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Abstract

Epilepsy constitutes a neurological disorder affecting approximately 50million individuals glob-

ally, significantly impacting their quality of life. Conventionally, epilepsy symptoms are man-

aged through the administration of antiepileptic drugs or, where feasible, through surgical inter-

vention. However, the frequent cases of refractory focal epilepsy have highlighted the necessity

for new, personalized therapeutic approaches. Among these, transcranial Direct Current Stim-

ulation (tDCS) has emerged as a promising potential solution. The present work, focuses on

the study of EEG recordings deriving from a proof-of-principle N-of-1 trial study, whose scope

was to investigate the effects of multi-channel (mc-) tDCS application on a patient with refrac-

tory focal epilepsy. A double-blind sham-controlled stimulation experiment was conducted in a

two-week long stimulation trial. Distributed Constrained Maximum Intensity (D-CMI)-based-

mc-tDCS and sham stimulation were applied twice every week-day for 20 minutes each. EEG

data, was recorded for 1 hour before and after stimulation. Experts, marked a highly significant

reduction in interictal spike frequency after the stimulation process, while this was not the case

for sham. Our purpose, is to evaluate EEG connectivity patterns, using generalized Partial Di-

rected Coherence (gPDC) before and after stimulation and sham procedures accordingly. The

raw EEG recordings are segmented into 3-second long sub-signals, to which then gPDC is ap-

plied and studied. We further proceed to the extraction of connectivity and statistical features

from this analysis, and provide this information to Machine Learning models, in order to verify

and validate our connectivity findings. The final results are promising; the connectivity analysis

performed on the EEG data validated the results which had already derived from the trial, the

epileptogenic zone was confirmed, as also was the reduction of IEDs after the tDCS. Finally,

the ML models’ results validated the robustness of our connectivity study, highlighted by the

decrease in class separability after the stimulation process but not after sham. Τhis research,
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contributes to gaining a deeper understanding of the neural mechanisms underlying epilepsy,

utilizing a non-invasive modality, as is EEG. The ability to gather and analyze more extensive

EEG data sets over longer periods, can enhance in the future the depth and reliability of our find-

ings, offering a richer understanding of the effects of Transcranial Direct Current Stimulation

(tDCS) on epilepsy.



Περίληψη

Η επιληψία, αποτελεί μία από τις πιο κοινές νευρολογικές διαταραχές, πλήττοντας

περίπου 50 εκατομμύριαάτομαπαγκοσμίως και επηρεάζοντας σημαντικά την ποιότητα

ζωής τους. Συμβατικά, τα συμπτώματα της επιληψίας διαχειρίζονται μέσω της χορήγησης

αντιεπιληπτικών φαρμάκων ή, όπου είναι εφικτό, μέσω χειρουργικής επέμβασης. Ωστόσο,

η συχνή εμφάνιση περιπτώσεων φαρμακο-ανθεκτικής, μη χειρουργήσιμης επιληψίας,

μαςωθεί στηναναζήτηση νέων, εξατομικευμένων, μεθόδων θεραπείας. Μεταξύ αυτών,

η άμεσηΔιακρανιακή Ηλεκτρική Διέγερση (tDCS) έχει αναδειχθεί ως πολλά υποσχόμενη

λύση. Η παρούσα εργασία εστιάζει στη μελέτη εγκεφαλογραφημάτων (ΗΕΓ) που

προέρχονται από μίαN-of-1 μελέτη με στόχο την εξέταση της επίδρασης της εφαρμογής

πολυκαναλικής tDCS (mc-tDCS) σε ασθενή με φαρμακοανθεκτική επιληψία. Σε αυτό

το πλαίσιο, είχε διεξαχθεί ένα Distributed ConstrainedMaximum Intensity (D-CMI)-based-

mc-tDCS and sham stimulation πείραμα συνολικής διάρκειας δύο εβδομάδων. Τόσο το

πείραμα πραγματικής διέγερσης όσο και εικονικής εφαρμόστηκαν δύο φορές κάθε

εργάσιμη ημέρα της εβδομάδας για 20 λεπτά η κάθε μία. Τα δεδομέναΗΕΓ καταγράφηκαν

για 1ώραπριν και μετά τη διέγερση. Οι ειδικοί, διαπίστωσανμία ιδιαίτερα σημαντική

μείωση της συχνότητας εμφάνισης επιληπτικών κρίσεωνμετά τη διαδικασία διέγερσης,

ενώ δεν παρατηρήθηκε κάτι αντίστοιχο μετά την εικονική διέγερση. Σκοπός μας, είναι

να αξιολογήσουμε τα μοτίβα συνδεσιμότητας που προκύπτουν από τη μελέτη των

καταγραφώνΗΕΓ, με την εφαρμογή της μεθόδου γενικευμένηςΜερικής Κατευθυνόμενης

Συνάφειας (gPDC) πριν και μετά την πραγματική και εικονική διέγερση αντίστοιχα.

Οι αρχικές καταγραφές, διαιρέθηκαν σε υποσήματα διάρκειας 3 δευτερολέπτων, στα

οποία μετέπειτα εφαρμόστηκε και μελετήθηκε η gPDC. Κατόπιν, τα χαρακτηριστικά

που προέκυψαν από την προαναφερθείσα μελέτη συνδεσιμότητας καθώς και κάποια
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στατιστικά μεγέθη, εισήχθησαν σε μοντέλαΜηχανικήςΜάθησης, προκειμένου να επικυρωθούν

τα προγενέστερα ευρήματά μας. Τα τελικά αποτελέσματα κρίνονται ενθαρρυντικά,

καθώς η ανάλυση συνδεσιμότητας επικύρωσε τα αποτελέσματα που είχαν προκύψει

από το αρχικό πείραμα, επιβεβαιώθηκε η επιληπτογόνος περιοχή, όπως και η μείωση

των καταγεγραμμένων επιληπτικών κρίσεωνμετά την πραγματική ηλεκτρική διέγερση.

Τέλος, τα μοντέλα μηχανικής μάθησης επιβεβαίωσαν τη μελέτη συνδεσιμότητας μέσω

της εμφανούς μείωσης ποσοστών επιτυχημένου διαχωρισμού των κλάσεων από τα

μοντέλαπρίν και μετά την πραγματική διέγερση, ενώ δεν παρατηρήθηκε κάτι αντίστοιχο

για την εικονική. Η παρούσα εργασία, επιχειρεί να συμβάλλει στηνπεραιτέρω διερεύνηση

και κατανόηση των νευρικών μηχανισμών και συνδέσεωνπου υπόκεινται της επιληψίας,

χρησιμοποιώντας μία μη επεμβατική μέθοδο καταγραφής δεδομένων. Η δυνατότητα

συλλογής και ανάλυσης δεδομένων για μεγαλύτερες χρονικές περιόδους μπορεί να

ενισχύσει μελλοντικά το βάθος και την αξιοπιστία των ευρημάτων της συγκεκριμένης

ανάλυσης, προσφέροντας μία πιο πλούσια κατανόηση των επιδράσεων της διακρανιακής

ηλεκτρικής διέγερσης στην επιληψία.
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Chapter 1

Introduction

The human brain, an intricate organ both in structure and functionality, plays a central role

in physiological and psychological processes. However, its complexity makes it vulnerable to

various disorders that can heavily impact the lives of those affected. Epilepsy, constitutes a

neurological brain disorder present in more than 50 million people worldwide, according to the

World Health Organization. Characterized by recurrent seizures, this disorder can lead to a va-

riety of symptoms ranging in severity and impact on the patient’s life. Therefore, the field of

epilepsy research and treatment is constantly evolving, driven by the necessity to address the

consequences of this disorder’s manifestations. Currently, the most commonly used treatment

methods for epilepsy are either anti-epileptic drug treatments or even surgery. However, given

that these approaches are not suitable for all patients, there is a pressing need for alternative,

personalized, treatment options. Transcranial Direct Current Stimulation (tDCS), emerges as

a promising treatment method for the reduction of seizure frequency, especially for patients

considered unresponsive to drug treatment and not eligible for resection. In this work, the out-

comes of a double-blind sham-controlled N-of-1 clinical trial on a patient with refractory focal

epilepsy which has been treated with personalized and dCMI optimized tDCS as well as with

active sham (ActiSham) will be studied [1], focusing on the EEG recordings produced and the

effective connectivity perspective. These results, will then be validated and highlighted by Ma-

chine Learning models.

1
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1.1 Contributions and Innovations of this Thesis

This work aims to present a comprehensive framework developed in Python, designed to trans-

form raw EEG data into insightful findings on the brain’s effective connectivity patterns in cases

of refractory focal epilepsy. At the core of this, is a series of steps, beginningwith preprocessing,

advancing through connectivity analysis, feature extraction and finally the application of Ma-

chine Learning algorithms for binary classification of seizure or non-seizure events. The main

purpose of this process is perform and validate our analysis utilizing solely the EEG recordings

from the trial. The choice of EEG, a non-invasive recording technique, enables the frequent and

safe conduct of experiments on patients. Thereby, through this approach we aim to contribute

to the field of epilepsy research by demonstrating the effectiveness of utilizing EEG to enhance

our understanding on the treatment of epilepsy, and more specifically, on the effects of tDCS in

the reduction of epileptic seizures, and study the brain’s functionality in general.

1.2 Thesis Outline

In Chapter 2, the reader is introduced to the human brain; it’s anatomy, functionality and the

concept of neural circuits. The discussion extends to the presentation of the disorders of the

human brain, with a special focus on epilepsy. Definitions, terminology, and the current state

of epilepsy research, including advanced imaging and signal processing techniques are covered,

to establish a solid theoretical background for the study. Finally, an introduction to brain con-

nectivity measures in epilepsy research along with the concept of gPDC are presented, as well

as an introduction to the ML algorithms ulitized in our pipeline. In Chapter3, the initial study

design on which this work is based on is introduced and explained in depth, along with how

its methods and findings will be exploited in our work. Furthermore, this thesis’ technical de-

sign will be explained in detail. Chapter 4 will include all the findings from the connectivity

analysis, demonstrating the impact of tDCS on the patient’s neural network through effective

connectivity. It also showcases the results obtained from applying machine learning models to

the EEG data, offering insights into the predictive power of the extracted features in distinguish-

ing seizure and non-seizure states. Finally, Chapter 5 synthesizes the conclusions deriving from
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this study, suggesting also some future work ideas that could further improve our results.
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Chapter 2

Exploring the Brain: Structure, Function, and the Path to

Epilepsy Solutions

2.1 The Human Brain

The human brain, a pivotal organ in the Central Nervous System (CNS), is a fascinating proof

of biological complexity and versatility, as it plays a central role in the orchestration of both

physiological and psychological processes. Structurally, it is composed of three main parts; the

cerebrum, the cerebrellum and the brainstem [2] (Figure 2.1). As for the brain’s functionality,

it depends on neurons, the specialized cells responsible for transmitting and receiving nerve

impulses. These cells communicate through electrical and chemical signals forming a complex

network that underlies all brain activities including thought, emotion and motor controls. Neu-

ronal activity is fundamental to all aspects of brain function, from basic reflexes to complex

cognitive processes (Figure 2.2) [3].

Figure 2.1: The human brain [4]
Figure 2.2: Neurons and neuronal ac-
tivity [5]

5
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2.2 Anatomy/ Gross Anatomy

Let’s discuss the human brain in more detail, in order to fully understand its form and function-

ality.

Physical Structure of the Brain

Weighing about 3 pounds in the average adult, the brain is composed of about 60% fat. The re-

maining 40% is a combination of water, protein, carbohydrates and salts. The brain itself is not

a muscle. It contains blood vessels and nerves, including neurons and glial cells[6]. Beyond its

basic composition, the cerebral cortex, which envelopes the outer layer of the cerebrum, varies

in thickness and shows a complex arrangement across different brain regions. This variation is

indicative of the specialized functions housed in each area. Beneath the cortical layers critical

subcortical structures can be found, like the basal ganglia, essential for movement coordination,

and the thalamus, which acts as a sensory and motor signal relay station.

The brainstem, which contains the medulla, pons, and midbrain, is the brain part which is re-

sponsible for maintaining vital autonomic functions, such as heart rate and respiration.

Adjacent to the brainstem, is located the cerebrellum. Although primarily recognized for its role

in motor control, it also has surprising contributions to cognitive functions, including attention

and language processing.

Finally, the brain’s white matter, comprising nerve fibers covered by myelin, forms an extensive

network connecting diverse brain regions, facilitating a robust inter-regional communication.

The integrity of the white matter tracts is vital for the harmonious functioning of the brain’s

various components. These intricate structural details of the brain aim to highlight not only its

complexity but also the importance of each component in ensuring the organ’s overall function-

ality [7].
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Figure 2.3: A deeper view into the brain’s main structure [4]

2.3 Basic Functional Systems of the Brain

Proceeding to the functional systems of the brain, let’s discuss about neurons and neural circuits.

2.3.1 Neural circuits and Communication

Neurons never function in isolation; they are organized into groups, namely neural circuits, that

process specific kinds of information, forming the basis of neural communication in the brain.

These circuits play a crucial role in everything, from basic reflex arcs to advanced functions

like memory, learning and decision-making. The mechanisms hidden behind neural communi-

cation can be primarily categorized into electrical and chemical signaling. Electrical signals,

predominantly in the form of action potentials, are brief electrical impulses that travel along

neurons.

Complementing the electrical signaling process is chemical signaling, which occurs

at synapses, the junctions between neurons. In the synaptic transmission, neurotransmitters are

released from the presynaptic neuron and bind to specific receptors in the postsynaptic neuron.

This chemical process is essential for the continuation of the neural signal across the synaptic
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gap, allowing for more complex forms of neural processing and communication. This complex

interaction between electrochemical signals ensures the efficient and dynamic functioning of

the brain’s neural circuits.

2.3.2 Major Brain Regions and their Functions

When discussing the brain, it’s of great importance to theoretically dissect it and explain it’s

anatomy. The brain can be separated into two hemispheres; the left and right one, which are

parts of the cerebrum. Each hemisphere has four sections, called lobes, namely: frontal, pari-

etal, temporal and occipital, as seen in Figure 2.4. To explain these structures in more detail,

we shall start by analyzing the functions of the frontal lobe.

Figure 2.4: The brain dissected to lobes [4] Figure 2.5: Broca’s area and more

Frontal Lobe

The frontal is the largest lobe of the brain. Located in the front part of the head, it’s crucial

for decision-making, voluntary movement, emotional control and problem-solving. It also con-

tains Broca’s area (Figure 2.5), which is associated with speech production. Another part of

this lobe, the prefrontal cortex, is particularly significant for its role in personality expression

and complex cognitive processes [8].

Parietal Lobe

Situated right behind the frontal lobe, the parietal lobe is primarily responsible for processing

and integrating sensory information coming from various parts of the body as it is involved in
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interpreting pain and touch. It is also essential for understanding spatial navigation and orien-

tation and plays a part in coordinating movement and spatial reasoning. Moreover, this section

of the brain also houses Wernicke’s area (Figure 2.5), which helps with understanding spoken

language.

Occipital Lobe

Further back in the brain is located the occipital lobe, which is the center for visual processing.

It is involved in interpreting all visual information coming from the eyes, including the recog-

nition of shapes, colors and motion.

Temporal Lobe

Finally, the temporal lobes, located on the sides of the brain and beneath the lateral fissure, are

key areas for processing auditory information and are critically involved in the comprehension of

language and speech. Temporal lobes, are also involved in short-term memory, musical rhythm

and some degree of smell recognition.

Limbic System

Besides the lobes, another complex part of the brain worth being mentioned is the limbic sys-

tem. More precisely, the limbic system is composed of a system of nerves and networks and is

involved in controlling mainly emotional states and memory, more specifically, it plays a crucial

role in emotional responses, memory formation (mostly in the formation of episodic and declar-

ative memories) and learning process. Its key components are the hippocampus, the amygdala

and the hypothalamus [9].

The intricate functionality of all the aforementioned brain regions highlights the sig-

nificance of their integrity for a person to be considered as overall healthy. Damage or malfunc-

tion in any of these areas can lead to a wide range of health problems varying in severity. Under-

standing the potential consequences that can be caused from damage in each specific brain area

is of great importance for diagnosing and treating both brain damage and diseases of all kinds.
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The various implications that can be caused, highlight the importance of personalized treatment

approaches in neurological care. Each brain disorder, whether it’s an injury or any kind of dis-

ease, as is epilepsy, requires a tailored approach considering the specific region affected and the

unique symptoms/manifestations that can appear for each patient. Effective treatment must not

only address the symptoms but also consider underlying causes and the patient’s overall health,

emphasizing in a holistic patient-centered approach. Last but not least, as will be thoroughly

analyzed later on, it has been shown that each patient responds differently to each treatment

method [10], hence, focusing on personalized treatment is more and more considered to be very

beneficial.

2.3.3 Disorders of the Human Brain

The human brain, being a complex and intricate organ, is susceptible to a variety of disorders that

can impact its function and overall health. These disorders can range from congenital conditions

to acquired diseases, each affecting the brain in different ways. Brain disorders vary both in

etiology and manifestations and have been categorized based on their specific characteristics.

First, there exist neurodegenerative disorders [11], including disorders like Alzheimer’s and

Parkinson’s disease, characterized by the progressive degeneration of brain cells. They often

lead to symptoms like memory loss, cognitive decline and impaired motor functions. Another

category is brain tumors. These can be sub categorized as benign or malignant and they affect

brain function by creating pressure or disrupting normal neural pathways. Furthermore, another

significant category is Traumatic Brain Injuries (TBI’s); resulting from external physical trauma

to the head, TBI’s can lead to various symptoms, ranging from mild ones such as concussions

to even severe brain damage. Strokes are also considered a separate brain disorder category,

happening when the blood supply to the brain is interrupted, leading to cell death. They can

result in short-term or long-term disabilities, ranging from speech impairment to paralysis and

other disabilities. Mental Health Disorders, such as depression, anxiety, bipolar disorder and

schizophrenia also constitute another, newly highlighted, category of brain disorders. They

primarily affect mood, thinking and behavior, often requiring long-termmanagement. A similar

category is developmental disorders in which mainly lie autism spectrum disorder and attention
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deficit hyperactivity disorder (ADHD), which are often identified in early childhood, affecting

communication, behavior and learning. Finally, a large category of brain disorders with various

different symptoms is epilepsy. Epilepsy, is a significant brain disorder characterized mainly

by recurrent and unprovoked seizures. This specific disorder affects around 50 million people

worldwide, according to the World Health Organization, making it one of the most common

neurological diseases globally. Focusing on the purpose and content of this thesis, in which the

subject of epilepsy will be tackled, an extended definition of the disorder should be given, along

with its causes, consequences and potential treatments.

2.4 Epilepsy

2.4.1 Definitions and Terminology

Throughout its recorded history of at least 3 to 4 millennia, epilepsy has been described through

various terms across cultures, with the term ‘seizure’ currently preferred in medical classifica-

tion. Even though the characteristics of epileptic attacks vary, whatever word is chosen to define

one, there are always similar or borderline non-epileptic attacks to confuse the physician in the

differential diagnosis [12]. In his 2012 work, Reynolds explains that the word ‘epilepsy’ is of

Greek origin and means to seize, to take hold of or to attack. The word ‘seizure ’ is Latin, from

‘sacire’ i.e. to claim. These words reflect the ancient belief that the sufferer has been seized or

claimed by a supernatural power, spirit or god.

Epilepsy in modern medicine can be defined as a chronic neurological disorder char-

acterized by the enduring predisposition to generate epileptic seizures. These seizures are tran-

sient occurrences of signs and/or symptoms caused by abnormal excessive or synchronous neu-

ronal activity in the brain. The clinical manifestations of seizures vary, depending on the seizure

type and brain region affected by it. In order to be diagnosed, a case of epilepsy has to comprise

of at least two unprovoked (or reflex) seizures occurring more than twenty-four hours apart,

or after one seizure with a high probability of further seizures that are similar to the general

recurrence risk after two unprovoked seizures [13]. From a neurophysiological point of view,

epilepsy involves disruptions in the brain’s network connectivity, leading to periodic and un-

predictable seizure events. This disruption can be caused by many factors, including genetic
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predispositions, brain injuries and other brain diseases or even developmental disorders. The

study of these network disruptions, particularly through advanced imaging and signal processing

techniques, is crucial for understanding the pathophysiology of epilepsy, but also for developing

targeted treatment strategies, since every case of epilepsy and hence, every patient, needs to be

studied and treated differently due to the variety of factors which can provoke seizures and the

different possible brain areas that are affected by them.

Seizure Classification

The seizure classification process is constantly being reevaluated. Initially, classifications were

mainly based on all observable symptoms, a practice dating back to ancient times when seizures

were often attributed to supernatural phenomena [14]. In the 20th century a pivotal shift was

marked, with the advent of electroencephalography (EEG), introduced by Hans Berger in 1929.

This innovation revolutionized the understanding of seizures, enabling clinicians to correlate

clinical manifestations with electrical activities in the brain [15]. EEG primarily records the

electrical activity of the brain with the use of electrodes placed on the scalp. It’s considered

a non-invasive imaging method with high temporal and low spatial resolution, meaning it pro-

vides information on the changes of neural activity over time, facilitating the detection of brain

disorders but is usually unable to discover their onset. The integration of EEG findings into

seizure classification facilitated a more precise and scientific approach, paving the way for mod-

ern classification systems [16]. Today, these historical foundations continue being the basis of

classification methodologies, underscoring their critical role in accurate diagnosis and effective

treatment planning for epilepsy [17].

The International League Against Epilepsy (ILAE) plays a crucial role in epilepsy

research and treatment since its foundation in 1909. The ILAE classification system, is praised

and valued by professionals for its methodical approach to seizure categorization based on mul-

tiple factors including origin, clinical presentation and EEG findings. Significant changes were

made during the 2017 revision, reflecting the advances in the field of neurology and neuro-

science, ensuring the system’s relevance and efficacy [18]. In the current ILAE system, based

on all the aforementioned criteria, the major categories of epilepsy include focal and generalized
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seizures. The system also categorizes separately seizures with unknown onset, where the origin

of the disorder is unclear, highlighting once again the necessity of refinement in epilepsy diag-

nostics [17]. Having already established the classification system and the various categories of

epilepsy based on it, let us now give a more detailed explanation per category.

• Focal Seizures

Focal seizures originate from one specific brain area but can become generalized and spread

to other areas. They can be characterized as simple (auras) or complex focal seizures [6]. In

some medical journals, these categories are also described as focal aware or focal impaired

awareness seizures, based on whether the individual remains conscious or not. Based on the

seizure description and the patient’s symptoms, physicians may be able to identify the specific

part of the brain causing the seizures. The diagnosis, typically involves EEG recordings to

identify the brain area affected or even Video-electroencephalography monitoring (VEEG) and

other imaging techniques like MRI to detect any brain abnormalities.

• Generalized Seizures

Generalized seizures occur when the abnormal electrical activity causing the seizures

is generated from both hemispheres of the brain and is not localized in a specific part of it. These

usually include absence seizures, characterized by brief awareness loss but also atonic, tonic,

clonic, tonic-clonic, myoclonic and febrile seizures. These seizures may result in spasms of the

body, stiffening, shaking etc. Diagnosis also begins with tests like EEG recordings, MRI and

blood tests too, since these tools can reveal characteristic patterns that differenciate them from

focal seizures.

• Unknown Seizures

In some cases, the onset of the seizure can’t be localized. These seizures are described as

unknown. Ongoing research is vital to try to better understand, describe and try to provide

more targeted treatment methods for these particular cases.



2.4. Epilepsy 14

2.4.2 Epilepsy and Brain Connectivity

Epilepsy is being increasingly recognized as a brain network disorder, as seizures and their ef-

fects can’t be considered confined to isolated brain regions, but rather involve complex brain

networks. In fact, according to Kramer and Cash’s work [19], seizures are classically viewed as

a hyper-synchronous state, indicative of excessive connectivity or communication among brain

regions and neurons. Many researchers used this hypothesis as their baseline, proving it to be

quite valid. In fact, as it can be imagined, during seizures, the produced activity can cause

temporary but dramatic changes in the brain networks, which are the ones visible through EEG

patterns. The rather unusual fact lies in the interictal state, which is the state between seizures,

where apparently the brain network in people with epilepsy shows altered connectivity [20],

which may also contribute to cognitive and behavioral change. Building on this, it’s being

considered that ictogenic regions, or otherwise, areas initiating seizures, might demonstrate

enhanced correlations with other brain areas, a phenomenon called hypersynchrony. Diverse

studies employing various synchrony measures in interictal EEG have shown some success in

identifying epileptogenic cortex [21]. However, there’s still much to learn about which connec-

tivity measures are most effective in finding ictogenic regions and how these findings can be

integrated into clinical evaluations.

2.4.3 Etiology, Diagnosis and Treatments of Epilepsy

The etiologies causing epilepsy contain a variety of factors, ranging from genetic ones, to struc-

tural changes in the brain provoked by some injury or disease, immune and metabolic disorders

or even developmental conditions. However, in many cases the exact cause for epilepsy remains

unknown. As it has been previously mentioned, the diagnosis process involves typically a com-

bination of patient history, neurological examination and also diagnostic tests like EEG, MRI

and other brain imaging tests. But for now, let’s focus on potential treatments.

The treatment of epilepsy primarily aims at controlling seizures by reducing their

severity and their frequency in order to improve the patient’s quality of life. Several treatment

methods are being used and new ones are constantly being studied and tested. The first-line

treatment of epilepsy usually involves medication, most commonly antiepileptic drugs (AEDs).
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The choice of medication depends on the patient’s diagnosis. When medications fail to con-

trol seizures after even a second AED trial, the patient is categorized as having drug resistent

epilepsy (DRE), according to the ILAE, or otherwise named refractory epilepsy, and surgery is

considered. Procedures like resective surgery, which involves removing the area where seizures

originate, are considered effective but are also quite invasive. Another surgical intervention is

the implantation of a vagus nerve stimulator (VNS), which sends regular mild pulses of electri-

cal energy to the brain via the vagus nerve. Also, the ketogenic diet, meaning a dietary therapy

treatment, has been proved effective in specific cases. Finally, ongoing research is exploring

gene therapy, stem cell therapy and new drug treatments. It is worth mentioning once more,

that as the years pass and research on epilepsy dives deeper into this disorder, the need for

patient-centered therapy seems to be increasingly critical. Tailored treatment approaches that

consider the individual’s specific type and severity of seizures, lifestyle, and other health condi-

tions are becoming more important for effective management and improved quality of life. This

shift towards personalized medicine in epilepsy care reflects of a broader shift in healthcare,

which is now focusing on studying the unique aspects of each patient’s condition and response

to treatment.

2.5 Advanced Imaging and Signal Processing in Epilepsy Research

The field of epilepsy research has been revolutionized by the discovery and utilization of ad-

vanced imaging and signal processing techniques. These technologies not only offer valuable

insights into the human brain’s complex neural mechanisms which cause epileptic seizures, but

they also highlight their effects. Advanced imaging, which includes methods like magnetic reso-

nance imaging (MRI), functional MRI (fMRI) and positron emission tomography (PET), allows

for detailed visualization of the brain’s structure and function, enabling researchers to pinpoint

epileptic zones and deepen their understanding of the disorder. A particularly groundbreaking

discovery in this domain was electroencephalography (EEG). This tool stands out for its ability

to capture electrical brain activity with high temporal resolution and, this particular fact, makes

it invaluable for monitoring neural activity both during seizures and in interictal periods [22].

The application of signal processing techniques to EEG data, such as performing connectiv-
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ity analysis and applying machine learning models, methods which were implemented in the

present work and will be discussed later on, has furthered our ability to understand and interpret

neural signals, aiding the accurate diagnosis and effective treatment of epilepsy but also paving

the way for potential seizure prediction.

Furthermore, the emergence of Transcranial Brain Stimulation (TBS) as a treatment

modality has offered a new avenue for managing epilepsy. This therapy method, which in-

volves non-invasive stimulation of the brain, has shown promise in modifying neural activity

and potentially reducing seizure frequency. Its combination with EEG monitoring allows for

a precise assessment of the treatment’s impact on brain activity, further enhancing our under-

standing of epilepsy and opening new possibilities for personalized therapeutic strategies per

patient. A subcategory of TBS worth mentioning due to its innovative approach in the epilepsy

treatment field is transcranial Direct Current Stimulation (tDCS). This therapeutic approach has

gained attention in the epilepsy research, particularly for its potential in managing refractory

focal epilepsy [23] . Being a non-invasive neuromodulation technique, it has been explored

in various studies over the past few decades which focused on reducing seizure frequency and

EEG epileptiform discharges in epilepsy patients. The majority of these studies involved ap-

plying cathodal tDCS, targeted at areas showing maximal EEG abnormalities. Results from

these studies are promising: a significant portion reported a reduction in seizure frequency and

a decline in EEG epileptiform discharge rates, with no serious adverse events presented [24]

[25]. However, it’s important to note that these studies vary in their methodology and sample

populations. There is a consensus on the need for more extensive, sham-controlled random-

ized trials with well-informed stimulation protocols to further understand and establish tDCS’s

role in epilepsy management [26]. From this necessity, stemmed the trial on which the present

work’s results are based on, which will be discussed in detail in Chapter 3.

2.6 Theoretical Background

In order to proceed with a deeper explanation of the methodology followed in the present thesis,

it is of great importance to state the fundamentals and lay the basis on which this work was

built on. Let’s begin with stating once again the purpose, and connecting it with all the in-
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formation stated above about epilepsy. Epilepsy stands as a severe neurological condition that

significantly impacts the quality of life for those affected. For patients with refractory epilepsy,

the use of alternative treatments is crucial. Transcranial Direct Current Stimulation (tDCS)

presents as a promising avenue for such cases, offering a non-invasive, innovative approach to

managing epilepsy. In the present work, whose pipeline will be thoroughly explained in the

following chapter, our purpose is to study the effects of an N-of-1 trial on a patient with refrac-

tory focal epilepsy, focusing on the brain connectivity patterns and their changes throughout the

trial process, using dynamic connectivity measures like generalized Partial Directed Coherence

(gPDC), and then highlight the relevance of the connectivity measures with the help of Machine

Learning classifiers.

2.6.1 Brain Connectivity Measures in Epilepsy Research

Introduction to Brain Connectivity

As has been known since the nineteenth century, the neuronal elements of the brain form a com-

plicated structural network. As Bullmore and Sporns highlighted in their 2009 study [27], it has

been increasingly recognized since the twentieth century that the anatomical foundation of the

brain facilitates the dynamic development of coherent physiological activities, like phase-locked

high-frequency electromagnetic oscillations. These activities extend across various spatially

separate brain regions, forming a functional network. Brain connectivity can be subdivided

into neuroanatomical (or structural), functional, and effective connectivity [28]. Neuroanatom-

ical connectivity refers to structural links such as synapses or fiber pathways at the microscopic

scale of neurons [29]. This connectivity type is often mapped with the use of techniques such

as diffusion tensor imaging (DTI), with which the pathways of white matter tracts in the brain

can be visualised. These structural pathways form the anatomical framework for neuronal com-

munication. Functional connectivity describes the statistical dependencies and temporal cor-

relations between spatially separated neuronal units or brain regions. It is concerned with the

patterns of co-activation and synchronization between different brain areas, even if these areas

are not directly structurally connected. This connectivity type, is frequently measured through

non-invasive imaging techniques like functional magnetic resonance imaging (fMRI) or elec-
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troencephalography (EEG), in order to reveal dynamic patterns of interaction while the subject

is either resting or performing a task. Finally, effective connectivity goes beyond describing the

patterns of correlation or association, as in functional connectivity, to infer directional influence

and causal interactions between brain regions. It aims to understand how neuronal systems are

correlated and examines the mechanism of these interactions. Effective connectivity is assessed

through models, estimating the influence that one neural unit exerts over another, accounting for

the direction and causal effect of these interactions. Techniques such as Granger causality anal-

ysis or dynamic causal modeling (DCM) are often employed to explore effective connectivity,

providing insights into the operational architecture of the brain’s functional networks.

In summary, neuroanatomical (structural) connectivitymaps the brain’s physical wiring,

functional connectivity reveals temporal correlation patterns between brain regions, and effec-

tive connectivity offers insights into the directional and causal relationships underlying these

correlations. Together, these connectivity categories provide a comprehensive framework for

understanding the complex interplay between the brain’s structure and function, as well as the

dynamic processes that underlie human cognition and behavior.

In this thesis, we will mainly focus on effective connectivity and specifically analyze

the EEG data collected with the generalized Partial Directed Coherence (gPDC) method.

The importance of understanding effective connectivity in the field of neuroscience

is paramount, especially when dealing with complex neurological disorders such as epilepsy.

This concept, not only illuminates the patterns of communication between different brain re-

gions but also sheds light on both the directionality and influence these regions have over one

another. Furthermore, effective connectivity analysis can pinpoint the specific brain regions

initiating epileptic activity, namely the epileptogenic zones. Furthermore, by understanding

the directional flow of neural information, clinicians and researchers can identify the source

of seizures more accurately, which is crucial for both surgical planning and other targeted in-

terventions. Also, as the patterns revealed by effective connectivity analysis may vary between

different types of epilepsy and seizure manifestations, studying them helps in classifying seizure

types more precisely, while at the same time contributing to a more personalized approach to

both diagnosis and treatment. In particular, monitoring changes in effective connectivity pat-
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terns over time can enable clinicians to assess how well a treatment is performing on a patient

and make any adjustments to the procedure accordingly. This is particularly valuable in evaluat-

ing the outcomes of surgical interventions or ongoing drug therapy and definitely facilitates the

process of creating targeted, personalised therapies. Last but not least, effective connectivity

analysis benefits from integration with other neuroimaging techniques, such as structural MRI

or PET scans, to provide a more comprehensive view of the brain’s architecture and function. In

summary, the analysis of effective connectivity is of critical importance in understanding, diag-

nosing, and treating epilepsy, as it offers a window into the dynamic and complex interactions

within the brain, enabling both clinicians and scientists to identify epileptogenic zones with bet-

ter accuracy and follow tailored treatments while gaining deeper insights into the mechanisms

underlying epilepsy. As research and technology in this area continue to evolve, the potential to

improve patient care and outcomes through effective connectivity analysis becomes increasingly

significant.

The concept of Partial Directed Coherence and generalized Partial Directed Coherence

Partial Directed Coherence (PDC) is a sophisticated frequency-domain measure deriving from

the concept of Granger causality, designed to explore directional interactions between multiple

time series such as EEG signals. It provides insights into the directional flow of information

between different brain regions. Building on this foundation, PDC was introduced as a method

to precisely characterize the directed linear relationships between pairs of time series, such as

𝑥𝑖 (𝑛) and 𝑥 𝑗 (𝑛), while considering their interactions within a larger network of time series.

The concept of PDC was driven by its ability to reveal key elements of functional connectiv-

ity, especially in the field of neuroscience. The significance, stems from the critical function

of neural rhythms (namely alpha (α) , beta (β), gamma (γ) etc), in understanding physiologic

relevance. Conceptually, PDC is a generalization to the case of multiple time-series of Saito

and Harashima’s ‘directed coherence’ (DC). DC as an approach, provides insights into the func-

tional linkage between two studied entities by indicating if and how they are connected. Un-

like traditional coherence, that mainly considers the entities and their concurrent activities, DC

highlights the nature of their interaction by categorizing it into ‘feedforward’ and ‘feedback’
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mechanisms. This approach was particularly important at the time it was first proposed, be-

cause much of our understanding of structural and functional neural connections was based on

post-mortem anatomical studies of experimental animals, but studies did not illuminate whether

the connections between structures were active during specific brain processes that lead to cer-

tain behaviors. Then, a novel approach, namely PDC, was first introduced by Luiz A. Baccalá

and Koichi Sameshima in their year 2000 paper ‘Partial directed coherence: a new concept in

neural structure determination’ [30], where the writers outlined the mathematical formulation of

PDC and distinguished it from existing coherence measures while also demonstrating its utility

in identifying directed neural connectivity patterns.

Firstly, the concept of Granger causality should be introduced, which is a statistical

concept that helps determine whether one time series can predict another. It’s named after Clive

Granger, who developed the idea that if one time series can predict another, then it can be said

to ”Granger-cause” the other. The traditional Granger causality test relies on linear prediction

models and looks at whether including past values of one time series can improve the prediction

of another series. The writers of the PDC paper introduce a new approach to Granger causality,

which is based on frequency-domain analysis rather than time-domain analysis, to now study

how the different frequencies within the signals relate to each other, rather than just their values

at different times. So the idea is to understand the directed interactions between signals, seeing

how one signal’s frequency components can predict those of another signal. To introduce PDC

correctly, the Direct Transfer Function (DTF) should also be determined.

DTF is a measure that examines how well past values of one time series can predict

current values of another. Mathematically, it’s represented by the ratio of the cross-spectrum of

two signals to the autospectrum of the signal being predicted, after considering the influences

of all other signals in the system.

DTF𝑖 𝑗 ( 𝑓 ) =
𝐻𝑖 𝑗 ( 𝑓 )√∑
𝑘

��𝐻𝑘 𝑗 ( 𝑓 )
��2 (2.1)

PDC can be considered as a normalized version of DTF. It is computed by taking

the elements of a matrix A(f), which contains coefficients that represent the linear interaction
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between signals at frequency f, and dividing by the sum of the squares of the coefficients asso-

ciated with the predicting signal. This results in a measure that reflects the relative influence of

one signal on another, after factoring out the effects of all other signals.

Mathematically, the writers explained this as:

Definition 1: The partial directed coherence factor (PDCF) from 𝑗 to 𝑖 is given by

𝜋𝑖 𝑗 ( 𝑓 ) =
𝐴𝑖 𝑗 ( 𝑓 )√

𝐴 𝑗 𝑗 ( 𝑓 )
∑−1 𝑎𝑖 𝑗 ( 𝑓 )

(2.2)

where 𝐴𝑖 𝑗 ( 𝑓 ) is the 𝑖, 𝑗 th element of 𝐴( 𝑓 ).

It follows immediately that the partial coherence between 𝑖 and 𝑗 is given by

𝜅𝑖 𝑗 ( 𝑓 ) = 𝜋𝑖ℎ ( 𝑓 )
−1∑

𝜋𝑖 𝑗 ( 𝑓 ) (2.3)

for 𝜋𝑖 𝑗 ( 𝑓 ) =
[
𝜋1 𝑗 ( 𝑓 ), . . . , 𝜋𝑁 𝑗 ( 𝑓 )

]𝑇
, whence the motivation for 𝜋𝑖 𝑗 ( 𝑓 )’s name.

Because

𝐴𝑖 𝑗 ( 𝑓 ) =


1 −∑𝑝

𝑟=1 𝑎𝑖 𝑗 (𝑟)𝑒
−2𝜋 𝑓 𝑟 , if 𝑖 = 𝑗

−∑𝑝
𝑟=1 𝑎𝑖 𝑗 (𝑟)𝑒

−2𝜋 𝑓 𝑟 , otherwise
(2.4)

Definition 2: The PDC form j to i is given by

𝜋𝑖 𝑗 ( 𝑓 ) =
𝐴̂𝑖 𝑗 ( 𝑓 )√

𝑎̂𝐻𝑗 𝑗 ( 𝑓 )𝑎̂𝑖 𝑗 ( 𝑓 )
(2.5)

where also hold these normalization properties:

0 ≤ |𝜋𝑖 𝑗 ( 𝑓 ) |2 ≤ 1 (2.6)

𝑁∑
𝑙=1

|𝜋𝑙 𝑗 ( 𝑓 ) |2 = 1, for all 1 ≤ 𝑗 ≤ 𝑁. (2.7)

By establishing a clear method for calculating PDC and illustrating its application

through empirical examples, the paper aims to provide neuroscientists with a powerful tool

for uncovering the dynamic structural organization of neural networks, thereby contributing
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to a deeper understanding of complex brain functions and disorders. PDC offers a method to

quantify the directional flow of information between brain regions, which is crucial for identi-

fying the pathways along which epileptic activity spreads during a seizure. By applying PDC

to EEG data, researchers can potentially map out the seizure propagation patterns, identifying

both the sources and targets of epileptic discharges. Given that different frequency bands may

play distinct roles in the generation and propagation of epileptic seizures, the frequency-domain

approach of PDC allows for the analysis of directional interactions within specific frequency

bands. This specificity can help in identifying frequency-dependent patterns of neural connec-

tivity that are relevant to the initiation and spread of seizures. In 2007, Baccalá and Sameshima

decide to revisit and improve the PDC concept, introducing the concept of generalized Partial

Directed Coherence (gPDC). gPDC improves upon the original PDC, as it is a refined method in

the frequency domain that quantifies the direct influence of one time series on another within a

multivariate dataset. This generalization makes gPDC a more versatile tool for analyzing com-

plex neural systems, as it can accommodate a wider range of signal relationships and is not

limited to specific model assumptions inherent to the original PDC formulation. The novelty

of this method is that it takes into account the statistical properties of the estimated spectral

matrix, making it more robust and consistent in various scenarios, especially when dealing with

datasets that have a complex structure or when the data suffer from certain types of contamina-

tion or noise. The new partial directed coherence estimator as presented by the original paper

of Baccalá, Sameshima and Takahashi is defined as:

𝜋(𝑤)
𝑖 𝑗 ( 𝑓 ) =

1
𝜎𝑖
𝐴̂𝑖 𝑗 ( 𝑓 )√∑𝑁

𝑘=1
1
𝜎2
𝑘

𝐴̂𝑘 𝑗 ( 𝑓 ) 𝐴̂∗
𝑘 𝑗 ( 𝑓 )

(2.8)

The above represents a weighted version of the PDC factor, where 𝐴̂𝑖 𝑗 ( 𝑓 ) is the esti-

mated complex coefficient from time series j to i at frequency f, 𝜎𝑖, 𝜎𝑘 are the standard devia-

tions associated with the respective time series and finally 𝐴̂∗
𝑘 𝑗 ( 𝑓 ) is the complex conjugate of

𝐴̂𝑘 𝑗 ( 𝑓 ), summed over all N time series present in the system being studied.
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2.6.2 Machine Learning

Machine Learning (ML) has emerged as a discipline within the Artificial Intelligence (AI) do-

main, to provide us with a new approach for solving complex problems. ML is defined as the

field of study that grants computers the ability to learn without being explicitly programmed,

as it focuses on the development of algorithms which can learn from data and make predictions

based on them. Through Machine Learning, systems are not merely coded to execute specific

tasks but rather to adapt and improve their performance as they are exposed to more data over

time. This particular characteristic, has allowed the handling of many tasks which were previ-

ously considered impractical or even impossible to solve with fixed program instructions.

The most commonly highlighted example used to explain how ML is designed to

work, is it’s application to the recognition of handwritten digits into their corresponding numer-

ical values. Let’s consider some handwritten numbers. Each number can be considered as a

single digit image. This digit image, can be represented as a vector of real numbers, serving as

the input to a machine learning model. The complexity of this task, originates from the diversity

of individual handwriting, which makes the accurate identification (or classification) of hand-

written digits a difficult task to be performed through conventional programming methods. But

what if, we had an entire dataset filled with digit images written in diverse handwriting styles?

Then, we could consider this our ML training set, which will be used to fine-tune the parame-

ters of an adaptable model. This model, after being trained with the dataset, will be capable of

recognizing new, previously unseen digit images by generalizing from it’s gained experience.

This example, showcases in a simple but effective way, the power of ML in pattern recognition

and prediction.

The previous problem, is considered an example of supervised learning. But, the

field of Machine Learning is split into three types of learning methods; namely, Supervised,

Unsupervised and Reinforcement Learning (RL).

Supervised Learning, which was illustrated with the handwritten digit problem exam-

ple, involves learning a function that maps an input to an output based on example input-output

pairs. It operates under the guidance of labeled data, aiming to predict the output associated

with new inputs.
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Unsupervised Learning, unlike Supervised Learning, deals with data that does not

have labeled responses. The goal in this case is to discover inherent patterns or groupings in

the data, such as clustering similar examples together. In the context of the digit images exam-

ple, unsupervised learning could be used to group images based on visual similarities without

actually knowing the true digit each image represents.

Finally, Reinforcement Learning (RL) focuses on making sequences of decisions. It

involves an agent that learns to achieve a certain goal in a complex, uncertain, environment by

performing actions and assessing the results. RL is distinguished by its emphasis on learning

through trial and error, guided by the environment’s feedback on the agent’s actions.

2.6.3 ML Classifiers : SVM and RandomForest

In the context of the present thesis we will be dealing with a binary classification problem. More

precisely, our data can be considered as labeled, as we will use events marked by epileptologists

as our guides. The events marked will be considered labeled as True, whereas all others will be

considered labeled as False. Hence, as we have learned from the handwritten digit problem, we

will have to utilize some Supervised Learning algorithms.

Support Vector Machines (SVM)

Support Vector Machines belong to the supervised learning models and are commonly used to

resolving classification tasks or regression problems, by finding the optimal hyperplane which

separates different classes/features.

Let’s first describe the concept behind SVMs. In an effort to design a system that

filters out unwanted spam emails, we might look to the principles of Support Vector Machines

(SVMs), which provide a way to classify and separate data. To simplify, consider the task of

distinguishing between regular emails and spam emails from a persistent sender.

Imagine plotting all received emails on a graph, with the axes representing different

characteristics of the emails, such as frequency of certain words, time of sending, etc. In this

graph, we want to draw a line (or hyperplane in higher dimensions) that separates the spam
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emails from the regular ones.

Figure 2.6: SVM hyperplane choice concept [31]

The provided figures (Figure 2.6) demonstrate two potential hyperplanes that could

perform this task. To decide which hyperplane is more suitable, we must consider which one

creates the widest distance between the spam and non-spam emails, as this margin helps in

reducing misclassification.

The most effective hyperplane is the one that not only separates the emails cleanly

but also maintains the greatest distance from the nearest points of any class (in this case, the

spam emails and the non-spam emails). By selecting the hyperplane with the largest margin,

we ensure that our email filter is robust and less likely to incorrectly label new emails as spam

or vice versa. Thus, in choosing between the two hyperplanes, the preference should be given

to the one that offers this optimal separation.

The points which are closest to the hyperplane, are called support vectors. These data

points are the ones which influence the final position and orientation of the hyperplane. Using

these support vectors, with SVMs, we aim at maximizing the margin of the classifier.

After gaining a clear view on what SVMs are, let’s try to explain the mathematics

explaining this concept [32].

Consider 𝑙 training examples {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1, . . . , 𝑙, where each example has 𝑑 inputs

(𝑥𝑖 ∈ R𝑑), and a class label with one of two values (𝑦𝑖 ∈ {−1, 1}). Now, all hyperplanes in R𝑑

are parameterized by a vector (𝑤), and a constant (𝑏), which can be written as:
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𝑤 · 𝑥 + 𝑏 = 0 (2.9)

Where 𝑤 is the vector orthogonal to the hyperplane. Given such a hyperplane (𝑤, 𝑏)

that separates the data, this gives the function

𝑓 (𝑥) = sign(𝑤 · 𝑥 + 𝑏) (2.10)

which correctly classifies the training data and hopefully other “testing” data it hasn’t been

trained on yet. However, a given hyperplane represented by (𝑤, 𝑏) is equally expressed by all

pairs {𝜆𝑤, 𝜆𝑏} for 𝜆 ∈ R+. So we define the canonical hyperplane to be that which separates

the data by a “distance” of at least 1. That is, we consider those that satisfy:

𝑥𝑖 · 𝑤 + 𝑏 ≥ +1 when 𝑦𝑖 = +1 (2.11)

𝑥𝑖 · 𝑤 + 𝑏 ≤ −1 when 𝑦𝑖 = −1 (2.12)

or more compactly:

𝑦𝑖 (𝑥𝑖 · 𝑤 + 𝑏) ≥ 1 ∀𝑖 (2.13)

All hyperplanes have a “functional distance” ≥ 1. For a given hyperplane (𝑤, 𝑏), all

pairs {𝜆𝑤, 𝜆𝑏} define the exact same hyperplane, but each has a different functional distance

to a given data point. To obtain the geometric distance from the hyperplane to a data point, we

must normalize by the magnitude of 𝑤. This distance is simply:

𝑑 ((𝑤, 𝑏), 𝑥𝑖) =
𝑦𝑖 (𝑥𝑖 · 𝑤 + 𝑏)

∥𝑤∥ =
1

∥𝑤∥ (2.14)

Intuitively, we want the hyperplane that maximizes the geometric distance to the clos-
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est data points. (See Figure 2.6.) So finally SVMs solve:

max
𝑤,𝑏

1
∥𝑤∥ subject to 𝑦𝑖 (𝑥𝑖 · 𝑤 + 𝑏) ≥ 1, 𝑖 = 1, . . . , 𝑙. (2.15)

Random Forest

The Random Forest algorithm represents an advanced ensemble, supervised learning technique

commonly used for both regression and classification tasks. The methodology is based on the

construction of multiple decision trees during the training phase, where the final decision de-

rives by averaging the outcomes of these individual trees. This approach leverages the power

of multiple predictive models to achieve a final decision, thereby enhancing the accuracy and

robustness of predictions.

The foundation of the Random Forest model is built upon three key concepts: decision

trees, ensemble learning, and bootstrapping. Decision Trees are characterized by their tree-like

structure, as their name states. These models start their decision-making process at the root

node. In the context of classification, they iteratively split the data space into binary outcomes

based on the predictive variables’ values. This recursive partitioning process, continues until a

terminal node, commonly referenced as ‘leaf’ is attained and the classification outcome is de-

fined. Ensemble learning augments the predictive strength by synthesizing the results of various

models trained on the same dataset and, finally, bootstrapping contributes to this synthesis by

facilitating the random sampling of subsets from the dataset, which are then used to construct

individual trees whose results are aggregated to produce a final prediction.

Random Forest models are appreciated for their ability to handle high-dimensional

datasets and produce outcomes that are not only accurate but also less prone to overfitting com-

pared to individual decision trees. This robustness stems from the diversity of the decision trees

within the forest and the randomness introduced through bootstrapping, which ensures that the

models generalize well to new, unseen data. A more detailed explanation on its implementation

in our study will be given in Chapter 3, along with scikit-learn library’s [33] implementations

of both SVMs and RandomForest models.
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Chapter 3

Materials & Methods

3.1 Study Design

As it was previously mentioned, the present work is a N-of-1 study of a patient with refractory

focal epilepsy. The study took place in Münster, Germany and the trial was performed at the

University Clinic Münster. The following information on the nature of the study as also the

equipment, its calibration and other hardware information was kindly provided by Prof. Carsten

H. Wolters and his master’s student, Mr. Fabian Kaiser, who worked on the trial himself and

wrote his thesis on the subject [34] [1].

3.1.1 Ethics Statement & Patient (Case) Description

A local ethics committee approved the research protocol, and a 23-year-old patient participated,

giving written informed consent before the beginning of the study process. Initially diagnosed

with epilepsy at fourteen (14) years old, which was characterized by disrupted thought and

speech but without motor or awareness issues, they experienced seizures multiple, to be precise

an average of four, times per day. The condition, which was proven unresponsive to various

anti-epileptic drugs (AEDs), was classified as a case of drug-resistant epilepsy (DRE). Despite

mild semiology, the seizures significantly affected the patient’s quality of life. Presurgical as-

sessments, including videoEEG and FDG-PET scans, indicated seizure origins in the left frontal

area, near an area responsible for speech, raising surgery risks. Invasive EEG (iEEG) was also

applied, and missed the epileptogenic zone, but imaging and EEG source analysis later identi-

fied a focal cortical dysplasia near Broca’s area, precluding resection.

29



3.1. Study Design 30

Follow-up tests and seizure tracking continued amidst unsuccessful medication tri-

als. In 2019, another MEEG recording was executed, finding numerous Interictal Epileptiform

Discharges (IEDs), while AED therapy was paused, as to proceed with source estimation. The

patient kept a seizure diary throughout the duration of the study.

3.1.2 Study Design

This double-blind sham-controlled clinical trial, firstly aimed to evaluate the impact of indi-

vidually tailored and dCMI-optimized transcranial Direct Current Stimulation (tDCS) on the

frequency of Interictal Epileptiform Discharges (IEDs). The patient was examined for one-hour

long sessions, consisting of twenty (20) minutes of stimulation, followed by a 20-minute break,

and another 20 minutes of stimulation, daily, over the course of five consecutive days.

Figure 3.1: Study Design[35]

To serve as a control, an ActiSham stimulation protocol was designed, using a mon-

tage with adjacent cathodes and anodes placed identically to the dCMI-optimized setup, to en-

sure only the sensation of stimulation was felt without significant cerebral effects (Figure 3.4.

Considering the patient’s history of refractory epilepsy and their anticipation of a genuine treat-

ment experience, the utilization of any kind of scalp anesthesia was avoided. It is worth noting

that the adverse effects associated with tDCS are generally considered minimal, particularly

when compared with the challenges of living with epilepsy.

After five weeks of rest, which were considered mandatory in order to take into ac-

count any residual effects of stimulation from the first phase of the trial, the ActiSham protocol

was applied for five consecutive days over a week, following a similar approach to the first one.

EEG recordings were performed immediately before and after each day’s stimulation session.
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It is worth mentioning that extended two-hour EEG sessions were conducted on the first day

of both the Stimulation and ActiSham weeks, to establish a baseline, which was condensed to

one-hour averages for analysis purposes. Monitoring the consistency of IED recording times

was crucial due to the potential variability in IED frequencies influenced by circadian rhythms

[36]. The ActiSham also controlled for any potential discrepancies in ultradian rhythms that

might have arisen day-to-day [37].

Finally, it is important to mention that both EEG and stimulation sessions were carried

out at the University Clinic Münster, as mentioned, under medical oversight by staff which was

unaware of the study’s design. Kaiser, had personally configured the tDCS management and

control software in advance, ensuring that stimulation parameters remained concealed from the

medical personnel that was administering the tDCS treatments.

3.1.3 tDCS Hardware

As noted in the previously mentioned master thesis, a StarStim® device developed by Neuro-

electrics Barcelona SL [38] was used for tDCS, along with the NE019 Neoprene Headcap from

the same company, with 39 predefined electrode positions based on a subset of the 10-10 EEG

system (Figure 3.2). Automatic impedance checking was applied before every stimulation and

ramp in and ramp out time was 60 seconds each.

Figure 3.2: This system features all the electrode locations placed on the scalp, according to a
subset of the 10-10 system.
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3.1.4 dCMI optimized montage

The treatment-focused Distributed Constrained Maximum Intensity (dCMI) configuration was

developed by Dr. Antonakakis utilizing a pipeline explained in detail in his 2021 dissertation

[39]. This approach integrates automated segmentation of six head tissue categories identified

through T1- and T2-weighted MRI scans with hand-delineated segmentation of surgical burr

holes derived from CT scans. It also incorporates considerations for the differing conductivities

of white and gray matter observed in diffusion tensor imaging (DTI) scans. Additionally, it

calibrates skull conductivity referencing SEP/SEF (somatosensory evoked potential or field)

source estimations for accuracy and concludes with the computation of a tDCS setup (Figure

3.3), which is refined through dCMI methods as documented by Khan and colleagues in their

2019 and 2022 studies [40] [41]. For this thesis, only the EEG recordings were utilized.

Figure 3.3: EMEG targeted and DCMI optimized 8-channel mc-TDCSmontage. a) Distribution
of the simulated electric field over the patient’s cortex (left subfigure) and zoomed view of the
injected current (color-coded cones) in the target region (black cone) (right subfigure). b) Three
different views show the D-CMI optimized 8-channel mc-tDCS montage, targeted at the EMEG
centroid at spike onset, used for the D-CMI stimulation condition. The sum of absolute values
of all currents is 8 mA with a limitation of max 2 mA per electrode [42]. In the present work
only EEG recordings performed before and after the stimulation/sham process were used. This
figure, aims to illustrate the initial trial setup.
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3.1.5 ActiSham montage

As for the ActiSham montage, in terms of electrode placement it mirrors dCMI’s. However, the

applied current differs, having values : AF3: -2 mA, F3: 2 mA, O2: 2 mA, Oz: -2 mA and the

rest: 0 mA.

Figure 3.4: Shows the dCMI optimized montage with current in A. The ActiSham montage is
the same as the dCMI optimized montage when it comes to electrode positions[35].

3.1.6 EEG Data Acquisition

For the EEG data collection within the study, a Nihon Kohden EEG system from Tokyo, Japan

was utilized, recording at a sampling rate of 𝑓𝑠 = 200𝐻𝑧. 19 electrodes were positioned in the

tDCS headcap, according to the 10-10 system.

3.1.7 Interictal Epileptiform Discharge (IED) Detection

Three experienced epileptologists were asked to mark the EEG recordings in order to identify

the Interictal Epileptiform Discharges (IEDs). The data was segmented into one-hour (.edf as

for European Data Format (EDF)files / recordings, which was then anonymised and assigned
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pseudonyms to ensure the epileptologists were unaware of the timing or sequence of each data

segment they were marking, in order to maintain the concept of a blind analysis. Secure transfer

of the data was facilitated through encrypted .zip files via Sciebo , adhering to the data manage-

ment protocols set by the ERA PerMed endorsed PerEpi plan. The actual process of marking

IEDs was conducted visually, utilizing the BESA software, as referenced by Scherg and col-

leagues in their 2018 publication [43].

3.1.8 The patient’s point of view

In order to closely monitor the patient’s subjective experience and any potential side effects

throughout the duration of the trial, a daily questionnaire was administered.The responses pro-

vided a detailed account of the patient’s experiences during both the stimulation and the sham

sessions of the trial, where the patient had no information on which week corresponded to which

part of the trial. The following summary aims to present the key findings as they were gathered

and written down by Mr. Kaiser. Firstly, no negative outcomes were observed during or after

the personalized,optimized dCMI tDCS or ActiSham treatments, and none of the treatment ses-

sions were discontinued. Based on a questionnaire empolying a 5-point numerical rating scale ,

where 1 signified no sensation and 5 an extreme one, the patient reported experiencing an itch-

ing sensation at the back of their head with an average intensity of 3.4±0.55 (ranging from 3 to

4 out of 5) during the stimulation sessions and 2.8± 0.45 during the sham sessions. Additional

sensations reported included pain located under electrode F3, with values being 4.2 ± 0.84 for

stimulation and 3.4 ± 0.55 for sham , a burning sensation was evaluated by the patient as 2 ± 1

for stim and 2 ± 1.41 for sham, a feeling of warmth was noted with 2.2 ± 0.84 for stim and

1.4 ± 0.89 for sham, tiredness or decreased attention was evaluated with 10 [consistent at 1]

for stim and sham too and dizziness , with ”Stim”: 3.2 ± 0.45 and ”Sham”: 1±0 [consistent

at 1]). The intensity of dizziness was the only sensation that showed a significant difference

between the stimulation and sham sessions. Finally, the patient was overall uncertain about

whether they were receiving the ”Stim” or ”Sham” treatment on most days, confidently identi-

fying the ”Sham” session correctly once during ”Stim” and once during ”Sham”, and mistaking

the ”Sham” for ”Stim” on one occasion.
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3.2 Code Implementation Overview

The main goal of the present work is to exploit the information contained in the EEG data

provided by the aforementioned trial, for an effective brain connectivity study, focusing on the

IEDs marked by the epileptologists and their characteristics, and then proceed to a supervised

Machine Learning analysis. The main pipeline steps included firstly the preprocessing of the

raw EEG data, followed by an effective connectivity analysis and then by feature extraction and

ML analysis.

Figure 3.5: A brief overview of our pipeline.

It is worth mentioning that for the development and execution of the computational

analyses presented in this thesis, Python 3, specifically version 3.11, was utilized as the primary

programming language. This choice was made due to Python’s extensive library support and

its newly widespread adoption in scientific computing and neuroscience ( e.g. MNE - python

library [44], scikit-learn [33]for ML) The compatibility and performance features offered by

Python 3.11 were instrumental in facilitating the complex data processing and analysis tasks

required for this study. Finally, all code was written and tested in this environment, using Spyder

editor, to ensure the consistency and reproducibility of results.
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3.2.1 Data Preprocessing

As it has been previouslymentioned, EEG recordings are a pivotal source of data in neuroscience

as they capture essential brain information, more specifically, the electrical activity of the brain,

with high temporal resolution and without being considered an invasive procedure on the human

brain. However, as most experimental data, the raw data captured from EEG recordings is

typically contaminated by signals of non-neural origin, mainly various sources of noise and

artifacts, including electrical interference, muscle movements and eye blinks. Preprocessing

these recordings is therefore essential to isolate genuine important neural activity and proceed

with a robust analysis which will ultimately produce accurate results.

Visual Inspection and Filtering

The first preprocessing step when dealing with EEG recordings, usually involves the visual

inspection of the raw signal. During this process, bad channels are dropped, meaning individual

channels which malfunction and provide data that is too noisy to be usable.

Afterwards, follows the filtering of the data. Human EEG, largely comprises signal

power in a range of frequencies from 1–30 Hz. This narrow band contains the majority of neuro-

physiological information relevant to most research questions, and particularly in event-related

potential (ERP) studies, as this one. While there is evidence suggesting the presence of mean-

ingful information beyond this range, extending to 100 Hz[45], the focal point of investigation

typically remains closely within these confines [46]. There are five widely recognised brain

waves, namely delta (δ), theta(θ), alpha (α), beta(β), and gamma(γ), whose frequency ranges

and characteristics are presented in Figure 3.6.
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Figure 3.6: Brain wave samples with dominant frequencies belonging to beta, alpha, theta, and
delta bands and gamma waves[47]

Our EEG recordings, were sampled at a frequency of 200 Hz, therefore, after applying

baseline correction, in order to maintain all useful neural information and based on the studies

stated above about neural brain wave frequencies, we decided to exploit MNE-Python’s ‘filter’

method and apply on each 1-hour EEG raw data a finite impulse response (FIR) band-pass filter,

with a lower cutoff frequency of 0.05 Hz and an upper cutoff frequency set at 45 Hz. The filter

was designed using the ‘firwin’ method provided by MNE, which is a window-based approach

to create a filter with specific ripple characteristics within the frequency bands set. This band-

pass filter was implemented to avoid undesirable low-frequency drift and high-frequency noise,

while preserving the EEG signal components of interest in the given range.
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Figure 3.7: Raw EEG signal before preprocessing

Figure 3.8: Raw EEG signal after preprocessing, with the IEDs marked on the signal in cyan
color

Artifact and Noise Detection : Independent Component Analysis (ICA)

Another critical point of this analysis, involved the application of Independent Component Anal-

ysis (ICA). Artifact independent components (ICs) can be identified by experts with visual in-

spection, via plotting the components, their properties and corresponding signals and identifying

any components that should be dropped from the analysis. However, sometimes even experts

can disagree on a component’s categorization. Hence, some research has been produced in or-

der to provide specific guidelines on the visual inspection process. One of them, includes the

article by M. Chaumon et al.[48] which was used as the main guideline for our ICA analysis.

During the ICA application process, it was fairly noticeable that all the EEG recordings were
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subject to blink component artifacts and horizontal eye movement components as well as some

muscle components too in fewer cases.

Finally, during the preprocessing phase, the proper EEGmontage, which was a subset

of the 10-10 system, was configured, in order for the scalp topology to be set for the connectivity

analysis. All the preprocessing phase figure representations can be also found in Chapter 4,

Results, where they will be analyzed further.

3.2.2 Connectivity Analysis

Data segmentation

As it was mentioned in Paragraph 3.1.7, the IEDs present in the EEG recordings were marked

by three different epileptologists. These so called ‘events’ were marked for a specific time point/

millisecond in time and do not refer to a time period (Figure 3.8).

Since we aimed to perform a connectivity study, it was essential to analyze the con-

nections over time, rather than at particular moments. This necessity stemmed from the un-

derstanding, that connectivity is a dynamic process reflecting the brain’s ongoing and evolving

activity. Hence, even though IEDs were precisely marked by the clinicians at specific millisec-

onds, our analysis required the investigation of data across broader time windows, in order for

us to capture the temporal relationships and the change of brain interactions over time. As of

that, we decided to split the raw, preprocessed signal into 3 second windows with a 30% overlap.

Since the sampling frequencywas of 200Hz , every window contained 600 time points, on which

our analysis was performed. Finally, when splitting the signal into windows, we also labeled

them based on whether they contained an event or not, to then focus mostly on the windows

containing events.
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Figure 3.9: Average EEG signal for a window containing an event (labeled True)

generalized Partial Directed Coherence

After concluding the preprocessing and segmentation phase of the analysis, we moved on to

the connectivity analysis. As has been explained in the previous Chapter of the present thesis,

Generalized Partial Directed Coherence (gPDC)[49] is an important metric in the concept of ef-

fective connectivity analysis, especially in the context of epilepsy. It provides insights into the

directional influences between different brain regions, revealing how different areas communi-

cate during both normal and epileptic brain activity. When applied to epileptic patients, gPDC

can highlight the patterns of neural interactions that may precede or accompany seizures. By

examining these patterns, researchers can improve the understanding of epilepsy’s underlying

mechanisms, leading to better management and treatment strategies for patients. The precision

and efficacy of gPDC, have made it become a powerful tool for the study of human neurological

disorders like epilepsy [50].

gPDC : the spectral_connectivity package

To implement and calculate the gPDC metric in our code, we decided to exploit the spec-

tral_connectivity package as it was produced by the Eden-Kramer-lab [51], which has also been

recently partially incorporated by MNE-Python. For our study, we focused on the implemen-
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tation of the generalized_partial_directed_coherence method [49]. This function, is designed

to compute gPDC across the entire frequency spectrum of the multichannel time - series data.

The process begins with the application of the Multitaper method, a spectral estimation tech-

nique known for its ability to reduce variance and bias in the spectral estimates. Upon several

calculations concerning the multitaper spectral estimates, the function performs a Fast Fourier

Transform (FFT) to obtain the frequency-domain representation of the data. Afterwards, a Con-

nectivity object is instantiated using the Fourier coefficients derived from the FFT calculations,

alongside the frequency and time attributes provided by Multitaper. Finally, the output of all

the aforementioned process represents the connectivity matrix for each frequency, providing a

comprehensive view of the directed coherence across the entire spectrum (Figure 4.1).

Thresholding : Surrogate data production

By now, it has become clear that gPDC as a measure, reveals the directional flow of information

between two channels, meaning it reveals the inflow and outflow information from a channel

to another. The problem that now arises, is that most parts of the brain are connected and neu-

ral information constantly flows from and to multiple channels, which can also be defined as

the nodes of a graph [52]. The question that is subsequently asked, is how could it be deter-

mined which information/connection should be considered important? The answer, lies in the

thresholding process, or as most recently called, the graph filtering.

To determine whether the information flow of a channel towards another is valuable,

a robust statistical thresholding method should be applied, which will allow us to highlight

all strong channel connections, identifying significant interactions between brain regions and

preventing us from focusing on less informational ones. A plethora of studies have tackled

this issue [53] [54]and a robust solution found, is the creation of surrogate data. In our code

implementation, a function was devised to determine these thresholds by creating surrogate

data.

By simulating the null hypothesis— that is, the assumption of no genuine connectivity

— surrogate data allows for the establishment of thresholds that separate statistically significant

interactions from those arising by chance. For the generation of the surrogate data, the iterative
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Amplitude Adjusted Fourier Transform (iAAFT) was utilized. The iAAFT process [55] helps

in creating statistically correct variations of our original dataset, maintaining the amplitude dis-

tribution and autocorrelation of the time series while randomizing the phase information. This

technique is the basis on which we constructed a null model against which the actual data’s

connectivity patterns can be tested, ensuring that identified connections are not merely artifacts

of the data’s inherent structure but represent real neural interactions.

Upon the generation of surrogate data via iAAFT , our analysis advances to the critical

stage of threshold determination and visualization. By calculating the gPDC values across a

multitude of surrogate datasets and identifying the 96th percentile as our threshold, we establish

a statistically robust criterion that keeps the significant directional interactions amidst the many

possible channel connections. This percentile threshold, chosen based on prevailing standards

in connectivity analysis literature [56], ensures that only the most important, consistent patterns

of neural communication are highlighted, effectively filtering out spurious connections which do

not need to be studied for this work. It is worth mentioning, that all the above, meaning surrogate

data creation and gPDC as also surrogate data calculations, were applied on channel pairs and

not single channels, in order to comprise the directionality of the gPDC measure. Finally, the

thresholding process is presented through the generation of histograms for each channel pair,

visualizing the distribution of surrogate gPDC values against the delineated threshold (Figure

3.10). These histograms not only serve as a graphical representation of our method, but also as

a transparent and intuitive means for identifying significant neural pathways.
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Figure 3.10: Histogram deriving from the thresholding process of the gPDC values with the calculation
of pairwise thresholds. In this representation the pair studied is (3,6), meaning that this threshold value
will be set for information flowing from channel 3 to channel 6, as they have been mapped. Axis x
represents the gPDC pairwise values, and axis y the frequency with which the corresponding surrogate
values lie in the same values as gPDC.

This way, the function embodies a comprehensive approach to connectivity analysis,

from the generation of surrogate data with iAAFT to the statistical validation and visual exposi-

tion of significant neural interactions, providing us with a robust method for further calculations.

All graph representations deriving from the thresholding process and connectivity

analysis in general will be explained in detail in 4, along with the rest of the analysis results.

3.2.3 Feature Extraction

After completing the connectivity analysis calculations, let’s now change the concept of chan-

nels and translate it to nodes in a large graph, or otherwise, a vast network. In order to verify the

quality of our effective connectivity analysis but also to move it a step forward by adding a ML

classification afterwards, we decided to proceed to a feature extraction process. The analysis

involved several steps, each designed to capture different aspects of the EEG data connectiv-

ity and dynamics. The strategy followed, was to exploit the connectivity properties calculated

between EEG channels and then quantify these connections’ characteristics.

After having already calculated the gPDC values for every window, as well as the pair-

wise thresholds for them, we considered these final matrices as graphs. Within these graphs, we

computed global and local efficiency measures to understand the overall and local connectiv-

ity’s effectiveness respectively. Additionally, betweenness centrality was calculated to identify

the channels which are considered to serve as critical communication hubs in the network. To
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capture the dynamic nature of connectivity, we analyzed transitions between different connec-

tivity states, namely clusters [57], and quantified the flexibility of channels in changing their

cluster memberships. This metric, was useful in helping us understand the variability in brain

network configurations over time.

Besides network-based measures, we also extracted statistical features per channel, such as

mean, standard deviation , skewness and kurtosis values. More specifically, the mean is cal-

culated as the average value of the EEG signal over time, indicating the central tendency of

the signal amplitude. Standard Deviation (std), measures the amount of variation of the EEG

signal from the mean. A higher standard deviation indicates greater variability in signal’s am-

plitude. Skewness, measures the asymmetry of the probability distribution of the EEG signal.

Positive skewness indicates a distribution with an asymmetric tail extending towards more pos-

itive values, while negative skewness indicates a tail extending towards more negative values.

Finally kurtosis, measures the ”tailedness” of the probability distribution of the EEG signal.

High kurtosis means that the distribution has heavy tails or outliers, indicating extreme devi-

ations from the mean. ”Taildness,” referring to the term of kurtosis in statistical language, is

a measure of the shape of a probability distribution, specifically focusing on the ”tails” of the

distribution. As tails of a distribution are considered the extreme ends of the distribution curve,

far from the mean or median. Kurtosis quantifies how heavy or light these tails are compared to

a normal (Gaussian) distribution.

These statistical features provide a foundational understanding of the characteristics

of EEG signals across different channels, highlighting variations and anomalies in brain activity.

Finally, these diverse features were aggregated to form amultidimensional feature space for each

time window in which we had split our EEG data. This features space, then served as the input

for ML classifiers, aiming to verify our connectivity analysis’ quality of results.

3.2.4 Machine Learning

After completing the feature extraction process, the next phase involved leveraging these fea-

tures to train Machine Learning models. The goal was to assess the predictive capability of

the extracted features in distinguishing between seizure and non-seizure states. This phase is
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crucial for validating the effectiveness of the connectivity analysis performed earlier.

Data Preprocessing for Machine Learning

Before training the models, the extracted features underwent several preprocessing steps to en-

sure they were in a suitable format for machine learning algorithms. This included converting

complex data representations into a structured format, handling missing values, and normaliz-

ing the data to ensure uniformity across all features. These preprocessing steps were vital in

preparing the high-dimensional feature set for effective model training and validation. Another

point of the process also worth mentioning, is that the initial EEG data were highly imbalanced.

In most data recordings, from a total of approximately 1700 windows, on an average only about

200-250 windows contained events. Hence, in order to compute a robust analysis, while also

reducing the complexity of our initial connectivity calculations, we decided to calculate connec-

tivity and features only for an equal number of windows containing and not containing events.

In order to also exploit fully the windows containing events, we decided to always sample a,

random, but equal portion of False labeled windows as the True ones. This way, not only a lot

of computation time was saved but also, due to the randomness of the False labeled windows

chosen per file, the analysis was more robust and in the ML phase, the class imbalance problem

had already been solved.

Model Selection and Training

To evaluate the predictive performance of the extracted features, we employed two different

machine learning models: Support Vector Machines (SVM) and Random Forest classifiers.

Each model was chosen for its unique ability to handle complex, high-dimensional data for

binary classification, offering a comprehensive assessment of the features’ predictive power.

SVM and Random Forest

Both the SVM and Random Forest classifier hyper-parameters were extensively fine-

tuned using grid search techniques. The models were first trained, and then evaluated using

ten-fold cross validation to ensure their robustness and generalisability across different subsets
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of the data [58]. The performance of the fine-tuned models was finally tested on a separate test

set (training set: 80%, test set:20%) to measure their generalization capability. Metrics such as

accuracy, precision, recall, F1 score, and ROC-AUC were used for the evaluation of the final

results. In Chapter 2, an extensive explanation of the concepts behind the SVM and Random

Forest algorithms was provided.



Chapter 4

Results

In this chapter the findings derived from our complete pipeline’s analysis will be presented,

starting from the early preprocessing stages until the application of Machine Learning models

for the evaluation of effective connectivity and the evaluation of the hypothesis that tDCS indeed

reduces the IEDs while also changing the severity/strength of seizure symptoms. The aim of

this chapter, is to provide a simple visual explanation of all the aforementioned concepts and

processes followed in the present work.

4.1 Connectivity Analysis: Results

As it has been previously explained, one of the main purposes of this thesis is to evaluate the

performance of effective connectivity on the EEG data recordings of a patient with refractory

focal epilepsy. After the preprocessing phase was completed and the signals were segmented,

we implemented the gPDC method. This method, produces, among others, a meshgrid shaped

(n_channels,n_channels), which in our case was (19,19), where the generalized partial directed

coherence values are displayed in the frequency domain. These values, were thresholded using

surrogates and iAAFT, as it has already been described in Chapter 3. Here, we present a figure

of a coherence meshgrid resulted after the thresholding process.

47



4.1. Connectivity Analysis: Results 48

Figure 4.1: (19,19) meshgrid representation of the gPDC measure. The red dashed lines represent the
threshold applied per pair of channels

Despite the fact that images such as the one depicted above are rich in information and

provide a comprehensive overview of the necessary data, their readability and ease of interpre-

tation leave much to be desired. Consequently, it was mandatory for us to address this issue, to

facilitate the clear understanding and presentation of the effective connectivity analysis infor-

mation. Hence, we produced the connectivity strength matrices, where gPDC values across all

channel pairs were plotted in heatmaps, taking into account the pre-calculated pairwise thresh-

olds, indicating the flow/strength of connectivity for each (source,destination) channel pair. The

method devised for producing these plots, operated by iterating through each possible source

and destination channel, excluding self-connections, to accumulate the sum of gPDC values that

surpass the specified threshold, indicating the strength of connectivity from the source to the

destination.

Another significant distinction, was also made between EEG recordings conducted
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before and after stimulation, as well as those recorded before and after the sham procedure. As

explained in Paragraph 2.5, tDCS is considered a promising treatment method especially for

patients with refractory focal epilepsy, as is classified the subject of this study. Consequently,

it’s expected that the patient will present pronounced outflow connectivity patterns close to the

seizure origin, which was found in the left frontal area (see Paragraph 3.1.1). Subsequently

to the transcranial Direct Current Stimulation (tDCS) treatment though, it is further expected

that there will be a modification in these connectivity patterns, likely demonstrating a more

dispersed connectivity throughout the brain’s regions. Following a similar trail of thought, the

connectivity patterns before and after the Sham process are not expected to vary in connectivity

and are in fact predicted to both showcase strong connectivity outflow patterns near the origin

of the epileptic seizures, similar to the ones appearing before the stimulation. It should also be

mentioned, that the IED markings of the epileptologists confirmed this hypothesis, as seen in

the Figure below:

Figure 4.2: Interictal Epileptiform Discharges (IEDs) before and after Treatment. The points indicate
the number of annotated spikes (marked IEDs) during 1 hour of EEG found by Epileptologist 1 (light
green), 2 (medium green), 3 (dark green) and their average (blue) before (Pre) and after (Post) treatment.
Boxplots show themedian (central mark) and the 25th and 75th percentiles (box), and the whiskers extend
to the most extreme data-points which are not considered to be outliers : This result was adapted directly
from the trial [42]

This hypothesis, which was originally tested via EMEG [42], was also confirmed

by our gPDC calculations on the simple EEG recordings. Below, follow some illustrations,

showcasing this finding for all the different cases.
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Figure 4.3: Outflow gPDC heatmap for an EEG recording before tDCS was applied, for a window con-
taining an event. Both x-axis (destination channel) and y-axis (source channel) depict the channel names
as they have been mapped by us, based on the head montage utilized in the trial. Each channel pairs’
directed effective connectivity based on the gPDC measure is calculated in a range between 0 and 1. The
strongest connections are highlighted in yellow and green and the weakest in blue.

Figure 4.4: Outflow gPDC heatmap for an EEG recording after tDCS was applied, for a window con-
taining an event.
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Figure 4.5: Outflow gPDC heatmap for an EEG recording before tDCS was applied, for a window not
containing an event, meaning no seizure was marked in it.

Figure 4.6: Outflow gPDC heatmap for an EEG recording before ActiSham was applied, for a window
containing an event, meaning seizure was marked in it.
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Figure 4.7: Outflow gPDC heatmap for an EEG recording after ActiSham was applied, for a window
containing an event, meaning seizure was marked in it.

At this point, the difference between the gPDCoutflow heatmaps depending onwhether

the patient was being recorded before or after stimulation or before or after sham, was clear.

But to provide a more robust and comprehensive view of this analysis, containing informa-

tion about all windows with events in all four cases (before stim, after stim, before sham, after

sham), some histograms were calculated too, in order for the complete results per recording to

be displayed. In these histograms, are depicted the frequencies with which a specific channel is

highlighted as having the highest gPDC variance across its window’s values. The windows in-

cluded in this analysis, are only the ones that were characterized as windows containing seizures

by the epileptologists. This comprehensive analysis was considered essential because, despite

the fact that the channels which were located closely to the epileptogenic zone (e.g. F3) often

exhibited the highest values of generalized partial directed coherence (gPDC), indicating strong

outflow connectivity, adjacent channels also demonstrated significant connectivity values (e.g.

T7,F7). Furthermore, the presence of artifacts within the signal, which are challenging to re-

move completely without also removing important signal information, necessitates a cautious

interpretation of the data.
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Figure 4.8: Best case scenario pre-
stimulation: Strong connectivity outflow
from channel F3, near the location where
the epilepsy was localized.

Figure 4.9: Pre-stimulation display of
outflow connectivity for another positive
result, on an EEG recording with a plethora
of marked IEDs.

Figure 4.10: Another good case pre-
stimulation display of outflow connectiv-
ity for a casewhere the hub node can still be
identified as F3 but the neighbouring chan-
nels also showcase high gPDC values.

Figure 4.11: Pre-sham display of out-
flow connectivity for a case where the hub
node can still be identified as F3 but the
neighbouring channels also showcase high
gPDC values.

Figure 4.12: After the stimulation, the
highest gPDC outflow connectivity is now
sparse across other channels.

Figure 4.13: After sham: F3 still show-
cases high outflow connectivity, the plot
shows high similarity to the pre-sham find-
ings (Figure 4.11)

In conclusion, even though we did not isolate a single hub node in every scenario, the

accuracy achieved in localizing its approximate position remains high. This outcome is encour-

aging and highlights the potential of our methodology. It suggests that with further refinement,
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probably through even more enhanced filtering to more effectively remove noise and artifacts,

though without causing severe damage to the signal, our approach could yield even more pre-

cise localization of the hub node. This promising result underscores the value of our data and

the need for continued optimization of our preprocessing strategies in order for our pipeline to

provide deeper insights into the connectivity patterns underlying epileptic seizures.

Finally, considering the fact that our goal was to showcase the results of effective

connectivity on a brain, and Python’s MNE library [44] provides us with scalp topographies

for our EEG montage, the step that naturally followed was the creation of scalp topographies

containing all the inflow and outflow gPDC information per window. These figures, display

once again the results of gPDC in the frequency domain, showcasing the strength of connectivity

resulted from the gPDC calculations.

Figure 4.14: gPDC inflow and outflow connectivity in the frequency domain displayed on a
scalp topography, highlighting where the highest frequency is found for a window containing
an event



4.2. Machine Learning: Results 55

Figure 4.15: gPDC inflow and outflow connectivity in the frequency domain displayed on a scalp
topography, highlighting where the highest frequency is found for a window not containing an
event, we can clearly notice the spread of gPDC strength around more brain areas

After that, the effective connectivity analysis part of this work was considered com-

pleted. The question which then arose was how else we could further exploit all the connectivity

information we had collected and how could we prove the impact of tDCS on the patient? Then,

came the idea for the feature extraction and ML analysis. Although the results from feature

extraction did not yield direct graphical outcomes, they represent an important milestone in the

analytical process followed in this thesis, as they facilitated the transition towards the application

of Machine Learning models.

4.2 Machine Learning: Results

Upon extracting the connectivity features and some statistical properties, such as skewness and

kurtosis, from our dataset, this information was utilized as input for Support Vector Machines

(SVMs) and Random Forest (RF) models. Initially, SVMs and RF models were selected due to

their efficacy in binary classification tasks. The experimental design was once again segmented

into four distinct phases: pre-stimulation, post-stimulation, pre-sham, and post-sham, mirror-

ing the structure adopted in earlier stages of the research. The hypothesis based on which the

addition of ML models was decided in order to strengthen the results of our analysis, is that
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the pre-stimulation data are more easily separable - classifiable than the post-stimulation ones.

Intuitively, due to the fact that the epileptic spikes marked before the stimulation process appear

to showcase stronger connectivity, around the epileptogenic area, than the ones marked in the

after-stimulation EEG recordings throughout the brain, due to the fact that tDCS was proven

effective, the pre-stimulation seizures can be clearly classified as their correct class, ‘spikes’,

but the post-stimulation data, can be easily confused with all kinds of normal neural activity

appearing through connectivity patterns. Subsequently if this hypothesis holds, the patient’s

symptoms after the tDCS would have to be milder than the ones before the stimulation. One

way to validate the aforementioned hypothesis with the help of ML classifiers, is to show that

the accuracy of the pre-stimulation model is indeed higher than for the data after the stimulation

process. On the same note, we would expect the classification of data before and after sham

not to vary importantly in accuracy, due to the fact that the patient should not be subject to a

true difference in the epileptic seizure’s intensity. The outcomes of these models were notably

promising, proving once more the robustness of the connectivity results and the true effect of

tDCS on the patient’s symptoms. The Random Forest model, in particular, demonstrated a very

good performance, while the SVMs yielded satisfactory results, to a lesser extent. This dis-

parity underscores the varying efficacies of these models in handling the given classification

challenges.

The ML experiments and results were split once again in the four separate parts of the

trial; pre-stimulation, post-stimulation, pre-sham and post-sham. The inputs to the ML models

were the outputs of the feature extraction analysis which were also all normalized, which finally

resulted in the following evaluation measures: global efficiency, local efficiency, outer degree,

strength, flexibility index and also some statistical features per channel, namely skewness, kur-

tosis, mean and standard deviation.

Finally, both the Random Forest and SVM classifer were ran iteratively, for different

seeds, 4 different times, one per trial part, and ten fold cross validation was performed. All the

experiments were conducted on a similar number of data, in order for the results to be robust.

The final average performance can be seen in Table 4.1
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Models Before Stimulation After Stimulation Before Sham After Sham

RandomForest 0.76 0.66 0.78 0.74

SVM 0.68 0.58 0.71 0.70

Table 4.1: Accuracy for SVM and RandomForest classifiers during different stages of the trial

As shown in Table 4.1, the accuracy of both models after the stimulation is signifi-

cantly smaller than the one pre stimulation, validating our initial hypothesis. Furthermore, the

results before stimulation and before and after sham, lie in the same accuracy percentiles, as

expected based on our initial intuition too. More detailed figures on the calculations of the ac-

curacy results, as well as further details on the ten-fold cross validation performed, to prove the

robustness of our results are displayed below.
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4.3 Random Forest results - Before Stimulation

Figure 4.16: RandomForest’s classifica-
tion report for the connectivity features ex-
tracted from the EEG recordings before the
stimulation

Figure 4.17: ROC curves for the Random-
Forest model before stimulation. These
ROC curves feature true positive rate
(TPR) on the Y axis, and false positive rate
(FPR) on the X axis. This means that the
top left corner of the plot is the “ideal”
point - a FPR of zero, and a TPR of one.
This is not very realistic, but it does mean
that a larger Area Under the Curve (AUC)
is usually better. The “steepness” of ROC
curves is also important, since it is ideal to
maximize the TPR while minimizing the
FPR

Figure 4.18: RandomForest’s confusion
matrix for the EEG recordings before the
stimulation

Figure 4.19: Figure representation of the
ten-fold cross validation process followed
to validate the robustness of our results.
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4.4 SVM results - Before Stimulation

Figure 4.20: SVM’s classification report
for the EEG recordings before the stimu-
lation

Figure 4.21: SVM’s ROC before stimula-
tion. It presents worse results than Ran-
domForest

Figure 4.22: SVM’s confusion matrix for
the EEG recordings before the stimulation

Figure 4.23: Figure representation of the
ten-fold cross validation process followed
to validate the robustness of our results.
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4.5 Random Forest results - After Stimulation

Figure 4.24: RandomForest’s classifica-
tion report for the connectivity features ex-
tracted from the EEG recordings after the
stimulation

Figure 4.25: ROC curves for the Random-
Forest model after stimulation. In this fig-
ure it can be clearly seen that after the stim-
ulation, the model’s behavior yields much
less accuerate results.

Figure 4.26: RandomForest’s confusion
matrix for the EEG recordings after the
stimulation

Figure 4.27: Figure representation of the
ten-fold cross validation process followed
to validate the robustness of our results.
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4.6 SVM results - After Stimulation

Figure 4.28: SVM’s classification report
for the EEG recordings after the stimula-
tion

Figure 4.29: SVM’sROC after stimulation.
The accuracy of the classification is clearly
diminished and the data doesn’t seem to be
easily separable.

Figure 4.30: SVM’s confusion matrix for
the EEG recordings after the stimulation

Figure 4.31: Figure representation of the
ten-fold cross validation process followed
to validate the robustness of our results.
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4.7 Random Forest results - Before Sham

Figure 4.32: RandomForest’s classifica-
tion report for the connectivity features ex-
tracted from the EEG recordings before
sham

Figure 4.33: ROC curves for the Random-
Forest model before sham.

Figure 4.34: RandomForest’s confusion
matrix for the EEG recordings before sham

Figure 4.35: Figure representation of the
ten-fold cross validation process followed
to validate the robustness of our results.
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4.8 SVM results - Before Sham

Figure 4.36: SVM’s classification report
for the EEG recordings before the stimu-
lation Figure 4.37: SVM’s ROC before sham.

Figure 4.38: SVM’s confusion matrix for
the EEG recordings before sham

Figure 4.39: Figure representation of the
ten-fold cross validation process followed
to validate the robustness of our results.
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4.9 Random Forest results - After Sham

Figure 4.40: RandomForest’s classifica-
tion report for the connectivity features
extracted from the EEG recordings after
sham

Figure 4.41: ROC curves for the Random-
Forest model after sham.

Figure 4.42: RandomForest’s confusion
matrix for the EEG recordings after sham

Figure 4.43: Figure representation of the
ten-fold cross validation process followed
to validate the robustness of our results.
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4.10 SVM results - After Sham

Figure 4.44: SVM’s classification report
for the EEG recordings after the stimula-
tion Figure 4.45: SVM’s ROC after sham.

Figure 4.46: SVM’s confusion matrix for
the EEG recordings after sham

Figure 4.47: Figure representation of the
ten-fold cross validation process followed
to validate the robustness of our results.



4.10. SVM results - After Sham 66



Chapter 5

Discussion

In the present work, the efficacy of dCMI-tDCS in reducing the seizure activity in patients

with refractory focal epilepsy were studied and validated, utilizing exclusively EEG recordings.

The main object of our research, was the development and implementation of a comprehen-

sive, Python-based analytical pipeline which could provide interesting insights into neural ac-

tivity during seizures and on the effect of tDCS. This pipeline, integrated the preprocessing

of the data, connectivity analysis, feature extraction and the application of Machine Learning

algorithms. The findings from our connectivity analysis showcased the changes in the brains’

neural networks post-tDCS treatment, affirming the potential of non-invasive neurostimulation

techniques in the management of epilepsy. These outcomes, were also validated through ML

models, which once again highlighted the difference in the classification accuracy results before

and after real stimulation and before and after sham, proving our hypothesis that tDCS reduced

both the frequency and the strength of IEDs.

Furthermore, this research contributes to gaining a deeper understanding of the neural

mechanisms underlying epilepsy, utilizing a non-invasive modality, as is EEG. This approach

not only ensures patient comfort and safety but also gives us the opportunity to conduct ex-

tended hours of trials, without the potential hazards associated with other, invasive techniques.

The ability to gather and analyze more extensive EEG datasets over longer periods, enhances the

depth and reliability of our findings, offering a richer understanding of the effects of Transcra-

nial Direct Current Stimulation (tDCS) on epilepsy. This non-invasive methodology, if further

refined, could provide us with valuable insights into the long-term efficacy of tDCS but also the

dynamic nature of epileptic seizures.
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5.1 Limitations, Outlook and Future Work

Despite the strengths of our methodological approach, we acknowledge certain limitations that

were encountered. Firstly, this study was performed on a single patient. Even though this al-

lowed us to perform a very specific and deep study of the case, aiming for a truly personalized

treatment approach, the evaluation of our results could benefit from being tested to more data,

from similar cases of refractory focal epilepsy. Related work on the subject could offer new be

interesting insights if applied to this pipeline, many studies have followed similar approaches

to try and shed more light to the intricate connectivity brain patterns associated with epilepsy

and other disorders of the human brain [59] [60] [61] [62]. Firstly, it would be beneficial to

experiment with different multivariate connectivity methods [63], and then evaluate them with

the ML models.

Additionally, exploring othermachine learning algorithms or deep learning approaches

could offer even greater insights into seizure prediction. If more data were to be gathered, the

application of Neural Networks could be beneficial. Studies have already partially tackled this

issue and yielded promising results [64] [65]. This could be particularly useful for understanding

the complex dynamics of brain connectivity, where the influence of one region on another can

be non-linear and dependent on the state of other regions. Furthermore, increasing the dataset

could also help enhance the simple ML classifiers’ levels of accuracy results, however, it’s im-

portant to acknowledge that increasing the size of the dataset will also introduce challenges in

terms of computational resources and processing time.

Finally, given that one of the significant advantages of this research is being based

on the use of EEG, another interesting path that could be followed would be the integration

of other non-invasive methodologies (e.g. electrocardiography (ECG)) to the same pipeline.

This combined approach, could possibly provide valuable insights into the connectivity pat-

terns of the human brain, as it could also potentially be utilized for patient monitoring and

analysis in a broader way, opening new avenues for multidimensional research that could help

perform a comprehensive exploration of the complex interactions between multiple organ sys-

tems, combining electroencephalogram (EEG) recordings, which capture the electrical activity

of the brain, with maybe electrocardiograms (ECG) or other physiological signals, such as elec-
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tromyograms (EMG).
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