2 = �cos �sin ��

, � = 60�.

Dipole �tting compares the squared alignment of each lead�eld with the full data:

���1��22 = 1, ���2��22 = 2 cos2 � + sin2 � = 1.25.

It thus selects �2 as the better-aligned lead�eld.
By contrast, MUSIC evaluates the alignment with the top principal component �1:

��1, �1�2 = 1, ��2, �1�2 = cos2 � = 0.25,

and selects �1 instead.
This example highlights the key reason for divergence between the methods: 1) the

lead�eld space does not span all directions of the sensor space, and 2) the variance in some
directionsmay originate fromnoise, not signal. Whether this divergence bene�ts onemethod
over the other is context-dependent. If the estimated principal component is misaligned with
the true signal direction (due to low SNR), MUSIC may localize the source less accurately.
In contrast, dipole �tting can be misled by over�tting to noise directions.

Results from random matrix theory support this trade-o�: in high-dimensional settings,
PCA is known to exhibit a sharp phase transition in its ability to recover a low-rank signal
buried in Gaussian noise. When the SNR drops below a critical threshold, the top eigenvector
of the data covariance matrix becomes uninformative, leading to failure of both MUSIC
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the underlying time courses, it yielded poor localization when applied component-wise,
showing that signal subspace identi�cation does not equate to time course unmixing. This
emphasized the importance of operating on the full signal subspace when performing source
localization.

A real data application using the MNE sample dataset illustrated the practicality of
MUSIC in applied contexts. Subspace dimension estimation via eigenvalue thresholding
allowed reliable localization of bilateral auditory sources. The loss minima were shallow but
interpretable, and source locations matched well-established neurophysiological responses
to auditory stimuli.

The theoretical complement formalized the connection between subspace methods and
dipole �tting, emphasizing that their di�erences arise mainly from the variance-weighting
applied in dipole �tting versus the directionality constraints used in MUSIC. A toy example
illustrated how these approaches can yield di�erent predictions when lead�elds do not
densely span sensor space or when data variance structure misaligns with actual signal.

Limitations Although the results consistently showMUSIC’s strengths, several limitations
must be acknowledged. First, MUSIC’s performance is contingent on accurate estimation
of the signal subspace, which is sensitive to noise and model misspeci�cation. In practice,
artifacts, head movement, or unexpected background activity can bias subspace estimation,
reducing localization accuracy. While pre-whitening aims to mitigate these e�ects, its
robustness under realistic non-stationary noise remains unclear.

Moreover, the advantages of MUSIC in the multiple-source case were established under
idealized, noiseless conditions. These bene�ts may diminish when using imperfect forward
models or in the presence of spatially correlated noise. Since MUSIC assumes a strict separa-
tion between signal and noise subspaces, it may be more vulnerable to model mismatch than
dipole �tting, which �exibly adapts to the empirical variance structure. A comprehensive
analysis that combines structured noise, model mismatch and artifacts should be considered.

Another limitation lies in the interpretation of loss depth. Although synthetic data
showed that loss minima correlate with localization success, this relationship is less clear
in real-world settings. Inaccurate head models, poor subspace estimation, or temporally
variable sources can also lead to shallow minima, reducing the diagnostic utility of loss
values alone.

Future directions The results of this study point toward several promising extensions. One
immediate direction is improving signal subspace estimation under realistic conditions. Our
analysis implicitly assumes access to well-separated signal and noise directions, but this
may not hold in practice. Although many methods for robust or structured PCA exist, our
�ndings suggest that tailoring subspace estimation to known signal features (e.g., frequency,
latency, topography) could be more e�ective than general-purpose methods.

Another avenue concerns the statistical characterization of localization estimates. Cur-
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and PCA-based approaches. In practice, MEG datasets are mesoscopic in size—with tens
to hundreds of sensors and a comparable number of time points—resulting in smoother
transitions and intermediate misalignment of the �rst component. In such cases, MUSIC
can sometimes amplify errors compared to dipole �tting, as illustrated in Figure 2. However,
in the high-SNR regime, MUSIC may outperform dipole �tting due to its robustness against
noise-induced misalignments.

In the multi-dipole case, further di�erences arise. RAP dipole �tting and RAP MUSIC
both rely on recursively projecting out the contribution of previously localized sources.
However, TRAP MUSIC includes additional regularization and orthogonalization steps that
increase divergence between the methods. These approximations, while designed to reduce
over�tting, can further distinguish the behaviors and performance of MUSIC-based and
�tting-based algorithms.

4. Discussion
In this work, I presented a comprehensive investigation of subspace-based methods for
MEG source localization, with a particular focus on the MUSIC algorithm and its relation
to traditional dipole �tting approaches. I �rst detailed the mathematical formulation of
these methods, highlighting the conceptual parallels between subspace scanning and dipole
�tting, which were further developed in the theoretical complement.

Empirical results in the single dipole case con�rmed that both MUSIC and dipole �tting
are capable of accurate localization when the signal-to-noise ratio (SNR) is su�ciently high.
However, MUSIC proved more robust in high-SNR regimes, achieving a higher proportion
of perfect localizations and maintaining lower variance in error distributions. This was
attributed to its ability to isolate signal directions prior to �tting, thereby avoiding over�tting
to noise. Dipole �tting, in contrast, was only found to outperform MUSIC in scenarios
where noise was too strong for either method to succeed precisely, suggesting that MUSIC is
generally a better greedy heuristic when any structure can be recovered.

Further experiments demonstrated the bene�t of incorporating prior knowledge about
the temporal properties of the signal. In particular, we showed that applying Joint Decorre-
lation with a band-pass �lter could recover dipole locations in low-SNR conditions where
standard PCA-based approaches failed. This highlights the �exibility of the subspace frame-
work, which is not restricted to principal component analysis. Methods like Common Spatial
Patterns (CSP) or other task-informed projections could similarly be adapted to optimize
source extraction under particular hypotheses.

In the multiple dipole case, I evaluated recursive approaches such as RAP MUSIC and
RAP dipole �tting. While both leverage a similar projection principle to reduce signal mixing,
RAP MUSIC signi�cantly outperformed dipole �tting when dipoles had spatially correlated
lead�elds. ICA was also tested as a decomposition method. Although it correctly unmixed
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rent methods return deterministic solutions, but do not quantify uncertainty. Our �ndings
imply that MUSIC, despite its robustness, can produce unreliable estimates when subspace
estimation fails. This motivates the use of con�dence metrics or Bayesian extensions of
subspace localization to �ag or correct potentially spurious results.

Additionally, our comparison with ICA-based localization raises important implications:
unmixing time courses is not equivalent to identifying the signal subspace. Future work
should explore how subspace methods and time-course separation can be combined without
con�ating their goals. This may involve iterative procedures or joint models that separate
sources while maintaining spatial interpretability.

In summary, this work contributes both theoretical clarity and empirical insight to the
understanding of subspace-based methods. It suggests that while MUSIC and related algo-
rithms are powerful tools, their practical reliability hinges on accurate subspace estimation,
careful forward modeling, and context-aware interpretation of results.
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Supplementary figures

Figure 7. Loss minima deepness as a function of localization error (cm) for the MUSIC
method (single dipole case)
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Figure 8. p-values for theWilcoxon signed-rank test as a function of the number of averages
Shaded areas correspond to areas were the p-value was lower than the threshold.

Figure 9. Localizations errors due to forward under the normal orientation hypothesis Black:
true dipole location. Green: high-resolution source model paired with a bad sphere conductor model.
Blue: low-resolution source model with exact conductivity modelling.

33



Grégoire Degobert-Yasmine Subspace-based methods for extraction of meaningful spatio-temporal data from electro-magnetic imaging

Figure 10. Localizations errors due to forward modelling without the normal orientation
hypothesis Black: true dipole location. Green: high-resolution source model paired with a bad
sphere conductor model. Blue: low-resolution source model with exact conductivity modelling.
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