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1 Introduction
Electroencephalography (EEG) and magnetoencephalography (MEG) are two pow-
erful, complementary methods in neuroscientific research: By measuring the electric
potential at the scalp and the external magnetic field around the head, they enable
non-invasive, highly time-resolved study of electric brain activity [25][34]. The sci-
entific field of source analysis deals with computational methods of reconstructing
the underlying current density inside the brain which generates a measured EEG or
MEG (EMEG) signal. This also finds relevant clinical application, e.g., in the case
of medication resistant epilepsy: Here, source reconstruction can help localizing the
damaged, epileptically active tissue for surgical removal or other treatment options
[5][53].

However, the task of reconstructing a current inside a volume conductor based on
the external electromagnetic field is an ill-posed inverse problem, as there are infinite
source configurations that can generate the same measurement result [28]. Conse-
quently, inverse methods rely on additional assumptions or constraints in order to
obtain a unique solution. These a-priori assumptions can e.g. be based on anatomical
knowledge. One assumption can be that the solution should be extremely focal,
i.e., the entire electric activity is generated by a single point dipole (dipole scan-
ning technique). This is an appropriate approximation in cases that are not too
complex, e.g., if the sources are flat patches as shown by de Munck [44]. It does
not accurately describe the reality, as the detected activity, in the case of epilepsy,
may be spread over several cm2 of the brain’s surface [41]. Applying dipole scanning
for very spatially extended sources can lead to misleading localization results [35].
Conversely, there are inverse methods that implicitly assume spatially extended current
density distributions, which lead to blurred solutions even if the underlying source
is actually a dipole [23]. A more flexible way to incorporate assumptions like this
is provided by hierarchical Bayesian modeling (HBM), where constraints are imple-
mented as prior probability distributions which can be adapted to the data at hand [11].

In the context of spatially extended sources, the visually evoked response (VER) is an
especially suitable experimental paradigm. Due to the characteristic structure of the
visual cortex, the size of the activated zone in the brain is directly correlated to the
area of the eliciting stimulus in the visual field [20]. Thereby, the VER can be used to
create real experimental data with sources of varying spatial extent.

This thesis investigates the effect of source extent on the properties of the inverse
reconstruction using modern source analysis tools. It will be examined under which
circumstances spatially extended sources can cause relevant reconstruction errors, and
consequently, whether there is a benefit in decreasing the size of the VER stimulus.
This should increase the understanding of possible pitfalls when using the investigated
methods in clinical applications, where extended sources are likely. Additionally, for
applications involving the VER directly - including further methodological studies
as well as calibration procedures - a recommendation for the size of the stimulus will
be inferred. To achieve this, the finite element method (FEM) is used to accurately
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model the human head, and reconstructions are performed using dipole scanning
techniques and the HBM-based iterative alternating sequential (IAS) algorithm. The
thesis is divided into a simulation study and a group study using real VER EMEG data.

In the simulation part, synthetic EMEG data is created using models of increasing
complexity. Sources with varying extents are placed in three different head models: A
spherical model, a simplified FEM model with a homogenized brain compartment, and
a more detailed FEM model with realistic cortical surfaces. Two types of synthetic
sources are used: First, a geometrically simple case with flat, slightly curved patches,
consisting of dipoles with radial orientation. In the more complex case of the realistic
FEM model, the dipoles in the patch point perpendicularly to the cortical surface.
The findings from the simulations are used to determine appropriate settings for the
IAS algorithm, and to contextualize the experimental results.

For the experimental part, pattern-reversal VER stimuli of two different sizes are
implemented: A ring segment encompassing the whole lower right quadrant of the
visual field, and three smaller stimuli, each one third the area of the full stimulus.
EMEG data is recorded for each stimulus in a group of 8 participants. Sources are
reconstructed from the measured data using dipole scanning and the IAS algorithm,
and differences between results for the four stimuli are analyzed.
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2 Physiological Background

2.1 Tissues and Signals of the Brain
In the brain, information propagates in the form of electric signals in-between and
inside of neurons. Using EEG and MEG, it is possible to non-invasively gain insight
on these processes by measuring the electric potential and magnetic field outside of the
head, caused by the current within. This chapter deals with the basic structure of the
brain and how neurons generate a measurable EMEG signal, with the fundamentals
following the presentation in [34].

Figure 2.1: A pyramidal cell, consisting of the cell body (soma), axon
and dendrites. Axons from other cells connect via the synapse, where
the received action potential causes a postsynaptic potential. This
leads to current flow along the dendrites [34].

The largest part of the brain, the cerebrum, which is responsible for many cognitive
functions, consists of two major tissue types, the grey matter and the white matter.
A convoluted outer layer of grey matter with many ridges (gyri) and grooves (sulci)
forms the cerebral cortex. It is surrounded by the cerebrospinal fluid (CSF), which
allows some movement of the brain within the skull. The cortex contains between 5
and 30 million neurons per cm2, 85 % of which are the so-called pyramidal cells [14]
[17]. Figure 2.1 shows a sketch of a pyramidal cell. The white matter is formed by
the neuronal axons, which are long extensions by which the cells send signals to other
neurons.

These signals consist of the so-called action potential, a traveling polarization wave
which briefly raises the otherwise constant membrane potential by changing the ion
concentration difference between the inside and outside of the cell. As this leads to
current flows inside the axon in two opposite directions, they cancel out in the far
field and therefore do not contribute strongly to the EMEG signal.
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The axon connects to the receiving cell via the synapse, where the information is
carried on chemically, via neurotransmitters. This causes a local membrane potential
change in the new cell, which, depending on the synapse’s neurotransmitters, can be
positive (excitatory) or negative (inhibitory). The postsynaptic potential leads to a
current flow along the dendrites. Signals from different synapses add up and can cause
the neuron to send out a new action potential, once a critical excitation threshold is
reached. As a dominant part of the dendritic tree of the pyramidal cells points roughly
towards the cortical surface (apical dendrites), the parallel currents of neighboring
cells add up and are presumed to be the main source for the EMEG signal [62].

Figure 2.2: Electrodes and magnetometers pick up the electric
potential Φ and magnetic flux Ψ caused by the activity in a
patch of cortex and the accompanying extracellular return
currents [34].

In order to generate a measurable magnetic field outside the head, is is estimated that
10,000-50,000 pyramidal cells must be synchronously active [45]. Theoretically, this
would correspond to an area smaller than 1 mm2 as the minimum area of detectable
activity, assuming that all cells within that area are active and there are no additional
canceling effects. Making a realistic estimate is difficult: Typically an area of 40 mm2

is assumed, but it has also been suggested that at least 4 cm2 of synchronous epileptic
activity might be necessary in order to be detectable [26][41].

Due to charge conservation, the intracellular currents give rise to an extracellular return
current, which flows through the entire conductive head and causes measurable poten-
tial changes at the scalp that can be picked up by the electrodes of the EEG. The intra-
and extracellular currents (see Fig. 2.2) also generate a weak magnetic field, which,
in a sufficiently magnetically shielded room, can be picked up by MEG magnetometers.
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2.2 Visually Evoked Responses
Evoked responses, often called evoked potentials or fields when measured with either
EEG or MEG, refer to signals caused by a specific, controlled sensory stimulation.
Besides providing insights on the brain’s sensory processing pathways in basic neuro-
scientific research, they are also useful for validating source reconstruction methods:
Neuroanatomical knowledge about which cortical areas are known to respond to the
stimulation can serve as an approximate ground truth. The somatosensory evoked
response has also been used to calibrate the conductive properties of the head model for
EEG analysis, taking advantage of the MEG’s lesser sensitivity to tissue conductivity
[58].

While for strong signals like an epileptic spike, a single spike might suffice for source
analysis [6], evoked responses are generally obscured by random background brain
activity and sensor noise. To increase the signal to noise ratio, the stimulus is presented
many times (trials), with varying inter-stimulus time differences to avoid habituation,
and the trials are averaged [16].

There are several types of stimuli commonly used to elicit the visually evoked response
(VER), often involving the sudden appearance, spatial movement or color-inversion
of a high-contrast pattern on a screen viewed by the participant [47]. The latter,
called the pattern-reversal (PR) VER, is used in this thesis. It consists of a flickering
black-and-white checkerboard-type pattern taking up part of the visual field, its
size measured in degree visual angle (see Fig. 2.3). The checkerboard PR-VER is
well-described with regards to its clinical applications, where deviations from the
normal response can serve as diagnostic criteria for certain pathological conditions.
For that purpose, it is usually measured using a single electrode at the back of the head
(specifically, the occipital midline position, Oz, as defined by the international 10-20
electrode placement standard [4]) with a reference electrode at the frontal midline (Fz).

Figure 2.3: Pattern-reversal checkerboard
VER, size measured in degree visual angle
α and EEG recorded using an electrode at
the occipital midline with reference at the
frontal midline.

Figure 2.4: Typical post-stimulus time-course of
the VER signal at the Oz electrode [47].
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Figure 2.4 shows a typical EEG waveform during the post-stimulus time interval
measured this way. Three distinct components can be identified, termed the N75,
P100 and N135, after their polarities and onset times (latencies). In contrast to the
clinical application, in source analysis an array of electrodes over the whole head is
used, measuring the topographic potential distribution. Furthermore, while diagnostic
criteria are tied to the latency and amplitude of the P100 component, in source
analysis the component of interest is often the N75.

Evidently, it takes 75 ms for the signal from the eye to first reach the cortex. Much
of this delay (at least 30 ms) is already caused by the limited response time of the
photo-receptor cells in the eye’s retina [60]. From the eyes, information is transmitted
to the brain along the optic nerves. The fibers from both eyes cross over at the
optic chiasm, so that information from the left visual field is sent to the right brain
hemisphere and vice versa, with a small overlap in the center [31]. The signal reaches
the lateral geniculate nucleus, the subcortical relay station between the eye and the
visual cortex, after about 40-50 ms (as measured using intracranial depth electrodes
[37]). From here it is directly relayed to the primary visual cortex also called V1 or
the striate cortex, located at the back of the head (occipital lobe).

Figure 2.5: Retinotopic organization of the
primary visual cortex. The cortex is organized
around the calcarine fissure/sulcus, and can
be divided into left/right, top/bottom parts.
There is a distinct spatial relation between
the placement of the stimulus in the visual
field and the activated part of the cortex [83].

Figure 2.6: Cruciform model of the primary vi-
sual cortex (same domain labels as in Fig. 2.5),
showing polarity inversion of the MEG topog-
raphy for stimulation in the four visual quad-
rants. Data from preliminary tests.

The whole visual cortex is divided into several structural and functional areas, includ-
ing V1 and extrastriate areas, that form a hierarchical processing system. The V1 is
the least specialized but most retinotopic of these regions, meaning there is a clear
spatial mapping between the visual field and the cortical area [22]. The upper left
part of the visual field is projected to the bottom right part of V1 and vice versa. The
central visual field, corresponding to the foveal region of the retina, is mapped nearer
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to the skull, and the periphery deeper within the brain. Figure 2.5 shows a sketch
of this relation. The strong retinotopy together with the distinct folding of V1 leads
to a characteristic polarity inversion of the measured MEG or EEG topography for
stimulation constrained to the four visual quadrants. The primary visual cortex is
therefore often described in the form of a cruciform model, as shown in Fig. 2.6. With
regard to the 75 ms component of the PR-VER, whether (1) V1 is really the only
signal contributor, and (2) polarity inversion is a feature unique to V1, is still a subject
of debate (see e.g. this discussion between Ales et al. and Kelly et al.: [2], [3], [32], [33]).

In retinotopic mapping studies, which aim to estimate more precisely the spatial
relationship between the visual field and the visual cortex, instead of a checkerboard,
a round stimulus with a dartboard-like pattern is used. Thereby, the check size
and stimulation area is increased when moving further away from the visual focus
(increasing eccentricity), to compensate for the cortical magnification factor: The
foveal region of the retina, corresponding to approximately the central 2° of the visual
field, has a much higher density of photoreceptors than peripheral areas, leading to a
larger activated cortical patch for a central stimulus versus an equally sized stimulus in
the periphery [27]. This is also visible in Fig. 2.5. Thus, an estimate for the activated
area for a certain stimulus needs to take into account its eccentricity. Table 2.1 shows
estimates for the cortical magnification factor, i.e., the change in mm of activated
cortex length per visual degree in the field of view, for an eccentricity of 3° according to
several retinotopic mapping studies. Increasing the size of the stimulus while keeping
the eccentricity constant should therefore lead to a corresponding, approximately
linear increase of the activated cortical area.

Table 2.1: Estimated cortical magnification values from studies using different methods including
functional MRI (fMRI) with a continuously spatially changing stimulus (traveling wave), and source
analysis with multifocal VEP (mfVEP), meaning different regions in the visual field are addressed in
random order.

Source Methods Cortical Magnification
at 3◦ eccentricity
(mm/deg)

Slotnick 2001 [61] EEG mfVEP source
reconstruction n=3

6.2 ± 0.4

Qiu 2006 [52] fMRI mfVEP n = 5 4.5 ± 0.3
Sereno 1995 [59]
(reanalyzed Beard
1997 [7])

fMRI traveling wave VEP
n=7

6 ± 1

Horton 1991[30] Estimate for humans from
physiological monkey studies
and lesion measurements

4.6
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3 The EMEG Forward Problem
Due to the non-uniqueness of the EMEG inverse problem, the corresponding
forward problem needs to be solved first. The forward solution, i.e., the EMEG
signal that would originate from a specific source, is computed for a defined space of
allowed sources, so that the most suitable solution may be selected from that space.
In this section the mathematical formulation of the forward problem is derived from
the quasi-static Maxwell equations. Then the analytical solution, which can only be
calculated in special geometries, is briefly discussed. For more complex and realistic
models of the human head, numerical methods are needed, one of which, the finite
element method with St. Venant Source Modeling is used in this thesis and will be
described below.

3.1 Derivation from Maxwell’s Equations
As the problem in question deals with the propagation of electromagnetic fields the
fundamental equations needed are the Maxwell equations. For neural signals, which
are low frequency by nature, the quasi-static approximation with the time derivatives
of the electric and magnetic fields ∂tE = 0 and ∂tB = 0 is sufficient [26]:

∇ × E = 0 (3.1)
∇ × B = µ0J (3.2)
∇ · B = 0. (3.3)

The magnetic permeability of biological tissue is assumed to be identical to the vacuum
permeability µ0, and J denotes the current density.

Equation (3.1) implies that the electric field is rotation-free and can therefore be
written as the gradient of a scalar potential:

E = −∇Φ. (3.4)
The current density J can be divided into the driving intracellular primary current
Jp and the secondary volume return current:

J = Jp + σE = Jp − σ∇Φ, (3.5)
where σ ∈ R3×3 is a symmetric, positive definite conductivity tensor depending on the
local tissue.

Inserting Eq. (3.5) into Eq. (3.2) and taking the divergence yields:

∇ · (∇ × B)︸ ︷︷ ︸
=0

= µ0∇ · (Jp − σ∇Φ). (3.6)

This results in the Poisson equation:

∇ · Jp = ∇ · (σ∇Φ). (3.7)
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The EEG forward problem then consists of finding the electric potential Φ : Ω → R
that fulfills Eq. (3.7) in the head domain Ω ∈ R3 under the boundary condition:

n · ∇Φ = 0 on δΩ. (3.8)
The boundary condition, with n denoting the unit surface normal of the domain
boundary δΩ, states that no current flows outside the head.

Due to the distance of the sensors from the source, the primary current density can be
approximated as a mathematical point dipole with position r0 and moment d ∈ R3,
which represents the direction and strength of current flow:

Jp = dδ(r0), (3.9)
where δ(r0) denotes the Dirac delta distribution. The magnetic field is calculated
using the Biot-Savart law (following directly from Eq. (3.3)):

B(r) = µ0

4π

∫
Ω

J(r′) × r − r′

∥r − r′∥3
2
d3r′. (3.10)

In the end, rather the magnetic flux through the area of a measurement coil with
surface S needs to be calculated:

Ψ =
∫

S
Bd2s(r). (3.11)

The MEG forward problem can be split into two parts, as the magnetic field can also
be split into a primary and secondary component, B = Bp + Bs [57]:

Bp(r) = µ0

4π
d × r − r0

∥r − r0∥3
2
, (3.12)

Bs(r) = − µ0

4π

∫
Ω

σ(r′)∇Φ(r′) × r − r′

∥r − r′∥3
2
d3r′. (3.13)

The primary B field does not depend on the conductivity and can be computed
analytically while the secondary part also depends on the electric potential, and
usually requires numerical methods.

3.2 Analytical Solution
The solution for the EEG and the MEG forward problems can be calculated ana-
lytically in the case of spherical conductors with radially symmetric conductivity
profiles. These can serve as adequate approximations for the human head depending
on application, with inverse localization errors in the range of 1-4 cm [15][55].

For MEG, Sarvas [57] derived a solution for a spherical model, showing that the
external magnetic field is independent of the conductivity values within the sphere.
Furthermore, a radially oriented dipole does not produce any external magnetic field.
In a real head geometry, the MEG is also less sensitive to quasi-radial source compo-
nents, an important argument for the complementary nature of EEG and MEG [13].
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For EEG, the spherical model is typically made of three (or four) concentric spheres,
representing the brain (and sometimes the CSF), skull and scalp with piece-wise
constant conductivity values within the respective compartments. In contrast to the
MEG, the EEG depends strongly on the conductivity [64]. The forward problem for
this multi-layer model can be solved quasi-analytically by a series expansion approxi-
mation as derived by de Munck [43].

The analytical solution can be used to validate numerical methods such as the finite
element method, which then can be applied to more realistic conductivity profiles.

3.3 Finite Element Method
The finite element method (FEM) is a numerical method that allows solving differential
equations like the EEG forward problem in complex geometries. Specifically, it can
be used for realistically shaped head models with distinction between white and gray
brain matter, which is recommended to avoid both magnitude and topography errors
in the forward solution [63].

We want to solve the EEG forward problem for Φ derived in the previous chapter:

∇ · (σ∇Φ) = ∇ · Jp in Ω,

n · ∇Φ = 0 on δΩ.

Firstly, we want to replace this differential formulation by the weak formulation. For
this we multiply the equation with a test function w and integrate over the domain Ω.∫

Ω
∇ · (σ∇Φ)wd3r =

∫
Ω

∇ · Jpwd3r. (3.14)

We can rewrite the left hand side by applying Green’s first identity:∫
Ω

∇ · (σ∇Φ)wd3r = −
∫

Ω
σ∇Φ · ∇wd3r +

∫
δΩ

wσ∇Φd2s(r)︸ ︷︷ ︸
=0

(3.15)

The surface integral vanishes due to the boundary condition. This yields the weak
formulation of the forward problem:∫

Ω
σ∇Φ · ∇wd3r =

∫
Ω

∇ · Jpwd3r. (3.16)

The weak formulation no longer requires Φ to be classically differentiable with contin-
uous second derivatives, as the strong formulation of the differential equation does.
It only requires Φ and w to have square-integrable weak derivatives. ∇Φ is a weak
derivative of Φ if for any v, which is a smooth test function vanishing on the domain
boundary, Eq. (3.17) is fulfilled.∫

Ω
Φ∇vd3r = −

∫
Ω

∇Φvd3r. (3.17)
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To obtain a unique solution, we also require∫
Ω

Φd3r = 0, (3.18)

as the electric potential is only defined up to a constant. Together this means the
solution and test functions are functions in the Sobolev space with zero mean defined
in the domain Ω, denoted as H1

∗ (Ω). We can now translate this into a more general
form. Let a(u, w) : H1

∗ × H1
∗ → R be a bilinear form corresponding to the left hand

side of Eq. (3.17) and l(w) : H1
∗ → R a linear functional corresponding to the right

hand side. A function u ∈ H1
∗ (corresponding to Φ) is called a weak solution if it

fulfills:

a(u, w) = l(w) for all w ∈ H1
∗ . (3.19)

According to the Lax-Milgram theorem, there exists a unique solution to Eq. (3.19)[46][65].
It can not be directly calculated as H1

∗ is infinite dimensional. However, according to
the Lemma of Céa, in an appropriately chosen finite dimensional subspace Vh ⊂ H1

∗ ,
there exists a uh ∈ Vh that can provide a good approximation for u:

a(uh, wh) = l(wh) for all wh ∈ Vh. (3.20)

Therefore, in FEM, the domain Ω is split into subdomains, typically hexa- or tetrahedral
elements of a mesh, and Vh is defined as the space of functions that have a simple
structure on every subdomain. As Vh is finite, it has a basis {ϕ1, ..., ϕn} with n being
the number of mesh nodes/vertices:

a(uh, ϕi) = l(ϕi) for 1 ≤ i ≤ n. (3.21)

The basis functions are piece-wise polynomials, where a ϕi associated with the ith
node is linear between mesh nodes belonging to the same element, and zero at all
other nodes of the mesh and on all other elements. Figure 3.1 visualizes the basis
functions for a triangular mesh.

Figure 3.1: Shape functions in a triangular finite element mesh [82].
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The solution uh can be written in terms of the basis functions,

uh =
n∑

j=1
xjϕj, (3.22)

so that the problem becomes:
n∑

j=1
a(ϕj, ϕi)xj = l(ϕi) for 1 ≤ i ≤ n. (3.23)

In defining the so-called stiffness matrix (A)ij = a(ϕj, ϕi) and the vector (b)i = l(ϕi)
we obtain the linear equation system:

Ax = b. (3.24)

A FEM solver algorithm now needs to assemble A for the mesh and solve for x. This
has to be done for each b, i.e., for each source Jp. The measured potential yh of an
EEG electrode at position r is obtained by

yh(r) = u(r) − u(r′), (3.25)

with a reference at r′. As the source space usually contains tens of thousands of
sources, it is more efficient to use a computational approach that requires solving the
system once for each sensor rather than once for each source. This is the transfer
matrix approach [66]. We can rewrite Eq. (3.25) using Eq. (3.22):

yh(r) =
n∑

j=1
xj(ϕj(r) − ϕj(r′))

= x ·


ϕ1(r) − ϕ1(r′)

...
ϕn(r) − ϕn(r′)


︸ ︷︷ ︸

= c

(3.26)

An analogous sensor vector c can be defined for the MEG using the Biot-Savart law.
Inserting Eq. (3.24) in Eq. (3.26) yields:

yh(r) = c⊤x = c⊤A−1b = Tb, (3.27)

The transfer matrix T can be calculated, exploiting that A is symmetric, by:

AT ⊤ = c. (3.28)

Therefore, a solver needs to first assemble A for the given forward model and then
solve Eq. (3.28) for each sensor. In order to obtain yh, we need to calculate b, which
requires a suitable source model, described below.
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3.4 Venant Source Model
When using FEM, the right hand term of the forward problem, which is the source
term b, can not be directly calculated from our definition of Jp as a point dipole:

∇ · Jp = ∇ · (dδ(r0)).
In the FEM framework, we require that this term can be modeled by basis functions
ϕi, so that:

∇ · Jp ≈
n∑

i=1
xiϕi. (3.29)

This is problematic because the basis functions are smooth and piece-wise continuous
while δ(r0) has a singularity at r0.

There are several ways to treat the singularity mathematically, one of which is the
here utilized St. Venant or blurred dipole approach [9][67]: Following the principle
of St. Venant, in the far field the dipole can be approximated by Eq. (3.30), using
several appropriately scaled monopoles qi located at ri ∈ Ω, i ∈ {1, . . . , m}. This is a
well-established method, though newer techniques, like the local subtraction approach,
can potentially achieve higher accuracy [29].

∇ · Jp ≈
m∑

i=1
qiδr⃗i

. (3.30)

The monopole positions usually comprise the vertex nearest to the source location
and the vertices belonging to the neighboring elements (see Fig. 3.2). To prevent
numerical errors, the locations must fulfill the Venant Condition which requires all
monopoles to be in the same conductivity layer as the source, which is normally the
grey matter [40] [63].

Figure 3.2: Nearest (red) and surrounding (or-
ange) vertices selected as monopole positions
to model the dipole (blue).

The monopole strengths are selected in such a way that the dipole moment is repro-
duced while the net charge remains zero and higher moments are suppressed:

m∑
i=1

(ri − r0)qi = d. (3.31)
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4 The EMEG Inverse Problem
Once the forward solution is obtained, the inverse problem can be solved. Due to
the discrete sampling of the source space and the sensors, the result of the forward
computation is the so-called leadfield matrix. For a source at position rj ∈ R3 with
dipole moment dj ∈ R3, the leadfield Lj ∈ RN×3 is a matrix mapping the source
parameters to the measurement vector y ∈ RN :


y1
...

yN

 =


[lx

1 , ly
1 , lz

1](rj)
...

[lx
N , ly

N , lz
N ](rj)

 ·

dx
j

dy
j

dz
j

 ,

y = Lj · dj.

(4.1)

The complete leadfield for the whole source space is the set of leadfields L̄ =
{L1, ..., LM} ∈ RN×3M for M source positions and N sensor positions:


y1
...

yN


︸ ︷︷ ︸

y

=


[lx

1 , ly
1 , lz

1](r1) · · · [lx
1 , ly

1 , lz
1](rM)

... . . . ...
[lx

N , ly
N , lz

N ](r1) · · · [lx
N , ly

N , lz
N ](rM)


︸ ︷︷ ︸

L̄

·


d1
...

dM


︸ ︷︷ ︸

D

. (4.2)

Solving the inverse problem consists of finding the D that best explains the data and
fulfills some additional constraints which need to be made in order to obtain a unique
solution. This requires some form of inversion of the leadfield, which generally is not
injective. One option is to only consider the local problem (Eq. (4.1)) individually for
each position, as this is overdetermined as long as the number of sensors exceeds the
number of dipole moment components. That is the idea of the dipole scan explained
in Section 4.1. Alternatively, constraints can be added to the model in the form
of priors, and a global current density distribution consisting of a superposition of
dipole moments can be reconstructed. One inverse method following this principle is
hierarchical Bayesian modeling (HBM), which is explained in Section 4.2.
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4.1 Dipole Scanning
In the standard single dipole scan, for each source position the reconstructed dipole
moment is defined as:

dj,rec = argmin
dj∈R3

∥y − Ljdj∥2
2, (4.3)

where ∥ · ∥2 denotes the Euclidean norm (l2-norm). The reconstructed moment can
be obtained by calculating the Moore–Penrose inverse L+ (also called pseudoinverse)
which is a generalization of the matrix inverse, fulfilling LL+L = L. Equation (4.4)
then constitutes the best fitting moment for a given dipole position to generate the
data y.

dj,rec = L+
j y. (4.4)

The moment and a residual error measure is calculated for each position. The dipole
scan then consists of finding the position which minimizes the error/maximizes the
goodness of fit (GOF):

GOF(y, Lj) = 1 − ∥y − Lj · dj,rec(y, Lj)∥2
2

∥y∥2
2

. (4.5)

The single dipole scan is a simple and, for standard sized source spaces, computa-
tionally inexpensive method. It also has the advantage that the global maximum is
always found. However, it enforces the assumption that the entire data is generated
by a single, very focal source. There are also dipole scanning methods designed to
find multiple local peaks of GOF, i.e., multiple sources (e.g. MUSIC, see [42]). For
the here investigated N75 component of the visually evoked response, the assumption
of a single source is appropriate. This source may however be extended over a larger
cortical area, with the single dipole scan ideally yielding the approximate location of
the distribution’s center.

While in the standard dipole scan, Lj refers to a leadfield for a single position in the
source space, the mathematical principle works with any subset of L̄, as long as the
problem remains overdetermined (number of dipole moment components < number of
sensors). Based on this idea, a method to reconstruct an extended source using dipole
scanning will be introduced in Section 5.4.
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4.2 Hierarchical Bayesian Modeling
The inverse problem can be reformulated in the framework of Bayesian statistics. If y
is a vector of measurements, D are the parameters of the model M (the mapping from
the parameters to the measurement, i.e., the leadfield), and p(a | b) is the conditional
probability density function of a random variable a given b, then Bayes’ theorem reads:

p(D | y,M) = p(y | D,M) · p(D | M)
p(y | M) . (4.6)

The theorem consists of four terms:

• p(D | y,M): Posterior probability density of the parameters given the data
and the model. An estimate of D can be inferred from the distribution’s mean
(expectation value) or maximum (Maximum A-Posteriori/MAP).

• p(D | M): Prior probability density of the parameters, encoding assumptions or
constrains about their possible values.

• p(y | D,M): Likelihood of the parameters, equivalent to the conditional proba-
bility density of observing the data given the parameters. The likelihood does
not necessarily have a unique maximum, which is why a prior is required.

• p(y | M): Model evidence, which is the probability that the data can be described
by the model, computed by integrating over all possible parameters. This is a
normalization term that will be neglected, as we are just interested in the MAP
estimate, not the full posterior distribution.

By the use of priors, the Bayesian method therefore does not explicitly enforce a certain
number of sources or source extent as the single dipole scan does. Rather, the probabil-
ity distribution of source configurations is modified according to the given assumptions.

According to the Central Limit Theorem, the data is assumed to be contaminated by
additive Gaussian noise ϵ:

y = L̄D + ϵ. (4.7)

The noise follows a multivariate Gaussian distribution with mean µ and covariance
matrix Σϵ whose probability density function is defined by:

p(ϵ) = 1√
(2π)kdet (Σϵ)

exp
(

−1
2(ϵ − µ)⊤Σ−1

ϵ (ϵ − µ)
)

. (4.8)

We assume the mean µ = 0 and Σϵ = σ2I, i.e., an independent and identically
distributed noise model with known variance σ2.
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From Eq. (4.7) and Eq. (4.8) follows that the likelihood is also a multivariate Gaussian
distribution with mean L̄D, given by:

p(y | D) ∝ exp
(

− 1
2σ2 ∥y − L̄D∥2

2

)
. (4.9)

If the prior p(D) is also Gaussian, then so will be the posterior. Such a prior with
zero mean and small variances constitutes a shrinkage prior (Eq. (4.10)), representing
the belief that source strengths should be zero unless strong evidence in the data
suggests otherwise. The prior variance vector θ ∈ R3M quantifies our belief in this
assumption; the larger the variance, the lesser is the influence of the prior on the
posterior probability density.

p(D | θ) ∝ exp
(

−1
2D⊤Σ−1

θ D
)

. (4.10)

If Σϵ and Σθ = diag(θ1, ..., θ3M ) are known and fixed, one can formulate the Maximum-
a-Posteriori (MAP) solution as:

⟨D⟩post = argmax
D

(log (p(D | y))) . (4.11)

This constitutes a minimization of the difference between the data and L̄D, penalized
by the model term, which corresponds to a Σθ-weighted l2-norm of the solution D.
The solution to Eq. (4.11) is

⟨D⟩post = ΣθL̄
⊤
(
L̄ΣθL̄

⊤ + Σϵ

)−1
y. (4.12)

If the noise covariance matrices are both scaled identity matrices this simplifies to

⟨D⟩post = L̄⊤
(
L̄L̄⊤ + λI

)−1
y, (4.13)

which is a well known formulation of Tikhonov-regularized minimum norm estimation,
where a parameter λ can be adjusted in order to regularize the solution. However,
selecting an appropriate degree of regularization may be challenging. In HBM, this
problem is addressed by modeling the prior variances as random variables as well,
which can be estimated empirically from the data. The variance vector is therefore
equipped itself with a so-called hyperprior p(θ):

p(θ | y) ∝ p(y | θ)p(θ). (4.14)
We want the hyperprior over the variances to favor small values while permitting larger
outliers, which should allow for a focal solution, with most source strengths being zero
and a few strong sources. One distribution that meets this requirement is the inverse
gamma function shown in Fig. 4.1. It is a heavy-tailed distribution governed by two
parameters, the shape parameter α ∈ R>0 and scale parameter β ∈ R>0:

p(θ) ∝
3M∏
i=1

θ−α−1
i exp

(
− β

θi

)
. (4.15)

The scale parameter primarily effects the spread or width of the distribution and the
shape parameter steers the rate of decay of the tail [11].
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The inverse gamma distribution is often chosen as a hyperprior distribution in HBM,
as it is conjugate to the Gaussian likelihood, ensuring that the variance posterior
p(θ | y) is also inverse gamma. This can make computations more efficient in
methods where the whole posterior distribution is estimated, like sampling techniques.
These techniques can also be used to approximate appropriate seed points for faster
optimization methods like the IAS algorithm (see Section 5.5) [39]. In the case of this
algorithm, the inverse gamma distribution as hyperprior is not a requirement.

Figure 4.1: Inverse gamma probability density function for different
shape and scale parameters.
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5 Experimental and Computational Methods
EEG and MEG data of 8 subjects was recorded at the Institute for Biomagnetism and
Biosignalanalysis (IBB), University of Münster. Additionally, Magnetic Resonance
Imaging (MRI) scans of all subjects were acquired in order to create realistic head
models. A range of different software was used to process the data and perform forward
and inverse computations. Most of this process was done using the institute-developed
pipeline for EMEG source analysis [70]. The pipeline is implemented in Matlab (The
MathWorks, Inc., Natick, Massachusetts, USA) and calls upon several freely available
toolkits and software libraries, each developed for applications in neuroscientific anal-
ysis with strengths in different domains. Additionally, results from the pipeline were
imported into the Matlab toolbox Zeffiro Interface, developed at Tampere University,
which contains the IAS algorithm [73]. The creation of synthetic data and evaluation
of the results was also performed in Matlab.

5.1 Experimental EMEG Data
5.1.1 Participants

The group study included 4 male and 4 female participants, aged 21-29 (mean 23 ± 2).
The participation in the study was voluntary and ethical clearance given by the ethics
committee of the Ärztekammer Westfalen-Lippe (Ref No 2021-290-f-S, amendment
from December 7, 2023). Subjects either had normal or corrected eyesight using
contact lenses or provided MEG-compatible glasses. Stimulation occurred binocularly.

5.1.2 Visual Stimuli

A pattern-reversal dartboard stimulus as explained in Section 2.2 was implemented
using the Matlab Toolbox Psychophysics [69], based on existing code for a checker-
board stimulus [56].

Previous investigations have shown that for the upper half of the visual field, one of
the two poles of the MEG topography lies partially outside of the scope of the MEG
sensor array, potentially negatively affecting localization [56]. Therefore, the lower
right quadrant was chosen for stimulation in this thesis.

19



Figure 5.1: Dartboard pattern-reversal stimuli used in the VER experiments.

Figure 5.1 shows the four different stimuli that were implemented. Stimuli are pre-
sented on a gray background with a red cross in the center on which participants
were told to focus. The first stimulus consists of a ring segment extending 2° to 4°
visual angle from the fixation cross and taking up the full lower quadrant. It contains
4 × 12 black and white checks with length (in radial direction) of 0.5° and width (in
tangential direction) between 0.26 and 0.52°, depending on eccentricity. This lies
within the range for check sizes (0.25-1°) specified in the International Society for
Clinical Electrophysiology of Vision (ISCEV) standard [47]. The three additional
stimuli each consist of a 30° segment of the full quadrant stimulus.

In small-angle approximation, 1° visual angle corresponds linearly to a constant dis-
tance on the stimulus presentation screen, so that the area of a small segment can
be calculated as 1

12π((4◦)2 − (2◦)2) = π◦2 . Assuming a circular cortical activation
patch, which may not be the reality, but can be better compared to the simulations
(Section 5.3), and taking the values for cortical magnification at eccentricity 3° from
Section 2.2, this would correspond to an activation with a radius between 4.2 and
7 mm. The full stimulus would then activate three times the area, i.e., a radius between
7.2 and 12 mm.

In accordance with the ISCEV standard, the mean pattern switching rate was set to 2
reversals per second, with interstimuli times varying randomly between 400 ms and
600 ms. A measurement consisted of 1000 pattern reversals and lasted about 500 s
(8:20 min). The time points of the pattern reversals were recorded using a trigger
signal sent to the acquisition software.
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5.1.3 EMEG Measurement

EEG data was recorded using a cap of 54, 56 or 58 (depending on head size) AgCl
sintered electrodes (EASYCAP, Herrsching, Germany), attached to the scalp using a
conductive paste. Four additional electrodes were placed around the eye for electroocu-
lography (EOG) to measure eye-blinks. The head shape and relative positions of the
electrodes were measured using a Polhemus tracking system (FASTRAK, Polhemus
Incorporated, Colchester USA). MEG data was recorded simultaneously with EEG
using 275 axial gradiometers (OMEGA2005, VSM MedTech Ltd.,Vancouver, Canada).

An axial gradiometer consists of two superconducting quantum interference device
(SQUID) sensors with a few cm distance, arranged approximately perpendicularly to
the scalp. Thus the difference in magnetic flux is measured and noise from spatially
constant background fields cancels out.

The sampling rate was 600 Hz. Subject movement during recording was monitored
using head localization coils and position deviations over 5 mm noted in the measure-
ment protocol. The visual stimulus was presented by light projecting the computer
generated images onto a screen at 92 cm distance from subjects. The normal room
lighting of the MEG chamber remained turned on during the visual experiments.

A total measurement run consisted of the presentation of six different visual stimuli
in randomized order, of which four were used in this thesis and two belonged to a
different study. With a measurement time of on average 8:20 min per stimulus and
variable resting times for each participant, the total measurement time was about 1
hour per participant.

5.1.4 Processing of EMEG Data

Data processing was performed using FieldTrip (Donders Institute for Brain, Cognition
and Behaviour, Radboud University, the Netherlands) [77].

The frequency range of the pattern-reversal VER lies within 3-30 Hz [8]. Guidelines
recommend a bandpass filter in the range of about 1-100 Hz [47]. However these
recommendations are for clinical applications, where the main concern in choosing a
filter range is not to distort the latency and amplitude of the P100 component. For
VER source localization, there are no guidelines, but choosing a lower lowpass filter
has shown good signal-to-noise ratio for the 75 ms component [12][19][56]. Therefore,
the data was filtered using a 1-40 Hz Hann window bandpass filter. This also removes
power line noise at 50 Hz. Additionally a baseline correction with the baseline calcu-
lated from the mean of the whole data set per channel was applied.

The data was then segmented into the individual trials, each consisting of the time
interval from 100 ms pre-stimulus to 200 ms post-stimulus. Trials containing eye-blinks
were automatically detected and removed by FieldTrip based on the z-score (number
of standard deviations away from the overall mean) of the EOG signal. The next step
was to homogenize the data by removing bad channels and trials. Especially for the
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EEG, the caps contained some defect electrodes and typically some that were not
properly attached to the scalp, e.g., due to hair. The number of remaining functional
EEG channels varies between subjects, ranging from 43 to 51 (with the exception of
subject 7, see Section 7.1). No MEG channels were removed as part of the normal
preprocessing procedure, however later analysis will show the benefit of excluding
frontal magnetometers (see Section 7.1).

A statistic over all trials and channels was visually inspected and channels, single
trials or whole time segments of trials that strayed strongly from the distribution
are manually removed. This was done largely based on the variance, the range (min-
imum and maximum value), and the z-score. Figure 5.2 shows such a distribution
for a MEG measurement with an artifact just after 7 minutes, coinciding with a
measured movement of the participant at that time point. The trials containing the
artifact were removed. The remaining trials (about 900-950) were then averaged. A
second baseline correction was applied with the mean calculated from the prestimulus
interval. This is a necessary correction of the first baseline correction, which smears sig-
nal components into the prestimulus interval, as it is computed over the whole data set.

Figure 5.2: MEG measurement with an artifact caused by participant movement (left).
Displayed is the signal range of each trial, top: shown per channel, bottom: averaged over
channels. Right: The trials containing the artefact are removed.
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The individual time point of the N75 component was determined visually from the
EEG and MEG time courses over all sensors. Signal-to-noise ratio (SNR) is calculated
by dividing the global mean field power (GMFP) of the N75 peak by the mean GMFP
during the time interval from -50 ms to 0 ms. The GMFP is a measure of global
variance across sensors, estimating the differences between signal amplitudes at each
sensor yi to the mean signal amplitude ȳ:

GMFP(t) =

√√√√ 1
N

N∑
i=1

(yi(t) − ȳ). (5.1)

5.2 Forward Modeling
5.2.1 MRI Acquisition

MRI data was recorded for all participants at IBB using a 3 T Siemens MAGNETOM
Prisma scanner (Siemens Healthineers, Erlangen, Germany). T1-weighted images were
acquired using a 3D MP-RAGE sequences with parameters TR = 2300 ms, TE = 3.51
ms, TI = 1100 ms and flip angle = 8◦. T2 weighted image were acquired using a 3D
spin echo pulse sequence with TR = 3200 ms, TE = 408 ms, flip angle = 120◦. The
obtained volumetric data has 1 x 1 x 1 mm resolution and 192 x 256 x 256 mm field of
view. Prior to measurement, MRI markers containing a Gadolinium-based contrast
agent were placed on three distinct physiological landmarks (nasion and the left/right
preauricular points, see Fig. 5.3), for later alignment with the EEG sensors.

Figure 5.3: Fiducial points: Nasion (red), left/right preauricular (green/blue).

5.2.2 MRI Segmentation

The automatic segmentation process in the analysis pipeline relies on the SPM12
software toolkit (Statistical Parametric Mapping, Functional Imaging Laboratory,
Institute of Neurology, University College London, UK) [71] with add-on package
CAT12 (Computational Anatomy Toolbox 12, Structural Brain Mapping group, Jena
University Hospital, Germany) [72] for advanced segmentation algorithms.
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Figure 5.4: MRI segmented into 6 different tissue types.

The T1 and T2 images were denoised using the CAT Spatial-Adaptive Non-Local
Means filter, which is a filtering method especially adapted for the spatially-varying
noise levels of MRI data [75]. The T1 image was aligned to the T2 image using
the FSL tool FLIRT for linear affine brain image registrations (FMRIB Software
Library, Functional Magnetic Resonance Imaging of the Brain Analysis Group, Oxford
University, UK) [74].

First, independent segmentation masks of the different compartments were created
for T1 and T2, making use of the complementary strengths of the two weightings:
T1 was used for the segmentation of gray matter and white matter and T2 for the
segmentation of the skull into the two bone types, spongiosa, and compacta. Both
were used to create individual masks for CSF and the scalp. The skull and scalp masks
were manually checked and if required, the segmentation threshold was adjusted. The
independent masks were then combined to create the most accurate segmentation by
comparing where masks overlap and for example using the T2 skull mask to restrict
the area of the T1 brain regions.

This results, as shown in Fig. 5.4, in a segmentation map of the head into six com-
partments: white matter, gray matter, CSF, spongiosa, compacta and scalp.

5.2.3 Headmodels and Source Spaces

For the evaluation of the real experimental data, it is crucial to reduce the error
introduced by inaccurate forward modeling by modeling the head as realistically as
possible. However, for synthetic data, where the same model is used for the creation
of the data as for the inverse reconstruction, there is no modeling error. Therefore, the
simulations were first performed for simplified models with high resolution symmetric
source spaces. This enables the investigation of potentially small systemic errors
due to source extent effects without taking irregularities caused by the local cortex
geometry into account yet.
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1) FEM model with 6 compartments

Using the MRI segmentation, a geometry-adapted hexahedral finite element mesh,
displayed in Fig. 5.5, was created with SimBio-VGRID [80]. The compartment bound-
aries of the mesh were refined by shifting nodes close to a tissue boundary onto the
boundary [67]. A 2 mm resolution source grid was created with positions restricted to
the gray matter and fulfilling the Venant condition.

Figure 5.5: Hexahedral mesh with shifted nodes. Figure created using ParaView [68].

For the calculation of the leadfield, the positions of the sensors used in the experi-
mental data need to be transformed into the same coordinate system and fit to the
head shape defined by the FEM mesh. For this, the fiducial points visible in the
MRI were manually marked, and the head shape measured with Polhemus aligned
accordingly. Then the Polhemus points were fitted to the scalp surface of the mesh
using an optimization algorithm from the open-source software Brainstorm [81], and
the sensor positions were moved accordingly.

From here, the EEG and MEG leadfields were computed using the DUNEuro software
library for solving partial differential equations in neuroscience [78]. The conductivity
values assigned respectively to scalp, compacta, spongiosa, CSF, white matter and
gray matter were 0.43, 0.0042, 0.0151, 1.79, 0.33, and 0.14 S/m (siemens per meter)
based on [1].
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2) Analytical 3-compartment sphere

Using FieldTrip, a 3-compartment sphere model consisting of brain, skull, and scalp
was fitted to the previously created mesh. A 3-dimensional symmetric source space
was constructed in a way that is most suitable for the placements of the synthetic
source patches (see Section 5.3). The source space is therefore radially symmetric
instead of the typical cubic grid, as sketched in Fig. 5.6. It has a resolution of 1 mm
into the depth and a tangential resolution that ranges from 0.6 to 1 mm depending on
depth. To create a uniform spherical distribution of source points, the Matlab toolbox
Uniform Sphere Sampling was used [79]. Also using FieldTrip, the EEG leadfield was
computed analytically.

The sphere model for Subject 1 was used for simulations, additionally for all subjects
sphere models were created to define the directions of radial and tangential in the
FEM models when describing source orientations and depths.

1mm

68mm

Figure 5.6: Sketch of a spherical headmodel
(brain compartment) with a spherically sym-
metrical source space.

Figure 5.7: Homogeneous brain with spherical
source space that is restricted to a part of the
brain surrounding the visual cortex.

3) FEM model with homogenized brain

This model is based on the 6-compartment mesh, with the conductivity of gray matter,
white matter and CSF set to the same value of 0.33 S/m, creating one homogeneous
brain compartment. The source space is not restricted to the cortical surface but
rather has the same homogeneous geometry as that of the sphere model, just cut-off at
the boundary of the brain. This allows performing the same analysis as in the sphere
model, using a realistic head shape but without complicated effects of unsymmetrical
patch geometries. The source space was restricted to a part of the brain surrounding
the visual cortex to reduce computational burden.
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Distinguishing between spongiosa and compacta in the skull layer but not between
brain matter and CSF is unusual, because the latter has a much stronger effect on the
reconstruction [63]. Here, it was done in order to allow a symmetrical 3-dimensional
source space while keeping the rest of the model identical to the already existing full
6-compartment model.

To avoid a so-called inverse crime, for the simulations with the spherical and 4-
compartment models, the respective source spaces were subsequently divided into two
subspaces: One was used to create the synthetic data, and one as the solution space
for the inverse method. Otherwise, if the same source space is used for both forward
and inverse calculations, one runs the risk of obtaining overly optimistic results.

5.3 Synthetic EMEG Data
Synthetic data was created using the previously obtained leadfields, and calculating
the forward solution for source patches placed in the region of the visual cortex. A
patch consists of many dipoles with equal amplitude but variable orientation. The
forward signals originating from each dipole within the patch were added together
and (optionally) Gaussian noise was added to generate the synthetic data.

Two different types of patches were implemented:

1) Flat patches with radially oriented dipoles

Figure 5.8: Sketch of the newly implemented source
patches: The patch is a circular, curved disk consisting
of many dipoles each with radial orientation.

Figure 5.9: Flat patches as imple-
mented by de Munck [43]. The
patch is a circular, planar disk and
the dipoles are oriented parallel to
one another.

These patches, visualized in Fig. 5.8, were used for simulations in the spherical and
4-compartment head model with homogeneous, spherically symmetrical source space.
They are circular disks extending tangentially. As opposed to the flat patches used
by de Munck in [43] (see Fig. 5.9), these patches are slightly curved following the
curvature of the source space. The orientations of the dipoles are normal to the surface
of the patch, which, due to the curvature, is exactly the same as each dipole having
radial orientation. The patches were placed in a way that they are centered around a
position that is not contained in the source space used for the creation of the synthetic
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data, but is in the inverse solution source space. Thus, if the center of the patch is
correctly reconstructed using a single dipole scan, the localization error can be zero,
while still avoiding an inverse crime. Due to the MEG’s insensitivity to radial sources,
simulations with these patches were only performed for EEG.

2) Ellipsoidal patches with normally oriented dipoles

For the 6-compartment FEM model, the source space is much more irregular, following
the individual cortical surface, and has a lower resolution. This means few dipoles
are likely to lie perfectly on the surface of a flat patch. Therefore, an ellipsoid-shaped
region of interest (ROI) with a thickness of 4 mm in radial direction, and equal axes
of variable length in tangential direction was implemented. The orientations of the
dipoles in the patch are no longer radial, but normal to the cortical surface. The choice
of an ellipsoidal patch was also motivated by the way that extent was measured for
the current density reconstruction, for which an ellipsoid was fitted to the distribution
(see Section 5.5.2). As the dipoles are known to be normally oriented, this constraint
was also imposed for the reconstruction with IAS (see Section 5.5).

Figure 5.10: Ellipsoidal ROI containing dipoles oriented normal to the cortical surface.

To create the synthetic data in Zeffiro Interface, a new UI tool adapted from the
normal synthetic data generation tool for single dipoles was implemented. The tool
allows defining one or several ROIs which should contain active dipoles. The ROIs
can be spherical or ellipsoidal. One can also choose between dipoles within the ROI
having all the same, specified orientation, or automatically take on a cortex-normal
orientation. The tool also includes the option to plot the ROIs or the individual
dipoles as cones, as shown in Fig. 5.10. It is available at the Zeffiro Interface GitHub
repository 1.

1The Zeffiro Interface source code including the synthetic source tool can be accessed at: https:
//github.com/sampsapursiainen/zeffiro_interface.
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5.4 Patchy Dipole Scan Method
In addition to the standard single dipole scan a "patchy" dipole scan was implemented.
As mentioned in Section 4.1, the scanning method also works with larger subsets of
the leadfield. Because the shape of the patches used in the simulations is known,
it is possible to scan for sources of that same geometry. Therefore, in this tech-
nique each subset of L̄ consists of leadfields {L1, ...Ln} of dipoles that are considered
part of a patch, and the source space is scanned for all possible patch center posi-
tions. Equation (5.2) then reconstructs the moments of all dipoles contained in a patch.


dx

1
...

dz
n

 =
[
L1 . . . Ln

]+
y. (5.2)

However, due to the high resolution of the source space, a patch with a radius of a
few mm could potentially consist of hundreds of dipoles. This is not feasible for the
dipole scan method, as the number of dipole components is required to be smaller than
the number of sensors. For the 59 EEG sensors in the simulation, this means there
can not be more that 19 dipoles inside a patch. This can be achieved by decreasing
the resolution of the source space. However, that is not necessary. We can still
allow every position in the high resolution source space as a potential center of a
patch, but construct the patch itself of only a subset of the surrounding points. For
symmetry reasons, the positions considered as part of a patch therefore consisted of 7
dipoles for small patches, and 10 dipoles for patches with radius ≥6 mm, distributed
symmetrically within the patch as shown in Fig. 5.11.

Figure 5.11: Patchy dipole scan: Black are the actual dipole positions
inside the patch used for creating the synthetic data, red are the
positions considered part of the patch in the scanning method.
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5.5 IAS Optimization Algorithm
The iterative alternating sequential (IAS) algorithm as introduced by Calvetti and
Somersalo [10] is one of the HBM methods provided in Zeffiro Interface. It is a cyclic
optimization algorithm to find the source parameters which maximizes the posterior
(MAP estimation).

The algorithm alternately optimizes the source parameters D with the current prior
p(D|θ), and then optimizes θ, until a specified iteration number K:

Start by initializing θ
[0]
i as β and set k = 1.

For k = 1, ..., K do:

1. Update D by D[k] = argmax(p(D | θ[k−1], y))

2. Update θ by θ[k] = argmax(p(θ | D[k], y))

The final reconstruction is then given by the last sample D[K]. For details see [11].

5.5.1 Parameters and Settings

In Zeffiro Interface, the values for the shape and scale parameters α and β of the
hyperprior are not directly chosen, but determined from the specified SNR, the
Prior-over-Measurement SNR (PM-SNR) and the tail length. For details on this
parametrization see [54].

For experimental data, the SNR needs to be estimated, for simulated data it is simply
the SNR that was used to create the data. The PM-SNR constitutes the belief in
additional latent noise and scales the SNR with SNRtot = SNR − PM-SNR (in dB)
with SNRtot = dB( 1

σtot
). As suggested in [54], the PM-SNR was set to 10 dB for

simulations, and 20 dB for experimental data to account for additional modeling errors.
The number of IAS iterations was set to 5.

The tail length dB(τ) is a parameter that primarily influences the shape of the dis-
tribution, and indirectly the scale (see Fig. 5.12). The parametrization via the tail
length allows adjusting the weight of the tail while automatically taking the noise into
account: The shape parameter α is optimized so that the inverse Gamma probability
density function evaluated at a point θthr = σ2

tot · τ 2 matches a threshold value of
2 · 10−3 · (σ2

tot · τ 2). A larger tail length should lead to a higher probability for larger
prior variances which in turn allows for a few sources to strongly deviate from the
expectation of zero amplitude. By varying the tail length it is therefore possible to
bias the reconstruction algorithm towards more focal or more distributed current
densities.
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Figure 5.12: Inverse gamma hyperprior for different tail lengths db(τ)
with shape and scale parameters: α = 17.9, β = 1.7 · 10−5; α = 5.1,
β = 4.1 · 10−6 and α = 2.5, β = 1.5 · 10−6.

The scale parameter is then adapted to the size of the source space 3M by

β = A2 · σ2
tot · (α − 1)
3M

, (5.3)

where the expected source amplitude A is estimated from the leadfield:

A = 1
3M

3M∑
j=1

(max
i

| L̄ij |)− 1
2 . (5.4)

The reconstruction is reweighted in each step using a standardization procedure. As
derived in Eq. (4.12), the source parameters in each iteration are:

D[k] = W [k]y, (5.5)

where W [k] = Σθ[k]L̄⊤
(
L̄Σθ[k]L̄⊤ + Σϵ

)−1
. As the priors favor small dipole strengths,

the solution is biased to more superficial locations, which can be weaker while resulting
in the same effect at the sensors. This is a well-known pitfall of minimum norm
estimation methods, which standardization aims to counteract [38].

The standardization method here is the sLORETA technique [48]. For this the so-
called resolution matrix is calculated as the product of the inverse and the forward
operator:

R = WL̄. (5.6)
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R can be seen as the transfer matrix between the real and estimated current densities,
assuming the real data is simulated using L. In an ideal case this would be the identity
matrix, but due to the non-uniqueness of the problem, the inverse operator is biased.
The diagonal elements represent the distortion of the reconstruction for a unit source
j (below the vector of source strengths D consists of just ones):

Rjj =
N∑

i=1
(W [k])ji · L̄ij = (WL̄D)j. (5.7)

By normalizing the reconstruction by this vector we are effectively gauging how much
evidence for source activity at a particular position can be found in the data, correcting
the depth bias:

D
[k,stand.]
j =

D
[k]
j√

Rjj

. (5.8)

5.5.2 Gaussian Mixture Model

In order to estimate the spread of the source obtained using IAS, a Gaussian Mixture
Model (GMM) was fitted to the reconstructed current density distribution. This is a
clustering method also provided in Zeffiro Interface. The GMM identifies the primary
concentration areas of the current density as a superposition of Gaussian distributions
[24]. Since in the case of the simulated and real data the current density distribution
should be unimodal, it was assumed that it is adequately represented by a single
cluster. This cluster takes the form of an ellipsoid, as shown in Fig. 5.13. There
are several ways to use the properties of this ellipsoid to quantify the spread of the
reconstruction, e.g., via its volume. To assess whether the distribution is spread in
the same direction as the synthetic source, one can measure the sectional area of the
ellipsoid with the tangential and radial planes as sketched in Fig. 5.14.

Figure 5.13: Gaussian cluster fitted
to the current distribution.

Figure 5.14: Measuring the stretch
of the ellipsoid in radial and tangen-
tial direction.
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6 Simulation Results

6.1 Topography Error and Single Dipole Scan
Figure 6.1 shows an example of EEG topographies resulting from a patch, in com-
parison to that of a single dipole at the same position as the patch center, as well
as a single dipole 3 mm deeper. The topography of the deeper dipole looks almost
identical to that of the patch. This is a first visualization of the depth bias caused by
the extended source, where an increasing radius of the patch will lead to the dipole
being mislocalized at a deeper location.

Figure 6.1: Comparison of simulated topographies for a patch and a single dipole. The
difference is visible at the isopotential line near the electrode marked by the red arrow.

The similarity between two topographies/data vectors y1 and y2 can be assessed using
the relative distance measure (RDM):

RDM(y1, y2) = 1
2

∥∥∥∥∥ y1
∥y1∥2

− y2
∥y2∥2

∥∥∥∥∥
2

, (6.1)

where RDM is the topography error and 1 − RDM is the accuracy or similarity.
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Figures 6.2a to 6.2c show this quantity for a patch with 15 mm radius compared with
a single dipole at different positions. The tangential position of the dipole always
coincides with the center of the patch, but the radial position (depth) varies. This
was done for three different kinds of patches: The flat patches, as employed by de
Munck (Fig. 6.2a), show a peak of the similarity just (less than 1 mm) deeper than
the actual position. This means the EEG sensor measurement from a single dipole
is almost identical to that of a patch. Changing the position of the dipole in any
direction decreases the similarities of the topographies. While in the first patch type,
all dipoles have the same moment, in the second patch type (Fig. 6.2b), they are
still organized in the completely flat patch, but are oriented radially. This leads to a
larger shift of the peak to a deeper location. Now, if the patch is slightly curved as
introduced in Section 5.3 and the dipoles are radially oriented (Fig. 6.2c), that leads
to an even larger depth shift. The EEG topography of an extended source of this type
is therefore better reproduced by a dipole about 2 mm deeper, than by a dipole at the
same position as the patch.
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(a) Planar disk with perpendicular dipoles.
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(b) Planar disk with radial dipoles.
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(c) Curved patch with radial dipoles.

Figure 6.2: Similarity between the EEG topography originating from a 15 mm
radius patch and that of a single dipole at varying depths in the spherical head
model.
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By varying the radius and position of the (curved) patches, and estimating the dipole
position of greatest topography similarity, we obtain Fig. 6.3. Figure 6.3a shows the
result for the sphere model. Evidently, patch radii up to about 5 mm do not cause a
measurable effect, but the dipole shifts deeper (up to 3 mm) relative to the patch posi-
tion with increasing radius. Placing the patch deeper in the brain slightly increases the
shift. The results for the FEM model (Fig. 6.3b) are of the same scale, but the effect of
patch position is less consistent. For more superficial positions, the FEM model seems
more sensitive to patch radius than the sphere model, for deeper positions it is the other
way around. Some data is unavailable (white in Fig. 6.3b), as for the most superficial
positions and large radii the patches would protrude from the realistically shaped brain.
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(a) Sphere model

0 5 10 15
patch radius [mm]

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

p
at

ch
 d

ep
th

 [
m

m
]

-3

-2.5

-2

-1.5

-1

-0.5

0

si
n
g
le

 d
ip

ol
e 

d
ep

th
 s

h
if
t 

[m
m

]

(b) FEM with homogenized brain.

Figure 6.3: Relative dipole position with greatest topography similarity to a
patch with specified radius and depth (measured from brain surface).

Applying the single dipole scan to the data confirms the result obtained using the
RDM. The GOF maximized in the dipole scan is a similar measure as the RDM,
except taking not only topographic distribution but also magnitude into account.
Figure 6.4 shows how the GOF for a dipole at the center of the simulated patch decays
as the patch radius increases, and is at some point surpassed by the GOF of deeper
lying dipoles. The consequence of this is displayed in Fig. 6.5: The reconstructed
dipole shifts deeper in a staircase-like fashion due to the 1 mm resolution of the
source space. Due to the symmetry of the patches, the tangential position error
remains zero. The dipole scan yields at each position the dipole moment that best
fits the data. Figure 6.6 shows the reconstructed amplitude ∥dj,rec∥2 normalized by
the amplitude of the patch (i.e. amplitudes of all dipoles within the patch added up).
The result of the dipole scan is here visualized by the dashed line. The other lines
show the reconstructed amplitude for dipoles at fixed positions. As the dipole scan
jumps to a different position, there is also a jump in the amplitude. There are two
counteracting effects here: In general, deeper dipoles are reconstructed with a larger
amplitude than more superficial ones. One might therefore expect the amplitude
obtained by the dipole scan to increase with increasing patch radius, as we shift to
deeper positions. However, fixing the dipole position while increasing the patch radius
leads to a decrease in amplitude. This is due to the dipoles being oriented radially,
which means that at the outer borders of the patch they point in increasingly different
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directions and therefore partially cancel each other out. This effect is stronger than
the depth shift effect, so that at the first 1 mm jump, the amplitude error is actually
zero. For a radius of 15 mm, the reconstructed amplitude becomes about 2 % too small.
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Figure 6.4: GOF for four different dipoles at
fixed positions as the patch radius increases.
Vertical lines mark the radii for which the
GOF of a deeper lying dipole surpasses that
of the more superficial one.
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Figure 6.5: Position relative to the patch cen-
ter of the dipole with highest GOF.
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Figure 6.6: Reconstructed dipole strength di-
vided by the total amplitude of the reference
patch.
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Figure 6.7: Reconstructed dipole strength rel-
ative to strength of the smallest patch.

In practical applications, it has been suggested that the size of an activated cortical
patch can be estimated by the amplitude of the reconstructed dipole, with a moment
of 10 nAm corresponding to 40 mm2 [45]. However, an amplitude error caused by the
source extent would skew this estimation. Figure 6.7 shows that the actual dipole
amplitude (normalized by the smallest possible patch amplitude) indeed increases
almost linearly with the patch area. Due to the source space resolution, the minimum
area of a patch containing more than one dipole is 12.6 mm2. Only at around 6 cm2,
which is almost 50 times that minimum area, we start to see a very small deviation
from the linearity. Notably, de Munck’s flat patches, where there are no canceling
effects, cause here a slightly higher amplitude than the linear estimate, and the curved
patches a slightly lower.
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Real data is contaminated by noise, which itself causes reconstruction errors. Fig-
ure 6.8 shows that for very low noise (3 % of the maximum signal amplitude) the
median of the dipole depth, calculated from 50 samples, decreases visibly with radius.
For experimental data with high quality, 20 dB SNR can be reached. Here, the noise
causes a much greater variance of the position. In contrast to the effects of patch
size, the noise can also cause tangential mislocalization. The total position error lies
around 2 mm for 30 dB and 5.5 mm for 20 dB. For 30 dB SNR, increasing the radius
causes a slight increase of the total error from 2 mm to 3 mm. However, as for 20 dB,
the position error caused by the noise is already larger than 3 mm, the error caused
by the noise obscures that by the patch size.
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Figure 6.8: Dipole shift in radial direction (top) for 30 dB and 20 dB
SNR, and total position error (bottom).

6.2 Patchy Dipole Scan Performance
Figure 6.9 shows the position error for the patchy dipole scan while varying both the
reference patch radius and the radius of the patches assumed by the scan. Along the
diagonal, where both radii match, the patchy dipole scan achieves zero localization
error. However, if the radii do not match, the obtained errors quickly become larger
than for a normal single dipole scan (equivalent to the bottom row of Fig. 6.9). This
now also includes tangential errors, whereas the single dipole scan only exhibited a
radial shift.
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Figure 6.9: Localization error of the patchy dipole scan with varying
simulated source radius and radius assumed by the scan.

Another property of the patchy dipole scan is that it is more computationally expensive
than the single dipole scan. This is due to the calculation of the pseudoinverse, which
needs to be done for each position in the source space, taking longer for larger leadfield
subsets, i.e., for more dipoles per patch. The pseudoinverse is calculated using the
Matlab function pinv, whose computational complexity is not documented. But as
shown in Fig. 6.10, the patchy dipole scan with 10 dipoles per patch takes about 10
times longer than a single dipole scan, using Matlab 2022b on a system with Intel
Core i7-6700 and 32 GiB RAM, running Ubuntu 22.04.
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Figure 6.10: Time to calculate pseudoinverse for a subset of the leadfield
matrix pertaining to the specified number of dipoles.
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6.3 IAS for Simple and Complex Extended Sources
The following graphs show the effect of varying tail length on several properties of
the reconstructed current density. Simulated sources with four different extents were
used: single dipole, and patches with radius 5, 10 and 15 mm. Visualized are the
median values and interquartile ranges of the respective parameters, obtained from 20
samples.

1) Low noise, radial dipoles

In the case of the flat patches with radial dipoles in the FEM model with homogenized
brain and low noise, small but consistent differences between the different sources can
be seen, and increasing the tail length leads to smooth curves.

Figure 6.11 shows the l1-norm computed over the whole reconstruction. A small
l1-norm is an indicator of fewer active sources. The l1-norm decreases as the hy-
perprior tail length increases. The reconstruction for the largest of the simulated
patches consistently maintains a higher median l1-norm and ranges to higher values
than for the single dipole. The two medium sized patches lie within the interquartile
ranges of the single dipole and the largest patch, and thus can not be distinguished here.
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Figure 6.11: l1-Norm of the reconstruction
for patches with radial dipoles (30 dB SNR,
EEG).
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Figure 6.12: GOF of the reconstruction
for patches with radial dipoles (30 dB SNR,
EEG).

The GOF (Fig. 6.12) increases by about 2 % (96.7 to 98.3 % for the 15 mm patch)
with increasing tail length up to about 4ḋB. For tail length <4 dB, the single dipole
has about 1 % lower GOF (95.4 % at 1 dB) than the largest patch but for >4 dB, the
GOF for the single dipole continues rising (up to 98.0 %) while it remains relatively
constant for the 15 mm patch.
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A more intuitive measure for the extent of the source distribution than the l1-norm is
obtained from the Gaussian cluster fitted to the reconstruction. The projected radius
(Fig. 6.13) is calculated from the sectional area of the ellipsoid and the tangential plane
by rproj =

√
Asect

π
, thus expressing the spread of the distribution in tangential direction,

i.e., the direction in which the reference source is also spread. We can divide this by
the total volume of the ellipsoid, or rather the equivalent radius requ =

(3Velip
4π

) 1
3 , to get

a relative measure for how much the ellipsoid is stretched from a sphere in tangential
direction (Fig. 6.14), where a value of 1 would indicate a spherical distribution. As
indicated by the l1-norm, the projected radius decreases with increasing tail length,
though the curves are less smooth. For larger tail lengths, the median radii of the four
different sources converge (ranging from 4.6 to 6.4 mm for 1 dB, and 3.2 to 3.5 mm
for 12 dB). However, the tangential stretch remains relatively constant for the single
dipole (1.07) while it increases from 1.08 to 1.15 for the 15 mm patch. This means
that for small tail lengths, the distribution is spread in both radial and tangential
direction, while for larger tail length, although the absolute radius decreases, the
ellipsoid becomes more stretched in tangential direction. For the single dipole on the
other hand, the relative shape of the ellipsoid is less affected by the tail length.
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Figure 6.13: Projected radius in tangential
direction (30 dB SNR, radial dipoles, EEG).
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Figure 6.14: Relative stretch in tangential
direction (30 dB SNR, radial dipoles, EEG).

To assess localization accuracy, the distance between the center of the ellipsoid is
compared to the center of the reference patch (Fig. 6.15). For the 15 mm patch this is
lowest for small tail lengths and increases from 1.8 mm to 5.1 mm. The single dipole
and the 5 mm patch show some instability up to about 4 dB. Then, the single dipole
remains at a constant error of 3.7 mm, while the error for the 5 mm and also the 10 mm
increases as it does for the 15 mm patch. Regarding the depth error (Fig. 6.16), which
is the distance in radial direction, the instability for below 4 dB is also visible. In the
stable region, the larger the patch, the deeper it is reconstructed, though the error in
radial direction remains under 2 mm even for the 15 mm patch, increasing slightly by
0.5 mm with increasing tail length.
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Figure 6.15: Distance of reconstruction ellip-
soid center from reference patch center (30 dB
SNR, radial dipoles, EEG).
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Figure 6.16: Depth shift of reconstruction
ellipsoid center from reference patch center
(30 dB SNR, radial dipoles, EEG).

2) Low noise, cortex-normal dipoles

In the 6-compartment FEM model, dipoles are positioned in the gray matter only,
and their orientation in the patches is normal to the cortex surface. This drastically
changes the results for patches at the same position compared to the homogeneous
and symmetrical patches with radially oriented dipoles.

There remains an overall trend of the radius decreasing with increasing tail length, how-
ever, the actual reference source radius seems to have unpredictable effects (Fig. 6.17).
For a 12 dB tail length, the reconstructed extent of the 15 mm patch is actually below
that of the single dipole (3.6 mm to 4.0 mm). The localization error (Fig. 6.18) is also
inconsistent, and in parts the highest for the single dipole. For small tail lengths the
error is over 10 mm and then decreases for all reference sources to around 4.7 mm,
which is also larger than for the radially oriented single dipole.
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Figure 6.17: Projected radius in tangential
direction (30 dB SNR, cortex-normal dipoles,
EEG).
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Figure 6.18: Distance of reconstruction ellip-
soid center from reference patch center (30 dB
SNR, cortex-normal dipoles, EEG).
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We can now also evaluate the MEG, which was previously not discussed due to its
insensitivity to radial sources. Here, the reconstruction results are more consistent
with the radii of the reference sources. The l1-norm ( Fig. 6.19) for the 15 mm patch
is consistently larger than the norm for the single dipole with no overlap of the
interquartile ranges. However, for the 5 and 10 mm patches the medians are very
similar and ranges strongly overlap. Up to a tail length of 4 dB, the equivalent radius
(Fig. 6.20) correctly increases with increasing reference patch radius (7.5, 7.6, 7.8
and 8.0 mm for the four different sources at 1 dB). At >4 dB the order of curves is
inconsistent with the true radius.

2 4 6 8 10 12
hyperprior tail length [dB]

0

200

400

600

800

1000

1200

1400

1600

1800

L1
-N

or
m

 o
f 
D

ip
ol

e 
S
tr

en
g
th

s

Single Dipole
Patch 5 mm radius
Patch 10 mm radius
Patch 15 mm radius

Figure 6.19: l1-Norm (30 dB SNR, cortex-
normal dipoles, MEG).
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Figure 6.20: Equivalent radius (30 dB SNR,
cortex-normal dipoles, MEG).

While the extent is better represented for tail lengths <4 dB, in this region, the
localization error is much larger (15.7 mm for the 15 mm patch) than in the region
>4 dB (Fig. 6.21). At 4 dB, the localization error is about the same (4.5 mm) for all
patch sizes, and decreases for the single dipole to 2.6 mm while increasing for the
15 mm patch to 4.9 mm with increasing tail length. Figure 6.22 shows that the 15 mm
patch is reconstructed up to 7 mm deeper than the single dipole.
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Figure 6.21: Distance (30 dB SNR, cortex-
normal dipoles, MEG).
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Figure 6.22: Depth shift (30 dB SNR, cortex-
normal dipoles, MEG).
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3) High noise, radial dipoles

For a lower SNR of 20 dB, the global trends visible at 30 dB remain, but distinction
between patches of different radii becomes difficult. Two regions, <4 dB and >4 dB
tail length can again be identified. First, the radius (Fig. 6.23) increases (4.1 mm to
5.2 mm for the 15 mm patch). Then, for >4 dB, it decreases to 4.4 mm. That is larger
than the 3.5 mm obtained at 30 dB SNR. For the single dipole, in comparison to 30 dB
SNR, the noise intervals are larger but the median radius is not (median 3.1 mm with
IQR 2.9-4.5 mm for 20 dB, median 3.2 mm with IQR 2.7-3.6 mm for 30 dB). In regards
to the distance of the reconstruction from the reference source (Fig. 6.24) it seems
to be generally beneficial to have a tail length of about 6 dB, as this decreases the
localization error for all reference sources from over 15 mm to about 6.5 mm.
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Figure 6.23: Projected radius (20 dB SNR,
radial dipoles, EEG).
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Figure 6.24: Distance (20 dB SNR, radial
dipoles, EEG).

4) High noise, cortex-normal dipoles

2 4 6 8 10 12
hyperprior tail length [dB]

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

E
q
u
iv

al
en

t 
ra

d
iu

s 
[m

m
]

Single Dipole
Patch 5 mm radius
Patch 10 mm radius
Patch 15 mm radius

Figure 6.25: Radius (20 dB SNR, cortex-
normal dipoles, MEG).
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Figure 6.26: Distance (20 dB SNR, cortex-
normal dipoles, MEG).
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For the patches with cortex-normal dipoles at 20 dB, the EEG case is as unpredictable
as for higher SNR. In the MEG case, results are again more consistent. Both the
radius (Fig. 6.25) and the localization error (Fig. 6.26) decrease with the tail length,
but the strong drop at <4 dB exhibited at 30 dB SNR does not occur here: The radius
for the single dipole falls from 7.8 to 7.2 mm, still about double the radius at 30 dB
SNR. The distance falls from 12.3 to 9.1 mm. As in previous results, the 15 mm patch
can be clearly distinguished from the single dipole by its size and distance (7.6 mm
radius, 11.2 mm distance at 12 dB). The 5 mm and 10 mm patches on the other hand
exhibit in parts the same median radius, and the 10 mm patch in parts the same
median distance as the 15 mm patch.

6.4 Discussion of Simulation Results
For flat, tangentially extended source patches, the simulations have shown a small,
but systematic localization error of the single dipole scan: Dipoles are reconstructed
up to 3 mm too deep for a synthetic source patch with 15 mm radius. Extents above
that are physiologically unlikely in this context, as discussed in Section 2.2. These
values coincide with de Munck’s results, who reported a depth error of 2 % for a patch
radius of 15 % of the head radius. For the head model used in this thesis, which has
a head radius of 94 mm, this corresponds to a patch radius of 14.1 mm and a depth
shift of 1.9 mm [43]. Errors of this magnitude are negligible in real experimental
data compared to other error sources, especially measurement noise, but also factors
like modeling inaccuracies and subject movement. In a detailed FEM model where
dipoles are constrained to the cortical surface, the depth bias may not manifest at all
if there is simply no dipole in the source space at a position just a few mm deeper.
Furthermore, realistic source patches following the cortical surface can also extend
radially along a sulcal wall, which de Munck has shown actually causes a bias towards
more superficial positions.

Nevertheless, it was also shown that, with dipoles oriented perpendicular to the patch
surface, a curvature of the patch leads to an increased localization error compared
to planar patches. This can be explained in the case of quasi-radial dipoles by an
increased area of effect at the scalp. At the same time, canceling effects lead to an
amplitude error which counteracts and eventually surpasses the amplitude error caused
by the depth bias. This suggests that increasing the curvature or inverting it, which
could be used to model an extended source along a gyrus crown or sulcal valley, may
lead to more significant errors. In that case, the amplitude of the reconstructed dipole
may not be a reliable way to estimate the extent of the true source. However, for
the patches as implemented in this thesis, the popular assumption that an extended
source can be accurately reconstructed by a single dipole, and that the extent can
then be inferred from the dipole strength, is valid.

As for the patchy dipole scan, this method is able to achieve zero error where the
dipole scan gains a bias due to source extent. However, the radius needs to be exactly
known beforehand, as deviations of 1 mm can already lead to errors larger than in the
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single dipole scan. If the source actually is a single dipole, misapplying the patchy
dipole scan and assuming a large extent can lead to errors up to 8 mm. Therefore, in
this scenario, the single dipole scan provides a more robust reconstruction method.
One can imagine though, that in more complex scenarios where patches follow the
local cortex structure, the patchy dipole scan might outperform the single dipole
scan in a meaningful way. The difficulty of this method is that it always enforces
a rigid constraint on the geometry of allowed source patches. Even if the patches
are implemented to follow the cortical surface, the expected size needs to be set a-priori.

In contrast, the advantage of the IAS algorithm is that the constraints on the solution
are not rigid. This makes it capable of reconstructing multiple sources (though not
investigated here) and extended sources without the user having to explicitly fix
a certain number or size. Because the priors are updated empirically, even if the
algorithm is biased towards focal reconstructions by a high tail length, the extent of
the reconstruction still reflects the extent of the underlying reference source. Never-
theless, at least in the case of low noise and radial dipoles, enforcing focality leads to
an increased localization error for the patches, while not affecting the single dipole.
The differences between reconstructions for sources with varying extents amount
to a few mm though, just as in the dipole scan, and the true extents can not be
reproduced. Additionally, the extent of the reconstruction seems to, at least partially,
correspond to a region of uncertainty, which increases with increasing noise. This may
become a problem for experimental data, where smaller patches also exhibit lower SNR.

Changing from radial dipoles to cortex-normal dipoles drastically changes the EEG
reconstruction results. The location of the single dipole, which coincides with the
center of the patches, was chosen so that the combined net orientation of the dipoles
within a patch should not differ too much from the orientation of the single dipole.
However, differences can not be avoided: For the 5 mm radius patch the difference in
net orientation is 16°, for 10 mm it is 49° and for the 15 mm it is 68°. Additionally,
the dipoles are also unsymmetrically distributed across a patch, as they can only be
in the gray matter. These two factors presumably led to unpredictable effects when
increasing the patch size. Evidently, there are steps missing between the simple and
complex patch types, that could help understanding the results. Quantifying the net
dipole moment and the real center of mass of the patches and analyzing their effects
on the IAS algorithm may improve the understanding of its performance in such cases.
In the end, these results show that one should be wary in applying conclusions from
overly simplified simulations to realistic data.

In many of the results, for radial as well as cortex-normal dipoles, a clear distinction
could be made between the regions below and above 4 dB tail length. There is a
steep decay in extent and position error <4 dB followed by a region of relatively
little change. Increasing the tail length much higher than that is unmotivated, as it
may lead to slightly more focal results, but does not improve localization or GOF.
Therefore, for the evaluation of the experimental data, the tail length will be set at 6 dB.
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7 Experimental Results

7.1 Sensor-Level Analysis
In the first step, the measurement data from different participants and stimuli is
evaluated on a sensor-level, and adequate data is selected, before proceeding with the
inverse analysis. Figure 7.1 exemplifies how strongly results from different subjects and
measurement runs can differ, justifying a preliminary quality check. The figure shows
the signal time-course at all sensors, visualized as a butterfly plot for two different
measurement runs. While the left plot represents a low noise measurement with a
very clear N75, resulting from Subject 8, stimulus Third 2, the right plot shows a
measurement where no signal is visible above the noise, i.e., a SNR of 0 dB, resulting
from Subject 6, stimulus Third 3.

(a) Subject 8, stimulus Third 2 (b) Subject 6, stimulus Third 3

Figure 7.1: Butterfly plots (signal at all sensors) of the measured
VER MEG field amplitude MEG (top) and EEG potential amplitude
(bottom).

Figure 7.2 shows the topographical distribution of the MEG field amplitude and EEG
potential amplitude during the N75 peak, for Subject 8 and all stimuli. From the
differences in topography one can conclude that the underlying source orientation
rotates for the different stimuli. Notably, for Third 3 the EEG changes dramatically
while the MEG remains similar to Third 2, suggesting a dominant radial component.

Due to the low signal strength in the MEG for the Third 3 stimulus (note that the
signal range is about half that of the full stimulus) an artifact that appears to be an
activation in the frontal sensors becomes visible. This is caused by a magnetic screw
attaching the stimulus presentation screen to the MEG, that was found only after the
measurements of all subjects had concluded. This does not negatively affect inverse
results, as frontal magnetometers (42 of 272) were consequently excluded from the
data for analysis. Further justification for this is the activation from the visual stimuli
being firmly contained to the back of the head where the visual cortex is located.
Therefore, frontal MEG sensors contain only noise and would lower SNR and GOF
while not contributing to source localizability.
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Figure 7.2: Topology (view from above on the head) of MEG and EEG measure-
ments for Subject 8.

Table 7.1 show the signal to noise ratios for all participants and stimuli in MEG and
EEG, where a SNR>10 dB is considered "good" (low level of noise).

Ideally, head movement during the measurement should be below 5 mm, but this was
not achieved for all stimuli in all subjects. Marked in the table are measurement runs
for which head movement above 5 mm was measured, as the SNR could be affected.
While it is possible the head movement is connected to measurement duration, the
order of stimulus presentation was randomized so there is no correlation between head
movement and stimuli. Coincidentally, all measurement runs using the full quadrant
stimulus fall below the limit of 5 mm.

Table 7.1: Signal-to-Noise-Ratio [dB] of the measurement data per subject and stimulus.
*MEG and EEG data excluded. **EEG data excluded.† Head movement >5 mm.

MEG

Subject Full Third 1 Third 2 Third 3
1 22 18 19 11†

2 13 10 6 7
3* 6 5 3 3†

4 22 7 16 15
5 16 16† 17† 7†

6 13 7† 11† 0†

7 12 7 15 7
8 14 16 16 12

EEG

Subject Full Third 1 Third 2 Third 3
1 19 21 15 10
2 14 9 6 3
3* 3 10 4 2
4 19 12 17 11
5 7 6 12 6
6 7 5 8 1
7** 5 -1 -1 4
8 10 7 10 8
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As marked in the table, data from two subjects will be omitted from further analysis
as the observed low SNR is likely caused by external factors, and not by inherent
properties of the underlying activation:

(1) Subject 3 MEG and EEG data is omitted as the N75 component could not be
identified in the signal time course for any of the stimuli. This is likely due to a strong
refractive error (-4.5 dpt right, -5.0 dpt left) which may have not been adequately
corrected by the MEG-safe replacement glasses. Uncorrected refractive error was
shown to significantly alter the pattern-reversal VER (decrease of 2.6 µV and increase
of 15 ms of P100 amplitude and latency per dpt for 0.25◦ checks [36]).

(2) Subject 7 EEG data is omitted though the MEG data remains included. The high
noise in the EEG is a result of overall poor electrode contact due to hair texture.

For all remaining participants, good SNR for the full stimulus is reached in MEG. In
EEG the values are in most cases lower than in MEG, which is typical for superficial
and tangential sources [49]. The relation between the SNRs of the smaller stimuli
versus the large stimulus ( σFull

σThird i
, where σi is the linear relative noise) in each subject

is shown in Fig. 7.3.
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(a) Medians: Third 1: 0.61 (IQR 0.54-0.91), Third 2:
0.82 (IQR: 0.53-1.26), Third 3: 0.46 (IQR: 0.3-0.53).
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(b) Medians: Third 1: 0.75 (IQR 0.54-0.91), Third 2:
0.93 (IQR 0.66-1.10), Third 3: 0.43 (IQR 0.35-0.81).

Figure 7.3: SNR for the three small stimuli relative to the SNR for the large
stimulus per subject.

The SNR tends to be lower for the small stimuli than for the full stimulus, with Third
2 having the highest median value of the three and Third 3 the lowest. For some
participants, SNR is higher for Third 1/Third 2 or both than for the full stimulus,
but never for Third 3.
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Assuming that the activated areas for the three small stimuli can be simply added
up to form one large activation area, the added up EEG/MEG signals should equal
that of the full stimulus. Figure 7.4 shows the result of adding the three measurement
vectors together for Subject 8.

Figure 7.4: Topology (left: MEG, right: EEG)
resulting from adding together the measurements
for the three small stimuli (subject 8).

Visually, the topography appears similar to that of the full quadrant in Fig. 7.2.
Quantitatively, this can be assessed using the RDM as in Section 6.1. Table 7.2 shows
- for Subject 8 as an example - what is essentially a correlation matrix between the
different stimuli, with regard to how strongly the topographies coincide. For MEG,
the full quadrant and the combination of all three stimuli have the strongest match of
78 %. Third 2 lies closely behind at 72 %, while comparing, e.g., Third 1 with Third
2 only yields 36 %. For EEG, the match between the full quadrant and Third 2 is
slightly higher (69 %) than between the full quadrant and the combined stimuli (67 %).

Table 7.2: Topography similarity (1-RDM) between the full stimulus, the three
small stimuli, and their combined data vector for subject 8.

MEG

Full 1

Third 1 0.51 1

Third 2 0.72 0.36 1

Third 3 0.59 0.36 0.65 1

Combined 0.78 0.57 0.73 0.68 1
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Figure 7.5 shows the same relations in median when evaluated over all participants as
described for Subject 8. Third 3 differing strongly from the full stimulus, and Third
2 being the most similar, is a trend that will continue to be apparent in the inverse
results as well.
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(a) Medians: Third 1: 0.69 (IQR 0.55-0.77), Third 2:
0.72 (IQR: 0.62-0.79), Third 3: 0.59 (IQR: 0.41-0.73),
Combined: 0.78 (IQR: 0.66-0.89).
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(b) Medians: Third 1: 0.55 (IQR 0.53-0.72), Third 2:
0.64 (IQR 0.50-0.78), Third 3: 0.43 (IQR 0.38-0.70),
Combined: 0.61 (IQR: 0.50-0.86).

Figure 7.5: Topography similarity (1-RDM) between the full stimulus, the three
small stimuli, and their combined data vector for each subject.

7.2 Statistical Analysis of Dipole Scan Results
As mentioned, the SNR for the full stimulus is good across all included participants,
while some data for the small stimuli is very noisy. Furthermore, from the simulation
results (Section 6.1) the localization error caused by the underestimated extent of the
full stimulus is expected to be at most a few mm. Therefore, the reconstructed dipole
position for the full stimulus is assumed to be a reliable initial estimate. The dipole
scan for the small stimuli was then restricted to a ROI of 2 cm radius around the
position found from the full stimulus, in order to ensure more accurate reconstructions
even for the noisy data. Following this, results with a GOF below 70 % were deemed
unreliable and excluded from further analysis, a generous selection criterion as a
common threshold is 75 % [50][21].

Figure 7.6 shows the GOF of the reconstructed dipoles. For the full quadrant stimulus
in MEG the GOF is firmly clustered around 91 % with a much smaller IQR (89-93 %)
than any of the other stimuli. In the EEG the median is similar at 93 %, the IQR
(84-97 %) larger than for the MEG, but still smaller than for the other stimuli in EEG.
Across the three small stimuli, Third 2 exhibits the highest median GOF, followed by
Third 1, and Third 3 the lowest. In the MEG, the median for Third 2 is 92 %, which
is even higher than for the full stimulus, though values across participants go as low
as 66 %. In the EEG, Third 2 has the most measurement runs across the small stimuli
that pass the selection criterion of 70 %, with data from only one subject being excluded.
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(a) Medians: Full: 91 (89-93), Third 1: 85 (78-93),
Third 2: 92 (77-95), Third 3: 74 (58-85) %.
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(b) Medians: Full: 93 (84-97), Third 1: 72 (63-88),
Third 2: 88 (78-97), Third 3: 64 (28-85) %.

Figure 7.6: GOF of the reconstructed dipole across participants and stimuli. Horizontal
line marks 70 %, below which reconstruction results are excluded from further analysis.

Figure 7.7 now shows the GOF of the small stimuli relative to that of the full stimulus
per subject. In the relative visualization, it becomes evident that it is the same three
subjects (1, 5 and 8) for which Third 1 and 2 reach higher GOF values than the full
stimulus for MEG, and partially for EEG. Across participants, the GOF is generally
lower for the small stimuli. Although, for Third 2, the difference is small, with a
relative value of 0.99 in both MEG and EEG.
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(a) Medians: Third 1: 0.94 (0.84-1.03), Third 2: 0.99
(0.87-1.05), Third 3: 0.81 (0.63-0.94).
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(b) Medians: Third 1: 0.86 (0.76-0.9), Third 2: 0.99
(0.86-1.00), Third 3: 0.73 (0.3-0.87).

Figure 7.7: GOF of reconstructed dipole for the small stimuli, relative to the subject-
respective GOF for the full stimulus.

Having excluded questionable results on the basis of the GOF, the next step is to
analyze the position and strength of the reconstructed dipoles. One way to do that
in a group study is to average the functional data (i.e. the GOF at each position
in source space) across subjects using the individual source spaces transformed and
interpolated onto a template MRI. For details on this procedure see [51]. Figure 7.8
shows the averaged GOF on the MNI152 template brain [76], where the data colorized
constitutes the top 15 % of the whole data range.
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Figure 7.8: Average of GOF over subjects on MNI152 template. Shown are the top 15 % for each
stimulus and modality. Due to earlier exclusion criteria the number of subjects per stimulus and
modality varies (MEG: Full n=7, Third 1 n=7, Third 2 n=6, Third 3 n=4; EEG: Full n=6, Third 1
n=3, Third 2 n=5, Third 3 n=3).

The maximum of the GOF is reached as expected in the left hemisphere and approxi-
mately above the calcarine fissue. The volume in which the top 15 % of GOF lie is
significantly smaller in the MEG than in EEG. Visible in EEG is that for Third 3,
the GOF distribution is more diffuse compared to the other stimuli.

As the simulation studies have shown, dipole depth and amplitude are correlated.
Therefore, Fig. 7.9 shows both the radial position on the x-axis and strength on the
y-axis of the small stimuli relative to the full stimulus. An ideal result would be a
relative position of 0 mm and, under the assumption that the cortical activations can
be linearly added up, a relative strength of 1

3 . In the simulations, an increased patch
radius led to a very small depth bias of the dipole scan, which would here show up
as a positive depth shift of the small stimuli. Regarding the strength, the median
across all small stimuli is indeed below 1, though especially in MEG there are several
reconstruction results with over 50 % higher amplitudes. Notably, the case that the
reconstructed dipole is stronger and more superficial (upper right quadrant of the
plot) for a small stimulus than for the full stimulus does not occur for the EEG and
only twice for the MEG.
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(a) Medians: depth: -3.1 (-6.4-2.7) mm, relative
strength: 0.86 (0.25-1.43).
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(b) Medians: depth: 0.2 (-6.4-5.5) mm, relative
strength: 0.64 (0.34-0.90).

Figure 7.9: Depth shift (radial distance to the full stimulus) and relative amplitude
of the reconstructed dipoles.

Due to the low GOF, not much data from Third 1 and Third 3 remains to be evaluated
individually in a meaningful way. However, for Third 2, there remain 5 subjects with
successful reconstructions from both EEG and MEG, so that the positions obtained
by both can be compared. Figure 7.10 shows the distance between the reconstructed
dipole from MEG and EEG. This distance is larger for the full stimulus (23 mm), than
for the Third 2 stimulus (12 mm).
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Figure 7.10: Distance between the reconstructed dipoles from
MEG and EEG. Median values: Full: 23 (IQR 14-24), Third
2: 12 (IQR 10-17) mm.
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7.3 Extent Estimation with IAS
As IAS, in contrast to the dipole scan, reconstructs an extended source distribution, the
enforced ROI was chosen larger here, with a radius of 4 cm. For comparison with the
simulations in Section 6.3, Fig. 7.11 shows the projected radius of the reconstruction
for varying hyperprior tail length for subject 4. In the MEG, from a tail length of
8 dB onward, the three small stimuli are reconstructed with approximately the same
extent (7.4 mm), and the full stimulus slightly larger (8.1 mm). For the EEG, the
three small stimuli start out approximately the same (16.3 mm), with the full stimulus
at 16.7 mm. For increasing tail length the radius for Third 2 becomes larger than for
the full stimulus. The other two consistently remain lower.
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Figure 7.11: Projected radius for subject 4.

As the simulations have shown that there can be unstable results at <4 dB, while
increasing the tail length much further may decrease the extent but does not further
increase the GOF, a tail length of 6 dB was chosen to reconstruct all subject data for
comparison. Figure 7.12 shows the GOF, which is overall similar to that achieved by
the dipole scan. However, it is generally lower, with the medians for the full stimulus
lying at 86 % and 82 % for MEG and EEG, while for the dipole scan they were 91 %
and 93 %. As a consequence, the selection criterion to include results for further
analysis was lowered to 65 %. This leads to a similar retained subset of the data as
for the dipole scan, except notably, for subject 7 the IAS only achieves a GOF of 62 %
even for the full stimulus.
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(b) Medians: Full: 82 (78-92), Third 1: 70 (60-85),
Third 2: 82 (72-90), Third 3: 59 (28-80) %.

Figure 7.12: GOF for the IAS reconstruction of experimental data at 6 dB tail
length, horizontal line marks 65 %.

As in Section 7.2, we will further examine the stimulus Third 2, for which the best
reconstruction results were achieved. Figure 7.13 shows the projected radius for Third
2, relative to that of the full stimulus. In the EEG case, for all but one subject, the
extent is smaller (median 0.93) for the smaller stimulus. However, for the MEG the
median is actually higher (1.11).

Figure 7.13: Radius (projected in tangential direction) of the
reconstructed current density for stimulus Third 2 relative
to full stimulus. Medians: MEG 1.11 (IQR 0.96-1.15), EEG
0.93 (0.88-1.00).
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7.4 Discussion of Experimental Results
The experimental results show that not only the extent but also the position of the
visual stimulus significantly effects the sensor-level and source-level results. In general,
the full stimulus seems to be the more reliable paradigm, as it elicits a usable VER
signal across all included participants. For the small stimuli, the quality of the VER
measurement varies more strongly between subjects. However, the smaller stimuli do
not, as one might expect, exhibit only a third of the SNR, but at least about 40 %.
The fact that in some cases even a higher SNR is reached for Third 1 or Third 2
compared to the full stimulus seems physiologically unlikely, as the noise is assumed
to be at a constant level throughout a measurement run, while the signal amplitude
of the Thirds should be lower, even if it is unclear how much lower exactly. This
phenomenon could be caused by a lower effective amplitude of the full stimulus due to
canceling effects or due to more variability across trials. It could also be a property of
using the GMFP to estimate SNR, as this is higher for focal signal peaks across a few
sensors than for the same signal amplitude spread across several sensors. Alternatively,
SNR can also be calculated per each channel or only for the channel with maximum
amplitude.

The comparison of the topographies show that the sum of the individual signals from
the three small stimuli is approximately equivalent to the response elicited directly
by their combined area. However, they do not contribute equally to the full stimulus
signal. Third 2, i.e., the middle stimulus/patch seems to contribute the strongest,
which could also be caused by the other two partially canceling each other. However,
Third 3 on its own exhibits a notably lower SNR across all participants. A strong
radiality of the source could explain this drop for the MEG, but not for the EEG. The
stimulus touches the midline of the visual field (vertical meridian): As explained in
Section 2.2, this region is partially processed by both hemispheres. Considering the
anatomy of the primary visual cortex, it is possible that the response to Third 3 is
actually strongly tangential, but especially the tangential components cancel out from
the mirrored two hemispheres. Therefore, SNR in VER experiments might be further
increased by using a large stimulus but not letting it extend right up to the vertical
meridian.

The GOF, unsurprisingly, follows the same trends as the SNR. It is evident that if the
goal is to have good GOF across a range of participants, the full quadrant stimulus is
the more reliable choice. However, for a few participants higher GOF was reached
using smaller stimuli, especially Third 2. The fact that this only occurs for some
participants could depend on the individual cortex anatomy. However, it has also been
shown that attention modulates the VER, primarily later, more cognitive components,
but also the first component: For this, di Russo et al. reports no statistically significant
change in amplitude, but a significant latency lag of 7 ms in unattended vs attended
condition [18]. A variance of latency due to changing attention over the course of the
almost 10 min measurement per stimulus could also smear the averaged N75 peak and
lower GOF.
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The hypothesis that the extent can be estimated by the dipole strength can be con-
firmed only partially: The median dipole strengths are indeed lower for the small
stimuli, but not 1/3 that of the 3 times larger stimulus, and there are also cases with
higher amplitudes. The variance in position and strengths of the reconstructed dipoles
is much larger than what has been observed in the simulations. Probably, this is
caused by measurement noise and modeling errors, and more participants would be
needed to see significant effects. Nevertheless, in the EEG, the median values fulfill
the expectations from the simulations: The amplitude is lower and the position is
slightly more superficial. Higher amplitudes could be explained by the dipoles being
reconstructed too deep. However, in the simulations, a depth shift of 10 mm would
correspond to a 5 % amplitude increase, whereas the experimentally observed changes
are much larger (up to 200 %). Nevertheless, there is a systematic correlation between
depth and amplitude, which is evident in the absence of dipoles that are simultaneously
more superficial and have higher amplitude. This case would be difficult to interpret
physically and physiologically.

Figure 7.14: Oblique source patch (red), dipoles
reconstructed by EEG/MEG will be biased towards
components with radial/tangential orientation.

So far, results have mostly shown that due to the higher and more consistent SNR and
GOF, using the larger stimulus is more beneficial. However, there is a crucial argument
for using a small stimulus, particularly Third 2, the middle one. In many of the
participants this stimulus still yielded good inverse results. And, notably, the distance
between the MEG and EEG reconstructed dipoles was smaller for Third 2 than for
the full stimulus. This is likely due to the contrary sensitivity to radial and tangential
dipole moment components of the two modalities. As illustrated in Fig. 7.14, an
oblique source which extends over a gyrus will have radial and tangential components.
As the MEG is more sensitive to tangential components, the corresponding equivalent
dipole will be reconstructed at the gyral wall, while the EEG, which is more sensitive
to radial components, will yield a dipole at the gyrus crown. A smaller activated
cortical patch should contain less variance in orientation, and therefore lead to a
smaller distance between the MEG and EEG reconstructed dipoles.
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This is an important advantage of using a reduced stimulus size, if the VER is to
be used for calibration procedures as done with the somatosensory evoked response
in [58]. In this technique, the MEG reconstructed dipole position is used to fix the
position of the EEG dipole. Then, the conductivity value of the skull is optimized to
maximize GOF for the EEG. The small-stimulus VER could provide an alternative
paradigm for skull conductivity calibration, e.g., for subjects that do not want to be
electrically stimulated as is necessary for the somatosensory evoked response, or to
better estimate the conductivity in the occipital region.

The reconstructions obtained with IAS exhibit an overall lower GOF than the dipole
scan results. This can be explained by the fact that the GOF is not the only property
that is being optimized in IAS. Using dipole scanning, a consistently high GOF was
achieved for the full quadrant stimulus for all subject data. The IAS reconstruction
appears to fail here in the case of one subject, achieving a much lower GOF than
the median. Although there is no clear explanation for why this happens, the reason
probably relates to the measurement noise: For the full quadrant stimulus, the noise
is the highest across participants in the case of that particular subject. It might be
that the dipole scan somewhat overfits the noise thus achieving a high GOF, which
the IAS aims to avoid by the use of priors. It is also possible that the algorithm did
not find the global maximum of the posterior, possibly due to a non-optimal seed
point or too few iterations.

Due to the contrasting results from EEG and MEG, no definite conclusion can be
made on whether the IAS reconstruction can accurately reflect the extent of the
underlying source. The estimated size for the activation elicited by the small stimulus
is in median smaller for EEG but larger for MEG, compared to that of the full stimulus.
An overestimation of the extent may be caused by the comparatively lower SNR. This
could also explain the larger extent of Third 3 than the full stimulus in the example
subject, as Third 3 exhibits particularly low SNR. Differences between MEG and EEG
can often be related to their sensitivity to radial and tangential sources, however,
without knowing the actual underlying source orientation, and how this affects the
reconstructed extent, it is difficult to interpret these results.
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8 Conclusion
In this thesis, the reconstruction of sources with varying spatial extent was investigated
using simulated and experimental data. The localization error of extended source
patches with (quasi-)radial dipole moments versus single dipole sources was shown
to be a systematic, but negligible bias to deeper positions. This error increases for
curved patches versus planar patches. The IAS inverse method is capable of recon-
structing current distributions whose spread reflects the size of the underlying source
patch. However, using cortex-normal dipoles, i.e., allowing unsymmetrical position
and orientation distributions within a patch, leads to unsystematic reconstruction
results with regard to the reference source radius.

In the real VER experiments, it became evident that stimulus size is not the only
factor influencing the sensor-level measurements and their inverse analysis. The three
stimuli of same size but different angular positions within the lower right quadrant
of the visual field varied in SNR and GOF: The middle stimulus (Third 2) exhibited
the highest SNR and GOF, the stimulus just below the horizontal meridian (Third
1) the second highest, and the lower stimulus next to the vertical meridian (Third
3) the lowest. It could not be empirically confirmed that the larger source extent
associated with the full quadrant stimulus leads to a systematic mislocalization of the
source. Rather, it led to higher SNR and more consistent results across participants.
Especially for Third 3, SNR was often insufficient for inverse analysis. However,
for Third 2, reliable reconstructions were achieved for most participants. It could
be shown that for this stimulus, the distance between the EEG and MEG-obtained
dipoles was smaller than for the full quadrant stimulus.

Arguably, the patches used in the simulations do not accurately model the real source
configurations: The experimentally obtained EMEG topographies already show that
the sources clearly vary in net dipole moment orientation due to the local cortex
anatomy. This is one factor that makes it difficult to relate the systematic differences
in position or distribution spread found in the simulations to the real VER data.
Additionally, the effects are of such small magnitude with respect to the variances
caused by noise, that a larger sample size may be necessary to reproduce them.

All in all, the larger stimulus, encompassing a whole quadrant of the visual field, is
a good choice for consistently obtaining usable VER data, and allows for accurate
dipole localization. However, the stimulus should not extend right up to the vertical
meridian of the visual field. In some cases, sufficient SNR can be achieved for a smaller
stimulus, which is more likely if the stimulus lies in the middle of the quadrant. Then,
it is beneficial to use the smaller stimulus in combined MEG and EEG studies, as
the distance between the dipoles reconstructed from the respective data is decreased.
This is crucial, especially if the VER is to be used for conductivity calibration.

The observed discrepancy between the MEG and EEG also underlines the importance
of using both modalities in clinical applications, where MEG is still underrepresented:
The distance between the MEG and EEG-reconstructed dipoles can serve as an addi-

59



tional parameter to gauge the size of, e.g., an extended epileptogenic zone. Source
strength alone may not always be a reliable indicator, due to canceling effects decreas-
ing the amplitude for larger patches. In cases where the discrepancy between MEG
and EEG is large, also both are needed to correctly estimate the center of the activity.

In future studies, the curvature of the patch could be implemented as a variable
parameter additional to the radius. This would allow modeling more realistic sources
located at gyrus crowns and sulcal valleys, while still maintaining a controllable
scenario. Empirically, the VER may be improved by placing a small stimulus in the
middle of a visual quadrant and continuously increasing its size. Thereby, an optimal
extent for high SNR and simultaneous high spatial accuracy could be found.
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