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Chapter 1

Introduction

Neurological disorders such as Alzheimer’s disease, Parkinson’s disease, and epilepsy con-
tinue to present substantial challenges to researchers and clinicians. An essential step
in developing more effective therapies is to improve the understanding of the complex
structure of the brain and the way it functions. To achieve this, both non-invasive and in-
vasive techniques are employed to measure, modulate, and analyze neural activity. Among
the most prominent techniques are electroencephalography (EEG) [4], intracranial EEG
(iEEG) [51], transcranial electrical stimulation (tES) [52], and deep brain stimulation
(DBS) [6].
EEG and iEEG enable the observation of electrical brain activity by measuring voltage
differences on the scalp or directly within the brain, respectively. In both cases, there is
an important computational challenge which is the inverse problem in which we determine
the location and magnitude of the neural sources from measured potentials. Solving this
inverse problem requires that we solve the associated forward problem, which is the com-
putation of the electric potential in the head given a source in the brain, often using source
spaces with 104 nodes (i.e., solving the forward problem 104 times). Therefore, accurate
and efficient numerical solvers for the forward problem are needed.
To model the electric potential in the head, we use a quasi-static approximation of
Maxwell’s equations which is very common in the field of bioelectromagnetism, which
leads to a second-order elliptic partial differential equation (PDE) defined over an in-
homogeneous domain Ω [4]. Due to the complex geometry of the human head and the
discontinuities in tissue conductivities, these equations cannot be solved analytically in
realistic head models and must instead be solved or approximated using numerical meth-
ods. In this work, we use the finite element method (FEM), which handles the complex
geometries and material interfaces present in realistic head models well [20].
A crucial aspect of the modeling of bioelectric fields that is based on FEM is the represen-
tation of electrodes. The most common used model is the point electrode model (PEM)
[19], where electrodes are treated as points on the boundary of the domain in the EEG and
tES case and as points in the volume conductor for the iEEG and DBS case. This model
is computationally efficient [19] and widely used, but neglects physical effects such as the
spatial extent of the electrodes. In contrast, the complete electrode model (CEM) [37][53]
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takes into account both the geometric area of the electrodes and the contact impedance
between the electrode and the tissue, leading to a more realistic model. The CEM was
shown to be relevant in neonatal EEG [38].
This thesis presents the implementation and evaluation of the CEM within the DUNEuro
software framework, which provides FEM-based solutions for problems in bioelectromag-
netism [47][20]. While the PEM is already supported in DUNEuro, this work includes the
CEM for applications in EEG, tES and also iEEG and DBS.
The main contributions of this work are the following:
The CEM is mathematically analyzed and implemented in DUNEuro for EEG, iEEG, tES,
and DBS simulations and is compared with PEM in these modalities. Although studies
are made for the comparison of CEM and PEM in EEG and tES [37][39][12], the cases
of iEEG and DBS are conducted for the first time with this thesis. In addition, a short
investigation of the use of the CEM for epicranial application of stimulation electrodes
is given. The local subtraction source model [20] is extended to support CEM, allowing
more accurate source modeling in complex head geometries, including interesting inter-
faces such as electrode-brain interfaces in iEEG and DBS. The convergence behavior of the
CEM toward the PEM is analyzed by letting the electrode radius increase to zero to show
the theoretical link between the CEM and the PEM. The principle of reciprocity [60][55]
is mathematically demonstrated for the CEM and is used to simplify the implementation
of stimulation solvers by using the existing EEG and iEEG solvers for tES and DBS re-
spectively. The Schur complement and transfer matrix approach [62] are applied to the
CEM to enable efficient repeated forward computations, which is needed to significantly
decrease the computation time in solving the inverse problem.
Extensive numerical experiments are made in both spherical and realistic head models to
investigate the differences between the CEM and PEM across various modalities. These
include for the spherical head models the EEG and iEEG measurement setups as well
as stimulation settings for tES and DBS. For EEG and tES, we also use a realistic head
model. Here, attention is also given to the impact of electrode size and contact impedance
and the convergence of the CEM to PEM for electrode interfaces that consist of a single
boundary face and higher impedances.
The remainder of the thesis is structured as follows: Chapter 2 introduces the neuro-
physiological foundation and the introduction of EEG, iEEG, tES, and DBS. Chapter 3
presents the mathematical models underlying the electric field simulations and discusses
weak formulations for the two electrode models. Chapter 4 provides numerical background
on FEM and its application to the CEM and PEM. Chapter 5 describes the implementa-
tion of the CEM in DUNEuro. Chapter 6 presents simulation results and the comparison
of CEM with PEM in various scenarios. Finally, Chapters 7 and 8 are the discussion and
the conclusion of this thesis.
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Chapter 2

Neuroscientific Foundations

This work focuses on the simulation of electrical currents in the brain, an area located
within the larger field of computational modeling in neuroscience and bioelectromagnetism.
To lay the foundations for this research, it is helpful to understand the fundamental
concepts and mechanisms of brain activity.
To motivate the mathematical modeling approaches that we apply in EEG, tES, iEEG, and
DBS, we give an overview of relevant neurophysiological principles in the next following
pages. The information given here is based on [18], [40], [27], and [4].

2.1 Neurophysiological Foundations

The human body consists of various organs, each with distinct functions and tasks. Among
them, the brain is arguably the most complex, as it processes and regulates - together with
the spinal cord - the information flow within the nervous system.

Neuron

Neurons are the units that process information. The brain contains at least 1010 neurons
in the cerebral cortex, which forms the outermost layer of the brain and is 2− 4 mm thick
and has an area of approximately 2500 cm2.
A typical neuron has three main parts (see figure 2.1): The cell body (or soma) contains
the nucleus and much of the metabolic machinery of the cell. The dendrites are thread-like
extensions that receive signals from other neurons. The axon is a single fiber that carries
the nerve impulses from the body of the cell to other neurons or target cells.
The dendrites and cell bodies are densely populated with thousands of synapses formed by
connections with other neurons. These synapses are responsible for the information trans-
fer between the dendrites and the cell bodies. Neurons actively process signals through
more than 1014 interconnections or synapses. Synapses can be classified into excitatory
synapses, which increase the membrane potential of the neuron and make it more likely
to fire an action potential, and into inhibitory synapses, which decrease the membrane
potential and make the neuron less likely to fire.
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Figure 2.1: This is a schematic illustration of the fine structure of a neuron from [27].

Action Potential

Neurons are cells that are capable of transmitting electrical impulses, known as action
potentials, to other neurons in the brain. The action potential begins in the axon hillock,
where the signals from the neuron’s dendrites converge. These dendrites are connected to
other neurons through their axons, creating inputs that can generate a potential in the
axon hillock. If this potential reaches a certain threshold, an action potential is triggered.
So, an action potential is essentially a brief but powerful electrical signal that travels along
the axon. Then it leads to the release of neurotransmitters at the axon terminals. This
process is the foundation for the communication of neurons with each other.
The sum of many synchronized postsynaptic potentials generates current sources. These,
in turn, produce electric potentials that are detectable by electrodes placed on or in the
head by EEG and iEEG respectively.
Following [30], it is sufficient to model the current source as a mathematical dipole, because
we only detect the macroscopic currents that result from microscopic neuronal activity.
This abstraction captures the essential aspects for solving the forward and inverse problems
in bioelectromagnetism.

Compartments

The anatomy affects how electrical events in neurons produce measurable current sources.
The different tissues and compartments with their conductivities also influence the way
the currents are conducted [57].
The neuronal tissue gets mainly subdivided into white matter and gray matter. The map-
ping of the tissue to white or gray matter is done via the data from magnetic-resonance
imaging (MRI). White matter is tissue that is rich in axons. It is occupied by nerve fibers.
Gray matter is tissue that is rich in cell bodies. In neuronal tissue, there are other struc-
tures, such as blood vessels and the ventricle system. The ventricle system is a system of
spaces that are filled with cerebrospinal fluid (CSF), which is a clear liquor that serves as
a buffer between the brain and the skull, and also has various regulating functions.
The brain can also be subdivided into regions that cover different tasks. Knowledge about
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the tasks of the different brain regions is helpful in inverse procedures.

2.2 EEG, iEEG, tES and DBS

Brain activity can be detected and measured in several ways. Some common methods are
electroencephalography (EEG) and intracranial electroencephalography (iEEG). Common
methods for modulating brain activity are transcranial electrical stimulation (tES) and
deep brain stimulation (DBS).

EEG

Figure 2.2: This figure shows the
10− 10 system and is from [28].

Electroencephalography (EEG) is a non-invasive
method that measures the electrical activity of the
brain by placing electrodes on the head. These elec-
trodes detect voltage fluctuations caused by firing
neurons, primarily those located in the cerebral cor-
tex [4]. EEG is widely used in clinical settings and
in research to understand cognitive functions, brain
states, and neuronal mechanisms. It is also easier
available and significantly cheaper than magnetoen-
cephalography (MEG), because - among others - it
does not require liquid helium for the superconduct-
ing magnets that exist in the MEG. EEG can be
used in parallel with other methods such as MEG
where it is proven to be beneficial [31] and tES [39].
There are standardized systems of electrode mon-
tages that are referred to as the 10− 20 and 10− 10
systems. These range from 21 electrodes for the
10− 20 system to more than 70 electrodes for the 10− 10 system [28], see figure 2.2. For
EEG and also tES, a highly conducting gel is applied between the electrodes and the scalp.

tES

Not only is the non-invasive measurement and detection of electrical activity in the brain
of importance but also to find ways to treat certain diseases non-surgically.
One way to do this is transcranial electrical stimulation (tES). This refers to a family of
non-invasive techniques, including transcranial direct current stimulation (tDCS) (see [64])
and transcranial alternating current stimulation (tACS) (see [7]). tES can be used for both
therapeutic and research purposes, with applications ranging from improving cognitive
function and motor skills to treating neurological and psychiatric disorders [39][59][32]. It
can be particularly helpful in the treatment of epilepsy [52].
In tES, a low-level electrical current is passed through the brain via electrodes placed on
the scalp. This current can influence the excitability of the underlying neurons, either
facilitating or inhibiting neuronal firing depending on the direction of the current flow.
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The applied electric fields can modulate cortical activity and influence synaptic plasticity
and neuronal synchronization [39].
A common montage to stimulate via tES is to use one anode and one cathode, which have
an area of the interface of 25 - 35 cm2 where the cathode is placed over the target [52].
In [25] a montage with 8 electrodes is discussed and the advantages investigated in [24].
The combination of EEG and tES is investigated in [39] and offers an approach to perform
brain stimulation and monitoring simultaneously.

iEEG

While EEG measures the potentials at the scalp of the patient, in some cases this is not
sufficient, i.e. extratemporal lobe epilepsy or non-lesional temporal lobe epilepsy (see [51]).
The electric potential can then be measured by placing electrodes on the surface or the
substance of the brain. This procedure is highly invasive, so this kind of EEG is called
invasive electroencephalography or intracranial electroencephalography (iEEG) [65]. The
electrodes used can be subdural grid electrodes and/or depth electrodes. In this thesis,
we focus on the depth electrodes. The depth electrodes have 4− 10 contacts placed on a
hollow plastic tube that can be inserted into the brain tissue itself. These depth electrodes
are inserted through burr holes. In figure 2.3 the placement of such depth electrodes is
shown. Since this method requires neurosurgical intervention, severe complications can
appear, but the rates are low [51].

DBS

Deep brain stimulation (DBS) is an invasive method to stimulate and thus modulate
neuronal activity. As in iEEG, the electrodes used for DBS can be different (see [65]),
but in this thesis, we only consider the case of stereoelectroencephalography in which the
depth electrodes are placed in the head of the patient. This plays an important role in
localizing, for example, the epileptogenic zone in patients with epilepsy [65].
In DBS, low-intensity electrical pulses are applied to specific areas of the brain using depth
electrodes. These pulses temporarily activate nearby nerve fibers close to the stimulating
electrodes. The effects in regions that are not near each other depend on whether the
stimulated neurons are excitatory or inhibitory. Like tES, DBS can improve symptoms of
some conditions by changing the activity of brain networks [6].
DBS is a treatment that targets symptoms. It has to run continuously, typically 24 hours
a day. For more information, we refer to [6].
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Figure 2.3: This figure shows an X-ray after implanting multiple depth electrodes. The
depth electrodes that are secured with an anchor to minimize possible movements after
the implantation are shown by the arrows point at the anchors. The figure is from [51].
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Chapter 3

Mathematical Background

In this chapter, we will create the mathematical theory and the right frame for the models
that we use and investigate.
We will start with the derivation of the main PDE that we will use to approximate the
electric potential in the patients head and thus the measured potentials with the electrodes.

3.1 The Maxwell Equations

From a modeling point of view, the head can be understood as a volume conductor with
different compartments and thus different conductivities in which electrical currents ap-
pear.
Neuronal activity is based on electric currents, which in turn generate electric and mag-
netic fields which can be measured on the outside of the head. The relationship between
neuronal activity and its generated electric and magnetic fields is described by Maxwell’s
equations. The Maxwell equations are a system of four coupled differential equations
which describe electric and magnetic fields, which we will use to derive the PDEs for the
EEG and tES problem.
The four Maxwell equations are:

1. ∇ ·E = ρ
ϵ0

2. ∇ ·B = 0

3. ∇×E = −∂B
∂t

4. ∇×B = µ0(J+ ϵ0
∂E
∂t ).

Here, E is the electric field, B the magnetic field, ρ the electric charge density, and J the
current density. ϵ0 is the vacuum permittivity and µ0 the vacuum permeability.
For a more detailed description of the equations, see [16].

Quasistatic Approximation of Maxwell’s Equations

An important and common simplification in the field of bioelectromagnetism is the qua-
sistatic approximation of Maxwell’s equations. We use the notion of being quasistatic in
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the way it is used in bioelectromagnetism. The low-frequency assumption justifies this
approximation, which says that in EEG and MEG measurements, the frequencies of in-
terest (typically in the range of 0.1 Hz to several hundred Hz) are low compared to the
speed of light. This means that the propagation of electromagnetic waves can be consid-
ered negligible over short distances and timescales. As a result, the time-varying electric
and magnetic fields are slow enough so that changes in the fields can be approximated as
quasi-static. The term µ0ϵ0

∂E
∂t in the fourth equation represents the displacement current,

which becomes significant at higher frequencies or in situations where the electric field
changes rapidly. This can be fully understood in ([18], chapter III.A).
Thus, the system of equations that we work with is

1. ∇ ·E = ρ
ϵ0

2. ∇ ·B = 0

3. ∇×E = 0

4. ∇×B = µ0J.

From Quasistatic Maxwell’s Equations to the PDE

Now, we will look at the fourth equation, which is

∇×B = µ0J

and divide it by the constant µ0 on both sides and use the identity ∇· (∇×B) = 0, which
can be easily proven by a straight-forward calculation and get

0 = ∇ · (∇×B) = ∇ · J.

We denoted the current density by J and split the current density in a primary current Jp,
which is the neural activity and a return current σE with σ ∈ R3×3 being the conductivity
tensor. By the quasistatic equations, the electric field E can be represented as E = −∇u
with u being the electric potential ([16], chapter 2).
The PDE that we will work with is

∇ · (σ∇u) = f (3.1)

with f = ∇·Jp. We have this PDE over a domain Ω ⊂ R3 which is the volume conductor.
The electrode models differ in their boundary conditions on ∂Ω that we will introduce in
the next pages.

3.2 Electrode Models

The different electrode models differ in the boundary conditions that we additionally have
for the PDE 3.1.
We denote the L electrodes by e1, ..., eL, the head domain by Ω and the boundary of the
head by ∂Ω. The electrode interface for the l-th electrode el is also denoted by el and the
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area of the l-th electrode interface by |el| ∈ R.
In the case of tES, a current is applied. The applied current with the l-th electrode is

denoted by Il. The sum of the applied current must be zero,
L∑
l=1

Il = 0 - referred to

as Kirchhoff’s law - so that the total potential of the head does not increase with the
stimulation. The sum of the injected current should not exceed a total of 8mA, because
of safety reasons (see [1]), so in sum, a positive charge of +4mA and a corresponding
negative charge of −4mA are possible.

3.2.1 Point Electrode Model

The point electrode model (PEM) is very straightforward. The electrode gets approxi-
mated as a point on the boundary of the head. So, the measured potential by an electrode
is the computed electric potential u at the corresponding point [19].
So, the PEM in the EEG forward problem has the assumption that no current is leaving
the head on the boundary and is

∇ · (σ∇u) = f in Ω (3.2)

σ
∂u

∂n
= 0 on ∂Ω (3.3)

with f = ∇ · Jp.
In the tES case, the right-hand side of the PDE is zero, because we do not model a source
in the brain in this case and the stimulation is represented in the boundary condition
by Dirac functions. If in this case the electrode positions are denoted by p1, ..., pL, the
boundary condition is

∇ · (σ∇u) = 0 in Ω (3.4)

σ
∂u

∂n
(x) =

L∑
l=1

Ilδpl on ∂Ω, (3.5)

see ([19], chapter 2.2). We point out that in the case of anisotropic σ the term ∂u
∂n is

replaced by ⟨σ∇u, n⟩.

3.2.2 Complete Electrode Model

Together with the skin-electrode interface, the CEM incorporates the normal current dis-
tribution at this interface, because the attached electrodes to the head offer the current
new paths to flow through the electrode instead of the skin compartment. This normal
current distribution is called the shunting effect and thus describes the current that circu-
lates on the contact surface, which affects the electric potential underneath the electrode
[39]. This effect gets bigger when the contact impedances are low.
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The CEM has the following boundary conditions for the PDE 3.2 which are

σ
∂u

∂n
(x) = 0 ∀x ∈ ∂Ω \ ∪L

l=1el (3.6)∫
el

σ
∂u

∂n
(x)dS = Il ∀l ∈ {1, ..., L} (3.7)

(u+ Zlσ
∂u

∂n
)|el = Ul ∀l ∈ {1, ..., L}. (3.8)

The first boundary condition (3.6) says that no current leaves the head except at the elec-
trode interfaces. Equation (3.7) describes how the applied current Il at the l-th electrode
flows through the interface el. In the EEG forward problem, we have Il = 0, ∀l ∈ {1, ..., L}.
In the CEM, additionally, we have the effective contact impedances (ECI) Zl for the l-th
electrode respectively, which are the product of the measured average contact impedance
(ACI) at the l-th electrode multiplied by the area |el| of the l-th electrode interface. In
applications, an attempt is made that the measured ACIs are below 5 kΩ for each electrode
to have a conduction between the electrode and the scalp that is considered good enough.
For this, a highly conductive gel is used between the electrode and the scalp [37]. The
third condition (3.8) describes how the electrode potential Ul and the potential u beneath
the electrode are connected and how the effective contact impedance Zl plays a role. For
anisotropic σ we again replace the term ∂u

∂n by ⟨σ∇u, n⟩. This was paid attention to in
the implementation of the CEM.
When we integrate on both sides over the electrode interface, the third boundary condition
in the EEG case (I = 0) becomes by using 3.7∫

el
u(x) dx

|el|
= Ul, (3.9)

so, in this case, Ul is the integral mean on the whole electrode interface of the potential u.
In the tES case, we get for the same procedure

Ul =

∫
el
u dV + ZlIl

|el|
.

So, the measured electrode potential is the mean of the potential under the electrode, plus
the contribution of the product of the effective contact impedance and the injected current
scaled by the electrode area, so ZlIl

|el| .
We take a look at the units: For the measured potentials, we have µV and for the conduc-
tivity tensor S

mm and for ∇u the unit µV
mm , so naturally Zl must have the unit Ωmm2. The

measured ACIs have the unit Ω. The ACI of the l-th electrode, ACIel , is
Zl
|el| and fulfills -

by integrating and doing a straightforward calculation - the equation∫
el
Ul − u dS

|el|
= ACIel · Il.
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3.3 The Reciprocal (Adjoint) Approach for the EEG For-
ward Problem

A very interesting and helpful principle in our field of bioelectromagnetism is the principle
of reciprocity.
The principle of reciprocity links the act of measuring and stimulating and reverse the
roles of sources and sensors. In the case of EEG for example, it says that having a dipole
in the brain and measuring on the head surface is the adjoint problem to stimulating with
electrodes on the head surface and measuring the electric potential in the brain at the
position of the dipole. First, we give the general mathematical formulation of the adjoint
problem and follow [55] and [61] for this.
The solution of the EEG forward problem with PEM is denoted by u:

∇ · (σ∇u) = ∇ · (M · δx0) in Ω
⟨σ∇u, n⟩ = 0 on ∂Ω

and the solution of the tES problem with PEM and with the i-th and j-th electrode used
for the stimulation is denoted by w:

∇ · (σ∇w) = 0 in Ω
⟨σ∇w, n⟩ = δei − δej on ∂Ω

with δei denoting the Dirac delta distribution at the electrode position pi of the electrode
ei.
The principle of reciprocity links the two solutions in the form:

⟨M,∇w(x0)⟩ = u(pi)− u(pj).

for x0 ∈ Ω.

3.3.1 The EEG/tES Reciprocity for CEM

We will only show the proof for the principle of reciprocity for the CEM since the proof
for the PEM can be easily derived from the proof for the CEM. The proof can also be
found in [22].
In this case, we will specifically formulate the injection of the current through the normal
derivatives at the electrode interface and the Kronecker delta function, which is denoted
by δ̃ij for indices i and j, representing the applied current, distinguishing it from the Dirac
distribution δ. Here, we use the notation ⟨∇−, n⟩ for the normal derivative.
The solution of the EEG forward problem is denoted by u

∇ · (σ∇u) = ∇ · (M · δx0) on Ω
⟨σ∇u, n⟩ = 0 on ∂Ω \ ∪L

l=1el∫
el
⟨σ∇u, n⟩dS = 0 ∀l ∈ {1, ..., L}

(u+ Zl⟨σ∇u, n⟩)|el = Ul on el
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and the solution of the tES problem with the i-th and j-th electrode used for the stimu-
lation is denoted by w:

∇ · (σ∇w) = 0 on Ω
⟨σ∇w, n⟩ = 0 on ∂Ω \ ∪L

l=1el∫
el
⟨σ∇w, n⟩dS = δ̃il − δ̃jl ∀l ∈ {1, ..., L}

(w + Zl⟨σ∇w, n⟩)|el = Wl on el.

We want to show the reciprocity for the CEM, which is

⟨M,∇w(x0)⟩ = Ui − Uj .

In the following calculations, we use for functions a and b several times∫
Ω
(∇ · a) · b dV =

∫
∂Ω

⟨a, n⟩ · b dS −
∫
Ω
⟨a,∇b⟩ dV. (3.10)

We start with

⟨M,∇w(x0)⟩ = ⟨M,

∫
Ω
δx0 · ∇w dV ⟩ =

∫
Ω
⟨M, δx0 · ∇w⟩ dV =

∫
Ω
⟨M · δx0 ,∇w⟩ dV

and use (3.10):∫
Ω
⟨M · δx0 ,∇w⟩ dV =

∫
∂Ω
w⟨Mδx0 , n⟩dS −

∫
Ω
∇ · (Mδx0) · w dV

the summand
∫
∂Ωw⟨Mδx0 , n⟩dS equals zero, because δx0 is zero on the boundary of the

head, so ∫
∂Ω
w⟨Mδx0 , n⟩dS︸ ︷︷ ︸

=0

−
∫
Ω
∇ · (Mδx0) · w dV = −

∫
Ω
∇ · (Mδx0) · w dV

and this equals with the first equation of the PDE

−
∫
Ω
∇ · (Mδx0) · w dV = −

∫
Ω
∇ · (σ∇u)w dV.

Using (3.10) again and the symmetry of σ, we get

−
∫
Ω
∇ · (σ∇u)w dV = −

∫
∂Ω
w⟨σ∇u, n⟩dS +

∫
Ω
⟨∇w, σ∇u⟩ dV︸ ︷︷ ︸

=
∫
Ω⟨σ∇w,∇u⟩ dV

Again, with (3.10), the right-hand side equals

−
∫
∂Ω
w⟨σ∇u, n⟩dS +

∫
∂Ω
u⟨σ∇w, n⟩ dS −

∫
Ω
u (∇ · σ∇w)︸ ︷︷ ︸

=0︸ ︷︷ ︸
=0
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Due to the boundary condition, which says that there is no outflow outside of the electrode
interfaces, we can just consider the boundary of the head ∂Ω which belongs to an electrode
interface el:∫

∂Ω
u⟨σ∇w, n⟩ dS −

∫
∂Ω
w⟨σ∇u, n⟩dS =

L∑
l=1

(

∫
el

u⟨σ∇w, n⟩ dS −
∫
el

w⟨σ∇u, n⟩dS).

We take a closer look at the first integral and add a zero:∫
el

u⟨σ∇w, n⟩ dS =

∫
el

(u−Ul)⟨σ∇w, n⟩ dS+ δ̃il

∫
el

Ul⟨σ∇w, n⟩ dS+ δ̃jl

∫
el

Ul⟨σ∇w, n⟩ dS,

and also ∫
el

w⟨σ∇u, n⟩dS =

∫
el

(w −Wl)⟨σ∇u, n⟩ dS.

Together with the third boundary condition we get

(u− Ul)⟨σ∇w, n⟩ = −Zl⟨σ∇u, n⟩⟨σ∇w, n⟩

and
(w −Wl)⟨σ∇u, n⟩ = −Zl⟨σ∇w, n⟩⟨σ∇u, n⟩

and this gives us

⟨M,∇w(x0)⟩ = Ui

∫
ei

⟨σ∇w, n⟩ dS + Uj

∫
ej

⟨σ∇w, n⟩ dS.

The first integral equals 1 and the second integral equals −1, so in total we have

⟨M,∇w(x0)⟩ = Ui − Uj .

So we have shown that the principle of reciprocity also exists for the CEM. This gives us
benefits in the numerical implementation that will be seen in chapter 4.5.

Convergence of CEM to PEM

There are different ways to show that the CEM converges for the radius r going to zero.
A simple way is to show it by additionally assuming Zl → ∞ for all l ∈ {1, ..., L}:
From 3.8 we get

σ
∂u

∂n
(x) =

1

Zl
(Ul − u) on el, ∀l ∈ {1, ..., L}. (3.11)

With Zl → ∞, we have

σ
∂u

∂n
(x) = 0 on el (3.12)

for all electrodes and thus for the entire boundary ∂Ω of the domain which leads us to the
boundary condition of the PEM, 3.3.
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Intuitively, we can see this by interpreting the limit of the impedances Zl as the electrodes
not effecting the current flux underneath them in any way, which is the case for the PEM.

There is also an argument for the convergence which does not require the impedances
going to infinity in the analytical setting, but leaving them fixed, using the main result of
[19] and the principle of reciprocity for CEM and PEM. This argument is shown in the
Appendix A.1.
The convergence is also shown in the numerical setting in chapter 4.6 and in a simulation
in chapter 6.2.2.

3.4 Weak Formulation of PDEs

Now that we know the mathematical foundations of our studies, we look at methods and
tools to approximate solutions for the PDE 3.2 with different boundary conditions of the
electrode models.
PDEs can be, in general, very difficult or impossible to solve analytically. There exist even
PDEs where a classical solution does not exist under certain regularity assumptions. Such
an example is the shock wave equation ([10], chapter 3.4, example 1).
We can weaken these assumptions and work in the framework of weak solutions.
The classical approach requires that the function u is sufficiently smooth, so in this case
it is at least twice differentiable to have well-defined terms in the PDE and boundary con-
dition. However, in modeling of real-world phenomena often situations where the solution
is not sufficiently smooth are involved, or where the domain is more complicated, leading
to difficulties in the classical treatment. In our case, the conductivity jumps between the
compartments are represented in σ, which leads to a non-smooth electric potential u. In
such cases, we use the weak formulation, which relaxes the pointwise requirements for the
regularity and focuses on integral forms of the PDE.
The weak formulation is the foundation for the finite element methods (FEM) which we
will investigate in detail in chapter 4.
The weak formulation is achieved by multiplying the classical PDE by test functions v
from a suitable space and integrating over the domain Ω. This process involves the appli-
cation of integration by parts to reduce the order of differentiation, which allows - for our
particular PDE 3.2 - solutions with lower regularity.

For this setting, we need the notion of Sobolev spaces and weak derivatives. We ex-
pect the reader to know the basics of functional analysis, including the notion of a Banach
space, a Hilbert space, a norm, and a Lebesgue space L2(Ω) with its corresponding norm
and properties. This can be learned and seen in [3], [41] and [2].

Weak Derivatives

In the Lebesgue space L2(Ω) the elements are not defined in a pointwise sense. So, it makes
sense to introduce a notion of a derivative, which also depends on the global behavior and
does not depend on the pointwise values. First, we need the multi-index notation for
partial derivatives, which takes a n-tuple α ∈ Nn

0 of non-negative integers αi ∈ N0. Here,
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N0 denotes the set of non-negative integers. We define

|α| :=
n∑

i=1

αi.

Let C∞(Ω) denote the space of smooth functions on Ω. For Φ ∈ C∞ we denote by ∂αΦ
the function ( ∂

∂x1
)α1 · · · ( ∂

∂xn
)αnΦ. For a vector x, we define xα := xα1

1 · · ·xαn
n .

The support of a function f : X → Y is the closure of the set {x ∈ X|u(x) ̸= 0}. If the
support is a compact set and is a subset of the interior of X, then we say that f has
a compact support. In the case of a bounded set Ω, a function with compact support
vanishes in a neighborhood of the boundary ∂Ω.

Definition 1. Let Ω ⊂ Rn. C∞
0 (Ω) ⊂ C∞(Ω) is defined to be the subset of smooth

functions with compact support in Ω.

We now get to the definition of weak derivatives, which will play a role in our theory.

Definition 2. Let Ω ⊂ Rn and u ∈ L1
loc(Ω) be in the space of locally integrable functions

L1
loc(Ω). We call a function v ∈ L1

loc(Ω) the weak derivative of u to the multi-index α and
denote it by v = ∂αu if∫

Ω
φ · v dV = (−1)|α|

∫
Ω
∂αφ · u dV for all φ ∈ C∞

0 (Ω).

Since we multiply φ ∈ C∞
0 (Ω) which vanish on the boundary, this equation can be brought

back to partial integration where v replaces the derivative. It can also be easily seen that
in the case where the (classical) derivative exists and is continuous, the classical derivative
and the weak derivative coincide.
A simple example of a weak derivative is f ′ : R → R with f ′(x) = −1 for x < 0 and
f ′(x) = 1 for x > 0 of the function f , which maps a real number to its absolute value. We
see that f is continuous everywhere, but not differentiable at x = 0. Nevertheless, it has
a weak derivative, even though the classical derivative does not exist at the point x = 0.

Sobolev Spaces

In the frame of weak derivatives the solutions are most commonly in a - so called - Sobolev
space. For this, let Ω ⊂ Rn be an open subset. The Sobolev space Hk(Ω) is defined as
the set of functions u ∈ L2(Ω) whose weak derivatives up to order k exist and also belong
to L2(Ω). Formally,

Hk(Ω) =
{
u ∈ L2(Ω) : ∂αu ∈ L2(Ω),∀α ∈ NL

0 with |α| ≤ k
}
.

The space Hk(Ω) is equipped with the norm

∥u∥Hk(Ω) =

 ∑
|α|≤k

∥Dαu∥2L2(Ω)

1/2

,
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so weak derivatives are incorporated in this norm.
The Sobolev spaces Hk(Ω) are Banach spaces and together with the inner product

(u, v)Hk(Ω) =
∑
|α|≤k

∫
Ω
Dαu ·Dαv dx,

they are also Hilbert spaces.
An important special case is H1(Ω), where we will neglect the 1 in the subsequent chapters
and simply write H(Ω). The space H(Ω) consists of functions u ∈ L2(Ω) whose first-order
weak derivatives also belong to L2(Ω). Its norm is given by

∥u∥H(Ω) =
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω)

)1/2
.

Now that we have our mathematical setting, we will introduce the weak formulation of
PDEs specifically with our PDE 3.2 and the two different sets of boundary conditions for
our different electrode models.

3.4.1 Weak Formulation with PEM

We are looking for a u ∈ H(Ω) that fulfills the initial PDE (3.2)-(3.3) in a weak sense, so
we first multiply both sides with a test function φ ∈ H(Ω) and integrate over our domain
Ω: ∫

Ω∇ · (σ∇)φdV =
∫
Ω(∇ · Jp)φdV.

We will use Gauss’s divergence theorem on the left-hand side first:∫
Ω∇ · (σ∇)φdV = −

∫
Ω σ∇u · ∇φdV +

∫
∂Ω σ

∂u
∂nφdS.

If we are not stimulating, we have σ ∂u
∂n = 0 on ∂Ω, so the weak formulation for the EEG

forward problem is to find a u ∈ H1(Ω), such that∫
Ω σ∇u · ∇φdV = −

∫
Ω(∇ · Jp)φdV, ∀φ ∈ H(Ω).

In the tES case, we have σ ∂u
∂n(x) =

L∑
l=1

Ilδel on ∂Ω, so the boundary integral is

∫
∂Ω
σ
∂u

∂n
φdS =

∫
∂Ω

L∑
l=1

IlδelφdS =

L∑
l=1

Il

∫
∂Ω
δelφdS =

L∑
l=1

Ilφ(pl),

where pl denotes again the position of the l-th electrode. Therefore, the weak formulation
for the tES case is ∫

Ω
σ∇u · ∇φdV =

L∑
l=1

Ilφ(pl). (3.13)
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If we are putting the tES and EEG forward problem together, we get∫
Ω
σ∇u · ∇φdV =

L∑
l=1

Ilφ(pl)−
∫
Ω
(∇ · Jp)φdV, ∀φ ∈ H(Ω). (3.14)

In total, we get the bilinear and linear form with the elements u, φ ∈ H(Ω)

aPEM(u, φ) =

∫
Ω
σ∇u · ∇φdV

and

lPEM(φ) =
L∑
l=1

Ilφ(pl)−
∫
Ω
(∇ · Jp)φdV.

We call u ∈ H(Ω) a weak solution of our PDE 3.2-3.3 if it fulfills

aPEM(u, φ) = lPEM(φ) (3.15)

for all φ ∈ H(Ω). We note that strictly speaking, the linear form lPEM is not well-defined
on H(Ω) due to the point evaluations φ(pl). To derive the weak formulation for PEM
mathematically more rigorously, a setting is required like it is presented in ([12], problem
7).

3.4.2 Weak Formulation of CEM

We do the same for the CEM. We first multiply a φ ∈ H(Ω) and then integrate over Ω
and again get ∫

Ω∇ · (σ∇)φdV =
∫
Ω(∇ · Jp)φdV.

The left-hand side is∫
Ω∇ · (σ∇)φdV = −

∫
Ω σ∇u · ∇φdV +

∫
∂Ω σ

∂u
∂nφdS. .

The third boundary condition of the CEM 3.8 gives us

σ
∂u

∂n
(x) =

1

Zl
(Ul − u(x)) ∀x ∈ el.

Using this for the boundary integral and for all electrodes, we get with the zero outflow
at the boundary that does not belong to an electrode interface that

L∑
l=1

∫
el

1

Zl
(Ul − u)φdS −

∫
Ω
σ∇u · ∇φdV =

∫
Ω
(∇ · Jp)φdV. (3.16)

We rearrange the two boundary conditions (3.7), (3.8) and get

ZlIl =

∫
el

Zlσ
∂u

∂n
dS =

∫
el

(Ul − u) dS
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and thus

1

Zl

∫
el

(Ul − u) dS = Il, ∀l ∈ {1, ..., L}. (3.17)

The left-hand side of 3.16 itself is not a coercive bilinear form. So, we take an arbitrary
Φ ∈ RL with entries Φl ∈ R for l ∈ {1, ..., L}. Then it holds - after multiplying with −1
on both sides - that

L∑
l=1

∫
el

1

Zl
(Ul − u)(Φl − φ) dS +

∫
Ω
σ∇u · ∇φdV

=

L∑
l=1

∫
el

1

Zl
(Ul − u)Φl dS︸ ︷︷ ︸
3.17
= IlΦl

− (

L∑
l=1

∫
el

1

Zl
(Ul − u)φdS −

∫
Ω
σ∇u · ∇φdV )︸ ︷︷ ︸

=
∫
Ω(∇·Jp)φdV

,

so we get in total

L∑
l=1

∫
el

1

Zl
(Ul − u)(Φl − φ) dS +

∫
Ω
σ∇u · ∇φdV

=

L∑
l=1

IlΦl −
∫
Ω
(∇ · Jp)φdV.

This is the weak formulation with which we will mainly work. The test and trial space are
generally H(Ω) ⊕ RL while H(Ω) captures the nodes of the mesh and RL the measured
potentials with the L electrodes. So, we get the bilinear and linear form with the elements
(u, U), (φ,Φ) ∈ H(Ω)⊕ RL and

aCEM((u, U), (φ,Φ)) =

L∑
l=1

∫
el

1

Zl
(Ul − u)(Φl − φ) dS +

∫
Ω
σ∇u · ∇φdV

and

lCEM((φ,Φ)) =

L∑
l=1

IlΦl −
∫
Ω
(∇ · Jp)φdV.

We call (u, U) ∈ H(Ω) ⊕ RL a weak solution of the PDE 3.2 with the CEM boundary
conditions 3.6-3.8 if it fulfills

aCEM((u, U), (φ,Φ)) = lCEM((φ,Φ)) (3.18)

for all (φ,Φ) ∈ H(Ω)⊕ RL.
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Uniqueness and Existence of a Weak Solution

For the uniqueness and existence of weak solutions of elliptic PDEs, the Lax-Milgram
theorem is a common tool to show this (see [10], chapter 6.2.1). We can see in ([53],
chapter 3) and ([12], chapter 1.3.2.) that for the uniqueness of the solution for PEM, the
Sobolev space H(Ω) gets restricted to

H∗(Ω) = {u ∈ H(Ω) :

∫
Ω

u dV = 0}

and for CEM H(Ω)⊕ RL gets restricted to

(H(Ω)⊕ RL)∗ = {(u, U) ∈ H(Ω)⊕ RL :

∫
Ω

u dV = −
L∑
l=1

Ul}

since these are isometrically isomorphic to the quotient spaces H(Ω)/R · 1 and H(Ω) ⊕
RL/R · (1, 1), respectively.

3.5 Source Model

Modeling in neuroscience also has to include modeling the electric current sources in the
brain. There are different ways of doing this. The source is captured in the right-hand
side of the PDE 3.2. In the approach that we will use for these simulations, the source is
modeled as a current dipole with momentM , f(x) = ∇·(Mδx0(x)) = ∇·(Mδ(x0−x)) with
δ being the Dirac distribution. Approaches such as the multipolar Venant approach [58]
and the H(div) approach [29] embed the singularity by substituting the point dipole with
an object which is dipole-like and shows more regularity. On the other hand, subtraction
approaches handle the dipole analytically by taking the singularity out of the formulation.
After dealing with the achieved regular problem, in subtraction approaches we add the
singularity back in [63],[8],[20].
In this work, we will focus on the local subtraction source model, due to its rigorous
mathematical foundation and its high numerical accuracy [20].
This method is based on the classical subtraction approach that was already investigated
in [63]. Compared to the classical subtraction approach, the local subtraction approach
uses only the analytical solution for a small patch Ω∞ ⊂ Ω around the dipole at a position
x0. This leads to a sparse right-hand side vector in the FEM formulation and thus good
computation times. We start straight with the local subtraction approach with the classical
boundary condition of PEM 3.3 and then derive a local subtraction approach for the CEM
using its boundary conditions.

3.5.1 Local Subtraction Approach for PEM

In source analysis, the forward problem has to be calculated for sources of the order of
≥ 104. So, assembling the right-hand sides for the classical subtraction approach takes
too much time since the right-hand sides are dense in this case.
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Instead of formulating the problem in the weak sense over the entire domain including
the source, we subtract a suitable function u∞ from the potential u and derive a weak
formulation for ucorr = u− u∞ [20].
We first assume that the conductivity tensor σ is constant in a neighborhood of our source
position x0 ∈ R3. Denote this conductivity tensor by σ∞ ∈ R3×3.
In the subtraction approach, we look at the equation

∇ · (σ∞∇u∞) = ∇ · (M · δx0) on R3,

which is PDE in an unbounded homogeneous conductor. Here, we work with an existing
analytical solution for u∞ in the isotropic case, which is (see [46])

u∞(x) =
1

4πσ∞
⟨M,x− x0⟩
|x− x0|3

.

We will have a look at the resulting PDE for the correction potential ucorr:
We have σcorr := σ∞−σ, u = ucorr+u∞ and ∇· (σ∞∇u∞) = ∇· (M · δx0) and thus derive
for 3.2 and 3.3

∇ · (σ∇u) = ∇ · (σ∇ucorr) +∇ · (σcorr∇u∞) +∇ · (σ∞∇u∞)

= ∇ · (σ∇ucorr) +∇ · (σcorr∇u∞) +∇ · (M · δx0). (3.19)

If we subtract the equation ∇ · (σ∇u) = ∇ · (M · δx0) from 3.19, the initial PDE becomes

∇ · (σ∇ucorr) = −∇ · (σcorr∇u∞) in Ω,

σ
∂ucorr

∂n
= −σ∂u

∞

∂n
on ∂Ω.

We can see that the right-hand side of the PDE for the correction potential ucorr contains
u∞. In this moment, the right-hand side will be non-zero for a large part of the domain
which leads to a bigger effort for the assembly of the right-hand side.
In the local subtraction approach, we work with a χ : Ω → R that is 1 in a neighborhood
of the source position. We call this neighborhood the patch and denote it by Ω∞ ⊂ Ω.
In the case of a continuous Galerkin method (see [33], chapter 1.2), where the computed
potential is required to be a continuous function, which we will use in this thesis, some
additional regularity is required for χ. We need χ to be continuous and to be contained
in the space H(Ω). We achieve this by not only having a patch Ω∞, but also having a
transition region Ω̃ where χ goes continuously from 1 to 0. We can see this in figure 3.1.
We have that Ω∞ ∩ Ω̃ = ∅. For the local subtraction approach, we define the correction
potential as

ucorr := u− χ · u∞. (3.20)

It is important to note that the conductivity σ is not assumed to be constant in Ω∞, but
that Ω∞ contains a neighborhood of x0 where the conductivity is constant, so the patch
can also include tissue compartments that have different conductivities and even the patch
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Figure 3.1: This figure shows a two dimensional visualization of the patch Ω∞ and the
transition region Ω̃ of a source at the position x0. The function χ is 1 in the yellow colored
patch and transitions continuously to 0 in the green colored transition region Ω̃. This
figure is from [20].

is allowed to touch the boundary of the domain Ω.
Now, similar to the common subtraction approach we calculate with σcorr := σ − σ∞,
u = ucorr + χ · u∞ and ∇ · (σ∞∇u∞) = ∇ · (M · δx0) and get

∇ · (σ∇u) = ∇ · (σ∇ucorr) +∇ · (σcorr∇χu∞) +∇ · (σ∞∇χu∞)

= ∇ · (σ∇ucorr) +∇ · (σcorr∇χu∞) +∇ · (σ∞∇(χ− 1)u∞) +∇ · (M · δx0).

So, the initial PDE becomes

∇ · (σ∇ucorr) = −∇ · (σcorr∇χu∞)−∇ · (σ∞∇(χ− 1)u∞) in Ω,

σ
∂ucorr

∂n
= −σ∂(χu

∞)

∂n
on ∂Ω.

In the patch, we naturally have σcorr = 0 and χ− 1 = 0 since χ is constant 1 in the patch.
So, there is no singularity in the formulation of the problem anymore. It is possible to
integrate after multiplying a test function φ to the left-hand side. With the boundary
condition, we get∫

Ω
(∇ · (σ∇ucorr))φdV =

∫
∂Ω
σ
∂ucorr

∂n
φdS −

∫
Ω
σ∇ucorr · ∇φdV

= −
∫
∂Ω
σ
∂(χu∞)

∂n
φdS −

∫
Ω
σ∇ucorr · ∇φdV.



23

We continue with the right-hand side and multiply a test function φ and then do partial
integration: ∫

Ω

(
−∇ · (σcorr∇(χu∞))φ−∇ · (σ∞∇((χ− 1)u∞))φ

)
dV

= −
∫
∂Ω
σcorr

∂(χu∞)

∂n
φdS −

∫
∂Ω
σ∞

∂((χ− 1)u∞)

∂n
φdS

+

∫
Ω
σcorr∇(χu∞) · ∇φdV +

∫
Ω
σ∞∇((χ− 1)u∞) · ∇φdV.

and with χ = 1 on Ω∞, we get

r.h.s. = −
∫
∂Ω
σ
∂(χu∞)

∂n
φdS +

∫
∂Ω
σ∞

∂u∞

∂n
φdS

+

∫
Ω∞

σcorr∇u∞ · ∇φdV +

∫
Ω\Ω∞

σ∇(χu∞) · ∇φdV −
∫
Ω\Ω∞

σ∞∇u∞ · ∇φdV.

We split the boundary of the patch into the part that intersects the boundary of the head
and the part that does not and see that∫

∂Ω
σ∞

∂u∞

∂n
φdS −

∫
Ω\Ω∞

σ∞∇u∞ · ∇φdV

=

∫
∂Ω
σ∞

∂u∞

∂n
φdS −

∫
∂(Ω\Ω∞)

σ∞
∂u∞

∂n
φdS −

∫
Ω\Ω∞

∇ · (σ∞∇u∞)φdV︸ ︷︷ ︸
=0

=

∫
∂Ω∞

σ∞
∂u∞

∂nΩ∞
φdS,

because we can split the boundary integrals.
So, we have∫

Ω
σ∇ucorr · ∇φdV = −

∫
Ω̃
σ∇(χu∞) · ∇φdV −

∫
∂Ω∞

σ∞
∂u∞

∂nΩ∞
φdS

−
∫
Ω∞

σcorr∇u∞ · ∇φdV,

which finally leads to the weak formulation:
Let a : H(Ω)×H(Ω) → R be the bilinear form

a(w, v) =

∫
Ω
σ∇w · ∇v dV
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and let l : H(Ω) → R be the bilinear form

l(v) = −
∫
Ω̃
σ∇(χ · u∞) · ∇v dV −

∫
∂Ω∞

σ∞
∂u∞

∂n
v dS

−
∫
Ω∞

σcorr∇u∞ · ∇v dV.

The continuous Galerkin method with the local subtraction approach is then given by
finding ucorr ∈ H(Ω) such that

a(ucorr, v) = l(v)

for all v ∈ H(Ω) and then calculating u = χu∞ + ucorr.
If we look at v ∈ H(Ω) with v = 0 almost everywhere on Ω∞ ∪ Ω̃ we get l(v) = 0. So
only the test functions whose support intersects the Ω∞ or Ω̃ will give entries in the right-
hand side that are non-zero, so the right-hand side vector is sparse, which leads to the
significantly lower computation time compared to the classical subtraction approach [20].
When choosing Ω to be the entire patch Ω∞, so Ω∞ = Ω, the local subtraction approach
becomes the classical subtraction approach. For a detailed evaluation of its performance
and the existence and uniqueness of the solution, we refer to [20].

3.5.2 Local Subtraction Approach for CEM

We first want to derive a weak formulation for the PDE 3.2 with the boundary conditions
for CEM 3.6 - 3.8. Our Hilbert space is the direct sum of H(Ω) and RL. We are looking for
a bilinear form a : (H(Ω)⊕RL)× (H(Ω)⊕RL) → R and a linear form l : H(Ω)×RL → R,
such that

a((u, U), (φ,Φ)) = l((φ,Φ))

for all (φ,Φ) ∈ H(Ω)⊕ RL.
Again, we have u = ucorr+χu∞ and σ = σcorr+σ∞. This leads to the boundary conditions
for the CEM:

∇ · (σ∇ucorr) = −∇ · (σcorr∇χu∞)−∇ · (σ∞∇(χ− 1)u∞) in Ω,

σ ∂ucorr

∂n (x) = −σ ∂χu∞

∂n (x) ∀x ∈ ∂Ω \ ∪L
l=1el∫

el
σ ∂u
∂n(x)dS = Il ∀l ∈ {1, ..., L}

σ ∂ucorr

∂n (x) = 1
Zl
(Ul − u)− σ ∂χu∞

∂n on el, ∀l ∈ {1, ..., L}.

We multiply again the left-hand side with φ, integrate over Ω and do partial integration
and get ∫

Ω
(∇ · (σ∇ucorr))φdV =

∫
∂Ω
σ
∂ucorr

∂n
φdS −

∫
Ω
σ∇ucorr · ∇φdV

=

∫
∂Ω\∪L

l=1el

σ
∂ucorr

∂n
φdS +

L∑
l=1

∫
el

σ
∂ucorr

∂n
φdS −

∫
Ω
σ∇ucorr · ∇φdV.
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and with the first and third boundary condition this becomes

−
∫
∂Ω\∪L

l=1el

σ
∂χu∞

∂n
φdS+

L∑
l=1

∫
el

1

Zl
(Ul−u)φdS−

L∑
l=1

∫
el

σ
∂χu∞

∂n
φdS−

∫
Ω
σ∇ucorr·∇φdV.

We continue with the right-hand side and multiply a test function φ, integrate over Ω and
then do partial integration:∫

Ω

(
−∇ · (σcorr∇(χu∞))φ−∇ · (σ∞∇((χ− 1)u∞))φ

)
dV

= −
∫
∂Ω
σcorr

∂(χu∞)

∂n
φdS −

∫
∂Ω
σ∞

∂((χ− 1)u∞)

∂n
φdS

+

∫
Ω
σcorr∇(χu∞) · ∇φdV +

∫
Ω
σ∞∇((χ− 1)u∞) · ∇φdV.

Just like in ([20], page 6), this is

=

∫
∂Ω∞

σ∞
∂u∞

∂n
φdS−

∫
∂Ω
σ
∂χu∞

∂n
φdS+

∫
Ω∞

σcorr∇u∞ ·∇φdV +

∫
Ω\Ω∞

σ∇χu∞ ·∇φdV

for the right-hand side. Multiplying both sides with −1 and then equating the two sides
gives us∫
∂Ω\∪L

l=1el

σ
∂χu∞

∂n
φdS−

L∑
l=1

∫
el

1

Zl
(Ul−u)φdS+

L∑
l=1

∫
el

σ
∂χu∞

∂n
φdS+

∫
Ω
σ∇ucorr ·∇φdV

= −
∫
∂Ω∞

σ∞
∂u∞

∂n
φdS+

∫
∂Ω
σ
∂χu∞

∂n
φdS−

∫
Ω∞

σcorr∇u∞·∇φdV.−
∫
Ω\Ω∞

σ∇χu∞·∇φdV.

Again, we use u = ucorr + χu∞ and transform the equation to∫
Ω
σ∇ucorr · ∇φdV −

L∑
l=1

∫
el

1

Zl
(Ul − ucorr)φdS

= −
∫
∂Ω\∪L

l=1el

σ
∂χu∞

∂n
φdS−

L∑
l=1

∫
el

σ
∂χu∞

∂n
φdS−

∫
∂Ω∞

σ∞
∂u∞

∂n
φdS+

∫
∂Ω
σ
∂χu∞

∂n
φdS

−
∫
Ω∞

σcorr∇u∞ · ∇φdV −
∫
Ω\Ω∞

σ∇χu∞ · ∇φdV −
L∑
l=1

∫
el

1

Zl
χu∞φdS.

Due to

0 = −
∫
∂Ω\∪L

l=1el

σ
∂χu∞

∂n
φdS −

L∑
l=1

∫
el

σ
∂χu∞

∂n
φdS +

∫
∂Ω
σ
∂χu∞

∂n
φdS
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and

−
∫
Ω\Ω∞

σ∇χu∞ · ∇φdV = −
∫
Ω̃
σ∇χu∞ · ∇φdV

the equation gets simplified to∫
Ω
σ∇ucorr · ∇φdV −

L∑
l=1

∫
el

1

Zl
(Ul − ucorr)φdS

= −
∫
∂Ω∞

σ∞
∂u∞

∂n
φdS−

∫
Ω∞

σcorr∇u∞ ·∇φdV −
∫
Ω̃
σ∇χu∞ ·∇φdV −

L∑
l=1

∫
el

1

Zl
χu∞φdS.

Again, we want to have a bilinear form a on the left-hand side and a linear form on
the right-hand side, so we introduce Φ ∈ RL and formulate the weak formulation as the
following:
Find (u, U) ∈ H(Ω)⊕ RL, such that∫

Ω
σ∇ucorr · ∇φdV +

L∑
l=1

∫
el

1

Zl
(Ul − ucorr)(Φl − φ) dS

= −
∫
∂Ω∞

σ∞
∂u∞

∂n
φdS −

∫
Ω∞

σcorr∇u∞ · ∇φdV

−
∫
Ω̃
σ∇χu∞ · ∇φdV +

L∑
l=1

∫
el

1

Zl
χu∞(Φl − φ) dS. (3.21)

for all (φ,Φ) ∈ H(Ω)⊕ RL.
This leads us to the same left-hand side as in the general weak formulation of the CEM
and the right-hand side is the same as in the local subtraction approach for PEM, but

additionally with the term
L∑
l=1

∫
el

1
Zl
χu∞(Φl − φ) dS, which is only non-zero if the patch

or the transition region intersects with the electrode interfaces.

Since the additional term
L∑
l=1

∫
el

1
Zl
χu∞(Φl − φ) dS is zero for 1 ∈ H(Ω) ⊕ RL, which is

defined as the element which has the coefficient 1 for each basis element in the linear
combination, the argument of uniqueness and the existence of [20] also holds for the CEM
with the local subtraction approach.



27

Chapter 4

Numerical Methods

4.1 Finite Element Method

After having the models in the continuous case, the natural next step is to make the solu-
tion or approximation of the solution computable. In this step, it is necessary to bring it
to a discrete setting. There are different methods that can be used. Three very common
methods in our field are the boundary element method (BEM) (see [26]) and the finite
element method (FEM). Finite element methods seem to deal very well with complex
geometries and anisotropic conductivities [8].
While we were looking for a u ∈ H(Ω), with H(Ω) being - in general - an infinite di-
mensional Sobolev space we now restrict ourselves on a finite dimensional subspace of H
of dimension N , namely SN ⊂ H(Ω), for the test and trial space and approximate the
potential on this space. This will bring us to an equation of the form Ax = b. We denote
the bilinear form as a with test functions φ and the linear functional on the right-hand
side as l, so in the weak formulation, we have to find a u ∈ H(Ω), which fulfills

a(u, φ) = l(φ) , ∀φ ∈ H(Ω).

We denote the solution in the finite dimensional subspace SN ⊂ H(Ω) as uN :

a(uN , φ) = l(φ) ∀φ ∈ SN .

We have a finite basis {ψ1, ..., ψN} of SN , so it is sufficient to make sure that the equation
above is fulfilled for every basis function, because of the linearity in the argument φ:

a(uN , ψi) = l(ψi) ∀i ∈ {1, ..., N}.

We can also represent uN as a linear combination of the basis functions with xj ∈ R for
j ∈ {1, ..., N}:

uN =

N∑
j=1

xjψj .
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So, in the finite dimensional spaces, computing uN is equivalent to solving the linear
system

a(
N∑
j=1

xjψj , ψi) =
N∑
j=1

xja(ψj , ψi) = l(ψi), ∀i ∈ {1, ..., N}

which can be described by a matrix-vector equation of the form

A · x = b

with Aij = a(ψj , ψi), x = (x1, ..., xN )⊺ and b = (l(ψ1), ..., l(ψN ))⊺. The coefficients of the
linear combination of uN that are captured in x are calculated.
The method that approximates the solution on finite dimensional subspaces is called the
Galerkin method. The theory is described in detail in ([2], chapter II §4) where the
convergence of the approximations on the subspaces with increasing dimension to the
solution in the space of infinite dimension is also investigated.
Now, that we know the general idea, we take a look at the construction of finite element
spaces, which are used as the finite dimensional subspaces SN ⊂ H(Ω) of the Sobolev
spaces for the trial and test spaces in the Galerkin method.
For this, we divide the problem domain into smaller and simpler subdomains, which are
called finite elements. These elements can have different shapes, while commonly used
shapes are tetrahedra or hexahedra. In this thesis, we exclusively use tetrahedral elements.
We introduce some basic definitions and use the same notations as in [2]:

Definition 3. Let K ⊂ Rn be a bounded and closed set with a non-empty interior and
piecewise smooth boundary, which we call the element domain.

1. Let P be a finite-dimensional space of functions on K, which is called the space of
shape functions.

2. Let N = {N1, ..., Nk} be a basis for the dual space P ′, which are called the nodal
variables.

(K,P,N ) is called a finite element.

Definition 4. Let (K,P,N ) be a finite element. The nodal basis of P is the basis
{φ1, ..., φk} of P, which is dual to N , which means Ni(φj) = δ̃ij with δ̃ij being the
Kronecker delta.

Within each finite element, the solution is approximated by a simple function and the
global solution is constructed by combining the local solutions over all elements.
A common choice for a finite element for a domain Ω is the polynomials of degree less
than or equal to k, Pk and the nodal variables N = {N0, ..., Nk} where Ni(v) = v(ri) with
ri ∈ K ⊂ Ω.
We will now introduce our choice of finite elements, which are the Lagrangian elements
on a tetrahedral mesh. In this work, we do the simulations on tetrahedral meshes. So, we
have 4 nodes per mesh element. We can define a finite element on one mesh element by
K ⊂ Ω being the tetrahedral mesh element, P1 being the function space of polynomials
of degree less than or equal to 1 in K and the nodal variables N = {N1, ..., N4} being the
evaluation of the polynomials at the node positions.
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We set the nodal basis of P1 to be the linear functions {φ1, ..., φ4} where Ni(φj) = δ̃ij .
Because P is chosen to be the space of linear functions, the nodal basis functions are
also called hat functions, because of the visualization in the two-dimensional case where
the value of the hat functions is shown in the third dimension. Here, the i-th Lagrange
function looks like a hat with its hat tip on the i-th node and then linearly decreases to 0
on the other nodes.
In [36] the usage of polynomials of higher degree is considered.

4.2 FEM for PEM

For the FEM with PEM the solution space and test space are SN ⊂ H(Ω). Let {ψ1, ..., ψN}

be the basis of SN . Then, for an i ∈ {1, .., N} and u =
N∑
j=1

ujψj and uj ∈ R for j ∈

{1, ..., N}, we have

a(
N∑
j=1

ujψj , ψi) =
N∑
j=1

uj

∫
Ω

σ∇ψj∇ψi dV

︸ ︷︷ ︸
=:aij

. (4.1)

So, the FEM becomes the matrix-vector equation

Au = l (4.2)

with

(A)i,j =

∫
Ω

σ∇ψj∇ψi dV (4.3)

and A ∈ RN×N , and the coefficients for the linear combination of u, which is also denoted
by u = (u1, ..., uN )⊺. The right-hand side is denoted by l = (l(ψ1), ..., l(ψN ))⊺.
Since we want not only the existence of the solution but also uniqueness, it is shown in
([21], theorem 15) that the symmetric matrix A gets symmetric positive definite if we set
u1 = 0 and

Ã =


1 0 · · · 0
0 (A)2,2 · · · (A)2,n
...

...
. . .

...
0 (A)n,2 · · · (A)n,n

 and l̃ =


0

l(ψ2)
...

l(ψn)

 (4.4)

and thus the system Ãu = l̃ has a unique solution. This solution also solves Au = l.

4.3 FEM for CEM

For the CEM, the discretization with FEM is more difficult since it also has the poten-
tials at the electrodes as L additional dimensions, so with the domain Ω the solution
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space and the test space is SN ⊕ RL. Let {ψ1, ..., ψN} be the basis of SN and the stan-
dard basis {ẽ1, ..., ẽL} of RL. We use the tilde here, because the el are already used for the
electrodes. Then {(ψ1, 0), ..., (ψN , 0), (0, ẽ1), ..., (0, ẽL))} is a basis of SN ⊕RL. We approx-

imate (u, U) ∈ SN ⊕RL as a linear combination (u, U) = (
N∑
j=1

uj · (ψj , 0))+(
L∑
l=1

Ũl · (0, ẽl)).

Because we chose the standard basis of RL, we have Ũl = Ul, so we will simply neglect it
and write Ul. We will do the same for Φ in (φ,Φ) ∈ SN ⊕ RL. We want to calculate the
stiffness matrix and also have

(φ,Φ) = (
N∑
i=1

φi · (ψi, 0))+ (
L∑
l=1

Φl · (0, ẽl)). So we reduce the weak formulation to the basis

functions and start with a basis function (ψi, 0) for an i ∈ {1, ..., N}:

a((u, U), (ψi, 0)) = −
L∑
l=1

∫
el

1

Zl
(Ul − u)ψi dS +

∫
Ω
σ∇u · ∇ψi dV.

Considering the linear combination of (u, U) brings us to

a((u, U), (ψi, 0)) = a((
N∑
j=1

uj · (ψj , 0), U), (ψi, 0))

= −
L∑
l=1

∫
el

1

Zl
Ulψi dS +

L∑
l=1

∫
el

1

Zl
(

N∑
j=1

ujψj)ψi dS +

∫
Ω
σ∇(

N∑
j=1

ujψj)∇ψi dV

=
L∑
l=1

Ul (−
1

Zl

∫
el

ψi dS)︸ ︷︷ ︸
=bil

+
N∑
j=1

uj ((
L∑
l=1

1

Zl

∫
el

ψjψi dS) +

∫
Ω
σ∇ψj∇ψi dV )︸ ︷︷ ︸

=aij

and we set the matrix A ∈ RN×N with (A)ij = aij and B ∈ RN×L with (B)il = bil. Let
x ∈ RN be Au+BU = x while we abbreviated the vectors of coefficients u = (u1, ..., uN )⊺

and U = (U1, ..., UL).
We will do the same for an arbitrary l ∈ {1, ..., L} and the basis element (0, ẽl):

a((u, U), (0, ẽl)) =

∫
el

1

Zl
(Ul − u) dS

and again

a((

N∑
j=1

uj · (ψj , 0), U), (0, ẽl)) =

∫
el

1

Zl
(Ul − u) dS = Ul

∫
el

1

Zl
dS +

N∑
j=1

uj(−
1

Zl

∫
el

ψj dS).

We set C ∈ RL×L as the diagonal matrix with entries (C)ll =
1
Zl

∫
el
dS and also write it

as (C)ll =
|el|
Zl

. Let y ∈ RL be the result of this equation that we write in a matrix-vector
equation:

B⊺u+ CU = y.
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In total, we can represent the two equations in one matrix-vector equation(
A B
B⊺ C

)(
u
U

)
=

(
x
y

)
(4.5)

with the matrices A ∈ RN×N ,B ∈ RN×L and C ∈ RL×L with

(A)ij =

∫
Ω
σ∇ψj · ∇ψi dV +

L∑
l=1

∫
el

1

Zl
ψjψi dS (4.6)

(B)il = −
∫
el

1

Zl
ψi dS (4.7)

(C)ll =
1

Zl

∫
el

dS and (C)kl = 0, for k ̸= l. (4.8)

4.4 Transfer Matrix Approach

In an EEG measurement, we only have the measured potentials at the L electrodes.
Based on this information, the underlying electric activity needs to be calculated. This is
called the inverse problem and requires the forward simulation of a number of sources in
the range of tens of thousands of sources. Calculating the whole potential on the entire
domain Ω for all these sources is computationally very expensive and thus infeasible. Here,
we use the transfer matrix approach. The transfer matrix approach is used to calculate
the measured potentials with the electrodes caused by a given dipole without calculating
the potential in the entire domain and thus solving the inverse problem more effectively
with less computation time [62],([33], chapter 1.2),([21], chapter 2.4).
We will first explain the transfer matrix approach for the PEM. The evaluations of the
potential at the electrode positions can be expressed as the application of a linear operator
R : RN → RL resulting in:

U = Ru,

where U ∈ RL is the vector U = (U1, ..., UL) consisting of the measured electric potential
Ul with the l-th electrode and u being the electric potential at the N nodes of the mesh.
Let p1, ..., pL ∈ RL be the positions of the L electrodes. The entries rk,i of the matrix,
which represents the linear operator R are defined as:

rk,i = ψi(p1)− ψi(pk),

where ψi denotes the i-th basis function of the finite element space.
Since the solution to the EEG forward problem is determined only up to a constant, the
first electrode is selected as the reference electrode and its value is set to zero.
By replacing the solution u with A−1l, we can express the potential evaluations at the
electrodes as:

U = RA−1l = T l,
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where T = RA−1 ∈ RL×N is the transfer matrix.
The transfer matrix T can be computed by solving

A⊺T ⊺ = R⊺,

while taking the symmetry of the matrix A into account. The solution can be obtained
for each column of T and R⊺ separately and once the transfer matrix T is computed, the
potential differences at the electrode positions can be evaluated by assembling the right-
hand side vector and performing a matrix-vector multiplication.
Therefore, to compute the measurement vectors U for an arbitrary number of dipoles, the
linear system needs to be solved only (L− 1) times. It does not have to be solved L times
since we have a reference electrode.

4.5 Schur Complement for CEM

We also want to derive a transfer matrix approach for the CEM. Here, the matrix on the
left-hand side is more complicated since it consists of three different kind of block-matrices.
To find a suitable approach we will use the Schur complement here.
We start with the matrix-vector equation and use the concept of Schur complements. We
have (

A B
B⊺ C

)(
u
U

)
=

(
x
y

)
and derive the two equations from it

Au+BU = x

B⊺u+ CU = y

We multiply the first equation from the left with B⊺A−1 and get

B⊺u+B⊺A−1BU = B⊺A−1x.

We subtract this from the second equation and have

(C −B⊺A−1B)U = y −B⊺A−1x.

Now, the expression of U is

U = (C −B⊺A−1B)−1y − (C −B⊺A−1B)−1B⊺A−1x.

This is the expression we use for the EEG forward problem. If the patch for the local
subtraction approach does not intersect with at least one electrode interface, y will be
zero. This will basically always be the case, because of the number of vertex extensions
and the resolution of the mesh. The case where the patch or the transition region intersects
electrode interfaces is also implemented.
We calculate and store the matrices (C−B⊺A−1B)−1, B⊺A−1 and (C−B⊺A−1B)−1B⊺A−1.
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We calculate the matrix B⊺A−1 via the following equation: We set

B⊺A−1 = T ⊺ ⇐⇒ T = A−1B ⇐= AT = B

and solve this to get T and then transpose it.
For the tES, we look at u and we can do similar calculations and get

u = (A−BC−1B⊺)−1(x−BC−1y).

In the stimulation, we have x = 0, because of having no source that we set in the volume
conductor, so the expression for u becomes

u = −(A−BC−1B⊺)−1BC−1y.

Now, we have two matrices

−(A−BC−1B⊺)−1BC−1 and − (C −B⊺A−1B)−1B⊺A−1

for the EEG forward problem with y = 0 and the tES with x = 0. Based on the principle
of reciprocity - which is also shown for CEM - we can expect that

−(A−BC−1B⊺)−1BC−1 = −[(C −B⊺A−1B)−1B⊺A−1]⊺.

The following calculations will show this identity: We begin with the two representations of
the inverse that we achieve by the application of Gaussian elimination on the blockmatrix
form of the stiffness matrix for CEM:
We get a zero matrix for the lower left block matrix by(

IN 0
−B⊺A−1 IL

)
·
(
A B
B⊺ C

)
=

(
A B
0 C −B⊺A−1B

)
and get a zero matrix for the upper right block matrix by(

IN 0
−B⊺A−1 IL

)
·
(
A B
B⊺ C

)
·
(
IN −A−1B
0 IL

)
=

(
A 0
0 C −B⊺A−1B

)
.

We take the inverse of both sides and multiply the two matrices on the left-hand side to
the right-hand side and have(

A B
B⊺ C

)−1

=

(
IN −A−1B
0 IL

)
·
(
A−1 0
0 (C −B⊺A−1B)−1

)
·
(

IN 0
−B⊺A−1 IL

)
,

and by analogous computations, we also have(
A B
B⊺ C

)−1

=

(
IN 0

−C−1B⊺ IL

)
·
(
(A−BC−1B⊺)−1 0

0 C−1

)
·
(
IN −BC−1

0 IL

)
.
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So the two left-hand sides are equaling each other, so with straight-forward calculations,
we have (

A−1 +A−1B(C −B⊺A−1B)−1B⊺A −A−1B(C −B⊺A−1B)−1

−(C −B⊺A−1B)−1B⊺A−1 (C −B⊺A−1B)−1

)
=

(
(A−BC−1B⊺)−1 −(A−BC−1B⊺)−1BC−1

−C−1B⊺(A−BC−1B⊺)−1 C−1 + C−1B⊺(A−BC−1B⊺)−1BC−1

)
.

while the lines are used to make the separation of the entries clearer. This leads to the
equality of the upper right entries:

−A−1B(C −B⊺A−1B)−1 = −(A−BC−1B⊺)−1BC−1,

but since the matrices are symmetric, we can exchange the left-hand side with the trans-
posed of the lower left entry and end up with

[−(C −B⊺A−1B)−1B⊺A−1]⊺ = −(A−BC−1B⊺)−1BC−1.

This was the desired result. This enables us to implement the tES and DBS easily after
we have implemented the EEG and iEEG forward solver, respectively.

4.6 Convergence of CEM to PEM with r → 0 in FEM

The convergence of the CEM to the PEM for the radius r going to zero can also be seen
in the FEM. The proof of the convergence is from [22].
We look at the measured potentials U , with y = 0 (so the the patch for the dipole does
not grow into the electrode interfaces), and have

U = −(C −B⊺A−1B)−1B⊺A−1x.

This is also
U = −(IL − C−1B⊺A−1B)−1C−1B⊺A−1x

with the identity matrix IL ∈ RL×L. When we remember the entries of the matrices from
A (see 4.6), we see that for r → 0, A−1x converges to the vector with the coefficients for the
PEM, because the second term with the integrals over the electrode interfaces vanishes and
we end up with the classical FEM for PEM. We denote this vector by A−1x = uPEM ∈ RN

We will have a closer look at C−1B⊺ before r → 0 and see for the entry in the l-th row
and the i-th column that

(C−1B⊺)li = − Zl

|el|
1

Zl

∫
el

φi dS = −

∫
el

φi dS

|el|

and with r → 0, so |el| → 0, we have

(C−1B⊺)li
r→0−−−→ −φi(xel)
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with the coordinate of the center of the integral xel to where the electrode interface |el|
has shrunk.
While we have the given convergence for C−1B⊺ and A−1 for the matrix product in the
brackets, the matrix B goes to zero for r → 0, so we have

U = −(IL − C−1B⊺A−1B)−1C−1B⊺A−1x
r→−−→ C−1B⊺uPEM

and because of (C−1B⊺)il = φi(xel), we have in the limit

Ul =

N∑
i=1

φi(xel)u
PEM
i = uPEM(xel)

which is the measured potential for the PEM. So, the CEM gives the same U as the PEM
for r → 0 without the necessity of the impedances going to infinity.
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Chapter 5

Numerical Implementation in
DUNEuro

The numerical implementation is made in the DUNEuro software toolbox. It builds up on
the software toolbox DUNE. We will only give a quick insight into the software toolbox
and refer for more details to [45] and [47].

5.1 DUNEuro

The implementation of the CEM is made in the software toolbox called DUNEuro. DUNEuro
is an open-source, C++-based software toolbox, which is designed for the numerical com-
putation of forward solutions in bioelectromagnetism [47]. It has a modular structure
which we benefited from in the implementation of CEM. It provides various FEM imple-
mentations in neuroscientific applications including EEG and MEG. The PEM was the
only and thus the default model in EEG.
DUNEuro supports various source models for solving the EEG forward problem, such as
the St. Venant [58], partial integration [60], Whitney [34], and subtraction approaches [63]
including the most recent local subtraction approach [20]. The software offers a Python
and MATLAB interface. We used the Python interface for the tests and simulations.
DUNEuro is built on the DUNE framework, which is also an open source C++ software
toolbox of advanced FEM [45]. In this thesis, the simulations are done with the continuous
Galerkin (CG-FEM) and specifically with Lagrange basis functions, even though various
FEMs are already implemented and are possible to use.

5.2 Mesh

The choice of the mesh is an important and necessary step in complex modeling to get
the problem in a discrete setting. It makes the solution ”computable” by approximating
it to a finite number of elements. With the help of imaging techniques like MRI, we can
get a more precise model of the head. It allows certain inclusions of realistic model prop-
erties depending on how much detail the mesh allows. Naturally, with increasing mesh
resolution the computation time also increases, but with the benefit of higher accuracy
and realism. There are methods that deal better with certain limitations, e.g. the low
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resolution, i.e. the discontinuous Galerkin method [8]. This method deals well with so
called skull leakages, where due to a low resolution of the skin and CSF compartments
are linked through a node and the currents take ”short cuts”, which lead to non-physical
results in the simulations [8]. With the surface-based meshing approaches and resolutions
that we deal with in this thesis, the continuous Galerkin method is a legitimate choice.
Both, tetrahedral and hexahedral meshes can be used in solving the EEG forward prob-
lem. The tetrahedral meshes have the advantage that smooth tissue surfaces can be well
represented in the model, compared to hexahedral meshes, where the surface has to be
modeled using cube-like elements, although the generation of tetrahedral meshes from
voxel-based MRI data is a more difficult task than the generation of hexahedral meshes
[8].
In this work, we use only tetrahedral meshes, with high resolution (1 mm mesh resolution).
Specifically, the meshes are the following:
The mesh sphere1mm is generated with the software toolbox Gmsh which is an open source
3D finite element mesh generator [13][15]. sphere1mm is a sphere with 4 layers with the
radii 78, 80, 86, 92 mm and the compartments brain, CSF, skull, skin and the conductivi-
ties 0.00033, 0.00179, 0.00001 and 0.00043 S

mm , respectively. The mesh resolution was set
to 1 mm. It has about 2.4 million nodes and 14.6 million tetrahedral elements. The dipoles
were generated from a set of points on the unit sphere, which were scaled up to a sphere of
radius 78 mm because 78 mm is the radius of the sphere for the brain compartment. The
radius is multiplied by the eccentricity of 0.98 attain dipoles that are realistically placed
about 1.5 mm away from the next conductivity jump. Radial and tangential moments
were assigned to these dipoles positions. This mesh with these dipoles is used for the EEG
forward simulations.
Since spherical models do not include the complex folding of the cortex which leads to a
more complicated brain-CSF interface (see figure 5.1) which effects the current flow in the
head, more realistic models are desired. In this thesis, we also performed simulations on
a realistic head model.
For this, T1, T2 and DTI (see [43][54] for DTI) MRI scans (see [23] for T1 and T2 MRI
scans) of a healthy adult male subject who gave written informed consent according to the
declaration of Helsinki prior to the measurement, which was approved by the ethics com-
mittee of the University of Münster (#2015-263-f-S), were measured. Using the CHARM
pipeline [35], a realistic volume conductor model was constructed consisting of ca. 730 000
nodes and 4.1 million tetrahedral elements. This mesh is called realisticMesh.
We generated 47 983 dipoles which are placed realistically close to the cortex and did the
simulations for the choice of all three unit moments (1, 0, 0), (0, 1, 0), and (0, 0, 1) as the
moments of the dipole. This mesh with the dipoles is also used for the EEG forward
simulations and an investigation on tES.
For the simulations of iEEG and DBS we also created a spherical model with Gmsh. For
this we created a spherical model with the same layers and conductivities as in sphere1mm,
but additionally with three cylinders cut out for the depth electrodes, see figure 5.2. The
mesh that we used for iEEG and DBS with CEM, we call sphere DBS and it has the three
bases (entries given in millimeters) for the cylinders:

base1 = (145, 127, 127), base2 = (127 ·
√
3

2
, 136, 127)
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Figure 5.1: This figure shows a clip of realisticMesh. The complex foldings of the cortex
are visible at the brain-CSF interface (the CSF is marked red because of its higher con-
ductivity) and the more complex representation of the brain compartment. The lighter
blue brain compartment is the gray matter and the darker blue brain compartment is the
white matter where the anisotropy is included. Here, the magnitude of the conductivity
tensor for each element is shown.

base3 = (127 + 18 · cos( π
12

), 127 + 18 · sin( π
12

), 127).

The direction of them are

dir1 = (1, 0, 0), dir2 = (

√
3

2
,
1

2
, 0) dir3 = (cos(

π

12
), sin(

π

12
), 0).

The total length of a depth electrode is set to 190 mm, the length of a contact is 2.25 mm
with spacings in between with a length of 0.75 mm and the cylinder has a radius of 0.43
mm. The resolution parameter for the electrodes is set to 0.25 mm and the resolution
parameter for the rest of the mesh is set to 3 mm. In figure 5.3 a slice of the mesh is
visible with the depth electrodes.
For the iEEG and DBS it is a sensible step to create a mesh which also has the higher
resolution for the cylinders, but with the cylinders assigned to the compartments where
they ly in.. This is what we did for sphere DBS PEM. The structure of the cylinders
are also present in the mesh, but the cylinder parts are assigned to the corresponding 4
compartments of the underlying spherical mesh, which we can see in figure 5.3. Apart
from that, sphere DBS and sphere DBS PEM have same mesh structure. Each of both
meshes has about 1.6 million nodes and 10 million tetrahedral elements.
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Figure 5.2: This figure shows a slice of the meshes sphere DBS PEM (left) and sphere DBS
(right). The four compartments are also visible.

Figure 5.3: This figure shows a slice of sphere DBS PEM (left) and sphere DBS (right)
with visible edges of the mesh elements. It is visible that sphere DBS PEM also has the
depth electrodes in its mesh structure, but also includes their volume.
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5.3 CI Pipeline and Example Code

DUNEuro is a software toolbox that started in 2016 and is a collaborative work where
the contributions of each contributor can have high interdependencies and thus it is of
importance to create an environment in which the usability, coherence and functionality
of the code is guaranteed, also on different machines and compiler setups. To guarantee
this, a continuous integration (CI) pipeline was setup to have tests that run on different
environments as soon as new versions of DUNEuro get committed to DUNEuro’s GitLab
repository. To this CI pipeline, we additionally integrated a test for CEM, using linear
basis functions, the continuous Galerkin method, and the local subtraction approach as
the source model to ensure that even future contributions to the DUNEuro framework
keep the functionality and utility of the implemented CEM code.
Over the entire simulations, we have high-resolution tetrahedral meshes, the continuous
Galerkin method with linear basis functions as the FEM-solver, and the local subtraction
approach as the source model.
For the linear systems that we solve in the FEM approach, we use the preconditioned
conjugate gradient solver with an algebraic multigrid preconditioner (see [42][44]).
Exemplarily, we show how to set the drivers for CEM and PEM using the Python in-
terface. For the CEM, we additionally need for the electrodes the electrode projection
type, impedances and the radius for the electrodes. The impedances are entered as a
impedances.txt file which holds the ACI values for the i-th electrode in the i-th line
while the radius must be given as one value (in millimeters) and is then the radius for
all electrodes. Here, the radius is set to 10 mm for the electrodes and an impedance file
impedances.txt is chosen. The electrode projection type is cem radial which means that
the boundary faces whose centers are less than 10 mm away from the center of the face
that is the closest to the electrode coordinate gets added to the corresponding electrode
interface. The Python code is shown in the following page:
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# create driver for PEM

mesh_cfg_pem = {’nodes ’ : nodes , ’elements ’ : elements}

tensor_cfg_pem = {’labels ’ : labels , ’conductivities ’ : conductivities}

volume_conductor_cfg_pem = {’grid’ : mesh_cfg_pem , ’tensors ’ :

tensor_cfg_pem}

driver_cfg_pem = {’type’ : ’fitted ’, ’solver_type ’ : ’cg’, ’element_type

’ : ’tetrahedron ’, ’electrode_model ’ : ’pem’, ’post_process ’ : ’true

’, ’subtract_mean ’ : ’true’}

solver_cfg_pem = {’reduction ’ : ’1e-14’, ’edge_norm_type ’ : ’houston ’, ’

penalty ’ : ’20’, ’scheme ’ : ’sipg’, ’weights ’ : ’tensorOnly ’}

driver_cfg_pem[’solver ’] = solver_cfg_pem

driver_cfg_pem[’volume_conductor ’] = volume_conductor_cfg_pem

print(’Creating driver for PEM’)

meeg_driver_pem = dp.MEEGDriver3d(driver_cfg_pem)

print(’Driver created for PEM’)

# set source type for PEM

driver_cfg_pem[’source_model ’] = source_model_config_database[

source_model]

# set electrodes for PEM

print(’Setting electrodes for PEM’)

electrode_cfg_pem = {’type’ : ’closest_subentity_center ’ , ’codims ’ : ’3

’}

meeg_driver_pem.setElectrodes(duneuro_electrodes , electrode_cfg_pem)

print(’Electrodes set for PEM’)

# create driver for CEM

mesh_cfg_cem = {’nodes ’ : nodes , ’elements ’ : elements}

tensor_cfg_cem = {’labels ’ : labels , ’conductivities ’ : conductivities}

volume_conductor_cfg_cem = {’grid’ : mesh_cfg_cem , ’tensors ’ :

tensor_cfg_cem}

driver_cfg_cem = {’type’ : ’fitted ’, ’solver_type ’ : ’cg’, ’element_type

’ : ’tetrahedron ’, ’electrode_model ’ : ’cem’, ’post_process ’ : ’true

’, ’subtract_mean ’ : ’true’}

solver_cfg_cem = {’reduction ’ : ’1e-14’, ’edge_norm_type ’ : ’houston ’, ’

penalty ’ : ’20’, ’scheme ’ : ’sipg’, ’weights ’ : ’tensorOnly ’}

driver_cfg_cem[’solver ’] = solver_cfg_cem

driver_cfg_cem[’volume_conductor ’] = volume_conductor_cfg_cem

print(’Creating driver for CEM’)

meeg_driver_cem = dp.MEEGDriver3d(driver_cfg_cem)

print(’Driver created for CEM’)

# set electrodes for CEM

print(’Setting electrodes for CEM’)

electrode_cfg_cem = {’type’ : ’cem_radial ’, ’impedances_file ’ :

impedances.txt , ’radius ’ : 10}

meeg_driver_cem.setElectrodes(duneuro_electrodes , electrode_cfg_cem)

print(’Electrodes set for CEM’)

driver_cfg_cem[’source_model ’] = source_model_config_database[

source_model]
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5.4 Implementation

The version of the code that we use and present here is available at [14].
DUNEuro is a modular software, which means that it uses a lot of template parameters.
The first intuitive step was to build a new way of projecting the electrodes for CEM. For
this we added to duneuro/eeg (or extended) the files:

• electrode projection factory.hh

• electrode projection interface.hh

• cem radial electrode projection.hh

• cem predefined electrode projection.hh

In electrode projection factory.hh the class CEMElectrodeProjectionFactory for the CEM
is added, which has the CEM as the electrode model. The two flags we implemented for
the electrode projection are cem radial and predefined electrodes.
In electrode projection interface.hh the class ProjectedElectrode was also extended for the
CEM and now additionally holds the impedance and a vector of intersections, called
electrodeInterface which represent the electrode interface. Here the impedance is the ACI
which we give in as a flag to later calculate the ECI including the area of the electrode
interface in cem radial electrode projection.hh and cem predefined electrode projection.hh.
In cem radial electrode projection.hh the class CEMRadialElectrodeProjection also takes
the radius as a variable and has the method setElectrodes. Here, the boundary faces of
the head are added to electrodeInterface if the distance between the global coordinate to
which the electrode is projected and the center of the boundary face is less than the given
radius. This also leads to electrodes which are not perfect circles, but a union of boundary
faces. After generating the electrodeInterface, the ECI is calculated by multiplying the
given ACI with the sum of the areas of the faces in electrodeInterface.
In cem predefined electrode projection.hh we assume that we already have the faces which
create the electrodeInterface. This electrode projection is needed for the iEEG and DBS
since here the electrode interface is not at the boundary and can not be achieved by
calculating distances to a global coordinate. In this file, the ECIs are also calculated by
multiplying the given ACIs by the sum of the areas of the faces of the corresponding
electrodeInterface.
In duneuro/eeg we also extended the files

• local subtraction source model.hh

• local subtraction cg local operator.hh

• local subtraction cg p1 local operator.hh

• analytic utilities.hh.

Since for the CEM, the local subtraction approach has one additional term for the right-
hand side of the PDE 3.2, the method postProcessCEM is implemented in local subtrac-
tion source model.hh. Here, an object of a local operator is created. For this object the
method assembleElectrodeInterfaces exists which is implemented in duneuro/common/ele-
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ment patch assembler.hh and checks if the patch or the transition region for the local sub-
traction source model intersects a face of the electrodeInterface of the electrodes and adds
the integral over this face to the right-hand side (see the last summand in 3.21) if so with
the methods lambda patch electrode intersection and lambda patch electrode intersection-
U l that are implemented in the local operators.
We have different options for the local operator for the local subtraction source model. The
computation can be done numerically. For this, local subtraction cg local operator.hh now
also holds the method assembleElectrodeInterfaces. In local subtraction source model.hh,
the method assembleRightHandSide checks if we use the continuous Galerkin approach and
linear functions in our finite elements and if we are in the isotropic case. It then creates a
local operator which uses the analytical expressions of the terms for the right-hand side for
the local subtraction approach if all of them hold. So, the file local subtraction cg p1 local-
operator.hh and analytic utilities.hh are extended for this case and used.
In duneuro/common, we added

• cem electrode assembler.hh

• cem local operator.hh

• cem solver.hh

• cem utilities.hh

In cem electrode assembler.hh the matrices for the FEM get assembled, which are called
the base Jacobian A (see 4.6), the electrode coupling matrix B (see 4.8), and the electrode
interface matrix C (see ??).
In cem local operator.hh the contribution of a single element of the mesh to the matrices
for the FEM gets added to the matrix entries.
In cem solver.hh the core of the solver is implemented. It contains the methods setElec-
trodeProjection, setSchurMatrices, solve, solveEEGForward, solveTDCSForward and some
private methods that are called for these methods. While setElectrodeProjection sets the
projected electrodes, the method setSchurMatrices sets the matrices needed for the trans-
fer matrix approach with the Schur complement. The method solve executes the transfer
matrix approach with the Schur complement while solveEEGForward does this for multiple
dipoles. In contrast to the solvers for PEM, the transfer matrix approach is implemented
in this solver and not in duneuro/eeg/transfer matrix solver.hh. As the name suggests,
solveTDCSForward solves the TDCS forward problem for a given injection pattern.
In cem utilities.hh we have a class for the vector structure used for CEM, since we have
N + L many entries with N being the number of elements of the mesh and L being the
number of electrodes, called CEMDOFVector.
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(a) 1mm (b) 5mm

(c) 10mm (d) 20mm

(e) 1mm, close-up with visible edges (f) 5mm, close-up with visible edges

(g) 10mm, close-up with visible edges (h) 20mm, close-up with visible edges

Figure 5.4: Electrodes set with different radii in the spherical model



45

Chapter 6

Numerical Experiments and
Results

While for the PEM, we only need the global coordinates of the electrodes, which are then
mapped to a subentity center, the CEM has some additional parameters, which we also
give in as flags. These are the radius of the L electrodes and a text file with L-many lines
for the average contact impedances of the electrodes. So, it is a natural step to play with
these parameters and look at the differences between the CEM and the PEM. The default
values for these parameters are 10 mm for the radius, 5000 Ω as the ACI for each electrode
and 0.98 as the eccentricity of the dipoles.

6.1 Error Measures

For the comparison of different simulations, we need functions that capture different mea-
sures of errors. In the following definitions, the norm is always meant to be the norm in

the Lebesgue space ℓ2(L) = {(x1, ..., xL) ∈ RL :
L∑
i=1

|xi|2 <∞}, which is

∥(x1, ..., xL)∥ =

√√√√ L∑
i=1

|xi|2.

The relative error (RE) puts the absolute difference of the two potentials in proportion
to the reference potential. In this study, the solution with CEM is taken as the reference
potential and is denoted by uCEM. Formally, the RE is defined by

RE(uPEM, uCEM) =
∥uPEM − uCEM∥

∥uCEM∥
.

We also have the relative difference measure (RDM). By dividing both potentials by their
norm, this measure does not take the errors into account that result from different mag-
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nitudes. It is defined as

RDM(uPEM, uCEM) =

∥∥∥∥ uPEM

∥uPEM∥
− uCEM

∥uCEM∥

∥∥∥∥ .
The magnitude error (MAG) measures only the differences in magnitude and does not
take the distribution of the potentials into account. Here, the reference potential is also
the potential achieved by CEM. It is defined as

MAG(uPEM, uCEM) =
∥uPEM∥
∥uCEM∥

and is 1 if u and uCEM have no magnitude error.
To visualize the data, we use the boxplot method of seaborn (see [50]). The box in the box
plot visualize the first three quartiles where the line inside the box is the median, so 50%
of the data is below this value. The whiskers extend to show the rest of the distribution,
while the points show the outliers.
For the figures, the potential is colored red for positive values and blue for negative value,
and the magnitude of the gradient is given as the ∥ ·∥2-norm of the gradient and is colored
blue for the lower end of the scale and is colored red for the upper end of the scale.

6.2 EEG Forward Problem

Here we investigate the effects of different eccentricities, radii and impedances for sphere1mm
and realisticMesh and start with the spherical model.

6.2.1 Spherical Head Model

Eccentricity

The eccentricities were logarithmically scaled and rounded to two decimal places for the
figures and tables, but listed here after rounding to four decimal places: 0.7832, 0.8712,
0.9098, 0.9348, 0.9534, 0.9681, 0.9804, 0.9908. The ACIs are set to 5000 Ω for all elec-
trodes and the electrode radius is set to 10 mm.
The mean and median of every error measure gets bigger, the higher the eccentricity be-
comes for radial and tangential dipoles except for the median for radial dipoles, see table
6.1. Here, the errors increase from the eccentricity 0.7832 to 0.9348, but then stay at a
similar level or decrease from the eccentricity 0.9534 to 0.9908. This means that for radial
dipoles, the outliers are more considerable for higher eccentricities. We can also see this in
figure 6.1(a) and 6.1(b). More outliers occur for radial dipoles than for tangential dipoles
that also have larger error values.
In figures 6.1(e) and 6.1(f) we can see that the outliers for MAG only appear for higher
eccentricities and radial dipoles in a higher number with a larger MAG while for the tan-
gential dipoles the outliers appear for all eccentricities in a lower number with smaller
errors. This means that the magnitude difference does not increase much over all eccen-
tricities.
We see the development of the RE and the RDM in the box plots 6.1(a), 6.1(b), 6.1(c)
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Figure 6.1: Error values for PEM and the CEM (reference model) with an electrode radius
of 10 mm, ACIs of 5000 Ω, and various eccentricities for the dipoles.
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Eccentricities 0.7832 0.8712 0.9098 0.9348 0.9534 0.9681 0.9804 0.9908

Mean error values for radial dipoles

RE 0.0132 0.0164 0.0183 0.0199 0.0211 0.0223 0.0233 0.0241
RDM 0.0111 0.0138 0.0153 0.0165 0.0173 0.0181 0.0187 0.0191
MAG 1.0067 1.0083 1.0093 1.0101 1.0107 1.0113 1.0118 1.0122

Median error values for radial dipoles

RE 0.0134 0.0164 0.0177 0.0183 0.0187 0.0187 0.0186 0.0184
RDM 0.0112 0.0136 0.0146 0.0152 0.0155 0.0156 0.0156 0.0156
MAG 1.0068 1.0083 1.0091 1.0094 1.0094 1.0093 1.009 1.0087

Mean error values for tangential dipoles

RE 0.0118 0.0145 0.0163 0.0179 0.0193 0.0207 0.022 0.0233
RDM 0.0101 0.0125 0.0142 0.0156 0.0169 0.0182 0.0194 0.0205
MAG 1.0059 1.0071 1.0079 1.0086 1.0091 1.0096 1.0101 1.0106

Median error values for tangential dipoles

RE 0.0116 0.0142 0.0159 0.0174 0.0188 0.0202 0.0213 0.0221
RDM 0.01 0.0122 0.0137 0.015 0.0163 0.0175 0.0183 0.0191
MAG 1.0059 1.0071 1.0079 1.0085 1.0091 1.0096 1.01 1.0104

Table 6.1: Mean and median values of the error measures for PEM and CEM (reference
model) for radial and tangential dipoles for various eccentricities

and 6.1(d). We notice that the errors are smaller and the number of outliers is less for
the tangential dipoles. This indicates that the CEM makes a bigger difference for radial
dipoles with high eccentricities.

Radius

Now, we want to look at the differences between the CEM and the PEM for different radii.
The default for the electrode radius for the simulations is 10 mm, which leads to an area
of around πcm2 per electrode interface. Here we investigated the difference between the
CEM and the PEM for the radii (in millimeters): 1, 3, 5, 7, 10, 12, 15 and 20.
We look again at the mean and median values for the different measures for 1000 tangential
and 1000 radial dipoles with eccentricity 0.98 in table 6.2. This choice is realistic because
this brings a distance of 1.5 mm to the next conductivity jump, leading to realistic dipole
positions.
Compared to the development of errors for different eccentricities, here, the errors con-
stantly get larger, starting from 3 mm for radial and tangential dipoles. We can see that
for tangential dipoles the mean and median values are very close to each other, while for
radial dipoles the median and mean differ more. This shows again that for radial dipoles
more considerable outliers can appear. We can see this again in the box plots 6.2(a)-6.2(f).
We also see that the outliers appear for tangential dipoles also for the smaller radii, but
still with smaller errors compared to the case of radial dipoles.
It is interesting to note that the median for all cases in 6.2 decreases or stays the same
from 1 mm to 3 mm, but overall we can say that the difference between CEM and PEM
increases with bigger radii.
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Figure 6.2: Error values for PEM and the CEM (reference model) with various radii for
the electrodes, ACIs of 5000 Ω, and an eccentricity of 0.98 for the dipoles.
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Radius in mm 1 3 5 7 10 12 15 20

Mean error values for radial dipoles

RE 0.0126 0.0126 0.0135 0.0161 0.0232 0.0303 0.0444 0.0763
RDM 0.0112 0.0111 0.0117 0.0135 0.0187 0.0239 0.0345 0.0586
MAG 1.0002 1.0011 1.003 1.0058 1.0118 1.0168 1.0263 1.0462

Median error values for radial dipoles

RE 0.0127 0.0126 0.0131 0.0142 0.0186 0.0231 0.0335 0.0607
RDM 0.0111 0.011 0.0115 0.0126 0.0156 0.019 0.0274 0.0483
MAG 1.0001 1.0012 1.0029 1.0051 1.0091 1.0125 1.0191 1.035

Mean error values for tangential dipoles

RE 0.011 0.011 0.0118 0.0143 0.022 0.0294 0.0433 0.0722
RDM 0.0109 0.0108 0.0114 0.0133 0.0193 0.0253 0.0365 0.0595
MAG 1.0002 1.001 1.0026 1.0051 1.0101 1.0144 1.0223 1.0388

Median error values for tangential dipoles

RE 0.0104 0.0104 0.011 0.0134 0.0213 0.0287 0.0426 0.0729
RDM 0.0103 0.0102 0.0106 0.0124 0.0183 0.0244 0.0358 0.0601
MAG 1.0002 1.001 1.0025 1.005 1.01 1.0143 1.0221 1.0387

Table 6.2: Mean and median values of the error measures for PEM and CEM (reference
model) for radial and tangential dipoles for various radii

Impedances

We want to look at the effect of different ACIs. Realistically, the ACIs, which are measured
and then set before the simulation are between 3000 and 5000 Ω. The question arises
of how very low, realistic, and very high impedances effect the simulation. The set of
8 impedance files are abbreviated in the following figures as 5000, 0.00001, 1, rand50,
rand5000, rand500000, 500000, rand3000-5000. Here, the single numbers without the
”rand” represent the impedance files that have this number as the ACI for all electrodes.
The impedance files with the additional ”rand” and a number x are impedance files that
have randomly generated impedances between 0 and x or in the case of rand3000-5000
numbers between 3000 and 5000 generated by the numpy.random.rand() method.

Looking at the mean and median values for the radial and tangential dipoles two main
things get clear: We can classify the impedance files into two groups if it comes to their
errors: (0.00001, 1, rand50 ) and (5000, rand5000, rand500000, 500000, rand3000-5000 ).
In the first group, the errors are considerably high due to the shunting currents. In table
6.3, we see for low impedances a clear difference between the CEM and the PEM. The
differences between the mean and median values for radial dipoles and low impedances
are comparably low to those of the second group. In the second group, all errors for radial
dipoles are quite low, but the difference between the mean and the median is larger. So,
we can see that the lower the impedances, the better the model handles possible outliers
in the radial dipoles. We can also see this in figures 6.3(a)-6.3(f). We have some nice
ways to visualize this. For this, we visualized the gradient and the potential distribution
for a radial dipole with the impedance files 5000 and 0.00001 in the figures 6.4 and 6.5
respectively. In figure 6.4 we can clearly see how the potential passes through the electrode,



51

50
00

0.0
00

01 1

ra
nd50

ra
nd50

00

ra
nd50

00
00

50
00

00

ra
nd30

00
-50

00

Impedances

0.1

0.2

R
E

(a) RE, radial

50
00

0.0
00

01 1

ra
nd50

ra
nd50

00

ra
nd50

00
00

50
00

00

ra
nd30

00
-50

00

Impedances

0.1

0.2

0.3

R
E

(b) RE, tangential

50
00

0.0
00

01 1

ra
nd50

ra
nd50

00

ra
nd50

00
00

50
00

00

ra
nd30

00
-50

00

Impedances

0.025

0.050

0.075

0.100

R
D

M

(c) RDM, radial

50
00

0.0
00

01 1

ra
nd50

ra
nd50

00

ra
nd50

00
00

50
00

00

ra
nd30

00
-50

00

Impedances

0.05

0.10

0.15

R
D

M

(d) RDM, tangential

50
00

0.0
00

01 1

ra
nd50

ra
nd50

00

ra
nd50

00
00

50
00

00

ra
nd30

00
-50

00

Impedances

0.8

0.9

1.0

M
A

G

(e) MAG, radial

50
00

0.0
00

01 1

ra
nd50

ra
nd50

00

ra
nd50

00
00

50
00

00

ra
nd30

00
-50

00

Impedances

0.8

0.9

1.0

M
A

G

(f) MAG, tangential

Figure 6.3: Error values for PEM and the CEM (reference model) with an electrode radius
of 10 mm, various files for the ACIs, and an eccentricity of 0.98 for the dipoles.
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Impedance files 5000 0.00001 1 rand50 500000

Mean error values for radial dipoles

RE 0.0228 0.1375 0.1234 0.0737 0.0226
RDM 0.0187 0.0422 0.0384 0.0275 0.0186
MAG 0.9885 0.8682 0.882 0.9313 0.9891

Median error values for radial dipoles

RE 0.0184 0.1359 0.1218 0.0718 0.0181
RDM 0.0156 0.0414 0.0376 0.0265 0.0156
MAG 0.991 0.8697 0.8834 0.933 0.9916

Mean error values for tangential dipoles

RE 0.0218 0.1317 0.1181 0.0703 0.0215
RDM 0.0193 0.0397 0.0363 0.0265 0.0193
MAG 0.99 0.8737 0.887 0.9347 0.9906

Median error values for tangential dipoles

RE 0.021 0.1312 0.1176 0.0691 0.0208
RDM 0.0183 0.0389 0.3558 0.0254 0.0182
MAG 0.9901 0.8739 0.8873 0.9354 0.9907

Table 6.3: Mean and median values of the error measures for PEM and CEM (reference
model) for radial and tangential dipoles for various impedance files

Figure 6.4: The magnitude of the gradient is visualized for a radial dipole and for the
cases of a realistic array of impedances 5000 (left) and for an array of unrealistically low
impedances 0.00001 (right).
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Figure 6.5: The potential distribution for a realistic impedances 5000 (left) and for unre-
alistically low impedances 0.00001 for a radial dipole is shown.

which is modeled to have infinite conductivity. So, the current flows into the electrode
at one part of the edge of the electrode interface and leaves the electrode at that part of
the edge that is the most distant to the part of the edge where the current entered the
electrode.
In the figure 6.5, we can see the potential distribution. For the impedance file 5000
the electrode interfaces are not clearly visible, while for the impedance file 0.00001 the
potential at the electrode interface is averaged. This is due to the third boundary condition
3.8. We see in the figures 6.3(a)-6.3(f) that the difference between very high impedances
and realistic impedances is not really notable. A considerable difference appears only for
the impedances that are very low.

6.2.2 Realistic Head Model

We want to investigate the effects of different impedances for realisticMesh. Recall that
here we do the simulations with 143949 dipoles to put the number of outliers in the
box plots into perspective. We investigate for the radii 0.00001, 10 and 15 the effects
of all impedance files from the previous section. The simulations showed again that the
investigation of the impedance files 5000, 0.00001, 1, rand50, and 500000 are sufficient.
So, for a better representation of the results, we only show the mean and median values
for these impedances in the tables.
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Figure 6.6: RDM between the PEM and the CEM (reference model) for the 143949 dipoles
and with 57 electrodes with radius 10 mm and various impedance files.

Radius = 10 mm

First, some issues appeared for the classical case of having electrodes with a radius of 10
mm.
If we look at the RDM in the figures 6.6, we see a very high number of outliers with large
RDM values. Having a look at figure 6.7, it is visible that two of the 57 electrodes are
placed nonphysically. The electrodes intersect the ear and even the electrode interface at
the right ear is not connected. So, this has to be paid attention to by the user of the CEM
for realistic head models.
In the next step, we erase these electrodes and have 55 electrodes left. If we now look
at the figure 6.8, we see that the number of outliers decreased considerably and the error
values of the outliers are also considerably lower.
This shows that the non-physically set electrodes were a considerable source of the error.
As we would expect, the errors are getting considerably high for very low impedances and
the gradient and potential distribution is again shown in figures 6.9 and 6.10.

Single Face Electrode Interfaces

A sufficiently small radius is chosen (here, it is 0.00001 mm) to include the case in which
the electrode interface of an electrode is a single face on the boundary. We can see this
in figure 6.11. The PEM was adapted to this case by evaluating the computed potential
at the coordinate of the center of this face. By the calculations in 4.6, we expect that the
difference between the PEM and the CEM goes to zero for higher impedances. We also
check this numerically in this section.
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Figure 6.7: This figure shows the electrode interfaces close and at the ears for the montage
with 57 electrodes for the realistic head model. We see that the electrodes behind the ears
also include boundary faces of the ear.
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Figure 6.8: RDM of the PEM and the CEM (reference model) for the 143949 dipoles and
without the two electrodes that had faces of the ear in their interface. The radius for the
remaining 55 electrodes are 10 mm and the simulation is done for various impedance files.
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Figure 6.9: This figure shows the magnitude of the gradient for the impedance files 0.00001
(left) and 5000 (right).

Figure 6.10: This figure shows the potential distribution for the impedance files 0.00001
(left) and 5000 (right). Red colored are the positive values and blue colored are the
negative values.
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Figure 6.11: Three electrode interfaces are seen which are darker colored on the boundary
of the mesh with visible edges. The electrode interfaces consist of single faces and the
lighter points in these electrode interfaces show the projected point electrodes. Thus, the
PEM takes the potential values at these coordinates.

Impedance files 5000 0.00001 1 rand50 500000

Mean error values for 143949 dipoles

RE 1.6 · 10−5 0.003028 0.002909 0.001666 0.0
RDM 1.5 · 10−5 0.002858 0.002746 0.001574 0.0
MAG 0.999996 0.999186 0.999216 0.999568 1.0

Median error values for 143949 dipoles

RE 1.6 · 10−5 0.002898 0.002787 0.001604 0.0
RDM 1.5 · 10−5 0.0027 0.002597 0.001499 0.0
MAG 0.999996 0.999188 0.999219 0.999566 1.0

Table 6.4: Mean and median values of the error measures for 143949 dipoles for PEM
and CEM (reference model) for various impedance files and single faces as the electrode
interfaces
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We see the mean and median error values in table 6.4 and see that these values decrease
even more with electrodes that have a single face as the electrode interface compared to
the case of larger electrodes. With increasing ACIs, the errors converge to zero also in
the numerical setting. It is important and interesting to point out that for these electrode
interfaces, the error for the very low impedances also decreased considerably.

6.3 tES

The principle of reciprocity gives us the possibility to perform error investigations for the
EEG forward problem and derive from these simulations the errors for the tES. However,
current standard two-patch tES is commonly done with two electrodes whose area of the
interfaces are between 25 and 35 cm2 ([24], chapter 1). We thus also feel the necessity to
do simulations with an electrode configuration that is suitable for tES.
We do this with realisticMesh and use as the target source the same dipolar source that
is used in ([20], chapter 4.3) which is used for the analysis of somatosensory evoked re-
sponses.
We choose the electrodes for the stimulation for PEM - the anode and cathode - by calcu-
lating the potentials for the point electrodes and taking the electrodes with the maximum
and minimum potential value as the anode and cathode respectively.
For the CEM we want to do the same, but since the placed electrodes effect the whole
potential in the head and especially in the skin compartment close to the electrodes (see
[37]), all the possible electrode pairs for the stimulation have to be set for the CEM and
the simulated potential values by the electrode have to be calculated for each possible
pair. The radius of the electrodes is set to 3 cm, which gives an area of ≈ 28.27 cm2.
This is done for all electrode pairs whose centers have a distance that is large enough
so that no overlaps of the electrode interfaces occur. This leads to approximately 1300
pairs of electrodes. With the increased radius, unrealistically set electrode interfaces can
appear again, so this has to be paid attention to. After the calculated potential values for
the pairs of electrodes, the pair with the largest potential difference is chosen to be the
pair which is used for the stimulation. This is done for the two impedance files 5000 and
0.00001 to see if very low impedances also effect the choice of stimulation electrodes.
The results show that the simulations give the maximal potential difference for the PEM
as 1.2121, for the CEM with the impedance file 5000 as 1.1697 and for the CEM with the
impedance file 0.00001 as 1.143 rounded to four decimal places.
For all three cases, the same electrode pair is chosen for the stimulation that is visualized
in figure 6.12 and the corresponding potential in figure 6.13. This shows that the CEM
may also not make a considerable difference in the choice of two stimulating electrodes
with a larger radius even with unrealistically low impedances.

6.4 iEEG Forward Problem

There is interest in the EEG forward problem while using depth electrodes, so in the
iEEG forward problem. In general, it is difficult methodologically to find current sources,
which are deeper in the brain. For this scenario, depth electrodes are advantageous since
they can be placed close to the regions of interest in the brain. We also want to simulate
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Figure 6.12: This figure shows the chosen pair for the stimulation for all three cases (PEM,
CEM with 5000, and CEM with 0.00001 ). This pair is yellow colored. The coordinates of
the electrodes are white. The dark blue line goes through the dipole position and has the
direction of the dipole moment. It is visible that the chosen pair that is the closest to the
intersection of this line and the boundary of the head is also chosen to be the stimulating
pair from the simulation results.
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Figure 6.13: This figure shows the potential for the PEM on the boundary of the head.
The black line again goes through the dipole position and has the direction of the dipole
moment. It is visible that the line intersects the boundary of the head close to the minimal
and maximal potential where also the pair of electrodes is the closest to.
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Figure 6.14: This figure shows a dipole with the moment ( 1√
3
, 1√

3
, 1√

3
) (blue arrow) that

is placed in a distance of 3 mm away from an electrode contact. The length of the arrow
does not stay in a relation to the dipole strength.

this scenario, so we construct dipole sources close to the electrode interfaces of the depth
electrodes and compare CEM with PEM.
The ACIs are randomly generated as float numbers between 500 and 1500 Ω (this is a re-
alistic range according to [5]) with the numpy.random.rand() method and this impedance
file is called rand500-1500. We will again also use the impedance file 0.00001 for an in-
teresting comparison with PEM.
Here, we create dipoles in the following way (see figure 6.14): We have three depth elec-
trodes. These are modeled as cylinders with a starting point and a direction. We calculate
two orthonormal vectors to the depth electrodes and place dipoles 3.43 mm away from
the electrode centers and in the orthonormal directions. The reason for choosing 3.43
mm is the radius of the cylinder, which is 0.43 mm and an additional distance of 3 mm
from the electrode interface. For each dipole position, we have the moment ( 1√

3
, 1√

3
, 1√

3
)

and thus have 60 dipoles. One of such dipoles is visualized in figure 6.14. We take this
moment, because the moments (1, 0, 0), (0, 1, 0) and (0, 0, 1) cause that the planes that
are perpendicular to the dipoles contain in two cases either three or all 30 contacts and
thus have potential values that are zero for PEM and close to zero for CEM. This causes
that the error measures are not stable anymore because of the very small values in the
denominators for the error measures in 6.1. We can see the error values for the PEM and
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Figure 6.15: This figure shows the error values for the 180 dipoles that have the mo-
ment (1, 0, 0), (0, 1, 0) or (0, 0, 1) in the iEEG simulation using the CEM with realistic
impedances. We see that some outliers have very large errors.

the CEM as the reference in figure 6.15 and see considerable outliers for these 180 dipoles
with very large error values.
For the 60 dipoles with the moment ( 1√

3
, 1√

3
, 1√

3
) the mean and median values of the error

measures are shown in table 6.5 for the cases of making the comparison on all 30 electrode
contacts and on 2 − 3 electrode contacts that are the closest to the corresponding dipole
position. We can see that the errors are very small and that even the closest electrode
contacts to the dipoles show small errors for realistic impedances.

6.5 DBS

We implemented a way of using the CEM for DBS electrodes. Here, we are stimulating
by injecting a current into the brain through depth electrodes that are placed in the head
of the patient. The two meshes, we have, are: sphere DBS and sphere DBS PEM.
We use two different choices of stimulation and start with the more realistic one, where
the stimulating electrodes are on the same depth electrode and placed right next to each
other. The applied current is +1 mA and −1 mA. While 2 electrodes stimulate, the other
28 electrodes are used to measure. So, the computed potentials that are measured by the
stimulating electrodes were left out of the comparison since the measured potentials by
these electrodes could differ considerably, because of the Dirac function for the stimulation
with PEM.
All error values are attained by taking the PEM and the CEM as the reference model.
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Impedance files rand500-1500 0.00001

Mean error values for 60 dipoles over all electrode contacts

RE 0.0312 0.1322
RDM 0.0197 0661
MAG 1.0217 1.1098

Median error values for 60 dipoles over all electrode contacts

RE 0.0144 0.1044
RDM 0.0125 0.0645
MAG 1.0072 1.0811

Mean error values for 60 dipoles over the closest 2− 3 electrode contacts

RE 0.0322 0.1405
RDM 0.0151 0.0483
MAG 1.0255 1.1275

Median error values for 60 dipoles over the closest 2− 3 electrode contacts

RE 0.0161 0.1135
RDM 0.013 0.05
MAG 1.0092 1.0993

Table 6.5: This table shows the mean and median values of the error measures for the
iEEG forward model with PEM and CEM as the reference model with 60 dipoles for
different sets of measured potential values and two impedance files. The first set is over
all 30 electrode contacts and the second set is over the two to three electrode contacts
that are the closest to the dipole.
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Figure 6.16: In this figure the potential distribution with CEM and the impedance files
rand500-1500 (left) and 0.00001 (right) is shown for DBS with two stimulating electrode
contacts.

For the realistic impedance file with ACIs between 500 and 1500 Ω the RE is 0.0555, the
RDM is 0.0199, and the MAG is 0.948. Here, we see that the incorporation of the CEM
leads to a slightly higher error value for RE even for realistically set paramaters.
For the impedance file 0.00001 the RE is 0.0772, the RDM is 0.0486, and the MAG is
0.9389.
In figure 6.16 we can see the potential distribution for the DBS with CEM and two different
impedance files rand500-1500 and 0.00001. We see how the electrode interfaces effect the
potential with the impedance file 0.00001. In figure 6.17 we see the magnitude of the
gradient for the same comparison and see the effect of the electrode interfaces strongly for
0.00001, but also slightly for the realistic values in rand500-1500.
We can see in figure 6.18 the comparison of the magnitude of the gradient for the PEM
case and the CEM with rand500-1500 for stimulating contacts that are maximally far
away from each other over the three depth electrodes. So, the stimulation is done by
two contacts that are on two depth electrodes that are the most distant to each other.
On one depth electrode the stimulating contact is chosen to be the last one and for the
other depth electrode, the stimulating contact is the first one. We can see this by looking
approximately at the centers of the red patches in figure 6.18. Here, the RE is 0.0306, the
RDM is 0.0169, and the MAG is 0.9743.

6.6 Epicranial Application of Stimulation Electrodes

In optimizing brain stimulation, different methods and considerations are possible. When
we stimulate non-surgically, we have electrodes that are placed on the patients head. Com-
monly, those electrodes are placed on the skin or the hair of the patient. However, if the
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Figure 6.17: In this figure the magnitude of the gradient with CEM and the impedance files
rand500-1500 (left) and 0.00001 (right) is shown for DBS with two stimulating electrode
contacts.

Figure 6.18: In this figure the magnitude of the gradient with PEM (left) and CEM with
the impedance file rand500-1500 (right) is shown for DBS with two stimulating electrodes
that are maximally far away from each other.
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Figure 6.19: This figure shows the EASEE system [48].

stimulating electrodes are placed close to each other, this leads to the disadvantageous
case of a high amount of current flowing through the skin from the anode to the cath-
ode and much less flowing through the low conducting skull into the brain regions which
are meant to be stimulated. Additionally, this procedure can be experienced as painful
for some patients. The company EASEE [48] circumvents these problems by intervening
minimally - compared to other invasive methods - and placing the stimulating electrodes
permanently and directly on the skull. This company offers stimulation to patients with
drug-refractory epilepsy where the epileptogenic zone is meant to be stimulated. In ([49],
figure 2(B)) it was shown that 6 out of 26 patients who have received stimulation for
two years have become seizure-free. For this, the anode and four cathodes (see figure
6.19) are placed close to the epileptogenic zone. For a precise calculation of the electrode
placement for optimal stimulation of the epileptogenic zone, the CEM offers an advanta-
geous electrode model. We created two meshes with Gmsh where the electrode interfaces
are already part of the mesh and labeled as the corresponding electrodes. For the first
mesh, the electrodes are placed directly on the skull like in the EASEE -system and for
the second mesh, the electrodes are placed on the skin. We can see this in 6.20. With the
implemented electrode projection predefined electrodes we set the electrode interfaces and
have the injection pattern of 4 mA for the anode and −1 mA for the four cathodes.
Figure 6.20 shows that the current reaches deeper into the head and brain in the case of
electrodes placed directly on the skull with the CEM. This offers a very interesting field
where the benefits and advantages of CEM can be investigated.
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Figure 6.20: In this figure we see a tES with the the EASEE system (left) and with the
electrodes placed on the skin (right). In both cases, the CEM is used as the electrode
model. We see how the applied current reaches deeper into the head and even reaches
the CSF (thinnest compartment) and brain compartment (dark blue) with the EASEE
system.
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Chapter 7

Discussion

This thesis presented the analysis, evaluation, and implementation within the DUNEuro
framework [47] of the CEM for the modalities EEG, tES, iEEG, and DBS. The CEM was
successfully integrated into the FEM solver and extended to support the local subtraction
source model, the transfer matrix, and the Schur complement approach.
On an analytical level, the convergence of CEM to PEM for the radius r going to zero
(chapter A.1) was shown as well as in the FEM setting (chapter 4.6) and also in a nu-
merical simulation (chapter 6.2.2) which shows that the PEM is the limit of the CEM for
r → 0.
Through extensive numerical experiments in both spherical (for all modalities) and real-
istic head models (for EEG and tES), the impact of electrode radius, contact impedance,
and electrode placement was investigated. It was shown that the difference between CEM
and PEM increases with larger electrodes and lower contact impedances, particularly for
radial dipoles with high eccentricities. These results hold with [37].
The implementation and investigation of the CEM for iEEG and DBS applications is a
new contribution of this thesis and the effect of the CEM still needs to be evaluated with
error metrics that are appropriate for small signals and in various scenarios.
Incorporating more realistic head models with higher resolution (if feasible in the future),
layered skull compartments (as in [37]), and anisotropic conductivity, to better assess the
full benefits of the CEM are still to be done.
There are several known simplifications and potential sources of error in forward modeling
simulations. These include the use of dipole models for current sources, limited mesh res-
olution, numerical discretization errors, and tissue conductivity variability, inhomogeneity
and anisotropy. Also, inaccuracies may arise from the positioning of the electrodes and
variations in the application of conductive gel. It is difficult to answer at which point
the error introduced by the PEM becomes significant enough compared to the other error
sources to justify the necessity of using the more complex CEM.
One can ask whether large electrode areas in tES (25–35 cm2) can cause different choices
of electrode pairs for stimulation between PEM and CEM. This question was only inves-
tigated for one specific dipole and remains open for further study.
In this thesis, only the continuous Galerkin method was used. However, in certain situ-
ations such as skull leakages [8][56] for low-resolution meshes the discontinuous Galerkin
method might be an interesting alternative. A comparison between continuous and dis-
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continuous Galerkin methods using the CEM could be an interesting extension, both in
high- and low-resolution settings.
The use of p-FEM and higher-order basis functions (see [17][36]) may improve the accu-
racy of the solution in these settings. Also, modeling electrodes as circular interfaces and
employing methods such as cut-FEM [9] could lead to even more geometrically realistic
electrode representations.
With the development of methods to decrease the ECIs, the CEM could become an in-
creasingly attractive option and also in new emerging methods and scenarios, such as the
EASEE-system [48][49].
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Chapter 8

Conclusion

By including the electrode interface and the ECIs, the CEM produces more realistic results
without introducing excessive computational cost. The CEM is easy to use and incorpo-
rate by simply changing the flags and giving in the radius and the ACIs and overall, the
implementation of the CEM extends the modeling capabilities for realistic bioelectromag-
netic simulations in DUNEuro.
This thesis showed that despite the increased realism of the CEM, the PEM remains a
valid and efficient simplification in many practical cases including the simulations we con-
ducted with iEEG and DBS, especially when electrodes are small and impedances are
high. The occuring errors are larger for radial dipoles with high eccentricities.
As seen in the case of epicranial stimulation (chapter 6.6), new clinical or experimental
setups may emerge in which the CEM is not just beneficial, but can be essential. In
these scenarios improved realism of CEM could support better therapies that are based
on stimulation.

Outlook

For future developments in the field of bioelectromagnetism the effects of CEM should be
investigated and therefore for future research, it is highly valuable to have the CEM as a
realistic, robust and easy-to-use electrode model within a simulation framework such as
DUNEuro.
Currently, the implementation does not give warnings for overlapping electrode interfaces,
which can lead to larger errors - especially with lower impedances - in the computed
potentials. Future versions should include automated checks. When using the CEM,
it should also be verified that electrodes do not intersect non-physical surfaces such as
the ears. It could be useful to define boundary faces that are excluded from serving as
electrode interface candidates. The user of the CEM could also benefit from warnings
when an electrode interface has a value for the area that is not within a realistic interval
depending on the mesh resolution.
Future work may include comparisons with discontinuous Galerkin methods, exploration
of anisotropic conductivity effects, and – if technically feasible – the inclusion of spatially
varying impedance distributions to extend the electrode model even further for the case
that the impedance varies over the electrode interface.
The effect of the CEM in combined EEG and MEG like it can be used for the estimation
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of the epileptogenic zone (see [31]) is also an interesting direction for the research with
CEM.
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Appendix A

Appendix

A.1 Analytical Convergence of CEM to PEM in the EEG
Forward Problem with fixed Impedances and Radius
r → 0

In [12] and [19] there is the proof for tES, more precisely the TDCS case for the convergence
of the CEM to PEM for r → 0 for fixed impedances. It says that for a domain Ω0 ⊂ Ω
with Ω0 ⊂ Ω there exists r0 > 0 and C > 0 with

∥ur − u∥H1(Ω0)/R ≤ Cr2|I| (A.1)

for 0 < r < r0 and I ∈ RL. Here, H1(Ω0)/R ·1 is the quotient of the Sobolev space H1(Ω0)
by the space of constant functions, which is isomorphic to H⋆(Ω0). Here, the convergence
was shown for potentials that are defined up to a constant.
To understand this in full detail, I recommend [12] and [19].
We also want to show the convergence for the EEG forward problem and will use the
principle of reciprocity which we have also proven for the CEM case. For this, we follow
[22].
We denote the solution of the EEG forward problem for a dipole at position x0 with
moment M by u for the PEM and by (ur, U r) for the CEM with radius r ∈ R+.
We will take the first electrode as the reference electrode. Let us have the current injection
with the first electrode being the anode, so I1 = 1 and the j-th electrode being the cathode,
so Ij = −1. For this current injection pattern, we denote the solutions of the tES problem

for the CEM with radius r by uCEM, tES,r
i,1 and with the PEM by uPEM, tES

i,1 respectively.
Since the principle of reciprocity holds for both electrode models, we have:

⟨M,∇uCEM, tES,r
i,1 (x0)⟩ = U r

i − U r
1

⟨M,∇uPEM, tES
i,1 (x0)⟩ = u(pi)− u(p1).

So, we have

|(U r
i − U r

1 )− (u(pi)− u(p1))| = |⟨M,∇uCEM, tES,r
i,1 (x0)⟩ − ⟨M,∇uPEM, tES

i,1 (x0)⟩|
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= |⟨M,∇uCEM, tES,r
i,1 (x0)−∇uPEM, tES

i,1 (x0)⟩| ≤ ∥M∥2 · ∥∇(uCEM, tES,r
i,1 − uPEM, tES

i,1 )(x0)∥2
by the Cauchy-Schwarz inequality.
Here, we take an ϵ > 0, such that on the ball around x0 with radius ϵ, called Bϵ(x0) the
conductivity tensor σ is smooth and for an arbitrary constant C1 ∈ R, we have

∥M∥2 ·∥∇(uCEM, tES,r
i,1 −uPEM, tES

i,1 )(x0)∥2 ≤ ∥M∥2 ·∥uCEM, tES,r
i,1 −uPEM, tES

i,1 −C1∥C1(Bϵ(x0))

by the definition of the norm on C1(Bϵ(x0)).
With elliptic regularity and the fact that on the ball we have

∇ · (σ∇(uCEM, tES,r
i,1 − uPEM, tES

i,1 − C1)) = 0

we can deduce that the function uCEM, tES,r
i,1 −uPEM, tES

i,1 −C1 is smooth on the ball Bϵ(x0)
(see [10], theorem 6.3.1.). Here, it plays a role that σ is smooth on the ball Bϵ(x0).
We want to bring these estimations back to the Sobolev norm and can deduce (after
potentially shrinking the radius ϵ of the ball that uCEM, tES,r

i,1 −uPEM, tES
i,1 −C1 ∈ Hs(Bϵ(x0))

for an s ∈ R. Using Sobolev inequalities, we have for a suitably large s that

∥uCEM, tES,r
i,1 − uPEM, tES

i,1 − C1∥C1(Bϵ(x0)) ≤ C2 · ∥uCEM, tES,r
i,1 − uPEM, tES

i,1 − C1∥Hs(Bϵ(x0))

with a suitable constant C2 ∈ R+.
Let ũ = (u(p1), ..., u(pL))

T be the vector with the given potentials with the PEM. We also
have, by the definition of the quotient norm, that

∥U r − ũ∥RL/R·1 ≤ ∥(U r − ũ)− ((U r
1 − u(p1)), ..., (U

r
1 − u(p1)))∥2.

and the following estimation holds

∥(U r − ũ)− ((U r
1 −u(p1)), ..., (U

r
1 −u(p1)))∥2 ≤ (L− 1) max

2≤i≤L
|(U r

i −U r
1 )− (u(pi)−u(p1))|

So far, we have

∥U r − ũ∥RL/R·1 ≤ (L− 1) max
2≤i≤L

|(U r
i − U r

1 )− (u(pi)− u(p1))|

≤ (L− 1) · ∥M∥2 · ∥uCEM, tES,r
i,1 − uPEM, tES

i,1 − C1∥Hs(Bϵ(x0))

Since C1 ∈ R is chosen arbitrarily, we also have

∥U r − ũ∥RL/R·1 ≤ (L− 1) · ∥M∥2 · max
2≤i≤L

∥uCEM, tES,r
i,1 − uPEM, tES

i,1 ∥Hs(Bϵ(x0))/R·1

We can deduce that for a suitable constant C3 ∈ R+ and ϵ0 < ϵ

∥uCEM, tES,r
i,1 − uPEM, tES

i,1 ∥Hs(Bϵ(x0))/R·1 ≤ C3 · ∥uCEM, tES,r
i,1 − uPEM, tES

i,1 ∥H1(Bϵ0 (x0))/R·1

holds (see [12], lemma 9). In total, we have

∥U r − ũ∥RL/R·1 ≤ (L− 1) · C3 · ∥M∥2 · max
2≤i≤L

∥uCEM, tES,r
i,1 − uPEM, tES

i,1 ∥H1(Bϵ0 (x0))/R·1
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≤ (L− 1) · ∥M∥2 · C3 · C · r2

by A.1.
This shows the convergence of the CEM to PEM with fixed impedances and r → 0.

A.2 Convergence of CEM to PEM in the FEM Setting

We have seen in A.1 that the CEM converges to the PEM analytically for the radius
r → 0. It is important to note that the condition that the impedances go to infinity is
not necessary for the convergence of the CEM to PEM (see Appendix A.1), but the effect
that the electrodes do not effect the potential distribution in the head can be attained by
Zl → ∞.
The proof of the convergence in the FEM-setting has been worked out in corporation with
the doctoral student Malte Höltershinken and is presented here:
To also have the convergence in the numerical computations, we set the radius of the
electrode small enough. We work with tetrahedral meshes of 1 mm resolution and before
finding the right mesh face which represents the electrode interface, we choose the closest
center of the boundary faces to represent the center of the electrode. From this center
of the face, the distance to the other boundary faces are calculated with the electrode
projection cem radial and if they are smaller than the radius r, the intersection is added
to the electrode interface. So with every radius r ̸= 0 the intersection whose center repre-
sents the center of the electrode is at least in the electrode interface. By choosing r small
enough, we guarantee that the electrode interface el consists of only one boundary face.
In the PEM in DUNEuro we enter the codimension as a flag. It decides what dimension
the entity has to which the global coordinate of the electrode gets projected. Let c ∈ N0 be
the codimension we choose. Then the dimension of the entity is 3− c. In our simulations
we always chose c = 3, so the electrodes were projected to a node.
To show a convergence, we instead want the electrode in the PEM case to be projected to
the closest center of a boundary face, so the codimension was set to 1.
Now, we want to show why the CEM converges to PEM in this numerical setting:
We look at the FEM for CEM in the matrix form:(

A B
BT C

)(
u
U

)
=

(
x
y

)
as is in 4.5 and at the measured potential vector

U = (C −BTA−1B)−1y − (C −BTA−1B)−1BTA−1x.

For simplicity we assume that the patch for the local subtraction approach does not grow
into the electrode interfaces in which case y = 0 and we get

U = −(C −BTA−1B)−1BTA−1x.

To simplify the calculations we further assume Z1 = ... = ZL = λ and denote the matrices
A,B and C with this λ > 0 as the impedances by Aλ, Bλ and Cλ. It is clear that
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Bλ = λ−1B1 and Cλ = λ−1C1 with λ−1 := diag(λ−1, ..., λ−1). So, for U we get

U = −(Cλ −BT
λA

−1
λ Bλ)

−1BT
λA

−1
λ x,

and this is
U = −(λ−1C1 − λ−2BT

1 A
−1
λ B1)

−1λ−1BT
1 A

−1
λ x.

Further calculations give

U = −(C1 − λ−1BT
1 A

−1
λ B1)

−1BT
1 A

−1
λ x.

When we let λ→ ∞, it follows

U = −C−1
1 BT

1 A
−1
0 x

and A−1
0 is the inverse of the stiffness matrix of the PEM, because the additional sum in

4.6 goes to zero in the limit.
The vector A−1

0 x is the solution in the FEM for the PEM, so we will abbreviate it as
sPEM ∈ RN . The entries of this vector are the coefficients in the linear combination with

the basis vectors of our solution space, so uPEM =
N∑
i=1

sPEMi ·φi with the basis {φ1, ..., φL}

of our solution space. In this thesis, we only worked with linear basis functions, so the
basis are the hat functions.
So, we have

U = −C1B
T
1 s

PEM

and the l-th entry of BT
1 s

PEM is

(BT
1 s

PEM)l = −
N∑
i=1

(

∫
el

φi dS) · sPEMi = −
∫
el

N∑
i=1

φi · sPEMi︸ ︷︷ ︸
=uPEM

dS,

so we deduce

Ul = −(C1)l · (−
∫
el

uPEM dS) =

∫
el

uPEM dS

|el|
.

Because of the codimension of 1, the PEM gives us the value of the potential at the center
of the face to whose center the electrode was projected. We want to show that the same
value gets attained for the CEM with infinite impedances, so

Ul =

∫
el

uPEM dS

|el|
!
=

3∑
i=1

uPEM(pi)

3

for l ∈ {1, ..., L} and p1, p2, p3 being the three nodes of the single face of the electrode
interface. It is important to point out again that this equality will hold for the solution
space with the hat functions as the basis.
First, we want to pull the integral back to an integral over a triangle T in R2 with the
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corners at (0, 0), (0, 1) and (1, 0). el consists of a single triangle F . Let µ be an affine
map from the reference triangle in R2 to F . Then the hat functions for the three nodes
p1, p2, p3 are denoted by φp1 , φp2 , φp3 and can be mapped to the hat functions φ̃p1 , φ̃p2 , φ̃p3

by µ.
We see that

C

∫
T

uPEM(µ(x)) dS =

∫
el

uPEM(x) dS

with the transformation theorem (see [11], chapter 14) and with C =
√
det(JT

µ · Jµ) and
Jµ being the Jacobian matrix. Here, C is constant, because µ is an affine linear map.
If we replace the left- and the right-hand side with the hat functions, we have

C ·
3∑

i=1

(sPEMi ·
∫
T

φ̃pi dS) =

3∑
i=1

(sPEMi ·
∫
el

φpi dS)

If we have our coordinates x1, x2 in R2, then the hat functions are

φ̃p1(x1, x2) = x1, φ̃p2(x1, x2) = x2, φ̃p3(x1, x2) = 1− x1 − x2.

We integrate over T and use the theorem of Fubini (see ([11], chapter 7, theorem 2)) to
get

∫
T

φ̃p1(x1, x2) dS =

1∫
0

1−x2∫
0

x1 dx1 dx2 =

1∫
0

(1− x2)
2

2
dx2 =

[
−(1− x2)

3

6

]1
0

=
1

6
.

Similarly, we calculate this for φ̃p2 and φ̃p3 and see∫
T

φ̃pi(x1, x2) dS =
1

6

for every i ∈ {1, 2, 3}. With sPEMi = uPEM(pi), we deduce

3∑
i=1

(uPEM(pi) ·
∫
T

φ̃pi dS) =

3∑
i=1

uPEM(pi)

6
.

We thus have ∫
T

uPEM ◦ µdS =

3∑
i=1

uPEM(pi)

6

with |T | = 1
2 that ∫

T

uPEM ◦ µdS

|T |
=

3∑
i=1

uPEM(pi)

3
.
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We conclude with ∫
el

uPEM(x) dS

|el|
=

∫
T

uPEM ◦ µdS

|el| · C−1︸ ︷︷ ︸
=|T |

=

3∑
i=1

uPEM(pi)

3

and with the affine linearity of uPEM this shows

3∑
i=1

uPEM(pi)

3
= uPEM(

3∑
i=1

1

3
pi) = uPEM(xl)

with xl being the center of the single face of the electrode interface el. So, this shows that
for a single face as the electrode interface, the set codimension c = 1, and λ → ∞, the
PEM and the CEM are identical.
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