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Abstract

Accurate detection of interictal epileptiform discharges (IEDs) in elec-
troencephalography (EEG) plays a crucial role in epilepsy diagnosis. This
thesis investigates the classification of IEDs using Artificial Neural Networks
(ANNs) trained on EEG data represented in both signal and source space.
Source waveforms were computed using equivalent current dipole models fit-
ted to averaged IED. Two source modeling approaches were evaluated: a
1-parameter fixed-orientation dipole and a 3-parameter projection, both lo-
calized to a single best-fit position during the rising flank of the TED.

ANN was trained on raw and feature-extracted versions of signal space
and source space data. Feature extraction significantly improved performance
across all domains. The highest classification accuracy of 0.98 was achieved
under the feature-based, specifically Katz FD (F2) signal space condition.
Among source space analyses, the 1-parameter projection model with the
statistical feature set (F1) performed best (0.84) and had an accuracy of
0.68 in F2, while the 3-parameter model reached a maximum of 0.75 with
F2 features. These results show that even with a fixed dipole location and
single-source waveform, classification is possible, and that increasing model
complexity slightly improves performance.

Future work should explore models involving multiple dipole locations or
multi-node patched waveform representations to enrich the spatial and tem-
poral information available for classification. The finding supports the inte-
gration of such techniques into future clinical tools aimed at automating IED

detection and improving diagnostic workflows in epilepsy.
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1 Introduction

1.1 Epilepsy: Clinical Background and Diagnosis

Epilepsy is a chronic neurological disorder that affects more than 50 million peo-
ple worldwide, making it one of the most prevalent brain conditions (World Health
Organization, 2022). It is characterized by a persistent predisposition to gener-
ate unprovoked, recurrent seizures due to abnormal or excessive neuronal activity
(Fisher et al., 2014). These seizures may result in abrupt changes in behavior, sen-
sation, awareness, or motor function. A key mechanism underlying many epileptic
seizures is hypersynchrony, in which large groups of neurons fire simultaneously in

an uncontrolled manner (Milligan, 2021).

Approximately 70% of individuals with epilepsy can achieve seizure freedom
through appropriate diagnosis and treatment (Milligan, 2021; World Health Orga-
nization, 2022). However, epilepsy also has broader implications, often affecting

cognitive, psychological, and social functioning (Sarmast et al., 2020).

The classification of seizures begins with identifying their onset. Seizures are
broadly categorized as either focal or generalized. Focal seizures, also referred to
as partial seizures, originate within a specific region or lobe of the brain. In con-
trast, generalized seizures affect both hemispheres simultaneously and may not arise
from a clearly defined focus (Hussein et al., 2018; P.A. & Desai, 2023; Sarmast et
al., 2020). Proper classification is essential for accurate diagnosis and treatment
planning (Milligan, 2021).

The initial evaluation of a patient following a first seizure should be performed
by a physician, and referral to an epilepsy specialist is recommended if epilepsy is
suspected (Nunes et al., 2012). A timely diagnosis allows for the initiation of per-
sonalized treatment strategies. Electroencephalography (EEG) plays a central role
in epilepsy diagnosis by identifying abnormal brain activity and distinguishing focal
from generalized seizure types. In clinical practice, EEG is often used in conjunction
with neuroimaging techniques such as magnetic resonance imaging (MRI) to detect
structural abnormalities in the brain (Milligan, 2021).

The first line of treatment typically involves antiepileptic drugs (AEDs), which
are selected based on seizure type and patient response. Narrow-spectrum AEDs
may be effective for focal seizures but are less so for generalized types, whereas
broad-spectrum AEDs can be used across multiple seizure types. For patients with
drug-resistant epilepsy, which is defined as failure to respond to two or more AEDs;,

surgical interventions such as temporal lobectomy, MRI-guided laser ablation, or
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implantation of neurostimulation devices may be considered (Milligan, 2021). In
addition, dietary therapies like the ketogenic diet have shown promise in seizure
reduction for certain patients (Shaaban et al., 2023). Ultimately, the goal of epilepsy
treatment is to achieve seizure control while minimizing side effects and enhancing

the quality of life.

1.2 Electroencephalography (EEG) in Epilepsy

Electroencephalography (EEG) is a non-invasive neurophysiological technique
that is widely used in the diagnosis and classification of epilepsy. By detecting the
electrical activity generated by synchronized neuronal firing in the cerebral cortex,
EEG provides a real-time representation of brain wave patterns through electrodes
placed on the scalp (St. Louis et al., 2016). Its ability to capture abnormal brain
activity during and between seizures makes it a cornerstone in epilepsy diagnostics.

EEG signals primarily reflect postsynaptic potentials from cortical neurons. Elec-
trodes are placed at standardized scalp locations according to systems such as the
international 10-10 system, ensuring consistent spatial coverage of brain regions
including the frontal, temporal, parietal, and occipital lobes (Mecarelli, 2019).

Epileptiform activity can be broadly categorized as ictal, occurring during a
seizure, and interictal, occurring between seizures (Rosenow & Liiders, 2001). Ic-
tal EEG patterns are used to localize the seizure onset zone, the brain area where
seizures originate, whereas interictal epileptiform discharges (IEDs), such as spikes,
sharp waves and spike-wave complexes, are used to localize the irritative zone, the
region generating abnormal discharges outside seizure periods. Although tradition-
ally considered distinct, recent studies have shown that IEDs and seizures share
similar probability distributions, suggesting they are not wholly independent pro-
cesses(Karoly et al., 2016). Importantly, complete resection of regions generating
IEDs has been linked to significantly improved long-term postoperative seizure out-
comes, even at 5-10 years of follow-up (Rampp et al., 2019).

These characteristic patterns allow clinicians to differentiate epileptic from non-
epileptic events and help localize the brain regions responsible for seizure onset
(Noachtar & Rémi, 2009). Recent advances in signal processing and neuroimag-
ing have expanded the capabilities of traditional EEG. Source imaging techniques,
including Minimum Norm Estimation (MNE) and Local Auto-Regressive Average
(LAURA), enable the transformation of scalp-level recordings into 3D cortical ac-
tivity maps. These methods enhance the localization of epileptogenic zones, partic-
ularly when combined with high-density EEG, which offers improved spatial resolu-

tion and classification accuracy (Michel et al., 2004).
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Epileptic seizures are typically classified as either generalized or focal. Gener-
alized seizures, such as absence or myoclonic seizures, are marked by synchronous
bilateral spike-and-wave discharges, often observed at 3 Hz in absence epilepsy. In
contrast, focal seizures originate in specific brain regions, such as the anterior tempo-
ral lobe, and are often associated with localized interictal discharges. For example,
mesial temporal lobe epilepsy commonly presents with temporal spikes and ictal
rhythmic discharges that are restricted to the epileptogenic zone (Smith, 2005).

Despite its strengths, scalp EEG has several limitations. It may fail to detect
deep or infrequent epileptiform activity, especially during short recording periods.
Additionally, its spatial resolution is limited, making it difficult to localize small or
deep-seated foci accurately (Smith, 2005). However, when combined with structural
imaging such as MRI or invasive intracranial EEG, conventional EEG remains an

essential component of a comprehensive diagnostic framework in epilepsy care.

1.3 Interictal Epileptiform Discharges (IEDs)

Misdiagnosis of epilepsy remains a significant clinical concern, with studies in-
dicating that 20% to 30% of patients referred to epilepsy centers are initially mis-
diagnosed (Benbadis, 2009). A key element in achieving accurate diagnosis is the
detection of interictal epileptiform discharges (IEDs) on EEG recordings. These
paroxysmal events occur between seizures and are typically characterized by tran-
sient abnormalities such as sharp, high-amplitude peaks (spikes) and disruptions in
the normal rhythm of brain activity (de Moraes & Callegari, 2014).

According to the International Federation of Societies for Electroencephalogra-

phy and Clinical Neurophysiology (IFSECN), epileptiform patterns are defined as:

“Epileptiform patterns (epileptiform discharge or activity): transients
distinguishable from background activity, with a characteristic spiky mor-
phology, typically, but not exclusively or invariably, found in interictal
EEGs of people with epilepsy.” (Noachtar et al., 1999)

IEDs play a critical role for clinical decision-making by aiding in the localization,
classification and identification of epileptic foci. Their morphological characteristics
serve as diagnostic markers for different epilepsy types and contribute to treatment
planning (Ramakrishnan et al., 2025).

Interictal discharges can be morphologically categorized into several types, in-
cluding spikes, sharp waves, spike-and-wave complexes, polyspikes, and polyspike-
and-slow-wave complexes. The IFSECN provides the following definitions (Noachtar
et al., 1999):
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e Spike: A transient with a pointed peak and a duration between 20 and 70

milliseconds.

e Sharp wave: Similar to a spike but with a longer duration of 70 to 200

milliseconds.

e Slow wave: A waveform lasting longer than typical alpha rhythms, i.e., over

125 milliseconds.

e Spike-and-slow-wave complex: A spike followed immediately by a slow

wave.

e Multiple spike complex: A sequence of two or more spikes occurring in

rapid succession.

e Polyspike-and-slow-wave complex: Two or more spikes followed by one

or more slow waves.
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Figure 1

Examples of EEG waveforms and spike morphologies. Patterns 1-5
represent normal background rhythms. Patterns 6-10 are characteristic

epileptiform morphologies typically observed in interictal EEG.

The morphological analysis of IEDs plays a central role in improving diagnos-
tic accuracy and guiding clinical decisions. A recent clinical study introduced the
Bergen Epileptiform Morphology Score (BEMS), which quantifies the morphology
of sharp transients in EEG data. BEMS ranges from 0 to 86, with higher scores

indicating morphologies more typical of epileptiform discharges (Aanestad et al.,
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2023). The score is derived from a weighted combination of visually interpretable
morphological features, including spike slope, spike amplitude, similarity of the spike
to background activity, slow after-wave area, and patient age (as IED morphology is
age-dependent). The specific upper limit of 86 results from the summation of these
weighted feature contributions in the original scoring system, as defined in prior
methodological work by Aanestad et al., 2023

1.4 Spike Detection Techniques

Spike detection refers to the identification of transient, high-amplitude wave-
forms in EEG recordings, typically with durations between 20 and 70 milliseconds
for spikes and 70 to 200 milliseconds for sharp waves (Aminoff, 2012). Accurate
detection of these events is essential for the diagnosis and classification of epilepsy,

as they represent key indicators of interictal epileptiform activity.

However, several challenges complicate manual spike detection. These include a
low signal-to-noise ratio, variability in spike morphology across patients and record-
ing sessions, and the inherent subjectivity involved in visual annotation by clinicians
(Holleman et al., 2011). Such limitations can lead to inconsistent interpretations

and an increased risk of misdiagnosis.

To address these issues, a wide range of automated spike detection algorithms
have been proposed over the past few decades. These methods leverage signal pro-
cessing and pattern recognition techniques to identify spikes within noisy EEG data
and, in some cases, classify them based on spatial or morphological characteristics.
Automated approaches have shown promise in reducing false positives, improving

inter-rater agreement, and streamlining clinical workflows (Kim & Kim, 2000).

With the advancement of machine learning, particularly neural networks, recent
research has focused on developing data-driven models capable of learning discrim-
inative features directly from EEG signals (Ma et al., 2024). These models aim to
improve the accuracy and generalizability of spike detection, reducing the need for
extensive manual preprocessing or expert annotation (Kumar & Upadhyay, 2025).
This trend reflects a broader shift toward intelligent systems in neurodiagnostics
and forms the foundation for the current study, which evaluates the effectiveness
of artificial neural networks (ANNs) in detecting IEDs from both signal-space and

source-space EEG data.
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1.5 Signal Space vs. Source Space Analysis

In EEG research, data analysis can be approached from two perspectives: signal
space and source space.

Signal Space Analysis involves examining the electrical activity recorded directly
from scalp electrodes. This method is straightforward and does not require complex
computational models. However, it is limited by the effects of volume conduction,
in which electrical signals from different brain regions mix as they pass through
the skull and scalp. This mixing can lead to reduced spatial resolution and the
introduction of spurious sensor-level connections. Studies have shown that volume
conduction can cause misleading interpretations of connectivity when analyses are
confined to the sensor level (van de Steen et al., 2016).

Source Space Analysis aims to estimate the locations and activities of neural
generators within the brain by applying inverse modeling techniques to the scalp-
recorded EEG data. This approach mitigates some limitations of signal-space anal-
ysis by providing a more accurate representation of the underlying neural sources.
Source waveforms estimated through such analyses are generally assumed to have
a higher signal-to-noise ratio (SNR) than spontaneous signal-space data, which fa-
cilitates the identification and localization of interictal spikes (Kirsch et al., 2006).
By reconstructing brain activity in the source space, researchers can achieve im-
proved spatial resolution and more precise localization of neural events. For instance,
source-space functional connectivity analysis has been utilized to examine interac-
tions between different cortical regions, offering insights that are less susceptible to

the confounding effects of volume conduction (Barzegaran & Knyazeva, 2017).

1.6 Study Objectives and Contributions

In this thesis, we focus on machine learning spike marking in both source space
and signal space. The pipeline consists of three primary stages: data preparation,
source analysis, and model training. Each stage contributes to enhancing the relia-
bility and accuracy of interictal spike detection using neural networks.

Preprocessing ensures data quality, source analysis allows spatial localization of
neural generators and yields source waveforms with potential improved signal-to-
noise ratio (SNR), and the machine learning stage enables automated classification.
As illustrated in Figure 2, the data preparation step includes filtering and epoching
EEG signals, followed by spike annotation. Source analysis incorporates MRI-based
head modeling and moving dipole fit for source localization, continued with source

waveform projection. Finally, both signal-space and source-space data are used to
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train artificial neural networks (ANN) for classification.

2-Source reconstruction

1-Data preparation

3-Neural Network Training

EEG data MRI data

Load and preprocess MRI

BEM head model.

Input Data

Load EEG signal
oad raw signals Train on both signal-

space and source-
space EEG.

Create 1-second
epochs at 200 Hz

sampling rate.
Compare models with
and without feature
extraction.

Moving dipole fitting on
rising flank of Grand
Average EEG

Label epochs: spikes =
1, non-spikes = O.

( ANDMarking ) ( OR Marking )

selection of nodes
around dipole

Source waveforms

Preprocessing data

Grand average for
AND/OR marking

Figure 2

Spike detection pipeline comprising three stages: data preparation,

MRI-based source reconstruction (allowing spatial localization and

potentially improved SNR), and neural network training using both

signal-space and source-space EEG.

2 Methods

2.1 Data collection

EEG data were obtained from a single patient: a 26-year-old female diagnosed
with refractory focal epilepsy originating in the left frontal lobe, near Broca’s area.
The patient had experienced epileptic seizures since the age of 14 and received
treatment at Miinster University Hospital between 2018 and 2023.

Episodes of impaired thinking and an inability to communicate or follow con-
versation, without motor symptoms or impaired awareness, were characteristic of
seizure semiology. The frequency of seizures ranged from once a week to as often as
four times a day. No seizures involving loss of awareness, motor involvement, or sec-

ondary generalization were reported. Despite treatment with multiple anti-seizure
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medications, the patient did not achieve seizure freedom. Since the clinical criteria
for pharmacoresistance were met, a first presurgical evaluation for potential resec-
tive epilepsy surgery was performed in 2018 (Antonakakis et al., 2024). However,
the initial invasive EEG study was inconclusive in localizing the seizure onset zone.

A total of 22 hours of EEG data were acquired and separated into 22 one-
hour sessions. The recordings were obtained using a clinical EEG system with 19
electrodes, corresponding to a subset of the international 10-20 system (Hinrichs
et al., 2020). All EEG data were recorded at a sampling frequency of 200 Hz.

The study was conducted in accordance with the Declaration of Helsinki and
was approved by the Institutional Ethics Review Board (Ethik-Kommission der
Arztekammer Westfalen-Lippe und der Westfilischen Wilhelms-Universitat Miinster,
approval date: May 25, 2021, Ref. No. 2021-290-f-S). The patient provided written
informed consent for the use of her anonymized data for scientific research and pub-
lication. In this thesis, no identifiable patient information is presented to preserve

complete anonymity.

2.2 Tools and Software

All computational work in this thesis was conducted using MATLAB R2024b,
which served as the primary environment for data processing, EEG analysis, model
development, and performance evaluation. Several MATLAB toolboxes were used
to support different aspects of the workflow. The FieldTrip Toolbox, an open-source
package designed for MEG/EEG data analysis (Oostenveld et al., 2011), was em-
ployed for EEG data import, temporal alignment of epochs, grand-averaging of
waveforms, and dipole fitting. The Deep Learning Toolbox was used for the imple-
mentation, training, and evaluation of Artificial Neural Networks, including binary
classification tasks (The MathWorks, 2023a). The Signal Processing Toolbox facili-
tated digital filtering as well as spectral and temporal analysis during preprocessing,
while the Statistics and Machine Learning Toolbox was used to compute performance
metrics such as confusion matrices, precision, and recall (The MathWorks, 2023b,
2023c).

Several other toolboxes (e.g., Bioinformatics, Predictive Maintenance, and Sys-
tem Identification Toolboxes) were available in the MATLAB environment but not
directly used in the analysis. These are noted for completeness.

To supplement the capabilities of these toolboxes, a set of custom MATLAB
scripts was developed to perform processing steps not natively supported by Field-
Trip, such as data structuring, class balancing, and automated performance metric

computation. These scripts, together with full analysis pipeline, are openly available
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for reproducibility and further research at through a GitHub repository.!

2.3 EEG Preprocessing

EEG preprocessing was a crucial step in ensuring signal quality and preparing
data for spike detection. Initial preprocessing involved exclusion of non-EEG chan-
nels, retaining only the 19 relevant clinically relevant electrodes based on the inter-
national 10-20 system (Hinrichs et al., 2020). The spatial layout of these electrodes

is shown in Figure 3.
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Figure 3
The 19-channel EEG electrode layout based on the international 10-20

system used in this study.

To mitigate artifacts and enhance signal clarity, a bandpass filter (0.5-40 Hz) was
applied to continuous EEG data to remove low-frequency drifts and high-frequency
noise. Although the low-pass cutoff at 40 Hz attenuates most of the 50 Hz power-
line interface, a notch filter at 50 Hz was additionally applied to ensure complete
suppression of residual line noise and harmonics.

Following these steps, the preprocessed EEG recordings (22 hours in total) were
divided into non-overlapping 1-second epochs. Given the sampling rate of 200 Hz,
each epoch contained 200 samples, resulting in a total of 79,876 epochs for subse-
quent analysis.

The preprocessed and segmented EEG data were then utilized for the manual
annotation of interictal epileptiform discharges (IEDs) by independent epileptolo-
gists. These annotations served as the basis for defining spike-containing (label =
1) or non-spike (label = 0) epochs. A detailed description of the labeling process

and the resulting dataset organization is provided in Section 2.4.

Thttps://github.com/cafaroval /ML _spike_detection
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2.4 Labeling Process

Interictal Epileptiform Discharges (IEDs) were manually annotated in the con-
tinuous EEG recordings by three independent epileptologists (EP1, EP2 and EP3).
For annotation purposes, each of the 22 one-hour EEG recordings was segmented
into non-overlapping 1-second epochs, resulting in a total of 79,876 epochs. Each
epoch comprised 200 samples with a dimensionality of 19 channels x 200 time points.

Each epileptologist independently labeled epochs that they judged to contain
IEDs. Based on this process, EP1 identified 2890 spike epochs, EP2 identified
1646, and EP3 identified 10279. Epochs labeled as containing IEDs were catego-
rized as spike epochs, while all remaining epochs were labeled as non-spike. Table 3
summarizes the number of spike and non-spike epochs identified by each epileptol-
ogist. As shown, there is considerable variability among reviewers in the number
of IEDs detected, which reflects the inherent subjectivity in visual EEG interpre-
tation. Additionally, across all epileptologists, non-spike epochs outnumber spike

epochs, highlighting a substantial class imbalance in the dataset.

Epileptologist | Epochs Containing IED | Epochs Without IED
EP1 2,890 76,986
EP2 1,646 78,230
EP3 10,279 69,5097

Table 3
Number of epochs labeled as containing or not containing IEDs by each

epileptologist.

Due to this strong class imbalance between spike and non-spike epochs, specific
steps were taken to address this issue during model development to ensure fair and
robust classification performance. This was handled during data preparation for the
ANN model, as described in Section 2.6.

To reduce the subjectivity inherent in individual expert annotations and to ex-
plore the impact of labeling strategy on model performance, the labeled data were

grouped into two strategies:

e ANDmarking: Includes only epochs marked as containing IEDs by all three
epileptologists. This conservative labeling strategy ensures higher certainty

that labeled spikes reflect true epileptiform activity.

e ORmarking: Includes epochs marked by at least one epileptologist, which

therefore includes all AND-marked epochs. This approach increases sensitivity
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to potentially subtle or ambiguous spike events, though it may also increase

more label uncertainty.

These two labeling strategies are directly used in generating model inputs for

classification, beginning with the source space data derivation in the next subsection.

2.5 Source Localization

This section describes the process of transforming scalp-recorded EEG data into
a source-level representation. This involves constructing a realistic head model, com-
puting the forward model (lead field matrix), averaging spike epochs and projecting
them into the estimated source space, with the goal of producing source waveforms

with a high signal-to-noise ratio (SNR) at interictal epileptiform discharges (IEDs).

2.5.1 Averaging spike epochs

To characterize the temporal profile of IEDs for source localization, grand-
average spike waveforms were computed separately for epochs identified by the AND
marking strategy and OR marking strategy. Averaging across N spike events should
theoretically increase the signal-to-noise ratio (SNR) by a factor of v/N, thereby
revealing the consistent underlying electrophysiological activity while suppressing
random noise.

For this alignment, electrographic seizure patterns were predominantly recorded
in the left frontal area, often presenting with a maximal negativity at the F3 elec-
trode. Therefore, individual spike epochs were temporally aligned to the negative
peak of the F3 channel, which consistently exhibited the highest negativity compared
to other channels. Non-spike epochs, by definition lacking a consistent physiological
peak of alignment, were not subject to this peak-based temporal alignment. Instead,
they were collected as 1-second segments, aligned only to their epoch boundaries.

For subsequent dipole fitting, the grand average spike waveforms were carefully
examined to identify a stable and representative period representing the rising phase
of the IED. The time window of [-20 ms, -5 ms]| relative to the aligned F3 negative
peak was selected for dipole fitting. This specific window, visually marked by dashed

vertical lines in Figures 4 and 5, was chosen for the following reasons:

¢ Physiological Relevance: The rising flank of an IED is generally considered
to represent the initial, highly synchronized depolarization of a neuronal pop-
ulation and is the primary generator of the characteristic scalp-recorded spike

potential. Many studies have suggested reconstructing sources at the middle
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Figure 4

Grand average of IED epochs identified by the conservative AND-marking
strategy. Epochs are aligned to the negative peak of the F3 channel (at 0
ms). The dashed vertical lines indicate the [-20 ms, -5 ms] time window

used for dipole fitting.

of the rising flank rather than at the spike peak, as the latter can be affected
by propagation and yield misleading localizations(Aydin et al., 2015, 2017;
Lantz et al., 2003). This early rising phase tends to provide a more stable
and physiologically meaningful estimate of the source localization compared
to analyzing the sharper, more variable peak or complex falling phase (Forjaco
Jorge, 2016; Myers et al., 2020). Propagation effects have been clearly demon-
strated, including in Antonakakis et al., 2024, where source analysis localized
activity deeply within the sulcus at spike onset but to the gyral crown at spike
peak. For the present work, projecting the data to a source space that en-
compasses both regions or to a location approximately midway between these

extrema was deemed a reasonable approach.

e Signal Stability: The interval from -20 ms to -5 ms typically precedes the
sharpest and most variable part of the spike peak, which can be susceptible
to transient artifacts or minor temporal jitters across trials. By selecting this
segment, we aimed to capture the more consistent, underlying build-up of

the epileptic discharge, enhancing the robustness of the dipole fit (Vulliemoz,
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Figure 5

Grand average of IED epochs identified by the more sensitive OR-marking
strategy. Epochs are aligned to the negative peak of the F3 channel (at 0
ms). The dashed vertical lines indicate the [-20 ms, -5 ms] time window

used for dipole fitting.

2012).

e Consistency with Alignment: As the individual spike epochs were aligned
based on the F3 peak, selecting a window relative to this established reference
point ensures temporal consistency for the dipole estimation across all averaged
spikes(Ramantani, 2018).

2.5.2 Head Model and Lead Field Construction

Accurate localization of the EEG source requires a realistic head model and
a well-defined lead field matrix. To understand this, it’s important first to grasp
fundamental concepts of forward modeling and inverse modeling.

As described in Figure 6, the forward problem in EEG is the process of computing
the scalp potentials generated by known neural current sources (electrical currents)
embedded within the brain, using a comprehensive model of how electrical current
conducts through the head (i.e., volume conduction through body tissues) (Brette
& Destexhe, 2012; Doschoris & Kariotou, 2017; Wolters & Munck, 2007). Solving

the forward problem involves understanding the biophysics of current flow through
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Figure 6

Conceptual illustration of the Forward and Inverse Problems in EEG.

different tissue types (brain, cerebrospinal fluid, skull, and scalp). Methods such as
the Boundary Element Method (BEM), Finite Element Method (FEM) and Finite
Difference Method (FDM) are routinely employed to compute the electric potential
distribution on the scalp (Gramfort et al., 2010; Holtershinken et al., 2025). The
output of the forward model, the lead field matrix, mathematically describes the
contribution of each possible neural source location to the potential at each scalp
electrode (Doschoris & Kariotou, 2017).

Furthermore, the inverse problem in EEG aims to determine the location, orien-
tation, and strength of neural sources (electrical currents) within the brain based on
the non-invasively measured electrical potentials on the scalp (recorded potentials).
This is a significantly more challenging problem than the forward problem because
it is inherently ill-posed. This means that multiple different source configurations
within the brain could theoretically produce the same set of measured scalp po-
tentials (Brette & Destexhe, 2012; Jatoi et al., 2014). Therefore, inverse modeling
requires the application of additional constraints, assumptions, and computational
techniques to arrive at a physiologically plausible and unique solution (Bekhti, 2018;
Brette & Destexhe, 2012).

This subsection outlines the comprehensive anatomical and electrophysiologi-
cal data processing pipeline implemented using the FieldTrip toolbox, designed to
prepare the data for source reconstruction by accurately addressing the forward
problem, which is a crucial prerequisite for subsequent inverse modeling.

The workflow began with the import of a T1-weighted structural MRI scan. The
MRI volume was interactively realigned to the CTF coordinate system using fiducial

landmarks (nasion, left preauricular point and right preauricular point) to ensure
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anatomical accuracy. The realigned volume was then resliced to obtain isotropic
voxel dimensions and standardized orientation.

Tissue segmentation was performed to isolate brain, skull and scalp compart-
ments. These segmented volumes were used to construct a realistically shaped,
three-compartment (skin, skull, brain) boundary element model (BEM), in which
each tissue layer was represented as a triangular mesh on the surface. The result-
ing BEM, computed using the OpenMEEG software package Gramfort et al., 2010,
served as the volume conduction model for subsequent EEG source modeling (Fuchs
et al., 2002; Kybic et al., 2005).

Figure 7

Triangular mesh on the surface.

Electrode positions were extracted from a standard 10-20 system file, and 19
relevant channels were selected and interactively aligned to the MRI-derived scalp
surface. This ensured accurate spatial correspondence between electrodes and a
participant’s unique head anatomy.

A 3D source grid with 3 mm resolution was generated within the brain volume,
and all components were standardized to millimeter units to ensure consistency. The
lead field matrix was then computed using the head model (BEM) EEG forward
modeling as implemented in OpenMEEG and integrated in FieldTrip Gramfort et
al., 2010; Kybic et al., 2005. This computation enables the forward projection of
neural sources to scalp potentials (Brette & Destexhe, 2012). The setup was visually
inspected for anatomical and spatial consistency, ensuring the validity of the forward

model for subsequent source reconstruction.
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Figure 8

Orthogonal MRI slices showing coronal (left), sagittal (middle), and axial
(right) planes at voxel coordinates. The image reflects the realigned and
resliced structural T1-weighted MRI volume used for head model

construction.

2.5.3 Dipole fitting

Following the construction of the head model and lead field, a single equivalent
current dipole (ECD) was estimated to represent the neural source of the grand
average spike waveforms. This process was performed separately for the AND-
marking and OR-marking strategies.

Specifically, the dipole fitting was conducted on the rising flank of the averaged
spike signal within a carefully selected time window of [-20 ms, -5 ms] relative to the
aligned F3 negative peak. This window was chosen for the physiological and signal
stability reasons detailed in Section 2.5.1. The dipole estimation was performed us-
ing the FieldTrip toolbox, leveraging the previously constructed realistic BEM head
model and computed lead field matrix to accurately model the forward projection
of neural sources to scalp electrodes. A single dipole model was employed, and the
fitting algorithm was set to a 'moving’ model, allowing the dipole to vary its position
and orientation within the specified latency window.

From the results of the dipole fitting, the position and orientation of the best-
fitting dipole within the selected time window were extracted for both the AND-
marked and OR-marked grand averages. The peak Goodness of Fit (GoF) for the
AND marked grand average was calculated as 99.29% , and for the OR marked
grand average as 99.04% i.e., a very high GoF showing that the model explains
the data well. While these values are higher than those reported in Antonakakis
et al., 2024 for EEG rising-flank fits (e.g., 91% ), the difference may be explained
by methodological differences.

To assess whether a fixed dipole orientation assumption was valid, the GoF
was evaluated at multiple time points across the rising flank using 3-parameter

projection. As shown in Figure 9, GoF exhibited substantial temporal fluctuations,
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suggesting that the source orientation changes over the course of the spike. This
indicates that projecting the data onto a single fixed orientation could distort the
waveforms, whereas retaining the full three-component (3D) source waveform would

preserve physiologically relevant orientation dynamics.

GoF Across Rising Flank (3-Parameter Projection)
T T T T T T T

100 T

90 - ﬂ ]

GoF (%)

Time (s)

Figure 9
Goodness of Fit over time during the rising flank of the averaged IED,

computed using a 3-parameter dipole model. Large fluctuations in GoF
indicate changes in the scalp potential pattern over time, suggesting
rotation of the underlying source orientation. This supports the use of §D

projection to preserve waveform fidelity.

The fitted dipoles for both AND-marked and OR-marked grand averages are
shown in Figure 10. These dipoles were consistently localized to the left frontal lobe,
in close proximity to the F3 EEG electrode, and anatomically consistent with the
seizure onset zone as detected by sEEG, which was guided by combined EEG/MEG

source analysis in Antonakakis et al., 2024.

2.5.4 Selection of Cortical Source Nodes

After estimating the dipole for the grand average spike signal, the next step in-

volved selecting a set of source nodes for projection. The aim was both to focus
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a) b)

Figure 10

Estimated equivalent current dipoles (blue) representing the source of the
grand average IEDs at -5 ms relative to the aligned F3 negative peak,
corresponding to the last time point of the moving dipole fit window. a)
Fitted dipole for the global average over AND-marking spikes. b) Fitted
dipole for the global average over OR-marking spikes. In both panels, the
dipoles are shown within a transparent head model, viewed from a
superior (top) perspective. The spatial separation between the two source
locations is approximately 11.35 mm, indicating a moderate difference

between the two marking strategies.

the analysis on the most physiologically relevant brain regions surrounding the es-
timated IED generator and to reduce the dimensionality of the inverse problem for
subsequent machine learning tasks.

The selection was carried out in two stages. First, an anatomically constrained
bounding box was defined within the left frontal lobe of the cortical surface. The
bounding box coordinates were chosen manually by inspecting the MRI source grid

to ensure coverage of the presumed source region. The process involved:

1. Identifying all valid source grid points that were marked as ’inside’ the brain

volume in the source model.

2. Defining specific minimum and maximum CTF coordinates along the anterior-
posterior (X), left-right (Y) and inferior-superior (Z) axes to encompass the

desired region.

3. Including only those source grid points that fell precisely within these defined
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coordinate ranges and were confirmed to be inside the brain volume.

All valid grid points located inside the brain volume and within these boundaries
were included as an initial candidate set of nodes. This stage was used in the one-
parameter projection analysis, where the orientation was fixed and a larger number
of nodes were retained.

In the second stage, used for the three-parameter projection analysis, the can-
didate pool was refined to a compact patch of nodes directly surrounding the fitted
dipole. Specifically, the ten closest nodes to the dipole position were selected based
on Fuclidean distance in three-dimensional space. This step ensured that the final
node set captured the immediate cortical neighborhood of the estimated generator
while maintaining a manageable number of nodes for projection.

Together, these two approaches provided complementary ways of defining the
cortical source space, a broader anatomically guided set for the 1-parameter projec-

tion, and a more focused, spatially specific patch for the three-parameter projection.

2.5.5 Source Waveform projection

Following dipole fitting and selection of cortical source nodes for both AND
and OR marking strategies, the next critical step involved projecting the scalp-level
EEG data into the source space to produce source waveforms. This methodology
first determined the source location through dipole fitting and then utilized these
predetermined locations to spatially filter the scalp potentials. This process provided
an estimate of neural activity at targeted brain regions. This approach was applied
for both grand average and for individual trial data, covering both spike and non-
spike events for both marking strategies.

The source projection was formulated as a least-squares fitting problem between
the measured EEG and the forward-modeled lead field at the chosen source location.
For each selected node, the lead field matrix L € RM*3 (with M sensors and three

orthogonal source orientations) was used to solve:
min [|& — LJ|, 1)

where ® € R™*T represents the EEG measurements over 7' time points, and J €
R3*T contains the source waveforms for the three orientations (x, y, z). The analytic
solution is:

J=(LTD) LTo 2)

Two cases can be distinguished:
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1. Fixed orientation (1D): The orientation vector is determined from the grand
average dipole fit and applied to all time points, yielding a single waveform.

This case assumes the EEG topography remains stable throughout the spike.

2. Free orientation (3D): All three components of J are retained, allowing the
estimated source orientation to vary over time. This is more flexible when the
EEG pattern rotates during the spike, as may occur due to propagation or

cortical folding.

In cases where the EEG topography over the spike is stable (no significant ro-
tation), this model can be simplified to a single orientation, reducing J to 1 x T'
and effectively yielding one source waveform. This is advantageous in focal epilepsy
cases with a well-localized and fixed generator, as it reduces noise from unnecessary
degrees of freedom.

Conversely, if the EEG pattern rotates during a spike retaining all three ori-
entation components is necessary to compute the evolving spatial pattern. This
projection framework therefore allows both scenarios to be implemented and com-
pared, enabling quantification of their fit to the data over time.

For patch level projection, K = 10 cortical nodes were selected around the
fitted dipole position for each strategy. Node selection was based on Euclidean
distance from the fitted dipole coordinates within the anatomically defined cortical
surface, ensuring that the chosen patch represented the spatial neighborhood of the
estimated generator. For the patch, the lead field of the K nodes were concatenated
into a joint matrix Lpaten € RM>3K - providing three degrees of freedom per node.
The inverse problem was then solved using Tikhonov regularization to stabilize the
solution, with the regularization parameter A chosen automatically for each strategy
using the L-curve criterion (maximum curvature point on the log-log residua-solution
norm curve).

In the fixed orientation case, the chosen dipole orientation from the grand average
was applied uniformly to all patch nodes, effectively creating a spatial filter that
assumed all nodes shared the same temporal dynamics and source direction. In the
free orientation case, each node’s full three-component lead field was used to estimate
J without constraining orientation, allowing each node to adapt to changing scalp
topographies.

In the free orientation case, each node’s three orthogonal source components were
computed without imposing an orientation constraint, allowing the estimated source
direction to vary over time. For visualization, 3K time series (three components for
each of the K patch nodes) were combined by first computing the vector magnitude

at each node and then averaging across the K nodes to yield a single representative
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Figure 11

Patch-Level Source Waveforms for Grand Average IEDs. Vector
magnitude of the 3-component (x,y,z) source estimates, averaged across
the 10 closest cortical nodes to the fitted dipole location, expressed in
nanoampere-meters (nAm) a) Grand-average source waveform for the
AND-marked data. b) Grand-average source waveform for the OR-marked
data.

waveform per marking strategy in Figure 11. This averaging step was performed
only for plotting purposes. For trial-level analysis used in classification, no such

averaging was applied.

2.6 Balancing the data

Following the projection of scalp-level EEG data into source space and having
signal space data, a critical step involved balancing the number of spike and non-
spike trials for each condition (AND/OR marking). This preprocessing is essential
for subsequent machine learning tasks, as an imbalance in the number of samples
between classes can lead to biased models that perform poorly on the minority class.

To address class imbalance, the spike and non-spike sets were randomly down-
sampled to create balanced datasets containing equal numbers of examples from
each class (Chawla et al., 2002). This ensured that the machine learning model

would be trained on an equal representation of both event types, thereby preventing
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a bias towards the more prevalent class and promoting robust model generalization.

After equalization, these balanced trial sets were combined into a single input
dataset. Simultaneously, a corresponding binary target label array was created
where 1 indicated a spike trial and 0 indicated a non-spike trial. This structured
input and target labeling, which is fundamental for supervised machine learning,

was then saved for the model training.

2.7 Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) are computational models designed to emu-
late the principles of the biological neural system, particularly those observed in the
human brain (Abraham, 2005). In these models, the complex electrochemical pro-
cesses of real neurons are abstracted into simplified mathematical units (”artificial
neurons”) that compute weighted sums of their inputs, apply nonlinear activation
functions, and produce and outputs (Guilhoto, 2018).

An ANN typically consists of an input layer, which receives the raw data and
one or more hidden layers, where intermediate transformations are performed. An
output layer, which generates the final prediction (Agatonovic-Kustrin & Beresford,
2000). In the simplest case, there may be only a single hidden layer, whereas ar-
chitectures with multiple stacked hidden layers fall into the category of deep neural
networks (DNN).

In this study, a feed-forward ANN with one hidden layer and a single output
neuron was implemented for binary classification. This architecture was selected for
its simplicity and effectiveness in modeling non-linear patterns in moderately sized
data sets (Abdalla, 2011; Kavzoglu, 2001). The network processes input vectors
through a hidden layer of 10 neurons with nonlinear activation functions, followed
by one output neuron.

Prior to training, all input data underwent Z-score normalization (mean 0, stan-
dard deviation 1) to ensure consistent scaling across features, which aids in optimiz-
ing the training process (Cetin & Yildiz, 2022; Raju et al., 2020).

Training was conducted using the Scaled Conjugate Gradient (SCG) backprop-
agation algorithm, a second-order optimization technique that avoids line searches
(Cetigli & Barkana, 2010). SCG was specifically developed to combine the advan-
tages of both the Conjugate Gradient (CG) method and the Levenberg-Marquardt
(LM) algorithm. It inherits the conjugate direction strategy from CG, which helps
avoid redundant search paths. It incorporates a damping mechanism inspired by
LM to stabilize the update process by adaptively adjusting the step size in regions

of uncertain curvature. This makes SCG a robust and efficient choice for neural
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network training, particularly for medium-scale problems.

In the SCG method, the search direction is updated using a finite-difference
approximation to the Hessian-vector product. Let E'(w) denote the gradient of the
total error with respect to the weight vector w, p; the conjugate search direction
at iteration k£ and Mg, oy scalar parameters. The vector s is computed as:

E' (wy + oxpr) — E'(wy)

Sk = + A\ePk (3)
Ok

The first term is a finite-difference approximation of the Hessian applied to the
direction pg, i.e., Hppy, while the second term Appj introduces a damping com-
ponent to ensure positive definiteness of the Hessian approximation. Both terms
are vectors of the same dimension as wy, ensuring dimensional consistency in the
update computation.

In this formulation, the first term provides a finite-difference approximation to
the curvature term E”(wy) - pg, allowing SCG to incorporate second-order infor-
mation without explicitly computing the Hessian. This enables adaptive step size
and direction updates without costly line searches, resulting in stable and efficient
convergence, particularly well suited for medium-scale problems such as neural data
classification.

To enhance the reliability of the results, a 10-fold cross-validation is used (Kordos
& Duch, 2008; Paul & Karn, 2023). The data set is randomly divided into 10 groups
(folds). In each iteration, one group is used as the test set, while the remaining
nine groups are used for training. This ensures a robust evaluation of the model’s
generalization performance across all data subsets.

Implementation and training were performed using MATLAB 2024b in this
study. The built-in function patternnet was used to construct a feed-forward neural
network that supports the classification of multichannel data and is suitable for su-
pervised learning tasks. This tool simplifies the development of neural networks by
handling data formatting, training configuration, and evaluation internally.

In this thesis, we designed two separate ANN models to classify EEG data based
on different input representations: signal space and source space. In the signal
space model, the EEG epochs consisted of raw time-series data from 19 channels,
each with 200 time points, resulting in an input size of 3800 (19 x 200) per sample.
This data was flattened and used as direct input to a feed-forward ANN with 3800
input neurons, one hidden layer of 10 neurons, and a single output neuron for binary
classification (spike vs. non-spike).

In contrast, the source space model used a reduced representation with an input

dimension of 200 per sample, reflecting processed or localized brain source signals.
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This version of the ANN had a simpler structure, with 200 input neurons feeding
into classification.

Both architectures used activation functions and were trained using the SCG
algorithm. The visual representations of each ANN structure are provided in Fig-

ures 12 to illustrate the differences in model design and data flow.

Input Input

a) 3800 D b) 200

4 \ 7 Hidden

Hidden
E

, Output Output

Figure 12

ANN architecture a) Signal space: 3800 input features (19 channels x
200 time points), 10 hidden neurons, and a single binary output. b)
Source space: 200 input features, 10 hidden neurons, and a single binary
output. Here W denotes the layer’s weight matrix, b denotes the bias

vector, and the "TEXT’ label is a placeholder with no functional meaning.

Evaluation Metrics

The performance of the model was evaluated using standard classification met-
rics: accuracy, sensitivity, specificity, precision, F1 score, geometric mean, Cohen’s
Kappa, and area under the ROC curve (AUC-ROC). Collectively, these metrics
present a multidimensional evaluation framework. While accuracy offers a coarse
view of overall performance, sensitivity and specificity address class-wise perfor-
mance; precision and the F1 score provide insight into the correctness and balance
of positive predictions; and the geometric mean, Cohen’s Kappa, and AUC-ROC
further refine the assessment by addressing issues such as imbalance, chance agree-

ment, and threshold-independence. This integrated approach ensures that model
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evaluation is both rigorous and appropriately tailored to the nuances of the applica-
tion domain (Pattanayak et al., 2024; Simbun & Kumar, 2025; Wang & Carvalho,
2024).

2.8 Feature extraction

Feature extraction is a fundamental step in EEG analysis, aiming to transform
high-dimensional raw signals into informative representations that emphasize rele-
vant signal characteristics while reducing redundancy and noise (Beutel et al., 2000).
In this thesis, feature extraction played a key role in preparing EEG data for the
detection of epileptic spikes using ANNs.

EEG data, recorded from 19 EEG channels, were segmented into 1-second epochs,
each with dimensions of 19 x 200 (channels x time points) and the datasets were
maintained for each expert annotation set (EP1, EP2, EP3) as mentioned in the

previous sections.

Features were extracted from both signal space and source-space data.

2.8.1 Amplitude-Based Features

Amplitude-based features capture the fundamental distributional characteristics
of the EEG signal by quantifying statistical properties (Boubchir et al., 2017). The
mean amplitude Z represents the average signal level over the recording interval,
serving as a baseline indicator of the overall electrical activity (Sanei & Chambers,
2007).

Standard deviation o measures the variability around this mean, reflecting fluc-

tuation due to neural dynamics or noise (Boonyakitanont et al., 2020).

o=y v D — )2 (5)

i=1

Skewness S quantifies the asymmetry of the amplitude distribution, which may
indicate bias or an imbalance in the underlying brain activity (Rousseau et al., 2018),
while kurtosis K evaluates the "tailedness’ or peakedness, highlighting the presence

of extreme values that could correspond to transient events or artifacts.
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Formula of Skewness:

N _
% Dim (T — 5’7)3

S= 3/2
(% S (i — 97?)2)

Formula of Kurtosis: L
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(£SX, (- 2p)

Values of K > 3 suggest heavy tails (leptokurtic), while K < 3 indicates light

K =

(7)

tails (platykurtic). These statistical descriptors are commonly used to identify ab-

normal patterns such as seizure-like activity (Rousseau et al., 2018).

2.8.2 Nonlinear Dynamics Features

Nonlinear dynamics features assess the complex, often chaotic nature of EEG
signals. These features quantify how signal patterns change across time and scale,
offering insights into the underlying neural dynamics (Larsson, 2018).

The Higuchi Fractal Dimension (HFD) is a robust measure used to determine
the self-similarity and scaling behavior of a time series across multiple resolutions.
It effectively captures the fractal characteristics of brain activity (Larsson, 2018).

The EEG time series is first sub-sampled into & datasets:

2i(m) = {z(m), x(m + k), z(m + 2k), ..., <m+ {N;mJ -k)} (8)

Here, [-] denotes the floor function, k is the interval time with values k =
1,2,3,..., knax, and m is the initial time with values m = 1,2,3,...,k. For EEG
data k. is typically set to L%J, where N is the total number of samples (Ruiz
de Miras, 2016).

For each fixed k, the curve length Lj(m) is computed as the sum of the absolute
differences between consecutive sub-sampled points, normalized for the scaling of
sub-series (Giiven et al., 2020):

Z |x(m+ik)—x(m+(i—1)k}|-%

k

The average curve length for a given k is then:

1 k
HFD; = m; Li(m) (10)
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The Hinguchi Fractal Dimension Dy is obtained as the slope of the regression line
in the log-log plot of In(H F' Dy) versus In(1/k). This means that for each k, the re-
lationship H F' Dy, oc k~P# holds, and the exponent Dy quantifies the fractal scaling
of the EEG signal.

Choosing small k values makes Li(m) effectively a measure of signal length,
meaning sharp transients or spikes will increase its value. Larger k values capture

coarser structural patterns in the signal.

In contrast, Katz Fractal Dimension (KFD) relates the total path length of the
signal to its overall spatial extent, providing insight into the degree of morphological
complexity (Larsson, 2018). For EEG time series x; with N points, the total length
L of the signal is defined as the sum of Euclidean distances between successive

points:

L= Z V1 (501 — ;)2 (11)

This value reflects the cumulative ”travel distance” of the signal and serves as a

measure of its irregularity.

This signal diameter d is defined as the maximum Euclidean distance between

the first point (1,z;) and any other point (¢, x;) in the series:

d= max /(1 —14)2 + (z; — ;)2 (12)

2<i<N

This captures the largest spatial extent of the signal trajectory. The Katz Fractal

Dimension is then calculated as:

_ log(N)
K log(N) + log (%)

(13)

Here, N is the total number of points in the series, L quantifies the total path length,

and d represents the maximum distance from the starting point.

Additionally, the Lyapunov (F4) exponent A quantifies the rate at which the
nearby trajectories in the reconstructed phase space diverge, thereby offering an
index for the level of chaos or instability exhibited by the EEG signal (Riidisiili et
al., 2013). A positive A implies sensitivity to initial conditions and chaotic dynamics,

while negative or zero values indicate stability.

Given a time series z;, an initial perturbation e is applied to form a perturbed

trajectory. If z}' denotes the i-th point after n iterations, the divergence rate is given
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by:
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- (14)
For infinitesimally small €, this becomes proportional to the complexity of the

system:
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Applying the chain rule, A can also be expressed as:

n—1
1
A= lim =) In|a]] (16)
1=1
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These measures have been instrumental in characterizing the nonlinear dynamics

that often signal pathological conditions such as epilepsy (Lehnertz, 2008).

2.8.3 Frequency-Based Features

Frequency-based features derive from spectral analysis and are crucial for char-
acterizing oscillatory brain activity.

Power Spectral Density (PSD; Fba, F5b, F5c) is a central metric that shows how
the power of the EEG signal is distributed over different frequency components,
computed using techniques such as the periodogram or Fourier transform (Zhao
et al., 2019). The EEG is typically subdivided into clinically relevant frequency
bands. Within these, delta (0.5-4 Hz), theta (4-8 Hz) and alpha (8-13 Hz) are
important for capturing slow-wave components, while beta (13-30 Hz) and gamma
(30-60 Hz) bands capture faster oscillatory processes (Ameera et al., 2019). Specific
combined feature sets (F5a, F5b, F5c) enable targeted analysis of neural oscillations

that correlate with various cognitive and pathological states (Wang et al., 2017).

2.8.4 Entropy-Based Features

Entropy-based features quantify the irregularity, predictability, and information
content of the signal. Approximate Entropy (F10, see Table 6 for feature numbering
to clarify the jump from F5 to F10) quantifies the logarithmic likelihood that se-
quences of m consecutive data points, which are similar within a tolerance r, remain
similar when extended. Lower values indicate more regular, predictable signals,
while higher values indicate greater irregularity and complexity. Shannon Entropy
(F12), on the other hand, calculates the average uncertainty inherent in a signal’s
probability distribution by assessing its informational content. These entropy mea-

sures are particularly valuable in delineating the differences between normal and
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abnormal brain states, as changes in signal complexity have been linked to various
neurological conditions (Uyulan et al., 2019).

Combined feature sets integrate these diverse descriptors to form richer, mul-
tidimensional representations of the EEG data. They enhance classification per-
formance by leveraging complementary information from amplitude, nonlinear, fre-
quency and entropy domains, making them especially useful in applications such as

epileptic seizure detection (Akter et al., 2020).

3 Results

This section presents the results of the ANN classification for the four conditions
outlined in Table 4. The primary objective was to evaluate the impact of different
data representations, ranging from raw signal space EEG to feature-extracted source
localized activity, on the automated identification of IEDs.

The classification performance for each condition is reported using key metrics
such as accuracy, sensitivity, and specificity to provide a robust assessment of the
ANN’s capabilities. Initially, we detail the performance achieved using data from
signal space (Conditions 1 and 2). Subsequently, we present the results from the
source-localized data (Conditions 3 and 4), followed by a comparative analysis across
all conditions to highlight the advantages of source space processing for ANN-based
IED detection.

Table 4
Four Distinct Conditions for Artificial Neural Network (ANN) Classification. Each

condition specifies the type of input data used for training and evaluating the
ANN model.

Condition Input data

1. Signal Space (Raw) Raw EEG epochs (signal space)

2. Signal Space (Features extracted) Features extracted from signal space
3. Source Space (Raw) Raw Source-Localized Epochs

4. Source Space (Features extracted) Features extracted from source space

3.1 Signal Space Analysis Without Feature Extraction

This section presents the results of the artificial neural network (ANN) classi-
fication applied to raw EEG data (Condition 1) in the signal space, without any

feature extraction. EEG recordings were segmented into 1-second epochs, and each
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epoch, originally in a [19 x 200] matrix format, was reshaped into a [1 x 3800]
feature vector to be used as input to the ANN.

A feedforward neural network (FFNN) with a single hidden layer comprising
10 neurons was used, as described in Section 2.7. Training was performed using
the SCG backpropagation algorithm with a maximum of 500 epochs per fold, and
early stopping was enabled to prevent overfitting. The network was trained and
evaluated using 10-fold stratified cross-validation, meaning the model was retrained
from scratch for each fold. Classification performance was assessed using several
commonly reported metrics, including accuracy, sensitivity (recall), specificity, pre-
cision, F1 score, geometric mean (G mean), and Cohen’s Kappa.

The classification performance on the raw EEG epochs is summarized in Table 5.

Table 5
Averaged ANN classification results for raw signal space data using AND-marking

and OR-marking.

Metric AND-marking OR-marking
Accuracy 0.521 0.512
Sensitivity 0.428 0.498
Specificity 0.613 0.525
Precision 0.526 0.512
F1-score 0.472 0.505
G-Mean 0.513 0.511
Cohen’s Kappa 0.042 0.024

These results serve as a baseline for evaluating the impact of feature extraction
and source-space transformation in subsequent sections. The overall classification
accuracies for both AND-marking (0.521) and OR-marking (0.512) are very close,
indicating that the ANN struggled to effectively distinguish between spike and non-
spike events based solely on raw EEG data. This is further corroborated by the low
Cohen’s Kappa values (0.042 for AND marking and 0.024 for OR marking), which
suggest that the agreement between the ANN’s predictions and the true labels is
negligible, only marginally better than random assignment.

For the AND-marking strategy, the sensitivity (0.428) indicates that less than
half of the actual spike events were correctly identified, while specificity (0.613)
shows a slightly better ability to correctly identify non-spike events. The OR-
marking strategy, in contrast, exhibits a more balanced, still low performance sensi-
tivity (0.498) and specificity (0.525). These findings clearly underscore the need for
more discriminative features or alternative data representations to improve general-

ization and achieve clinically meaningful performance in automated IED detection.
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3.2 Signal Space Analysis with Feature Extraction

To evaluate the effect of feature engineering on the classification of interictal
epileptiform discharges (IEDs), various handcrafted features were extracted from
preprocessed EEG epochs in signal space and used as input (Condition 2). Each
feature set, as detailed by its ID, was used to train and evaluate a separate feedfor-
ward neural network. The network architecture and training parameters remained

consistent with those used in Condition 1.

Table 6

ANN Classification Performance for AND-Marked Signal Space Features. Averaged
Accuracy, Sensitivity, and Specificity for various feature sets (ID F1-F12) using the
AND-marking strategy.

Feature ID Accuracy Sensitivity Specificity
F1 (Statistical) 0.94 0.95 0.94
F2 (Katz FD) 0.98 0.99 0.97
F3 (Higuchi FD) 0.87 0.88 0.86
F4 (Lyapunov Exponent) 0.91 0.92 0.90
F5a (PSD, gamma, beta) 0.85 0.86 0.85
F5b (PSD, all bands) 0.94 0.96 0.93
F5¢ (PSD, alpha delta theta) 0.88 0.91 0.84
F6 (F5a + F2 + F1) 0.98 0.98 0.97
F7 (F5a + F2 + F1 +F4) 0.97 0.98 0.97
F8 (F2 + F4) 0.98 0.98 0.97
F9 (F1 + F2) 0.97 0.97 0.97
F10 (Approximate Entropy) 0.92 0.93 0.92
F11 (F2 + F10) 0.97 0.97 0.97
F12 (Shannon Entropy) 0.87 0.89 0.85

The results presented in Table 6 and Table 7 clearly demonstrate a significant
improvement in ANN classification performance when utilizing feature-extracted
data compared to the raw EEG signals (Condition 1).

For the AND-marking strategy, where an epoch was labeled as a spike only if
all three epileptologists agreed on its presence, several feature sets, including F2
(Katz Fractal Dimension), F6 (a combination of Fba, F2, and F1), F7, F8, F9,
and F11 achieved exceptional performance with accuracies of 0.97 or higher. These
feature sets also maintained consistently high sensitivity and specificity, indicating
a balanced ability to correctly identify both spike and non-spike events.

For the AND-marking strategy, the Katz Fractal Dimension (F2) and several

combined feature sets achieved accuracies of 0.97 or higher, with balanced sensitivity
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and specificity.

Table 7

ANN Classification Performance for OR-Marked Signal Space Features. Averaged
Accuracy, Sensitivity, and Specificity for various feature sets (ID F1-F12) using the
OR-marking strategy.

Feature ID Accuracy Sensitivity Specificity
F1 (Statistical) 0.84 0.87 0.81
F2 (Katz FD) 0.88 0.94 0.83
F3 (Higuchi FD) 0.68 0.66 0.70
F4 (Lyapunov Exponent) 0.77 0.79 0.76
Fb5a (PSD, gamma, beta) 0.74 0.77 0.72
EF5b (PSD, all bands) 0.69 0.51 0.88
F5c¢ (PSD, alpha delta theta) 0.62 0.33 0.91
F6 (Fha + F2 + F1) 0.89 0.92 0.86
F7 (F5a + F2 + F1 +F4) 0.90 0.93 0.87
F8 (F2 + F4) 0.89 0.94 0.83
F9 (F1 + F2) 0.90 0.93 0.88
F10 (Approximate Entropy) 0.80 0.80 0.80
F11 (F2 + F10) 0.89 0.94 0.85
F12 (Shannon Entropy) 0.67 0.51 0.83

For the OR-marking strategy (Table 7), where an epoch was labeled as a spike if
at least one of the three epileptologists identified it as such, a general improvement
over raw data is observed. However, the peak performance is slightly lower and
there is more variability across features compared to AND-marking. The highest
accuracies for OR-marking (0.88-0.90) were achieved by feature sets such as F2, F6,
F7, F8, F9 and F11. In particular, F2 (KFD) achieved an accuracy of 0.88 for OR-
marking with a high sensitivity of 0.94, suggesting good detection of actual spikes,
but a slightly lower specificity of 0.83 compared to its AND-marking counterpart
(0.97). This observed difference in performance between two marking strategies is
directly attributable to their underlying definition. The AND-marking set represents
highly stereotypical and clear IEDs due to the strict consensus requirement, making
them easier for the ANN to learn and classify with high precision. In contrast,
the OR-marking set encompasses a broader, more heterogeneous range of events,
including those with less clear morphology or inter-rater agreement. This increased
variability and potential inclusion of events in the OR-marking set likely contribute
to its slightly reduced overall accuracy and greater fluctuations in performance across
different feature sets.

Beyond accuracy, sensitivity and specificity, other evaluation metrics such as pre-
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cision, F1-score, Geometric mean, and Cohen’s kappa were also computed to provide
a comprehensive performance assessment. The top-performing feature sets, as iden-
tified by their high accuracies in both marking strategies, generally also yielded
excellent Fl-scores (ranging from approximately 0.87 to 0.98 for AND-marking and
above 0.70-0.80 for OR-marking’s best features), indicating substantial to almost
perfect agreement with the true labels and a vast improvement over raw data per-
formance.

Conversely, feature sets like Fhc (PSD: alpha, delta, theta) and F12 (Shannon
Entropy) frequently showed lower overall performance for both strategies, particu-
larly for OR-marking. For these less discriminative features, the Fl-scores dropped
to approximately 0.50-0.70, and Cohen’s kappa values were correspondingly lower
(e.g., F5¢c OR-marking Kappa around 0.24, F12 OR-marking Kappa around 0.35),
although still significantly better than raw data. These findings highlight the pro-
found impact of appropriate feature engineering in transforming near-chance perfor-
mance into robust IED classification. Notably, in both results and those reported
by Yesilbag et al., 2023, KFD alone achieved performance levels close to the best
feature combinations, suggesting that KFD is the primary driver of high accuracy,

while combinations offer only marginal additional benefit.

3.3 Source Space Analysis without Feature Extraction

This subsection outlines the classification methodology applied to source-localized
EEG data, aiming to improve the signal-to-noise ratio for classification. The objec-
tive of this analysis was to evaluate if source-level representation of neural activity
could support robust classification of spike events. Two distinct source models were
investigated: a fixed orientation model and a free orientation model, which was
described in Section 2.5.5.

The fixed orientation model constrains the dipole moment at each cortical node
to a single direction, resulting in a single degree of freedom (DOF') per node. This
simplifies the problem but may not accurately capture the true orientation of the
neural sources. In this model, a solution for a patch with K nodes yields a source
vector of dimension K x T

The free orientation model provides a more flexible solution by allowing the
dipole moments to have three independent components (x, y, z), corresponding to
three degrees of freedom per node. This results in a source vector of dimension
3K x T. The free-orientation model is expected to provide a more accurate fit to
the EEG data but is more susceptible to noise and requires careful regularization
(Makkonen, 2023).
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The classification performance for both source space models is summarized in
Table 8.

Table 8
ANN classification results for source-space data using fixed- and free-orientation

models.

Metric AND OR

Fixed Free Fixed Free
orient. orient. orient. orient.

Accuracy 0.5375 0.5958 0.5116 0.5872
Sensitivity 0.6002 0.5799 0.6614 0.6263
Specificity 0.4748 0.6116 0.3617 0.5480
Precision 0.5333 0.5989 0.5089 0.5809
F1-score 0.5648 0.5892 0.5752 0.6027
G-Mean 0.5338 0.5956 0.4891 0.5859

Cohen’s Kappa 0.5374 0.1915 0.5115 0.1744

As shown in Table 8, for the AND-marking strategy in the source space (Con-
dition 3), the fixed orientation model achieved an accuracy of 0.5375. While this
represents a marginal improvement over the raw signal space data (Condition 1),
it still suggests that using raw source-localized data without feature extraction is
insufficient for robust IED detection. The sensitivity was 0.60, indicating that a
higher proportion of actual spike events were identified compared to the raw sig-
nal space. However, the specificity was lower at 0.47, meaning a reduced ability
to correctly identify non-spike events. The F1 score of 0.56 and Cohen’s Kappa of
0.53, while better than the raw signal space, still suggest only a fair to moderate
agreement with the true labels, highlighting the limitations of relying solely on raw
source waveforms for classification.

For the free orientation model using the AND marking strategy, the ANN achieved
an accuracy of 0.5958. This represents a substantial improvement over the fixed ori-
entation model and the raw signal space data. The sensitivity was 0.5799, and the
specificity was 0.6116, indicating a better balance between detecting true positive
and true negative events compared to the fixed orientation model. The F1-score of
0.5891 and G-Mean of 0.5956 further demonstrate the improved performance of the
free orientation model, as these metrics provide a more balanced view of performance
on imbalanced datasets.

For the OR-marking strategy in the source space (Condition 3), the ANN achieved
an accuracy of 0.51. This performance is very similar to that observed for raw signal

space data with OR-marking (Table 5), suggesting that fixed orientation alone does
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not significantly improve classification for the OR-marked IEDs. The sensitivity for
OR marking in source space was 0.66, indicating a relatively good ability to detect
actual spike events. In this OR marking, a "false positive” refers to a non-spike event
that was incorrectly classified as a spike. A true spike event in the OR condition
is defined as a time point where at least one of the three epileptologists identified
a spike. However, this came at the cost of a lower specificity of 0.36, implying a
high rate of false positives. The F1 score of 0.57 and Cohen’s Kappa of 0.51, while
slightly higher than their raw signal space counterparts, still reflect a limited overall
performance and highlight the challenges of classifying diverse IEDs without the
aid of specific features, even when leveraging source-level information provided by
a one-degree-of-freedom fixed dipole model.

For the free-orientation model with the OR marking strategy, the ANN achieved
an accuracy of 0.5872, representing a notable improvement over the fixed-orientation
model. The sensitivity was 0.6263 and the specificity was 0.5480, indicating a more
balanced classification performance than the fixed-orientation model. The F1-score
of 0.6027 and G-mean of 0.5859 suggest that the free-orientation model, which pro-
vides three source waveforms per node, contains more detailed information that the
ANN can successfully leverage for classification compared to the fixed-orientation

model.

3.4 Source Space Analysis with Feature Extraction

This section evaluates the performance of the ANN when trained on feature-
extracted data from the source space, which is the last condition. The objective was
to determine whether combining the spatial specificity of source localization with
the feature extraction could further enhance IED classification accuracy.

For the AND-marking strategy in the source space, the results presented in Ta-
ble 9 demonstrate a notable improvement in classification performance compared
to using raw source-localized data (Condition 3). The fixed-orientation model con-
sistently outperforms the free-orientation model across feature sets. The highest
accuracy for the fixed-orientation model was 0.84 (F1, F6, F7), while the highest
for the free-orientation model was 0.75 (F2). These top-performing feature sets
also exhibited a good balance between sensitivity and specificity, indicating their
effectiveness in correctly identifying both spike and non-spike events.

Further analysis reveals that statistical features (F1) alone demonstrated signif-
icant discriminative power, achieving an accuracy of 0.84 with a sensitivity of 0.81
and a specificity of 0.86 under the fixed-orientation model. This strong performance

implies that the source localization process effectively filters out much of the back-
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Table 9

ANN Classification Performance for AND-Marked Source Space Features under
fixed- and free-orientation models. Averaged Accuracy, Sensitivity, and Specificity
for various feature sets (ID F1-F12).

Feature ID Accuracy Sensitivity Specificity
Free Fixed Free Fixed Free Fixed
F1 (Statistical) 0.70 084 069 08l 072 0.86
F2 (Katz FD) 0.75 0.68 0.76 0.62 0.75 0.73
F3 (Higuchi FD) 0.57 0.62 0.68 0.72 0.46 0.51
F4 (Lyapunov Exponent) 061 059 059 0.65 064 0.52
Fb5a (PSD, gamma, beta) 0.60 0.77 0.69 0.67  0.50 0.86
F5b (PSD, all bands) 0.62 0.78 0.88 0.72 0.36 0.85
F5c (PSD, alpha delta theta) 0.54 059 094 0.75 0.14 0.43
F6 (Fba + F2 + F1) 0.74 0.84 0.72 0.81 0.75 0.87
F7 (Fha + F2 + F1 +F4) 0.73 0.84 0.73 0.83 0.72 0.85
F8 (F2 + F4) 0.72 0.66 0.69 0.66 0.75 0.66
F9 (F1 + F2) 0.73 0.83 0.71 0.82 0.75 0.85
F10 (Approximate Entropy)  0.61  0.61 0.61 0.63 0.60 0.59
F11 (F2 + F10) 0.73 0.69 0.72 0.69 0.74 0.68
F12 (Shannon Entropy) 0.65 063 077 0.80 052 045

ground noise. The rising flank of an IED, which has a stable EEG topography,
projects a distinct and "peaky” waveform onto the source space whose statistical
features are well-suited to capture. This finding highlights that for a fixed dipole

orientation, simple statistical measures are often sufficient.

However, a critical trade-off is observed when comparing these results to the
signal space analysis. Several features showed considerably lower performance in
source space, most notably F2 (Katz FD), which dropped from 0.98 accuracy in
signal space to 0.68 in the fixed-orientation model. The peak accuracies in source
space are also generally lower than those from the best-performing feature sets in
signal space. This indicates that while source localization provides a spatially refined
signal, the process may discard or alter some of the spatiotemporal complexity that
features like F2 are designed to capture. This is likely due to the simplified nature
of the source model, where projecting a complex multi-channel signal to a signal

source waveform acts as a significant data compression.

Interestingly, this effect was not as strong for the free orientation (3D) model,
where F2 performed better (0.76 accuracy) than in the fixed orientation model

(0.68 accuracy). This supports the hypothesis that allowing for variable dipole
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orientations (three free parameters per source location) retains more of the signal’s

complexity and thus better preserves the discriminative power of certain features.

Table 10

ANN Classification Performance for OR-Marked Source Space Features under
fixed- and free-orientation models. Averaged Accuracy, Sensitivity, and Specificity
for various feature sets (ID F1-F12).

Accuracy Sensitivity Specificity

Feature ID
Free Fixed Free Fixed Free Fixed

F1 (Statistical) 0.59 0.65 0.56 0.55 0.63 0.74
F2 (Katz FD) 0.60 059 072 059 049 0.60
F3 (Higuchi FD) 0.56 059 064 0.67 047 0.52
F4 (Lyapunov Exponent) 0.57 0.7 050 0.60 0.63 0.53
Fb5a (PSD, gamma, beta) 051 050 070 037 031 0.63
F5b (PSD, all bands) 0.52 050 090 0.65 0.15 0.36
F5c (PSD, alpha delta theta) 0.51  0.51  0.73 064 030 0.37
F6 (Fba + F2 4+ F1) 059 064 057 059 0.62 0.70
F7 (Fha + F2 + F1 +F4) 0.61 0.65 0.57 0.59 0.65 0.71
F8 (F2 + F4) 0.57 0.58 0.51 0.58 0.64 0.59
F9 (F1 + F2) 0.60 065 058 057 0.63 0.73
F10 (Approximate Entropy)  0.57  0.56  0.58 0.62 0.57  0.50
F11 (F2 + F10) 0.57 0.58 0.57 0.61 0.57 0.55
F12 (Shannon Entropy) 053 053 082 088 024 0.16

The OR marking strategy, where a spike is labeled if at least one epileptologist
identified it, results in a more diverse compared to the AND marking strategy.
Table 10 presents the classification performance of the various feature sets under
this condition.

Overall, classification accuracy across most feature sets decreased when using
OR-marked data. The highest accuracy was by F1, F7 and F9, each reaching an
accuracy of 0.65 under the fixed-orientation model. These feature sets also main-
tained relatively balanced sensitivity and specificity, suggesting that statistical and
mixed-domain features retain some discriminative ability even under less consistent
labeling.

As with the AND-marked data, the fixed-orientation model generally outper-
formed the free-orientation model. The highest accuracy for the fixed model was
0.65, while the highest for the free model was 0.60. This further supports the
hypothesis that constraining the dipole orientation to a single, physiologically plau-

sible direction helps to reduce noise and enhance the stability of the signal, which
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is especially true in a more challenging, ambiguous dataset.

However, the sensitivity values across most features remained modest, typically
below 0.65, indicating challenges in correctly identifying all spike events when the
labeling is based on partial expert agreement. This was particularly evident with the
PSD-based feature sets. These showed low specificity and unbalanced performance,
indicating a tendency towards false positives.

Conversely, some features performed poorly under OR-marking, demonstrating
limited robustness in the dataset. Shannon Entropy exhibited very high sensitivity
(0.88) but a low specificity (0.16), rendering it unsuitable for reliable classification
due to an excessive number of false positives. Similarly, Approximate Entropy (F10)
and F11 showed low accuracies.

These results emphasize that while feature extraction in source space can im-
prove classification compared to raw source data, the benefit is heavily influenced by
the consistency of the labeling strategy. The OR-marking, by incorporating more
ambiguous and subjective spike events, introduces variability that significantly im-
pacts model performance. The lower overall performance, even for top features
like F1, suggests that the OR-marked dataset contains more events that are not
well-represented by a single, simple source model. This supports the idea that the
”1-parameter projection” may be too simplistic for a dataset with such higher inter-
rater variability, as the additional complexity of the OR-marked events might be

lost.

4 Discussion

4.1 Summery of key findings

This thesis aimed to systematically evaluate the impact of different EEG data
representations on the automated identification of interictal epileptiform discharges
(IEDs) using Artificial Neural Networks (ANNs). The primary objective was to
examine how different EEG data conditions affect the ANN’s ability to accurately
classify spike events. The findings show a distinct pattern of performance across the
four conditions, underscoring the critical role of appropriate data preprocessing and
feature extraction in achieving robust and meaningful IED detection.

The initial analysis, using raw EEG data in signal space (C1), demonstrated
very limited classification capability, with accuracy and sensitivity values close to
chance level (Table 5). Cohen’s Kappa was particularly low, suggesting poor agree-

ment between predicted and true labels. These findings confirm that the raw EEG
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data lacks sufficient structure for IED classification without any feature extraction.
Importantly, prior work by Yesilbag et al., 2023 showed that restricting the analysis
to the 12 most informative bipolar channels from the standard 19 electrodes already
led to substantially better results, with ANN models reaching 0.72 accuracy for both
AND-marking and OR-marking. This contrast highlights that even modest prepro-
cessing steps, such as electrode selection, can considerably improve the detectability
of spike-related patterns, bridging the gap between noisy raw signals and meaningful

neural representations.

The second condition (C2) shows the highest overall performance in the study.
Feature extraction strongly enhanced classification with several feature sets, partic-
ularly Katz Fractal Dimension (F2) and its combinations with statistical and PSD
features, which are F6, F7, F9, and F11, resulting in classification accuracies of 0.97
for AND marking data (Table 6). Notably, Katz FD alone was dominant, consistent
with Yesilbag et al., 2023 findings that it best represented interictal spikes across
both AND and OR marked datasets. Even for the OR marking strategy, where at
least one epileptologist agreed on the spike event, feature-based models achieved ac-
curacies above 0.88 (Table 7). Sensitivity, specificity and F1 scores increased as well,
indicating the presence of a relevant feature pattern for neural classification. These
results reinforce that carefully chosen nonlinear and spectral descriptors capture
relevant EEG dynamics that enable robust ANN-based IED detection.

The third condition (C3), where the raw source localized data was used, offered
only marginal improvements over signal space input. As shown in Table 8 free-
orientation model slightly improved accuracy (0.60 for AND marking, 0.59 for OR
marking) compared to fixed-orientation models (0.54 and 0.51, respectively). Sen-
sitivity was somewhat higher in both marking strategies, but specificity remained
low, particularly for OR marking (0.36 with fixed orientation). This imbalance sug-
gests that the ANN was prone to false positives in this setting. Cohen’s Kappa and
F1l-score were higher than in Condition 1, indicating that source projection con-
tributed some structure to the data. However, the overall performance remained
moderate and far below the levels achieved with explicit feature extraction (C2).
It is important to note that these findings apply specifically to the examined 1-
parameter source projection approach. More sophisticated source-space models,
such as multi-parameter reconstruction, might offer stronger benefits. Within the
current framework, however, source projection alone provided only limited improve-

ments for automated IED detection.

Lastly, the fourth and final condition (C4), feature extraction, was applied to

the source space. For the AND-marking strategy, combined and single feature sets
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achieved up to 0.84 accuracy. However, these results did not outperform the model
in signal space (C2). This suggests that the simplified source model loses valuable
spatiotemporal information. The performance drop of features like F2 is possibly
due to the polarity of the data, for example, if the pattern rotates or changes due to
activity propagating from the sulcal valley to the gyral crown. The free-orientation
(3-parameter) model’s better performance for F2 supports this, as it retains more of
the signal’s complexity. For OR marking, the performance with feature extraction
presented additional challenges. While some individual and combined feature sets
still offered improved accuracy compared to the raw data, overall performance for

this marking remained lower than what was achieved with AND marking.

4.2 Interpretation of Signal Space results

The analysis of signal space EEG data under two distinct processing conditions,
which are condition 1 (raw input) and condition 2 (using feature extraction), revealed
a contrast in classification performance, providing important insights into the role
of signal representation in automated IED detection.

In raw input, where EEG epochs were directly used as vectors and fed into
the ANN, the network demonstrated poor classification, with low accuracy around
52%These findings suggest that raw EEG data may be too noisy and redundant to
be effectively leveraged by a simple feedforward neural network without prior trans-
formation. The lack of structure in the raw signals likely led to poor generalization
and high misclassification rates, particularly in differentiating IED patterns. Impor-
tantly, earlier work by Yegilbag et al., 2023 showed that even a modest reduction
in electrode count (from 19 standard electrodes down to 12 carefully selected bipo-
lar channels) already improved ANN performance considerably, with accuracies of
0.70 for both AND and OR marking conditions. This contrast highlights that elec-
trode selection and dimensionality reduction alone can substantially enhance spike
detectability, even before applying explicit feature extraction.

In contrast, condition 2 demonstrated a marked improvement in performance
across nearly all metrics after applying feature extraction. This method captured
key morphological and spectral characteristics of IEDs, allowing the ANN to more
effectively distinguish spike from non-spike events. Notably, Katz Fractal Dimen-
sion (KFD) alone was the dominant feature, achieving high accuracies under AND-
marking. The combination of fractal and spectral features (e.g., F6, F7, F9, F11)
further boosted classification, reflecting the complementary nature of nonlinear and
frequency-based descriptors. Beyond high accuracy, the feature-extracted dataset

also achieved strong sensitivity and specificity, underscoring the robustness of this
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representation.

The consistently high performance with AND-marked data reflects the utility
of labeled clear-cut IEDs for training reliable models. Meanwhile, the slightly re-
duced and more variable performance under OR marking emphasizes the challenge
posed by more spike morphologies. This difference is primarily attributable to the
underlying definition of the datasets: the AND marking dataset consists of only
those events where all epileptologists unanimously agreed on a spike, resulting in a
smaller, more uniform and highly stereotypical set of IEDs. While the OR marking
dataset includes any event identified as a spike by at least one epileptologist, leading
to a larger, more diverse and potentially ambiguous set of data points. Nonetheless,
the feature-based condition in signal space still performed well even in this noisier
labeling scenario.

Importantly, the signal space results underscore that data representation is foun-
dational to successful EEG classification. While raw signal input offers the full
temporal structure of EEG, it lacks the abstraction necessary for pattern recogni-
tion by neural networks. Feature extraction methods, on the other hand, serve as
both dimensionality reduction and noise suppression strategies, enabling the ANN
to exploit discriminative signal properties. The comparison with Yesilbas et al.,
2023 12-electrode study further highlights that reducing irrelevant input dimensions,
whether by channel selection or by extracting higher-level features, is essential for

building reliable automated IED detection.

4.3 Interpretation of Source Space results

The evaluation of source-localized EEG data (C3, C4) aimed to determine whether
operating in the source domain could enhance the performance of the ANN for au-
tomated IED classification. Here, as in the signal space analysis, two key conditions
were examined: raw input without feature extraction (C3) and data with feature ex-
traction (C4). The results provide critical insights into the benefits and limitations
of the approach.

Initial analysis of raw source data (C3) revealed only a modest improvement
in performance compared to raw signal space data. For the AND marking strat-
egy, a slight increase was observed in sensitivity, but overall accuracy and speci-
ficity remained low. This was likely due to the significant data reduction inherent
in projecting the multi-channel EEG onto a limited number of anatomical nodes.
The simplified source model, particularly the fixed-orientation (1 parameter) pro-
jection, likely led to a loss of subtle, spatially distributed information critical for raw

data classification. For the more heterogeneous OR marking strategy, performance
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dropped even further. The free-orientation (3-parameter) model in this condition
achieved a sensitivity of 0.66, which, while suggesting it could detect a wider range
of IEDs, came at the cost of significantly lower accuracy and specificity. The per-
formance differences between the fixed and free orientation models already hinted
at the importance of retaining more dynamic information from the source. These
findings highlighted the critical need for further feature enhancement when working

with raw data.

Applying features to the source space data (C4) resulted in a notable improve-
ment in ANN performance. Under the AND marking strategy, several feature sets
achieved accuracies of 0.83 and 0.84 with balanced sensitivity and specificity, demon-
strating that when combined with appropriate feature sets, 1 parameter projection

can support reliable IED classification.

A key finding was the shift in feature dominance. While Katz FD (F2) was a
top performer in signal space, statistical features (F1) became the most effective
in 1-parameter projection, achieving an accuracy of 0.84. This change in utility is
directly tied to the data representation. The source projection effectively suppresses
background noise, leaving a clear, "peaky” IED waveform that is well captured by
simple statistical measures. Conversely, the performance of F2 and other features
sensitive to signal complexity dropped significantly. This is likely due to the 1-
parameter compression of the simplified source model, which cannot account for
dynamic properties such as a pattern’s rotation or its propagation from the sulcal

valley to the gyral crown, information that is essential for these features.

The benefit of a more complex source model was confirmed by the performance
of the free-orientation (3-parameter) projection, where F2 performed better than in
the fixed-orientation model. This demonstrates that allowing for more projection
parameters retains more of the signal’s complexity, which is crucial for features that
rely on it. In contrast, the patch-based projection with fixed, redundant orientations
failed to improve accuracy, as its lead field provided no additional benefit in modeling
the data.

When applied to the OR marking strategy, performance with the feature re-
mained lower than with AND marking. This highlights that the training data’s
consistency is paramount. The ambiguous and subjective nature of the OR-marked

events introduced a variability that even feature extraction could not fully overcome.

In summary, the transition from signal to source space introduces a trade-off.
While source projection provides spatial specificity and benefits from feature extrac-
tion, its overall performance did not surpass that of the signal space. The findings

strongly suggest that to fully leverage the power of projection, a more complex
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model with more projection parameters, such as a multi-location patch with flexible

orientations, is required to better capture the dynamic nature of IEDs.

4.4 Comparison with previous research

The findings of this thesis aligned with existing research on automated interictal
epileptiform discharge (IED) detection from EEG, particularly in the context of
signal-space versus source-space representation and the role of feature extraction.
This work builds upon the preliminary findings of Yesilbas et al., 2023.

The initial study by Yesilbag et al., 2023 demonstrated that a well-trained ANN
can outperform expert markers in both sensitivity and specificity for IED detection.
A key finding of their work was that feature extraction significantly improved ANN
classification. This study also highlighted that Katz FD (F2) was the best sin-
gle feature for representing spikes in both the AND-marking and the OR-marking
datasets.

This thesis confirms that feature extraction is crucial for improving ANN per-
formance in IED classification. However, it’s been found that the dominance of
features is dependent on the data representation. The finding extends the prelimi-
nary work by Yesilbag et al., 2023 and suggests that the utility of specific features
is not universal but is highly sensitive to whether the data is presented in signal or
source space. Analysis further explores the reasons for this shift, linking it to the
information loss inherent in the process.

Several studies have explored the integration of source localization techniques
such as beamforming, dipole fitting and minimum-norm estimation to extract spa-
tially refined features for IED detection (Kaviri & Vinjamuri, 2024; Singh et al.,
2022). These methods have been successfully employed to characterize cortical ori-
gins of epileptiform discharges through parameters like dipole location, orientation,
and source waveform dynamics. Distributed beamforming techniques, by generating
virtual sensor time series, permit the calculation of time-frequency and coherence
measures that serve as robust features for classifying epileptiform discharges (Cheyne
& Papanicolaou, 2015).

Kaviri and Vinjamuri, 2024; Singh et al., 2022 often utilizes more complex source
models than the simplified ones in this thesis, typically involving many source lo-
cations and three waveforms per location to capture the full three-dimensional cur-
rent flow. Our finding that the free orientation (3 parameter) model outperformed
the fixed orientation (1 parameter) model directly supports this, highlighting the
necessity of more projection parameters to effectively capture the dynamic and spa-

tiotemporal complexity of the IED signals.
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This thesis supports those findings by showing that source-localized features of
both 1-parameter and 3-parameter projection can achieve reasonably strong classi-
fication performance, where the topographies remained stable from onset to the half
of the rising flank. However, if the pattern rotates, a fixed-orientation strategy would
not be sufficient. The improvement observed when applying feature extraction in
source space over raw input data is consistent with studies showing that features
improve the sensitivity and spatial specificity necessary for reliable IED detection
(Zhang, 2015). Furthermore, the use of spectral measures, such as those computed
from PSD in specific bands, reflects a broader trend in the literature where wavelet
transforms, multi-taper spectral analysis, and coherence measures are used to isolate
oscillatory dynamics typical of IEDs (Iravani, 2021; Zheng et al., 2021).

However, this study highlights that not all features generalize equally well across
domains as well. Katz FD, which performed well in signal space, showed a decrease
in accuracy when applied to 1-parameter-source-space-projection. This observation
aligns with challenges reported in prior studies when applying certain nonlinear or
complexity-based features to noise-sensitive data (Shirani et al., 2024). Such findings
suggest that while source localization provides anatomical specificity, it may reduce
the power of some features.

Some studies have also applied this deep learning approach to the source localized
EEG, showing that raw source time series can improve classification due to their
enhanced spatial resolution (Kaviri & Vinjamuri, 2024). These deep learning models
benefit from the spatial specificity offered by source localization while also retaining
the ability to learn complex signals across space and time (Zhang, 2015).

In summary, the literature strongly supports both feature-based and deep learn-
ing strategies for IED detection. This study contributes to that body of work by
offering a direct condition-wise comparison of signal space versus source space, both

with and without feature extraction.

4.5 Clinical Implications

The findings of this thesis have important clinical implications for the auto-
mated detection of IEDs in epilepsy management. The high accuracy achieved by
ANN using feature-extracted EEG data in signal space suggests strong potential
for developing assistive tools that could support epileptologists. Automated TED
detection systems could lead to several benefits, such as enhanced diagnostic effi-
ciency, improved diagnostic consistency, facilitated long-term monitoring and guided
treatment decisions.

While source space analysis did not universally outperform signal space, its abil-
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ity to localize the activity to anatomical brain regions holds promise for evaluation.
Further development in this area could lead to tools that not only detect IEDs
but also provide clinically relevant spatial information for presurgical evaluation or
treatment planning.

It is also important to consider the balance between sensitivity and specificity in
clinical use. A tool optimized for high sensitivity, reliably detecting the majority of
potential IEDs, may still be valuable even if specificity is lower. In such a workflow,
the automated system would act as a broad screening tool, ensuring that few or no
events are missed, while the clinician applies their expertise to review and exclude
false positives. From this perspective, models that exhibit high sensitivity but lower
specificity could still meaningfully support clinical decision-making by reducing the

chance of missed epileptiform activity.

4.6 Limitations and Future work

Despite the results, this study has further limitations that provide valuable di-
rections for future research.

First, the dataset was restricted to a single patient. While this allowed for
systematic evaluation within a controlled setting, it limits the generalization of the
findings. To ensure the robustness and clinical applicability, future studies should
include larger datasets spanning multiple patients with diverse epilepsy types and
IED characteristics. This would allow the trained models to be validated across a
broader spectrum of clinical presentations.

Second, the source space analysis relied on a 1-parameter source projection, i.e.,
a single dipole waveform per location. This simplification may have reduced the
capacity of certain features, such as Katz FD, to capture discriminative patterns.
Extending the model to incorporate more complex representations could better pre-
serve the spatiotemporal dynamics of IEDs.

Third, although free orientation was tested, it remained constrained to a single
dipole per source. More realistic anatomical models, such as allowing multi-path
configurations spanning sulcal and gyral regions, may provide richer information and
improve classification accuracy. Such an approach could also reflect the physiological
spread of epileptic activity.

Also, investigating the impact of different source analysis methods on ANN accu-
racy, potentially leading to improved classification and better polarity insights into
the spatial representation of IEDs.

Finally, some features exhibited strong representation dependence, performing

well in signal space but not in source space. This suggests that the interaction be-
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tween preprocessing, source reconstruction and feature extraction should be exam-
ined more systematically, potentially leading to optimized pipelines for automated
[ED detection.

4.7 Conclusion

This thesis systematically explored the impact of different EEG data conditions
both in signal and source space and used ANN for identifying IEDs. The results
clearly demonstrate that raw EEG data alone lacks the structure required for accu-
rate classification, while the application of feature extraction significantly enhances
model performance, especially in signal space. Although source localization offers
anatomical insights, its integration with feature-based approaches gave only modest
improvements. This limitation is likely linked to the use of a 1-parameter source
projection, which restricts the amount of preserved information. Even though 3-
parameter source projection has been tested, increasing the degrees of freedom may
better balance anatomical specificity with classification accuracy.

The findings reinforce the importance of carefully choosing data representations
and feature sets in EEG-based classification tasks. In clinical settings, automated
IED detection tools built on such frameworks could support neurologists by im-
proving diagnostic efficiency and consistency. Future work should expand analyses
to multi-patient datasets, evaluate richer source localization strategies with greater
parameter flexibility, and explore advanced deep learning architectures to further

enhance the robustness and clinical value of automated detection tools.
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