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Abstract. This paper discusses the challenges and methods for source
reconstruction of evoked potentials using deep learning in the context
of electroencephalography (EEG). We propose the use of deep learning
to address known challenges and improve traditional approaches. We
explain the creation of a suitable dataset for solving the inverse prob-
lem, including the simulation of neural activity and the use of lead field
matrices for the forward solution. Furthermore, we undertake a compar-
ative analysis of some initial deep learning models with similar classical
methods.
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1 Introduction

Electroencephalography (EEG) is a widely used, non-invasive method for mea-
suring neuronal activity. It is a particularly attractive method in the areas of
clinical diagnosis and research due to its low cost and rapid implementation. The
significant strength of EEG lies in its high temporal resolution [1].

In order to maintain the advantage of high temporal resolution while improv-
ing spatial resolution, attempts are made to localise the source of the neuronal
signal in the brain. Mathematical models of the brain and skull based on mea-
sured signals are used for this purpose [2], [3]. However, it is important to note
that all classical methods for EEG source localisation are always estimates, as the
problem is inherently not uniquely solvable. Since only a small amount of mea-
surement electrodes are attached to the surface of the head, the measured signal
cannot be precisely assigned to one of thousands possible sources of activity, re-
sulting in several possible activity patterns that generate the same measurement
signal [4].
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In numerous medical applications and other areas, deep learning has already
proven its ability to significantly support human decision-making and provide
valuable supplementary information for medical decisions [5], [6]. Consequently,
deep learning could also offer new advantages in source localization or extend
classical methods.

This paper discusses and evaluates some of the approaches to solving the
source localisation of evoked potentials.

2 Methods

2.1 Data simulation

Before we can use machine learning or deep learning approaches, we need a
suitable dataset for our problem. This dataset must contain z: the potential
measured on the scalp surface and y: the underlying neuronal activity respon-
sible for the measured potential. Since we cannot know the exact location of a
neuronal activity in a realistic test environment, the data must be simulated,
where the exact sources are known and can be freely chosen. In this work, we
only use simulations with a single origin of source per sample.

There are various methods for generating such a dataset. In our work, we

started the simulations with the MNE Python library, an open-source package
designed for visualisation and analysis of human neurophysiological data [7]. We
chose an average reference head model and computed a boundary element model
(BEM) to solve the forward problem. Potential sources were reduced to points
on the surface of the cortex [8].
The Institute for Biomagnetism and Biosignal Analysis (IBB) in Miinster led
by Carsten Wolters provided an anonymised dataset of 19 subjects with real
EEG measurements, volumetric source spaces, as illustrated in Figure 1, and an
individualised lead field matrix for the forward simulation:

The lead field matrices were calculated with DUNEuro using a six-layer finite
element method (FEM) with geometrically adapted hexahedra [9]. With this ap-
proach, we can accurately track each step from the measurement conditions to
the calculation of the individualised forward simulations and, for example, ex-
change the algorithm for the forward model. Another advantage is that we can
directly compare the trained model with the measurements and the expected
true source.

Initial studies using MNE’s algorithms and models showed that it is chal-
lenging to track the results and compare them with real data. As a result, the
second method of data generation, based on individualised lead field matrices
for forward simulation, is used to train and evaluate the presented deep learning
algorithms.
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Fig. 1. Volumetric source space from proband 1. Each point represents a possible source
of activity. For better visibility, the points are color graded in the z-direction.

To further improve the simulated data for a neural network, we added a
Gaussian propagation of the neural activity. Instead of a single active source
in the brain, a point is selected and the surrounding possible sources are also
simulated with a portion of the original activation. This makes the data more
realistic and improves the learning of the neural network, as the error function
for training compares the predicted activity values at each possible source point
with the actual values and calculates a difference. The greater the number of
positive or active values, the more stable the error. This is particularly evident
in the case of predicted activities that are close to the correct position. The
amount of activation follows a Gaussian distribution and is dependent on the
distance z to the original source point and is afterwards scaled:

Gauss(2) = 1% exp (-%) (1)

In addition, we added some noise to the data to prepare the model for real
data, which will inevitably contain some noise [10]. For this we use Gaussian
white noise with a constant power density across all frequencies and zero mean
[11]. To do this, we calculate the average power of the signal and then the
required average power of the noise based on the average signal power to obtain
a desired signal-to-noise (SNR) factor:

Psi na

noise
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The noise is then randomly generated from a normal distribution with a
mean of 0 and a standard deviation for each channel, and added to the original
signal data. This process allows the creation of a suitable dataset for each desired
signal-to-noise ratio.

A potential future direction of research is the use of a distinct, precisely
calibrated noise for each subject, given that each subject exhibits a unique noise
behaviour. This noise would then be calculated by the reference measurement
without stimulus.

2.2 Neural network

Once the requisite dataset has been prepared, it can be used to train a model
using deep learning algorithms. Two possible methods are fully-connected neu-
ral networks (FCNN) and convolutional neural networks (CNN), which have
been implemented by other authors in previous studies [12], [13], [14]. In this
paper, we have used a fully-connected neural network. The network’s architec-
ture comprises an input layer with 54 neurons, three hidden layers with 4096,
8192 and 12024 neurons, respectively, and an output layer with 14909 neurons,
corresponding to the number of possible sources in the source space (see Table
1):

Table 1. Architecture of the neural network used

Layer Number neurons
Input layer 54
1. hidden layer 4096
2. hidden layer 8192
3. hidden layer 12024
Output layer 14909

Each hidden layer is followed by a batch normalisation layer [15]. For hidden
layers 1 and 3, a dropout factor of 0.2 was employed, while a dropout factor of
0.3 was applied to layer 2 [16]. The purpose of the batch normalisation layer is to
enhance and stabilise the training process. The addition of dropout was intended
to facilitate the network’s ability to generalise and deliver enhanced performance,
particularly in the presence of noise. The mean squared error (MSE) was em-
ployed as the loss function with the ground truth y; and the predicted value

Ui

n

MSE = % Z(yz - Qz‘)z (3)

=1
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The adam optimizer, with a learning rate of 0.001, is used in this study [19].
The network architecture is not the primary focus of the work and has not yet
been optimised to its full potential. Consequently, there is still considerable scope
for improvement in performance.

2.3 Evaluation

In order to validate the method, it is necessary to compare it with a classical
method with comparable prior information. For this purpose, a dipole scan is
utilized. A dipole scan iterates over every possible source in the source space and
calculates a forward solution at this point using the lead field matrix [17], [18].
The source that is being looked for is the one that best describes the measured
signal data. This method was chosen for comparison because, like the neural
network, it has the original lead field of the subject available. In the case of
the neural network, the lead field is implicitly given because it learns from the
simulation data that was constructed using the lead field. Consequently, both
methods essentially have the same prior information, and the neural network has
no advantage because it has learned the data simulation with great precision. In
the neural network, the point with the highest estimated activity is taken as the
prediction.

The evaluation involves the creation of 100 data points for each SNR, with
the localisation errors of the methods averaged over these 100 samples. The
Localization Error (LE) is defined as:

LE = ”rtruc - rpcak||2 (4)

3 Results

The SNR values -10, -7.5, -5, -2.5, 0, 2.5, 5, 10, 15 and 20, as well as no noise at
all (SNR — oo) were considered in the evaluation.

If only the dipole scan on the selected SNR, range is considered, it can be
seen that from about 20 dB the localisation error approaches zero (see Figure
2). By adding the Gaussian Propagation the prediction quality becomes slightly
worse across all SNRs, but the rough curve remains the same (see Figure 3). This
shows that the dipole scan cannot handle regional activities optimally, as it is
optimised for individual dipole sources. Here, however, the dipole Scan produces
perfect results with sufficient signal content.

For each of the SNRs, a neural network was trained on a dataset with the
corresponding SNR. The dataset consisted of 50,000 samples each time and each
model was trained for 50 epochs. We chose 50 epochs as a simple compromise
between train loss and overfitting. The loss values of the last training iteration
are shown in Table 2:
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Fig. 2. Dipole scan localization error on Fig. 3. Dipole scan localization error on
different SNR “s without Gaussian prop- different SNR s with Gaussian propaga-
agation tion

Table 2. Loss values after 50 episodes of training

SNR Train loss Test loss
-10 16.93 1186582.14
-7.5 16.87 567281.55

-5 16.01 173864.21
-2.5 14.12 253.95
0 10.82 113.55

2.5 8.02 121818529.26

5 6.05 807080921.18

10 4.78 187600850.37

15 4.13 3813368.04
20 3.55 39060237.59
— 00 2.66 58650.25

We can see a stable decrease in the training error with increasing SNR.
However, the error on test data is very inconsistent and high. When looking
at the loss curves (Figure 4 and 5), it can be seen that the training error also
decreases steadily within a training run. However, the test error increases in a
random manner. The progression of the two loss curves indicates overfitting of
the model to the training data. As model optimisation is not the focus of the
work, we nevertheless use the models after 50 epochs for further evaluation. In
future works this will be addresed with regularization methods to obtain more
stable results.

In Figure 6 a single sample with no noise is shown. On the left there is the
original ground truth data and on the right the predicted activity from the neu-
ral network. Looking at single samples, the prediction accuracy even on test data
is quite precise.
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Fig.4. Train loss of the 10dB SNR Fig. 5. Test loss of the 10dB SNR model
model during 50 epochs of training during 50 epochs of training

Fig. 6. Ground truth sample (left) and predicted activity from the neural network
(right)

Figure 7 shows the localisation error at different SNR ratios. The blue graph
shows a model that is trained with this noise level and the red graph shows the
LE over all SNRs of a model that was trained completely without noise. It can
be seen here that models that contain noise in the training data also deliver
better results on noisy data without losing quality at high SNRs. Figure 8 shows
in red again the model without noise compared to a model trained on 10 dB
SNR. The model without noise is better at high SNR ratios, but the blue model
is better in the 10 dB SNR range. Since we are always confronted with noise in
real applications, we see the use of noise in the training data as an important
step towards improving deep learning models for source localisation.

Figure 9 shows the localisation error in mm of the respective models com-
pared to a dipole scan at all noise levels. The results are very similar with the
neural networks performing slightly better across all SNRs.
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Fig. 9. Localization error of the neural networks (blue) and the LE of a dipole scan
over different SNRs (red)

4 Discussion and outlook

The input of the neural network is fixed to the number of electrodes used, with a
range of approximately 8 to 300. The number of outputs of the network correlates
with the number of sources to be predicted in the source space, with a range
of approximately 1,000 to 20,000. Consequently, the input dimension is always
significantly smaller than the output dimension. In our example, this ratio is:

R54 — R14909 (5)

Potential solutions for this include the use of convolutional neural network
(CNN) models or specifically trained autoencoders to reduce the dimensionality
of the prediction. Furthermore, the incorporation of Gaussian propagation serves
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to mitigate the dimensionality issue indirectly. By expanding the active region
in the source space, the effective dimension of the predicted space is diminished
to a slight degree. In this study, we solely employed Gaussian propagation to
address the dimensionality challenge.

It is to be expected that the dipole Scan localises very well on datasets
without noise. Without Gaussian propagation and without noise, this method
has perfect accuracy as it also has all the necessary information. After adding
Gaussian propagation, the accuracy decreases slightly. However, the advantage
of the neural network over the dipole scan lies in the localisation of noisy data,
as the network can learn to better deal with the noise.

Unfortunately a model trained for a specific noise level only produces very
good results in the noise domain it is trained on. This could be solved by esti-
mating the SNR of a measurement in reality and then using the model with the
exact noise level for localisation. Another alternative would be to train a model
with many different noise levels so that it performs well at all SNRs. However,
it should be noted that the SNR in real measurements is always in a constant
range around 15 dB and the models could then be optimised precisely for this
level.

This work shows that deep learning models have the potential to achieve the
same prediction quality as a dipole scan with a perfect lead field matrix, and
possibly exceed it. The models were not particularly optimised for this work and
it is to be expected that even better results can be achieved by optimising the
model parameters. Despite the good performance of the deep learning models
on the simulated data, validation on real data is still necessary to confirm the
results.
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