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Abstract

The accurate estimation of the generators of neural signals measured by
electro- and magnetoencephalography (EEG/MEG) data and the subsequent
electric stimulation of these generators are critical for many medical and
scientific applications. This estimation, or source analysis, basically consists
of two parts, a forward and an inverse problem. In the EEG/MEG forward
problem, a current source is placed into the brain and the resulting electric
potentials and magnetic fields at the sensors are computed. A solution to
the inverse problem determines the source configuration that matches the
measured data. In transcranial electric stimulation, we are interested in an
electrode configuration that injects an optimal current into a target within
the brain.

The forward problem requires knowledge of the volume conduction ef-
fects in the human head. It can be solved using finite element methods
(FEM). This thesis focuses on a finite element approach called CutFEM. Cut-
FEM is intended to facilitate the transition from an MRI-based segmenta-
tion to a computational mesh. In the first half of this thesis, we present Cut-
FEM, its integration into EEG/MEG and tDCS, and analyze its performance
in simplified spherical models. CutFEM yields accurate results compared
against (quasi-)analytical solutions and outperforms other finite element ap-
proaches.

The second part focuses on applying CutFEM-based forward solutions to
realistic data sets in both a somatosensory group study of n = 19 subjects and
two epilepsy patients who have several anatomical deviations, making their
forward modeling particularly challenging. Forward solutions based on es-
tablished competing methods are computed for comparison. In the group
study, CutFEM shows preferable results concerning fit to the measured data,
proximity to a source estimation based on an anatomical atlas, and sensitivity
to quasi-radial source contributions.

For the epilepsy patients, we find large differences between different for-
ward models. Again, we observe a heightened sensitivity to quasi-radial
source orientations in realistic forward models.

One of the patients proceeded with multi-channel optimized transcranial
direct current stimulation based on forward modeling with a classical finite
element approach. We found trends in seizure reduction and modification of
interictal activity.
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Chapter 1

Introduction

Electroencephalography (EEG) and magnetoencephalography (MEG) have
become widespread tools for the non-invasive measurement of human brain
activity (Michel and Murray, 2012). Their greatest strength is their high tem-
poral resolution. Both modalities feature sensors located outside the head,
either directly on the scalp or surrounding it. These sensors measure the
change in electric potential and magnetic field induced by active neurons.
Their sampling rate allows the detection of changes in the range of less than
a millisecond.

However, compared to modalities such as functional magnetic resonance
imaging (fMRI), their spatial resolution, i.e. the reconstruction of which neu-
ral source is active, can be challenging. This can be due to low signal strength,
uncertainties about the volume conduction properties, and the overlap of an
unknown number of simultaneously active sources, and noise artefacts in the
data (Puce and Hämäläinen, 2017).

Still, EEG/MEG source reconstruction is an active research area and recent
studies have shown that it may add valuable information for applications
such as epilepsy diagnosis and surgery (Rampp et al., 2019).

Another application for EEG/MEG source reconstruction is the target def-
inition for transcranial electric stimulation (TES). In TES, one places stimula-
tion electrodes onto the scalp and injects an electric current aimed at either
exciting or inhibiting neural activity at a pre-determined location. The place-
ment of these electrodes can be performed in a normalized way, based pri-
marily on anatomical information. Alternatively, personalized stimulation
montages can be created. A target within the brain can be identified, for ex-
ample through EEG/MEG source reconstruction, f-MRI, or other modalities.
An optimization over possible electrode placement and injection patterns is
performed to reach the maximal stimulation strength that can also take the
direction of current flow into account (Dmochowski et al., 2011; Khan et al.,
2019).

These are the principal topics for this thesis, EEG/MEG source recon-
struction and optimized transcranial electric stimulation using direct cur-
rent (tDCS). More precisely, our focus is the mathematical aspects of forward
modeling. In EEG/MEG, forward modeling refers to placing a hypothetical
neural source into an electric volume conductor model of the human head
and simulating the signals that the sensors would measure given this source.
Inverse modeling then refers to the identification of a set of forward simu-
lated sources that best matches measured sensor data. Forward and inverse
problem together form the process of source analysis (Mosher, Leahy, and
Lewis, 1999b).
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In tDCS, one can similarly first forward simulate the current density based
on hypothetical stimulation electrodes and then optimize for a specific target.

Whether it is forward modeling for EEG, MEG, or tDCS, all three require
the solution of a partial differential equation (PDE). We will describe how
to derive these equations in Chapter 2. In Chapter 3, we then focus on how
to solve these PDEs using the finite element method (FEM). In the fourth
chapter, we introduce the main addition of this thesis, the cut finite element
method (CutFEM) to MEG and tDCS. It is based on level sets as tissue sur-
faces, and splits the mesh generation necessary for FEM into two parts, thus
allowing for a more accurate representation of challenging anatomical de-
tails than other meshing approaches. For EEG, a CutFEM implementation
was first described in Nüßing, 2018; Erdbrügger et al., 2023, an MEG imple-
mentation has been described in Erdbrügger et al., 2024. How to create the
level sets necessary for CutFEM is part of Chapter 5, where we also describe
the pipeline used for the creation of other forward solutions used throughout
this thesis.

In the second part of this thesis, we want to apply CutFEM and compare
it to other forward modeling approaches, starting with multi-layered sphere
scenarios in Chapter 6. Here, (quasi-)analytical solutions are available as ref-
erences, giving us clear feedback about the accuracy of the correctness of the
forward models. Moving to more realistic geometries in Chapter 7, we an-
alyze an n = 19 group study of somatosensory evoked potentials and fields.
Without analytical solutions, we turn to metrics such as residual variance,
proximity to an anatomical atlas-based reference, and sensitivity profiles to
varying source orientations to assess the reliability of our source reconstruc-
tions.

The remaining two chapters focus on the source estimation and subse-
quent electric stimulation of two epileptic patients. Both subjects are chal-
lenging in terms of forward modeling due to anatomical defects such as cra-
nial, surgical resection areas, and liquor-filled cysts.

Reconstruction results and optimized tDCS-caps are presented in Chap-
ter 9. Chapter 10 focuses on the stimulation outcome of a two-week tDCS
stimulation of one of the two patients.
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Chapter 2

Neurophysiological Background
and Mathematical Modeling

In this chapter, we give a short introduction to the electric fields generated
by neural activity, how to measure them using Electro- and Magnetoen-
cephalography (EEG/MEG), and how they can be modulated by transcra-
nial stimulation. As stated in the introduction, one focus of this thesis is
to identify the parts of the brain responsible for the measured signals. For
this source reconstruction, we need to model the volume conduction in the
human head, derived from the Maxwell equations as a partial differential
equation (PDE).

Transcranial direct current stimulation (tDCS) is a closely related task. In
EEG we measure a signal at the scalp and then reconstruct its generators,
whereas in tDCS we use superficial electrodes to stimulate these generators.
Optimizing the positioning of the electrodes to maximize the stimulation ef-
fect in a specific region again requires knowledge of the heads conductive
properties, solving a PDE.

EEG/MEG measurements and tDCS stimulation are both safe, non-
invasive, and, except for the MEG, cheap to conduct, making them ideal
methods for both scientific and clinical applications.

2.1 Electromagnetic activity of the brain

The human brain consists of two types of cells. Approximately 100 billion
Neurons transmit signals, and ten times as many glial cells provide sup-
port for the neurons (Herculano-Houzel, 2009). Neurons have three main
parts: Dendrites, Axons, and the cell body, the soma (Kirschstein and Köh-
ling, 2009). Dendrites receive incoming signals and relay them to the soma,
where it is summated and, given sufficient strength, transmitted along the
axon to other neurons.

Action potential and postsynaptic potential

At rest, there is a resting potential of -70 mV along the neuron’s membrane
measured against the extracellular space surrounding it. It is maintained by
the presence of charged ions, potassium inside, and sodium outside. Potas-
sium can freely pass the membrane to enter from extracellular space to the
axon, but it cannot leave the axon. Sodium on the other hand is actively car-
ried out of the axon, leading to chemical concentration gradients along the
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membrane. If the membrane is sufficiently depolarized by an incoming sig-
nal from the soma, voltage-gated channels open to allow the influx of sodium
into the neuron leading to a polarity reversal. The sodium channels close on
their own while potassium channels open, leading to the outflow of potas-
sium and repolarization of the membrane. In the absence of chemical gradi-
ents, the axon is insensitive to a renewed depolarization until a potassium-
sodium pump restores the gradient. The entire process takes less than 2 ms
time.

A second type of potential is induced where dendrites connect to other
neurons, forming synapses. A signal, often an action potential, passing
through a synapse to (the postsynaptic) dendrite is characterized by the
influx of either positively or negatively charged ions that then lead to a
current inside the dendrite moving away from the synapse and leading to an
extracellular return current of ions with opposite polarity. If the inflowing
ions have a positive charge, the dendrite is depolarized and by extension
also the soma, possibly leading to an action potential along the axon. A
negative inflow hyperpolarizes the postsynaptic dendrites and thus inhibits
signal propagation. Postsynaptic potentials last for a duration of multiple
milliseconds.

Generators of EEG and MEG

The question to which extent each kind of neural activity contributes to the
EEG and MEG is difficult to answer and still open to debate (Thio and Grill,
2023). A single potential of a single neuron is too weak to be picked up by
extracranial sensors. While action potentials are stronger than postsynaptic
potentials, their short duration of less than 2 ms limits the number of possible
simultaneous action potentials, reducing their combined strength. Addition-
ally, two nearby neurons whose axons or dendrites point in opposite direc-
tions would cancel out just as an excitatory and an inhibitory postsynaptic
potential with aligned dendrite orientation would. To reach a measurable
strength, we thus need a population of at least 10,000 neurons (Murakami
and Okada, 2006a) firing simultaneously and in approximately the same di-
rection. Fortunately, about 70 to 85 percent (Wang et al., 2018) of the mam-
malian brain consists of so-called pyramidal neurons. These, in particular
those in the fifth layer of the cortex, are characterized by a long apical den-
drite that is oriented outwards from the soma to the surface of the cortex.
See Figure 2.1. for a description. The postsynaptic potentials generated in
the dendrites of these neurons are considered to be the primary generator of
the electric and magnetic activity measurable by EEG and MEG. Apical den-
drites also motivate the dipole model for neural sources. However, recent
simulations based on neuron models claim that the contribution of action
potentials may be as high as 20 percent (Thio and Grill, 2023).

Sensors for electric potentials and magnetic fields

An EEG measures neural activity as potential differences between electrodes.
These metal electrodes are connected to a voltmeter and an amplifier, allow-
ing measurements in the µV-range. While it is possible to place invasive elec-
trodes directly onto the brain (Palmini, 2006), we focus on the non-invasive
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FIGURE 2.1: A pyramidal cell and the extracellular electric potential gener-
ated by an excitatory input. Taken from Salvetti and Wilamowski, 2008

.

measurement at the surface of the scalp. Here, typical voltages from brain
activity range between 10-100 µV (Aurlien et al., 2004). The positioning of
the electrodes is standardized, typically following a 10-20 (21 electrodes) or
10-10 (81 electrodes) system. 10 or 20 refers to the placement of one electrode
every 10 or 20 percent of the distance between certain anatomical landmarks
near nose, ears and back of the head (Nomenclature, 1991).

The magnetic field induced by a population of neurons typically ranges in
the order of 10-1000 fT. Measuring such tiny fields (the earth’s magnetic field
is about 25-65 mT) requires a magnetically shielded room as well as highly
sensitive sensors. These sensors or coils measure the flux of the magnetic
field through the sensor surface. Coils may be arranged in several ways. The
data that was measured and evaluated is based on coils that are oriented ra-
dially to the head surface. Coils are arranged in pairs, one several centimeters
closer to the head than the other. The difference between the fields picked up
by them forms a gradiometer, reducing low-frequency measurement noise
present in the chamber. Additional coils are placed at a higher distance to
the head for the same reason. Typical sensors are superconducting quantum
interference devices (SQUIDS) (Cohen, 1972a) or optically pumped magne-
tometers (OPM) (Boto et al., 2017). SQUIDS are the more established sensor
type but they are expensive to cool as their superconducting properties are
only present at very low temperatures while OPMs can operate at room tem-
perature. In this work, we focus on data measured by SQUIDS. See Figure
2.2. for a typical configuration of electrode and SQUID positions.
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FIGURE 2.2: Typical electrode and SQUID position setup. The unfilled circles
depict single coils, note that there is an inner and an outer ring of coils. Coils
not in those two rings are reference coils. Electrode positions are marked by

filled blue circles located on the scalp surface.
.

Effects of transcranial electric Stimulation

Transcranial direct current stimulation (tDCS) is currently used in a wide
array of clinical applications ranging from pain disorders, and Parkinson’s
disease to depression, epilepsy, or schizophrenia (Lefaucheur et al., 2017).
It has also been shown to modulate performance in sports (Edwards et al.,
2017) and memory tasks (Hoy et al., 2013). The basic mechanism underly-
ing tDCS is closely related to the resting membrane potential. A set of two
or more electrodes, called anodes and cathodes depending on their polarity,
are placed on the scalp to apply a current inside the brain. If this current is
not aligned with the neuron’s membrane, it is either depolarized or hyper-
polarized. The current, typically less than 4 mA (Lefaucheur et al., 2017), is
not strong enough to induce action potentials on its own but rather increases
or decreases the neuron’s sensitivity to incoming stimuli, i.e. its excitability.
Through long-term potentiation, these stimulation effects can persist even af-
ter the stimulation is over. While the underlying mechanism is not fully un-
derstood, it is assumed that tDCS does not induce neuroplasticity on its own,
but rather modulates the existing, endogenous plasticity of the brain (Kron-
berg et al., 2017). This may be different in transcranial magnetic stimulation,
where the induced currents are strong enough to create action potentials. The
orientation of the current is important, as an electric field parallel to the neu-
ron’s membrane will not affect the resting membrane potential. In practice,
many studies use simple setups by identifying a brain region of interest and
then placing either the anode over the target for excitatory stimulation or the
cathode for inhibitory stimulation (Thair et al., 2017). The assumption behind
this is that the weak fields induced by tDCS primarily affect the gyral crown
and lip. This has the advantage of avoiding complex anatomical models but
may lead to unexpected stimulation outcomes. An increase in stimulation
duration could lead to inhibitory outcomes from anodal stimulation (Monte-
Silva et al., 2013) and cathodal stimulation results conversely may become
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excitatory (Batsikadze et al., 2013). Alternatively, the stimulation montage
can be based on both a target location and an orientation, simultaneously
optimizing the intensity and orientation of the electric field applied (Khan et
al., 2022). The EEG/MEG data however is based primarily on dendritic ac-
tivity, while tDCS affects all parts of the neuron, dendrites, soma, and axons.
In (Rahman et al., 2013), it was shown that cathodal stimulation results in
electric fields both radial and tangential to the cortical surface. Radial fields,
corresponding in orientation to the apical dendrite of the pyramidal cells,
facilitate the polarization of the soma of the pyramidal neurons, motivating
the choice of EEG/MEG reconstructions as tDCS targets. Tangential fields in
turn were found to primarily stimulate those axons and their terminals that
are oriented parallel to the cortical surface, with the resulting stimulation ef-
fects potentially canceling each other due to differences in axon orientation.

2.2 Forward modeling

In EEG/MEG source reconstruction, we are interested in finding the corti-
cal generator of a signal measured at our sensor positions. This task can
be split into two separate parts: The forward and inverse problem (Mosher,
Leahy, and Lewis, 1999b). The forward problem places a fixed hypothetical
source into the brain and simulates the electric potential/magnetic field that
would be measured at the sensor positions. The inverse problem then lies
in identifying a best-fitting source or configuration of sources based on the
forward simulations. In tDCS we are faced with a similar set of problems
(Fernández-Corazza, Turovets, and Muravchik, 2020). Here, the target in the
brain is externally provided, for example as the result of source reconstruc-
tion. TDCS forward modeling then simulates the current density vector at
the target location induced by a set of hypothetical stimulation electrodes.
The inverse problem again focuses on finding an optimal configuration, this
time of stimulation electrodes, not neural sources.

We will start with the EEG forward problem and explore how it is re-
lated to the other two. Inverse algorithms will be introduced in later chapters
where necessary but the focus of this thesis is on forward modeling.

Maxwell equations and the EEG forward problem

As we saw in the previous section, neural activity is electric in nature, the
propagation of the fields it induces are therefore governed by the Maxwell
equations: In the frequency spectrum of neural signals (<1000 Hz), time
derivatives may be neglected and a quasi-static approximation may be used
(Hämäläinen et al., 1993). Further, the relation between electric displacement
field D and electric field E is given by ϵ0ϵrE = D, where ϵ0, ϵr are the electric
permittivity of the vacuum and the relative permittivity. For diamagnetics
such as the human body, the magnetization field H is given by H = B/µ0. B
is the magnetic field, µ0 is the magnetic permeability of the vacuum which is
assumed to be identical to that in human tissue.
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Now let the charge density be denoted by ρ, the current density by J. Then,
following Hämäläinen et al., 1993, Maxwell’s equations are stated as

∇ · E =
ρ

ϵ0ϵr
(2.1)

∇ · B = 0 (2.2)

∇× E = 0 (2.3)

∇× B = µ0 J. (2.4)

Equation (1.3) implies that the electric field is rotation-free and can there-
fore be written as the gradient of a scalar potential u. In other words, E =
−∇u, where u is called the electric potential. Further, we can split the cur-
rent density J into a primary current jp that represents neural activity, and
secondary return currents that depend on the head’s electric conductivity σ,
yielding J = jp + σE = −σ∇u.

Inserting the split current density into (1.4) and taking the divergence on
both sides yields

∇ · rot(B) = ∇ · µ0(jp − σ∇u)

⇐⇒ ∇ · σ∇u = ∇ · jp.

We used that the divergence of the curl is zero and replaced the electric field
with the negative gradient of the electric potential. Following Munck and
Peters, 1993, we arrive at the EEG forward problem:

Definition 2.1. The EEG forward problem
Let Ω ⊂ R3 denote a sufficiently smooth head domain, σ the 3 × 3 symmetric,

positive definite conductivity tensor. The EEG forward problem is then stated as
finding the electric potential u : Ω → R, such that

∇ · σ∇u = ∇ · jp in Ω (2.5)

< σ∇u, n >= 0 on ∂Ω. (2.6)

Here n is the outer unit normal. The boundary condition states that the air
is not conductive. The solution to the forward problem is governed by two
principal components. The conductivity tensor σ and the primary current jp.
The potential is at this point only defined up to a constant.

The conductivity tensor varies significantly from tissue to tissue.
Throughout this thesis, we will distinguish up to 6 different compart-
ments with conductivity values based on Acar, Acar, and Makeig, 2016:
gray matter (0.33 S/m), white matter (0.14 S/m), cerebrospinal fluid (CSF,
1.49 S/m), skull compacta (0.0042 S/m), skull spongiosa (3.6x skull compacta
Akhtari et al., 2002), scalp (0.43 S/m). The skull conductivities can also be
individually calibrated using both EEG- and MEG data (Aydin et al., 2014;
Schrader et al., 2020). The varying conductivity is the reason why we need
accurate anatomical information, e.g. from magnetic resonance imaging
(MRI).

As mentioned in the previous section, neural activity can be modeled as a
mathematical point dipole. More precisely, the primary current jp originating
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from a source located at x0 ∈ Ω is given by the Dirac delta distribution δ.

jp := Mδx0

M ∈ R3 is the dipole moment. If we return to the neuron model from the
beginning, M represents the direction and strength in which the primary cur-
rent is flowing, following the apical dendrite which is oriented normally to
the cortical surface.

Note that δ is not a function in the classical sense, but a distribution. This
means that δx0 is not evaluated at a point x ∈ Ω but rather that δx0 maps
functions from a test function space, typically C∞

c (Ω) to their value at x0. In
other words,

δx0 : C∞
c (Ω) → R, ξ 7→ ξ(x0).

Another typical notation is δx0(ξ) =
∫

ξδx0 dx = ξ(x0). However, this defini-
tion is not entirely accurate as δx0 is not a function on Ω and the integral in the
middle is therefore not properly defined. When we use δ in the right-hand
side of equation (1.5), the equation now has to be understood in a distribu-
tional sense, i.e. that it holds when evaluated against any test function ξ.∫

Ω

∇ · σ∇uξ dx =
∫
Ω

∇Mδx0ξ dx

The derivatives of distributions are defined in a way that maintains the
partial integration rule:

Dαδx0(ξ) = (−1)|α|δx0(Dαξ).

For the MEG forward problem, we return to the Maxwell equations
(Hämäläinen et al., 1993). As ∇ · B = 0, we can write B as the curl of a
magnetic vector potential, B = ∇× A. From (1.4) and Coulombs gauge it
then follows that

∇× B = µ0 J ⇒ ∇(∇× A) = µ0 J ⇒ −∇2A = µ0 J.

A can therefore be written as the solution to the Poisson equation:

A(x0) =
µ0

4π

∫
Ω

J(x)
||x0 − x||2

dx. (2.7)

Applying B = ∇× A and the quotient rule, we end up with the law of Biot-
Savart (Hämäläinen et al., 1993):

B(x0) =
µ0

4π

∫
Ω

J(x)× x0 − x
||x0 − x||32

dx. (2.8)

Again splitting primary and secondary current yields the MEG forward
problem:

Definition 2.2. The MEG forward problem
Let Ω ⊂ R3 denote the sufficiently smooth head domain, σ the 3 × 3 symmetric,

positive definite conductivity tensor. The MEG forward problem is then stated as
calculating the magnetic field B based on a neural source jp at a location x0 outside
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the human head.
B(x0) = Bp(x0)− Bs(x0), (2.9)

where
Bp(x0) =

µ0

4π

∫
Ω

jp(x)× x0 − x
||x0 − x||32

dx, (2.10)

Bs(x0) =
µ0

4π

∫
Ω

σ(x)∇u(x)× x0 − x
||x0 − x||32

dx. (2.11)

Here, u refers to the solution to the EEG forward problem for the same current source
jp, head model Ω, and conductivity tensor σ. Bp is called the primary, Bs the sec-
ondary magnetic field.

Splitting primary and secondary current has two advantages. First, we see
that EEG and MEG forward problems are intrinsically connected, allowing
us to compute the MEG forward problem from the EEG forward problem
without having to solve another PDE.

Secondly, the primary magnetic field does not depend on the conductivity
σ and can be calculated analytically. Following Sarvas, 1987, we get

Bp(x0) =
µ0

4π
M · x0 − x

||x0 − x||32
. (2.12)

M is again the moment vector of the point dipole.
Finally, we will look at the tDCS forward problem. Here, we are interested

in finding the electric field or current density induced by a set of stimulation
electrodes located at ∂Ω, the scalp. In this thesis we assume point electrodes,
therefore we can again use the Dirac delta distribution to model the injection
pattern I. See Hyvönen, 2004, for an introduction to complete electrode mod-
els. Otherwise, the same considerations regarding quasi-staticness as in the
EEG case apply, yielding the tDCS forward problem (Johnson, 1997).

Definition 2.3. The tDCS forward problem
Let Ω ⊂ R3 denote a sufficiently smooth head domain, σ the 3 × 3 symmetric,

positive definite conductivity tensor. The tDCS forward problem is then stated as
calculating the electric potential u such that

∇ · σ∇u = 0 in Ω (2.13)

< σ∇u, n >= I on ∂Ω. (2.14)

u = 0 on ΓD (2.15)

I denotes the injected current from an anode at location xa ∈ ∂Ω and a cathode at
location xc ∈ ∂Ω, i.e. I = δxa − δxc . Note again that using distributions here means
that the entire equation has to be read in a distributional sense.

u = 0 on ΓD ⊂ ∂Ω ensures the uniqueness of the solution (Wagner et al., 2016).

I = δxa − δxc is a base scenario from which current patterns with more
stimulation electrodes can be obtained by superposition. In practice, we of-
ten use up to 8 stimulation electrodes.

Note that the quantity of interest in tDCS is typically either the electric
field E or the current density −σ∇u, not u itself.
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Note the similarities between EEG and tDCS forward problems. We will
exploit these and the connection to the MEG forward problem later to reduce
computation times. First, however, we will investigate ways to solve the
forward problems.

2.3 Quasi-analytical solutions and boundary element
method

Throughout this thesis, we are primarily interested in solving the forward
problems in definitions 1-3 via the finite element method (FEM). To investi-
gate the accuracy of our FEM approaches and to serve as a comparison, we
need different solution approaches.

(Quasi-)analytical solutions to all three problems can be calculated either
directly or via series expansion arguments (Munck, Peters, et al., 1993; Sar-
vas, 1987; Ferree, Eriksen, and Tucker, 2000). However, this is only possible
for simplified geometries, such as multi-layer sphere models. While these
models are only rough approximations of a real human head, they contain
much of its complexity. Different tissue layers such as scalp, skull, cere-
brospinal fluid (CSF), and brain can be modeled with realistic thicknesses
and conductivities. (Quasi-)analytical solutions in multi-layer sphere mod-
els are the most objective initial benchmark we have to test and validate new
methods to solve the forward problems.

In realistic head models, such benchmarks are no longer possible. Wher-
ever we use realistic head models in this thesis, we will therefore compare
solutions from several different numerical approaches. CutFEM and a ref-
erence finite element approach will be introduced in the next two chapters.
For EEG and MEG, we will additionally use the boundary element method
(BEM) as additional comparison.

The following is a brief sketch of how to solve the EEG forward problem
using BEM. It is based on Kybic et al., 2005.

As the name suggests, BEM operates on the tissue surfaces only. We as-
sume N nested compartments Ωi, separated by interfaces Sj. By ΩN+1 we
denote the air surrounding the head. The conductivity σi is assumed to be
constant on each tissue.

For a function g : R3 → R, we define the interface jump [g]j = g−Sj
− g+Sj

,
where

g±Sj
(r) = lim

α→0±
g(r + αn)

for r ∈ Sj and n is the outer unit normal at r. This leads to a modified EEG
forward problem

σi∆u = f on Ωi

∆u = 0 on ΩN+1

[u]j = [σ∂nu]j = 0 on Sj

The added jump equations enforce a continuity of the electric potential and
the current density vector over interfaces Sj.

We can now setup an individual, homogeneous PDE for each Ωi:

σi∆vi = f |Ωi .
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By convolution with the Green’s function

G(r) =
1

4π||r||2
,

solutions are obtained as vi = − f |Ωi ∗ G. Notably, ∆vi = − f |Ωi on the en-
tirety of R3, hence vi is harmonic (∆vi = 0) on R3/Ω̄i.

Given these homogeneous solutions, we now define harmonic helper
functions

Vs = u −
N

∑
i=1

vi

σi
,

Vd = u −
N

∑
i=1

vi.

It can be shown that [Vs]j = [∂nVd]j = 0. Hence, Vs is a single-layer poten-
tial and Vd a so-called double layer potential. These functions lead to two
different, independent ways of solving the EEG forward problem. A third
method, the symmetric BEM, contains elements of both the single- and the
double-layer potential approach by introducing one helper function Vi per
compartment:

Vi =

{
u − vi

σi
in Ωi

−vi
σi

else

The principal idea behind all these three BEM approaches is now identi-
cal. As the helper functions are harmonic, a fundamental theorem for har-
monic functions can be applied, yielding integral equations either for the
helper functions or directly for the electric potential u and current density
−σ∇u (Nédélec, 2001). These surface integrals are then solved using collo-
cation/Galerkin approaches by triangulating the tissue surfaces.

The resulting linear equations systems are dense when compared to those
from the finite element method, limiting the computationally feasible reso-
lution of the triangulation. Established MEG/EEG BEM toolboxes therefore
often focus on 3 tissues (skin, skull, brain) only (Gramfort et al., 2011). Fast
multipole approaches aim at alleviating this limitation and enable a larger
number of distinct tissues (Makarov et al., 2020). The symmetric BEM has
been shown to yield superior results when compared with single-/double-
layer potential approaches and will therefore be used throughout this thesis.

In this chapter, we investigated neural sources in the brain, the electric and
magnetic fields the produce and how they can in turn be stimulated transcra-
nially. We then described how to derive the respective forward problems for
EEG/MEG/tDCS from the Maxwell equations and gave a short outline how
they can be solved in spherical and three-layer models. The next chapter will
focus on more complex geometries.
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Chapter 3

Weak formulations and the finite
element method

In the previous chapter, we derived the partial differential equations associ-
ated with the forward problems of EEG, MEG, and tDCS. We also saw that
for simplified geometries there exist quasi-analytic solutions. For more com-
plex geometries, we mentioned the boundary element method (BEM) which
will serve for comparison later.

In this chapter, we give a short introduction to solving the forward
problems that were derived in the previous chapter using the finite element
method (FEM). First, the underlying framework of weak derivatives and
Sobolev spaces will be introduced and subsequent weak formulations for
our forward problems will be derived. We will further discuss the existence
and uniqueness results of these equations.

Secondly, we will introduce FEM as an approach to solve the weak formu-
lations from the first section and derive the corresponding linear equation
systems.

Finally, we will investigate how transfer matrices can be used to reduce
computational effort and how all three forward problems can be reduced to
essentially solving the same PDE.

3.1 Weak derivatives, existence, and uniqueness

Initially, the forward problems for EEG/MEG and tDCS were stated in a
classical sense. The equation was understood to hold point-wise. However,
when using Dirac distributions as right-hand sides the equations can only be
read in a distributional sense, by evaluation against test functions. Defining
weak derivatives goes in a similar direction, their motivation stems from the
integration by parts formula, we follow the introduction outlined in Evans,
2022.

Let Ω ⊂ Rd, u ∈ C1(Ω), ϕ ∈ C∞
c (Ω). Then we have∫

Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

∂u
∂xi

u. for all i ∈ {1, .., d}

Boundary terms disappear as ϕ is zero on ∂Ω.
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More generally, let α ∈ Nd be a multi-index. Then we have for u ∈ Cn(Ω)∫
Ω

uDαϕ dx = (−1)|α|
∫
Ω

Dαuϕ dx.

This equation must hold when u is at least k = |α| times continuously differ-
entiable. However, it may be true for a larger class of functions, motivating
an extension/weakening of the classical concept of differentiability.

Definition 3.1. Weak derivatives
Let Ω ⊂ Rd, α ∈ Nd be a multi-index and u, v ∈ L1(Ω) Then v is called the

α-th weak derivative of u if∫
Ω

uDαϕ dx = (−1)|α|
∫
Ω

vϕ dx for all ϕ ∈ C∞
c (Ω). (3.1)

It can be shown that the weak derivative is unique and, if a classical
derivative also exists and is continuous, the two coincide. If we further de-
mand that both u and the weak derivative lie in L2(Ω), we end up with a
Hilbert space, leading to the definition of a class of Sobolev spaces.

Definition 3.2. Sobolev Space
Let the above settings hold, k ∈ N. Then the Sobolev space Hk(Ω) defined as

Hk(Ω) := {u ∈ L2(Ω) : ∀|α| ≤ k ∃v ∈ L2(Ω) : v is the weak derivative of u}
(3.2)

is a Hilbert space with associated scalar product and norm

||u||2Hk =< u, u >Hk := ∑
|α|≤k

||Dαu||2L2 . (3.3)

An exemplary function that has a weak, but not a strong derivative,
is f (x) = |x|. When solving our PDEs, we will look for solutions in
Sobolev spaces. The main advantage of doing so lies in the fact that exis-
tence and uniqueness result from functional analysis such as the following
Lax-Milgram theorem can be used.

Theorem 3.1. Lax-Milgram theorem
Let (< ·, · >, V) be a Hilbert space, a : V × V → R a bilinear form, l : V → R

a bounded, linear functional. If for any v1, v2 ∈ V

(i) : ∃C1 > 0 : |a(v1, v2)| ≤ C1||v1||||v2|| (continuity) (3.4)

(ii) : ∃C2 > 0 : C2||v1||2 ≤ a(v1, v1) (coercivity), (3.5)

then there exists exactly one u ∈ V such that

a(u, v) = l(v) ∀v ∈ V. (3.6)

Proof. See Evans, 2022.

Now we can return to our forward problems and derive weak formula-
tions in the setting of Sobolev spaces. Note that as the MEG solution can be
directly computed from the EEG solution, we only need to derive versions
for EEG and tDCS.
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3.1.1 Weak EEG forward problem

For the EEG, we first introduce the Sobolev space with zero mean:

H1
∗(Ω) := {u ∈ H1(Ω) :

∫
Ω

u dx = 0}.

This restriction is necessary for the EEG problem to have a unique solution.
Physically, since the electric potential is only defined up to a constant. Math-
ematically, to show the coercivity of the upcoming bilinear form.

Starting with equation (1.5), multiplication with a test function v ∈ H1
∗(Ω)

and integrating over Ω yields∫
Ω

∇ · σ∇uv dx =
∫
Ω

∇ · jpv dx.

After integration by parts and applying (1.6), we end up with the weak EEG
forward problem:
Definition 3.3. The weak EEG/MEG forward problem

Find u ∈ H1
∗(Ω) such that

a(u, v) = l(v) ∀v ∈ H1
∗(Ω), (3.7)

with
a(u, v) =

∫
Ω

σ∇u · ∇v dx, (3.8)

l(v) =
∫
Ω

f v dx. (3.9)

Note that we substituted ∇ · jp with a function f to avoid the singularity
in the weak forward problem. In the coming pages, we will explore three so-
called source models: Approaches to choose f in a manner that approximates
∇ · jp while maintaining sufficient regularity.

The full subtraction approach

The first one splits the conductivity into two parts, a constant part, and one
that is zero near the source.
Definition 3.4. The full subtraction approach

Let Ω∞ ⊂ Ω be a small domain with constant conductivity σ(x) = σ∞ ∀ x ∈
Ω∞ containing the source position x0. Then both the conductivity and the electric
potential can be split into a so-called infinity part and a correction part: Let x ∈ Ω,
then

σ(x) = σ∞ + σc(x) (3.10)

u(x) = u∞(x) + uc(x). (3.11)

Applying this split to the EEG forward problem yields two equations: One for the
infinity potential that depends on the singularity and one for the correction potential,
that disappears on Ω∞ and only requires the infinity potential.

∇ · σ∞∇u∞ = ∇ · jp in R3. (3.12)
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Note that this equation is over the entire R3, not only over Ω as σ∞ is assumed to be
constant everywhere.

The second PDE is stated as:

−∇ · σ∇uc = ∇ · σc∇u∞ in Ω (3.13)

σ∇uc · n = −σ∇u∞ · n on ∂Ω. (3.14)

The infinity potential can be calculated analytically (Wolters et al., 2008;
Sarvas, 1987). For the correction potential, we can again move to a weak for-
mulation with corresponding bilinear form a(·, ·) and functional l(·). Wolters
et al., 2008 show that the bilinear form is continuous and coercive in H1

∗(Ω).
Note that the second equation no longer has a singularity in it. Therefore, l(·)
lies in H1

∗(Ω) and the equation fulfills the requirements of Lax-Milgram. Re-
cent developments have led to the local subtraction approach (Höltershinken
et al., 2023), improving computation times while maintaining a solid mathe-
matical understanding.

The St. Venant source model

Another approach is the St. Venant or blurred dipole approach (Buchner et
al., 1997; Wolters et al., 2007).

Definition 3.5 (The St. Venant source model). In the St. Venant method, the
dipolar source term is substituted by an appropriate set of N monopoles located at
xi ∈ Ω, i ∈ {1, ..., N}.

ρ =
N

∑
i=1

qiδxi .

The positions are fixed, determined by the finite element mesh that will be set up in
the following sections. Usually, the xi will be located within the gray matter. The
monopole strengths qi are selected in a manner such that a certain selection of the
first M ∈ N moments of the dipolar distribution and the monopole distribution are
identical: Let l ∈ N, l < M, the l-th centered moment is then defined as

Sl( f ) =
∫
Ω

(x − x0)
l f (x)dx.

Then Sl(ρ) = ∑i qi(xi − x0)
l. Sl(∇ · Mδx0) = 1, if l = 1 and 0 else.

The difference between Sl(ρ) and Sl(∇ · jp) can then be minimized over
the qi’s where the exact definition of the minimization functional depends
on the type of Venant approach, see e.g. Buchner et al., 1997; Vorwerk, 2016;
Nüßing, 2018; Vorwerk et al., 2019. Similar to the subtraction approach, it
can be shown that there exists a unique solution if the dipole is approximated
using a monopole distribution (Hanrath, 2019).

The partial integration approach

Finally, we will investigate the partial integration approach (Lew et al.,
2009b). Note that by the definition of the derivative of the Dirac delta
distribution we have

∇ · Mδx0v = −Mδx0∇v,



3.1. Weak derivatives, existence, and uniqueness 17

for test functions v ∈ C∞
c (Ω). This approach has certain advantages: First,

it is not an approximation. The term on the right can easily be evaluated for
a wide array of functions v and if you read the EEG forward problem in a
distributional sense then this is simply how the right-hand side is defined.
However, the v we choose in FEM is not necessarily differentiable or even
continuous as we will see in the coming sections. We therefore have to make
sure that it is at least smooth in an area around the source location x0.

We have derived a weak formulation for the EEG forward problem and
investigated ways to model the singularity of our neural source in three dif-
ferent ways, each with its own advantages and disadvantages. By extension
we have therefore also dealt with the MEG forward problem, leaving only
the tDCS forward problem.

3.1.2 The tDCS forward problem

TDCS is somewhat different from the EEG problem as the singularity is
located on the boundary, not inside the volume conductor. Here, we do
not solve an auxiliary problem like in the EEG case. Rather, existence
and uniqueness can be shown directly for the singular equations (Frank,
03/2022). To do so, we need a link between Sobolev spaces and the delta
distributions. First, we extend our definition of Sobolev spaces Hs(Ω) to
arbitrary real values of s, by making use of an intrinsic relation between
weak differentiability and Fourier transformations:

Let u ∈ L1(Rn). The Fourier transform is then defined as

F : L1(Rn) → C0(R
n), F(u)(y) = 2π−n/2

∫
Rn

u(x)e−ixydy (3.15)

Secondly, we denote by S(Rn) the space of rapidly declining functions or
Schwartz space

S(Rn) = {ϕ ∈ C∞(Rn) | ∀α, β ∈ Nn : sup |xαDβϕ(x)| < ∞}.

Given the definitions of the Fourier transform and the dual of Schwartz space
S′, it can be shown that for m ∈ N

Hm(Rn) = {u ∈ S′(Rn) : (1 + ||y||2)m/2Fu(y) ∈ L2(Rn)}. (3.16)

The above spaces can be restricted to Ω ⊂ Rn. Note that the set on the right-
hand side is sensible for all m ∈ R, giving us an according extension of Hm

for arbitrary m ∈ R. With respect to the delta distributions, it can be shown
that

δ ∈ H−3/2−ϵ(Ω), δ ∈ H−1−ϵ(∂Ω) ∀ ϵ > 0.

We now have the necessary function spaces in which a solution to the tDCS
forward problem exists:

Theorem 3.2 (Existence and uniqueness for tDCS forward problem). Let
xa, xc ∈ ∂Ω, I = δxa − δxc and ϵ > 0. Then the tDCS forward problem for point
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electrodes lies in finding a u ∈ H1/2−ϵ(Ω) ∩ H1
loc(Ω) :∫

Ω

σ∇u · ∇v dx = 0 ∀v ∈ C∞
c (Ω), (3.17)

< σ∇u, n >= I on ∂Ω. (3.18)

It has a unique solution.

Proof. See Frank, 03/2022.

Note that for more regular current injection patterns I ∈ H−1/2
∗ (∂Ω), such

as the complete electrode model, existence and uniqueness can be shown
using Lax-Milgram, see e.g. Wagner et al., 2016.

Using Sobolev spaces and weak derivatives we have redefined our for-
ward problems in a setting in which the existence of unique solutions can be
proved. Now we can proceed and investigate a numerical method to solve
these equations.

3.2 The finite element method

The solutions to the equations that were stated above are in infinite-
dimensional spaces V. In order to solve them numerically, we approximate
the solutions in finite-dimensional spaces Vh, where h characterizes the reso-
lution of our approximation, in a way the dimensionality of Vh. The principle
behind finite element modeling lies in the setup of Vh. The basic idea is to
discretize the head domain Ω into a tesselation, a set of simple polygonal
elements. On these elements, we define a set of basic trial functions that
span up Vh. A triple of mesh element, trial functions and associated degrees
of freedom is called a finite element. Different finite element approaches
vary in the way that these trial functions are set up, if Vh ⊂ V, then the
discretization is considered conforming. In this section, we will introduce
FEM by means of a conforming, continuous Galerkin (CG-)FEM. The section
mainly follows the introduction in Braess, 2007. CutFEM, which will be
introduced in the next chapter, belongs to the non-conforming FEM.

We start by introducing tesselations:

Definition 3.6. Tesselation
Let Ω ⊂ R3. A tesselation or mesh of Ω is a set Th(Ω) = {E0, ..., Em − 1} of

disjunct, convex polytopes Ei ⊂ Ω such that

m−1⋃
i=0

Ēi = Ω̄.

The tesselation is called admissible for FEM if Ēi ∩ Ēj consists either of a single
common vertex, a common edge, or a common face. This implies that there are no
hanging nodes.

Tesselations are characterized by a mesh resolution parameter h associated
with the shape and diameter of the elements of Th. By hT = diam(T), T ∈ Th,,
we define the diameter of T and by h = maxT∈T hT the maximal diameter in



3.2. The finite element method 19

Th. The diameter alone is not enough to characterize the mesh resolution,
hence we assess the shape as well: Th is called shape-regular if there is a
K > 0 such that for any T ∈ T we find a circle with radius rT contained
within T such that

rT ≤ hT/K.

Now that we have a proper discretization of Ω, we can proceed and define
a function space Vh associated with it. Remember that Vh is supposed to be
a subspace of H1(Ω). The functions should be associated with the mesh ele-
ments and their integration over the mesh elements should be simple. Hence
we choose the continuous piece-wise polynomial functions of order k ∈ N.

Definition 3.7. Finite element space

Vk
h := {vh ∈ C0(Ω̄) : vh|T ∈ Pk∀T ∈ Th}. (3.19)

Note that we only choose polynomial functions for tetrahedral mesh ele-
ments. In the case of hexahedral elements, we choose Pk = Qk, the space of
multilinear functions of order up to k instead. For conforming finite element
approaches in this thesis, we will only look at k = 1 and omit the superscript
in V1

h . As basis functions for Vh, we choose a Lagrange basis {ϕi}i≤N on the
N vertices xi, i ≤ N of our tesselation, fulfilling

ϕi(xj) =

{
1, i = j
0 i ̸= j.

The first-order Lagrangian basis functions are also called hat functions as
they peak with value 1 at their respective node xi and decrease to 0 when
moving towards neighboring nodes xj. For higher-order lagrangian bases,
we can select additional equidistant nodes on each mesh element. Any func-
tion vh ∈ Vh can therefore be written as vh = ∑i ciϕi. The number of basis
functions is the number of degrees of freedom (DoF) in our model.

With this function space, we can now discretize our weak forward prob-
lems, starting again with the EEG. Inserting uh into (2.7) yields one equation
per basis function, i.e.

a(uh, ϕi) = l(ϕi) ∀ i ≤ N.

Writing these equations in matrix-shape, we obtain the discretized EEG for-
ward problem:

Definition 3.8. The discrete EEG forward problem
Let Ω ⊂ Rn be our head domain, Th a tesselation of Ω and Vh the first order

lagrangian nodal basis on Th. Then the discrete EEG forward problem is stated as
finding uh = ∑i uiϕi ∈ Vh such that

Au = b, (3.20)

where A ∈ RN×N, with
aij =

∫
σ∇ϕi∇ϕj dx.

A is called the stiffness matrix. u ∈ RN is the coefficient vector that characterizes uh.
The right-hand side b depends primarily on the source model, for partial integration
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we get
bPi

i = −M · ∇ϕi(x0).

For the Venant approach, we obtain

bV
i = ∑

j
qjϕi(xj),

where the qj are the monopole loads and xj their vertex locations. x0 is as always the
source position, M the dipole moment.

The subtraction approach solves a different problem associated with the correction
potential uc but can be derived in a similar manner.

Note that the right-hand side from the partial integration model is con-
stant on each element T ∈ Th if first-order polynomials are selected. The
solution to (2.20) will therefore be identical for each x0 ∈ T, limiting the ac-
curacy of the method by the mesh resolution.

Both the Venant and partial integration approach yield sparse right-hand
sides, allowing for a fast and efficient calculation of solutions. The full sub-
traction approach leads to a dense right-hand side vector and is therefore
impractical for realistic head models with millions of DoFs. Recently, a local
version of the subtraction has been developed, leading to a sparse right-hand
side while maintaining the well-understood mathematical background of the
full subtraction approach (Höltershinken et al., 2023).

For the MEG, the discrete version of the secondary magnetic field can sim-
ply be calculated from the discrete EEG version.

Definition 3.9. The discrete MEG forward problem
Let uh = ∑i ciϕi be the solution to (2.20). Then the secondary magnetic field Bs

is given by

Bs(x) = ∑
i

ci
µ0

4π

∫
Ω

σ∇ϕi ×
y − x

||y − x||3 dy =< u, Sx >, (3.21)

with
(Sx)i =

µ0

4π

∫
Ω

σ∇ϕi ×
y − x

||y − x||3 dy.

Calculating the secondary magnetic field at a sensor location x outside Ω
can therefore be interpreted as applying a functional Sx on the discretization
of Ω to the electric potential uh.

Both the discrete equations for EEG and MEG suffer from the fact that
a new coefficient vector u for the electric potential has to be calculated for
each source position x0 and moment vector M. For realistic head models, the
number of possible source positions goes into the tens of thousands, making
a direct computation for each source infeasible. This can be alleviated by in-
troducing the concept of transfer matrices (Munck, Wolters, and Clerc, 2012;
Gençer and Acar, 2004; Wolters, Grasedyck, and Hackbusch, 2004).

Transfer matrices for EEG and MEG

In this section, we want to investigate efficient ways of calculating the electric
potential and magnetic field for a large number of different source positions
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x0. We make use of the fact that we are only interested in the potential/field
values at the sensor positions. Starting with the MEG, inserting (2.20) into
(2.21) we obtain

Bs(x) = Sxu = Sx A−1b =: Txb.

Now we can solve for T, yielding

ATt
x = St

x,

where we used that A is symmetric. The advantage of solving for Tx rather
than solving for u lies in the fact that Tx does not depend on the source term
b. Rather than having a separate equation for each source term b, we can now
solve once for Tx and then perform one multiplication Txb per source term
to obtain the secondary magnetic field strengths. Tx depends on the sensor
position x so we have one equation per sensor. Combining the vectors (Tx)x
into one matrix, we obtain the MEG transfer matrix TMEG. Calculating Bs(x)
is then a computationally cheap matrix-vector multiplication that has to be
performed once per dipole. We gather the set of all outputs in a so-called
lead field matrix LMEG ∈ Rs×l, where s is the number of sensors and l the
number of dipoles.

An almost identical procedure can be performed for the EEG. Note again
that we are only interested in evaluating the electric potential at a set of pre-
defined electrode positions. Recall that the electric potential states voltage
differences between the electrode positions and is therefore only defined up
to a constant. Here, we will focus on the potential difference between two
electrodes, an active electrode at xa that is measured against a reference elec-
trode at xr. Evaluating

uh(xa)− uh(xr) = ∑
i

ci(ϕi(xa)− ϕi(xr)) =< u, Ra,r >

with
(Ra,r)i = ϕi(xa)− ϕi(xr) (3.22)

again motivates the definition of a sensor functional. Identical to the MEG
case we can now set up a transfer matrix TEEG by solving

ATt
a,r = Rt

for each electrode pair. Again, the electric potential is calculated by multi-
plying with the vector b, and the result for all dipoles is stored as the EEG
lead field matrix LEEG. Note that EEG potentials are only defined up to a
constant, we therefore typically apply common average referencing and sub-
tract the across-sensor mean. LEEG

i,k then states the electric potential difference
between the i-th sensor and the across-sensor average given the k-th dipole
at unit strength.

We stated ways to efficiently compute the electric potential and secondary
magnetic fields using transfer matrices. In the next section, we will inves-
tigate the discrete tDCS forward problem and how it is related to the EEG
transfer matrix.
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EEG and tDCS: Helmholtz reciprocity

In contrast to the EEG equation, the tDCS forward problem still consists of
two parts. To apply the finite element method, we still need to combine the
two. When applying the Gauß divergence theorem to the left-hand side, we
obtain ∫

Ω

σ∇u · ∇v dx =
∫

∂Ω

Ivh dS = vh(xa)− vh(xc) ∀vh ∈ Vh.

Similar as in the EEG/MEG case, this yields a linear equation system

Au = b,

where A is again the same matrix as in the EEG/MEG case and

bi = ϕi(xa)− ϕi(xc).

Hence, the discrete tDCS forward problem is identical to solving the transfer
matrix problem in EEG. This relationship between EEG and tDCS has also
been characterized as Helmholtz reciprocity (Vallaghé, Papadopoulo, and
Clerc, 2009; Rush and Driscoll, 1969).

Theorem 3.3. Helmholtz Reciprocity
Let u be the solution to the EEG forward problem for a source at x0 and moment

M, and w the solution to the tDCS forward problem for two point electrodes at xa, xc.
Then

u(xa)− u(xc) = M · ∇w(x0).

In other words, the potential difference between two electrodes induced
by a point dipole at x0 can be calculated from the electric field induced by
two stimulation electrodes. The left-hand side can easily be calculated for a
wide array of source positions x0 and moments M.

In this chapter, the foundations for numerically solving the bioelectro-
magnetic forward problems were laid. We introduced weak derivatives and
Sobolev spaces for two reasons. First, to obtain a functional analytic frame-
work in which the existence and uniqueness of solutions could be proved.
Secondly, the resulting integral equations can be solved using the also intro-
duced finite element method.

Finally, it was shown that the EEG and MEG forward problem can be
thought of as applying a sensor function to the EEG solution uh. Using trans-
fer matrices, we can shift the computational load from one PDE per neural
source to one PDE per sensor. Finally, we have seen that all three forward
problems give rise to the same stiffness matrix A and how the EEG transfer
matrix and the solution to the tDCS forward problem coincide.

Given these results and in particular the short introduction to the finite
element method, we can now proceed to investigate short-comings of ex-
isting mesh generation for FEM, and how they motivate the use of unfitted
finite element methods such as CutFEM, which will be introduced in the next
chapter.
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Chapter 4

A cut finite element method

Before introducing the cut finite element method, we will investigate reasons
why there is room for yet another way to solve the bioelectromagnetic for-
ward problems.

Up to now, we have seen quasi-analytic solutions yielding accurate ref-
erence solutions, yet they are only available for simple spherical geometries
(Sarvas, 1987; Munck, van Dijk, and Spekreijse, 1988). We briefly touched
upon basic boundary element methods (BEM), which lead to densely popu-
lated equation systems, limiting the feasible number of degrees of freedom
(DoF) and thus the resolution of the head model. Additionally, BEM is not a
volumetric method, hence anisotropic compartments are unavailable. How-
ever, recently fast multipole methods have been developed to alleviate these
concerns (Makarov et al., 2020).

The conforming finite element method (FEM) that we explored in the final
parts of the previous chapter offers both sparse stiffness matrices and the vol-
umetric mesh underlying FEM can accommodate tissue anisotropies. FEM
allows for highly accurate head models with millions of DoFs at reasonable
computational costs (Lew et al., 2009a; Vorwerk et al., 2014).

There is however a caveat. The tesselation/mesh that FEM operates on
assumes that each of its elements is completely contained within one tissue
compartment, i.e. σ is constant on each element. The compartment bound-
aries are therefore represented by the boundary of the mesh elements and
this representation may not entirely coincide with the tissue boundaries ob-
tained from MRI segmentation. 3D mesh elements are typically either hexa-
hedrons or tetrahedrons. Both of these options have certain advantages but
also limitations.

We start by looking at hexahedrons. Segmentation results often come in
the shape of binary maps, i.e. voxelized images in which each voxel either
has a value of 0 or 1, depending on whether the voxel is considered inside
or outside the respective compartment. Each voxel can be identified as one
hexahedron, making for a straightforward meshing process. However, due
to their cubic structure, the boundary of a hexahedral mesh will have a stair-
case pattern while the tissues in the human head, in particular the cortical
folds, are innately curved. This staircase pattern can be reduced by shifting
boundary vertices either inward or outward but the resulting mesh cannot be
fully smooth as can be seen in Wolters et al., 2007. Additionally, hexahedral
meshes may suffer from skull leakages. In areas where the skull is very thin
this may lead to meshes with only one diagonal layer of skull hexahedrons,
resulting in scalp and brain hexahedrons that share a vertex. This shared
vertex constitutes a hole/leak in the skull. Such leakages can be alleviated
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by using discontinuous Galerkin (DG) type methods (Engwer and Nüßing,
2017). These however massively increase the number of degrees of freedom
without providing additional mesh resolution.

Tetrahedra on the other hand are much better suited to represent curved
structures. They are typically created from surface triangulations (Windhoff,
Opitz, and Thielscher, 2013; Nielsen et al., 2018). While their boundary rep-
resentation can in theory be more accurate than that of hexahedrons, creating
a tetrahedral mesh is significantly more complicated. The quality of a finite
element approximation using a tetrahedral mesh is strongly dependent on
the regularity of the individual tetrahedrons. Pointy and in particular blunt
elements may lead to numerical errors (Shewchuk, 2002). For head model
generation, this is particularly relevant for thin or vanishing areas, for ex-
ample where the brain touches the inner skull. Here, the cerebrospinal fluid
separating the skull and brain becomes thinner and thinner before vanish-
ing. Modeling such CSF compartments in a robust and automated way is not
easily achievable using tetrahedral mesh generators. Therefore, most FEM
toolboxes for EEG/MEG/tDCS that employ tetrahedral meshes post-process
the segmentation results to ensure that the tissues are nested: white matter is
fully surrounded by gray matter, which is entirely coated in CSF and so on.

The central motivation for CutFEM is therefore to create a FEM-based
computational framework that accurately represents the segmentation re-
sults by integrating the strengths of hexahedrons and tetrahedrons. We will
now proceed with the meshing process in CutFEM.

4.1 A two-stage mesh generation

We recall that in the classical FEM described in the previous chapter, the mesh
serves two purposes. The elements of the tesselation define the support of
the basis functions that span the finite-dimensional trial function space Vh,
in which we search for an approximate solution. Additionally, the tissue
compartments are also represented by the elements, as each element belongs
to exactly one tissue.

In CutFEM, these two properties are decoupled by introducing a 2-stage
meshing process. First, a fundamental/background mesh Th is created. It
contains no information concerning the head domain Ω other than Ω ⊂ Th.
Typically, Th is a tesselation of uniform, simple elements, either tetrahedrons
(Burman, 2010) or hexahedrons, which will be used throughout the following
chapters.

Here, an initial space of trial functions V̂h with lagrangian basis is defined
in the same manner as for the classical FEM from the previous chapter. In the
second step, the mesh is adapted to the tissue compartments Ωi,

⋃
i Ωi = Ω.

We do so by defining level set functions ϕi : Ω → R, one for each compart-
ment. The ϕi have a simple structure, satisfying

ϕi(x)


< 0, x ∈ Ωi

= 0, x ∈ ∂Ωi

> 0, x /∈ Ω̄i.
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the zero-set of ϕi therefore defines the boundary of the i−th compartment.
This level set is now used to cut the elements of Th into smaller pieces that
conform to the compartments. In essence, two approximation steps are per-
formed. At first, the level set function ϕ may belong to an arbitrary function
class. It is approximated by a multi-linear function ϕh, meaning that we eval-
uate ϕ at a set of predetermined locations and fit a multi-linear function to
these values. In practice, the resolution of this multi-linear function is limited
by the resolution of our segmentation input. If our MRI has a 1x1x1 mm reso-
lution, we essentially have one value per cubic centimeter. This value is then
interpreted as the signed distance of the center of the voxel to the zero-level
of ϕh. The second step then lies in applying a topology preserving marching
cubes (TPMC, Engwer and Nüßing, 2017) algorithm to the mesh and ϕh, re-
placing each element Ej ∈ Th by a set of simple polygons {Ejk}k, that conform
to the zero-line of ϕh. These so-called snippets serve the second purpose of
the mesh, representing the tissue compartments. Each snippet Ejk belongs to
one compartment alone, we can therefore approximate Ωi ≈ Ω̂i := {Ejk : Ejk
belongs to Ωi}. The snippets inside one element that belong to the same com-
partment form a cut cell. The mesh consisting of the snippets is called the cut
mesh.

The cut mesh is created iteratively and TPMC is applied once per level
set function. First, the fundamental mesh is cut by the first level set function
denoting the boundary of the first tissue, resulting in the first stage of the cut
mesh. This cut mesh is then cut by the second level set and so on. The entire
process can then be repeated to further refine the cut mesh and improve the
approximation. The limit here is the resolution of the level set function. For
sphere models, we could calculate level sets of arbitrary resolution but in
practice, the segmentation result is based on voxelized images that typically
have a resolution of no more than 1x1x1 mm. Refining the cut mesh is e.g.
relevant when we use a 2 mm background mesh and have a 1x1x1 mm voxel
resolution.

To recapitulate, each background mesh element may contain sections of
multiple compartments. The background elements are then split into multi-
ple cut cells made up of snippets that conform to the tissues present inside
the element.

Next, we define an individual trial function space for each compartment
as a restriction of V̂h.

Vhi := {vχΩ̂i
: v ∈ V̂h} (4.1)

Here, χ is the indicator function. In other words, we take the full trial func-
tion space and cut it off at the boundary of Ωi, giving rise to the name Cut-
FEM.

The full trial function space is then defined as the direct sum of the sub-
spaces

Vh :=
⊕

i

Vhi .

Note that when defining the langrangian basis one vertex corresponds to one
trial function. In CutFEM, a single vertex can correspond to multiple trial
functions, one per tissue in the adjacent elements. This may seem surprising
at first as the physical location of the node is only inside one compartment.
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FIGURE 4.1: Schematic overview of the Cut finite element method. Left: fun-
damental mesh and level sets for two spherical compartments. Center: Sub-
meshes and trial functions for each compartment. Black dots represent trial
functions of the respective submeshes. Right: Cut mesh representation cre-
ated by TPMC. The green and orange colors represent the areas that the trial
functions from the previous step are restricted to. Modified from Erdbrügger

et al., 2024

Another way to think of the trial functions in CutFEM is by defining sub-
meshes. Each submesh consists of all fundamental elements that contain cut
cells of the respective compartment. Each submesh then receives a full set
of lagrangian trial functions, cut off at the compartment boundary. These
submeshes then naturally overlap but the trial functions of separate com-
partments only share the boundaries.

See Figure 4.1. for a schematic overview of CutFEMs meshing process.
Separating the definition of trial function spaces and head geometry has sev-
eral advantages. First, the level set function can be created from a variety of
segmentation results. Its simple structure imposes no requirements such as
nested compartments as is the case for tetrahedrons.

The freedom we have in choosing snippets ensures that the boundary can
be approximated accurately. We can also choose to have a low-resolution fun-
damental mesh with higher-order trial functions while maintaining a high-
resolution representation of the head geometry, an option we will explore
later on.

Additionally, the fact that we use the same vertex for multiple trial func-
tions implies that CutFEM has an inherently higher density of DoFs near in-
terfaces, automatically spending additional computational resources in areas
of high geometric complexity.

It may seem surprising at first that we do not define the trial functions on
the snippets. The reason for that is two-fold. First, there are no requirements
on the shape of the snippets or how they are connected. The cut mesh con-
tains an arbitrary mix of tetrahedrons and hexahedrons, including hanging
nodes, i.e. vertices that are on a corner of one adjacent element and on the
face/edge of another. The standard continuous Galerkin from the previous
chapter is no longer applicable here and we would have to turn to methods
such as Discontinuous Galerkin (DG). DG assigns an individual set of trial
functions to each element, cutting them off at the element boundary. DG on
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the cut mesh would lead to an unfeasible increase in the total number of DoFs
and thus computation time. Second, each fundamental element may be split
into dozens of snippets with potentially tiny volumes.

4.2 CutFEM forward problem and Nitsche coupling

The previous section was dedicated to the motivation behind CutFEM, its
meshing process, and the associated trial function space. The coming pages
are concerned with the mathematical treatment of the discontinuities in Vh.

Rather than thinking of the entire head as one domain, we consider it as
the union of disjunct, open subsets of R3, i.e. Ω =

⋃
i Ωi. We define

Γ :=
⋃

∂Ωi\∂Ω̄ (4.2)

as the internal skeleton of Ω that contains the interfaces between tissues but
excludes the scalp surface. The boundary ∂Ωi is in practice also approxi-
mated by ∂Ω̄i. For the sake of clarity, we will no longer distinguish between
Ωi and its cut cell approximation in the future.

As mentioned, we use Vh =
⊕

Vhi . Each function vh ∈ Vh is therefore well-
defined within each of the open sets Ωi. However, on the internal skeleton
Γ it has one value for each adjacent compartment. We define vi

h = vh|Ωi and
quantify the jump of vh and ∇vh at an interface location x ∈ ∂Ωi

⋂
Ωj, i ̸= j

as
JvhK = nivi

h + njv
j
h,

J∇vhK =< ni, vi
h > + < nj, vj

h > . (4.3)

Here, ni is the outer unit normal on ∂Ωi. Therefore, ni = −nj. Note that the
jump of a scalar function is vector-valued, while the jump of a vector-valued
function is a scalar. This way of defining jumps will be convenient when
deriving the weak CutFEM forward problem. It also allows us to include two
necessary requirements in our forward problem. We want both the electric
potential and the current density to be jump-free, i.e.

JuK = 0 on Γ (4.4)

Jσ∇uK = 0 on Γ. (4.5)

The first condition implies continuity of the electric potential over tissue com-
partments and is fulfilled by default in classical continuous Galerkin, the sec-
ond is a flux conservation property for the current density. In other words,
there may be no current leakage over Γ.

Our CutFEM EEG forward problem then initially lies in finding the elec-
tric potential u such that

∇ · σ∇u = ∇ · jp in Ω (4.6)

< σ∇u, n >= 0 on ∂Ω̄ (4.7)

JuK = 0 on Γ (4.8)

Jσ∇uK = 0 on Γ. (4.9)
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In essence, we now have a Poisson-type equation with both exterior and inte-
rior boundary Neumann conditions and an interior boundary Dirichlet con-
dition.

Before deriving weak formulations, we define two mesh-dependent
helper functions: a weighted and a skew-weighted average. Let Ei, Ej be two
cut cells sharing an interface, meaning two cut cells in the same fundamental
mesh element. Let

ωE =
δEi

δEi + δEj

, δEi = nt
i σ

ini,

where σi is the conductivity tensor from compartment i and ni is again the
outer unit normal on ∂Ω. The weighted and skew-weighted averages are
then stated as

{vh} = ωEvi
h + ωJv

j
h

{vh}∗ = ωJvi
h + ωEvj

h.

It can be shown that
JuvK = JuK{v}∗ + {u}JvK,

see Nüßing, 2018. Returning to the left-hand-side of (3.6), multiplying with
a trial function vh ∈ Vh and integrating over Ω, we obtain∫

Ω

∇ · σ∇uhvh dx = −
∫
Ω

σ∇uh∇vh dx + ∑
i

∫
∂Ωi

< σ∇ui
h, ni > vi

h dS. (4.10)

Here, we also substituted u for our finite dimensional approximation uh ∈
Vh.

The integrals over ∂Ωi either disappear on the scalp surface or appear
twice on interfaces between two compartments, yielding

∑
i

∫
∂Ωi

< σ∇ui
h, ni > vi

h dS =
∫
Γ

∑
i
< σ∇ui

h, ni > vi
h + ∑

j
< σ∇uj

h, nj > vj
h dS

=
∫
Γ

Jσ∇uvK dS =
∫
Γ

Jσ∇uhK{vh}∗ + {σ∇uh}JvhK dS =
∫
Γ

{σ∇uh}JvhK dS.

The above considerations include both Neumann conditions (3.7) and
(3.9). To include the Dirichlet condition (3.8), several options exist. We could
enforce the conditions strongly by restricting our trial function space Vh to
functions that satisfy JvK = 0 on Γ as was done in Vallaghé and Papadopoulo,
2010. Another way would be to reformulate the problem to a minimization
problem with a Lagrangian multiplier (Johnson and Tezduyar, 1999).

The approach we choose here is called Nitsche-coupling, following
the work from Nitsche, 1971. As mentioned, CutFEM and discontinuous
Galerkin methods share similarities in their definition of trial function
spaces. What is known as Nitsche-coupling in CutFEM is similar to interior
penalty Galerkin in DG (Di Pietro and Ern, 2012). Hence, we will make
use of certain scaling parameters established in DG. We note that JuhK = 0
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implies that

±
∫
Γ

{σ∇vh}JuhK dS = 0,

ανk

∫
Γ

σ̂

ĥ
JuhKJvhK dS = 0.

We define σ̂ =
2δiδj
δi+δj

, where δi = nt
i σini following Di Pietro and Ern, 2012,

νk = k(k + d − 1) scales the penalty term by the polynomial degree of our
trial functions (Epshteyn and Rivière, 2007) and α > 0 is a free parameter.

Returning to (3.10), we obtain

a(uh, vh) = −
∫
Ω

σ∇uh∇vh dx +
∫
Γ

{σ∇uh}JvhK dS

±
∫
Γ

{σ∇vh}JuhK+ ανk

∫
Γ

σ̂

ĥ
JuhKJvhK dS.

The first added term ensures that our final bilinear form is (non-) sym-
metric in uh, vh. A sufficiently large α > 0 balances the weighted averages
to enforce coercivity (Erik Burman and Peter Hansbo, 2012). If we chose the
non-symmetric version, coercivity does not depend on the size of α, but the
resulting stiffness matrix is no longer symmetric.

4.3 Ghost-penalty stabilization

Before we state the full EEG/tDCS forward problem for CutFEM,
small/misshapen cut cells must be addressed. We stated previously that
the snippets may have arbitrary shapes as they only serve as an integration
domain. This holds with one exception. If the interface between two tissues
almost coincides with an element boundary in the fundamental mesh, one
of the resulting cut cells may then have almost zero volume, i.e. consisting
only of tiny snippets. Then the entire set of DoFs for that cut cell operates
only on that tiny volume, deteriorating the condition number of the stiffness
matrix and therefore the numerical stability and computational performance
of the algorithm.

To alleviate this, another penalty term is added, stabilizing the derivatives
of the trial functions. We define by

Γ̂ =
⋃
{∂Ei : Ei ∈ Th, Ei ∩ Γ ̸= 0} (4.11)

the internal skeleton of the fundamental mesh, restricted to those elements
that are cut by an interface. Note the difference between Γ and Γ̂. Where
Γ operates on tissue interfaces, Γ̂ operates strictly on the boundary of the
fundamental mesh elements. By adding the penalty term

aG(uh, vh) = γG ∑
j≤k

∫
Γ̂

ĥJσ∂
j
nuhKJ∂

j
nvhK dS, (4.12)
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we couple the derivatives of the DoFs of one cut cell to its neighboring cut
cells up to the order k that corresponds to the order of our trial functions.
Note that this term is no longer consistent with our actual forward problem.
The free parameter γG has therefore to be chosen carefully. Large enough to
stabilize the method but small enough that it does not distort the solution
too much. Imagine two neighboring cut cells, one with a small and one with
a larger volume. The DoFs in the larger one will be almost unaffected by
the added penalty. Stiffness matrix entries associated with DoFs from the
smaller cut cell will be dominated by the ghost penalty term. We therefore
fixated the boundary values of our trial function and its derivatives up to
order k. As the trial function is a kth order polynomial, we therefore fixated
the function’s behavior inside the entire small cut cell. In other words, the
approximation from the larger cut cell is extrapolated onto the smaller one.

Performing the coupling in this manner has several advantages over ag-
gregated methods, where small cut cell contributions are added to larger
ones (Badia, Verdugo, and Martín, 2017). One, we do not have to set a strict
threshold for which cut cell is considered too small. Additionally, the stabi-
lization is transitory in the sense that if a small cut cell is only surrounded by
other small cut cells, these are in turn stabilized by their neighbors. So long
as we have sufficiently large cut cells at some point in all directions, each
small cut cell will be stabilized. However, in practice, such a scenario would
probably be a segmentation artifact.

A central advantage of the ghost penalty stabilization is that it renders the
condition number of the stiffness matrix independent of the way the level
set cuts the fundamental mesh (Burman, 2010). Another way to think of the
impact of the ghost penalty stabilization is to consider the overlapping parts
of the trial functions that were cut off at the compartment boundaries. It can
be shown that the ghost penalty ensures coercivity not only over the physical
domain Ω but also over the overlapping off-cuts (Burman, 2010).

For first-order trial functions the ghost penalty term is straightforward to
implement, for higher order, we use the following modification from Preuß,
2018. Let C1, C2 be two cut cells sharing a fundamental element border F. A
trial function vh has a dent at the border F, where we transition from one set
of non-zero polynomial basis functions to another. Rather than transitioning
from one set of basis functions to another, we can also extrapolate the poly-
nomial functions from C1 onto C2, denoted by v̂h

1. Similarly, v̂h
2 denotes the

basis from C2 extrapolated onto C1. Then in Preuß, 2018, it was shown that∫
F

ĥJσ∂
j
nuhKJ∂

j
nvhK dS ≥ 2C||uh − v̂2

h||C1 + ||û2
h − vh||C2 ,

for some constant C > 0 that only depends on the shape of the fundamental
mesh and k. These extrapolated functions give us a unified way of computing
aG for polynomials of arbitrary degree k.

The final EEG CutFEM forward problem is then stated as

Definition 4.1. CutFEM EEG forward problem
Let Ω =

⋃
i Ωi be an open subset of Rn, σ the 3 × 3 symmetric, positive definite

conductivity tensor.
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The weak CutFEM EEG forward problem is then stated as calculating the electric
potential uh ∈ Vh such that

a(uh, vh) + aG(uh, vh) = l(vh) ∀v ∈ Vh, (4.13)

with
l(v) =

∫
Ω

f v dx.

This again leads to a linear equation system ACutu = b, with

ACut
i,j = −

∫
Ω

σ∇ϕi∇ϕj dx +
∫
Γ

{σ∇ϕi}JϕjK dS

±
∫
Γ

{σ∇ϕj}JϕiK+ ανk

∫
Γ

σ̂

ĥ
JϕiKJϕjK dS + γG ∑

j≤k

∫
Γ̂

ĥJσ∂
j
nϕiKJ∂

j
nϕjK dS

The functions ϕi, ϕj are the basis functions from Vh.
CutFEM does not change the applicability of transfer matrix approaches,

hence the tDCS and MEG problems can be solved using ACut in the same
manner as was stated in the previous section. Note that the transfer matrix
approaches as we use them here assume symmetric A-matrices, which does
not hold when using the non-symmetrical CutFEM version.

There is a range of approximation property results for CutFEM in various
settings for different types of PDEs, stating the aforementioned coercivity,
estimates for how well functions can be approximated in the discontinuous
trial function space, optimal convergence with respect to mesh size, and a-
posteriori error estimates for ||u − uh||. Yet most of these results have reg-
ularity requirements such as u ∈ H2(Ω), which we do not have due to the
singularities present in both EEG/MEG and tDCS forward problems. We
therefore do not explicitly state these results here but refer the reader to Bur-
man, 2010; Erik Burman and Peter Hansbo, 2012; Burman et al., 2015; Sticko,
2018.

A note on source models

The source models we introduced in the previous chapter can easily be mod-
ified for CutFEM. For the Venant and partial integration approach we have
to evaluate vh,∇vh either at the location of the source or at a set of monopole
positions. So long as these are not located on the internal skeleton Γ, the
resulting right-hand side vectors remain well-defined. For the Venant ap-
proach, we have to decide where to place the monopoles that approximate
the source term. As the fundamental mesh may have a rather low resolu-
tion, selecting its vertices as locations for the monopoles may be unstable.
Rather, the locations are selected based on a second-order Gauss-Legendre
quadrature rule over the gray matter cut-cells of all fundamental elemtents
that surround the source position. The definitions for b from the previous
sections therefore remain valid for CutFEM. For the full subtraction, iden-
tical considerations lead to a separate equation for the correction potential
uc.
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CutFEM and discontinuous Galerkin

As mentioned, the Nitsche penalty in CutFEM is similar to the interior
penalty methods in discontinuous Galerkin. Where CutFEM performs the
cut-off at the tissue boundary, DG methods do so at the element boundary.
Implemented into DUNEuro is another approach that combines the two,
the unfitted discontinuous Galerkin approach (UDG) (Nüßing et al., 2016).
It performs the same cut-off as CutFEM, but the underlying trial function
space on the fundamental mesh is that of a discontinuous Galerkin method.
Also, no ghost penalty is applied, but small cut cells are scaled to a bounding
box that contains them. We will compare CutFEM and UDG in the next
chapter.

4.4 Conclusion

This concludes the theory and motivation of CutFEM. In the coming chap-
ters, we will discuss how to turn segmentation results into level sets and
investigate CutFEM’s performance in a set of gradually more realistic head
models, from symmetric multi-layer sphere models to epilepsy patients with
multiple tissue defects.
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Chapter 5

Head model creation

Before proceeding with numerical investigations in both spherical and real-
istic head models, we want to give a brief overview of how the hexahedral
CG-meshes and the level sets for CutFEM that are used throughout this the-
sis are created.

5.1 MRI data and segmentation output

The anatomical information for the realistic head models both in the group
study in Chapter 7 as well as the epilepsy patients in the final chapters is
acquired from MRI images. The only exception here is one of the epilepsy
patients whose skull was modeled using computer tomography.

For both subject groups, we measure T1- and T2-weighted (T1w/T2w)
MRIs. The MR sequences can be found in the respective chapters. T1 images,
in particular MP-RAGE sequences, are excellent for distinguishing gray and
white matter (Brant-Zawadzki, Gillan, and Nitz, 1992), but both the skull and
the cerebrospinal fluid (CSF) have the same dark color, making their interface
difficult to segment accurately. On T2 images, the CSF appears bright while
both the brain and skull are dark, making it excellent for segmenting the
inner skull surface (Nielsen et al., 2018).

By segmentation, we refer to the process of distinguishing between the dif-
ferent tissues present in the MRI. The algorithms used for segmentation differ
and can be based on Fuzzy C-means clustering (Chuang et al., 2006), image
registration (Ashburner and Friston, 2005), level-sets (Wang et al., 2011), or
recently also deep learning (Akkus et al., 2017). There is also a host of tool-
boxes such as SPM12 (Ashburner et al., 2014), CAT12 (Gaser et al., 2022), FSL
(Jenkinson et al., 2002), or Freesurfer (Fischl, 2012) that perform the segmen-
tation step in an automated fashion. Our focus is not on validating or com-
paring different segmentation algorithms or toolboxes but rather on the inte-
gration of a segmentation output into our numerical finite element approach.
This output may be provided in the shape of level sets/signed distance func-
tions, tissue probability maps (TPM), binary maps, or surface triangulations.
While level sets or signed distance functions are the most convenient for in-
tegration into CutFEM, they are not a default output option of any of the
above-mentioned toolboxes.

TPMs assign to each voxel of the MRI one number per tissue, typically
ranging between 0 and 1, which can be interpreted as the probability that
that voxel is e.g. gray matter. As tissue surfaces run through voxels, the
value can also be understood as the proportion of that voxel that belongs to
the gray matter compartment.
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Binary maps state for each voxel whether the voxel belongs to a compart-
ment or not. They can be created by thresholding TPMs, i.e. determining
that all voxels with a value higher than e.g. 0.4. belong to compartment x.
Binary maps are ideal for creating hexahedral FEM meshes as each voxel can
then be interpreted as one hexahedron. Shifting interface nodes then reduces
the edgy staircase pattern of hexahedral meshes, leading to an isoparametric,
geometry-adapted hexahedral FEM (Wolters et al., 2007).

Surface triangulations can be created e.g. through surface evolution tech-
niques, where one starts with a spherical surface that is then deformed to
match the desired tissue surface (Fischl, 2012). Alternatively, the edges of
a binary map can be triangulated and subsequently smoothed. Tetrahedral
meshes are often created from surface triangulations but can also be created
by triangulating hexahedrons (He, Rezaei, and Pursiainen, 2020).

If the segmentation output is not a level set, we have to transform it ac-
cordingly. For tissue probability maps, ranging between 0 and 1, we can set a
threshold x that is considered the zero-level. This means that the cut through
a voxel with the value x will run through the center of that voxel. Contrast
that with binary maps, where the thresholding implied that the entire voxel
would be considered as inside.

5.2 Level set creation and smoothing

Recall that our level set function is approximated by a multi-linear function
that is determined by its values at each voxel center. Therefore, a level set
suitable for CutFEM is an array of tuples that determine for each voxel center
the signed distance to the tissue surface.

We will now go through the previously stated segmentation outputs and
outline how to transform them into level sets.

TPMs are an early and somewhat unrefined segmentation output. They
may be noisy and suffer to a lesser extent also from the same staircase effect
as binary maps. However, they are the most faithful to the anatomical MRI
data. Applying a smoothing algorithm both reduces noise and removes the
staircase pattern. The issue with smoothing however, and that applies to the
smoothing of all segmentation outputs, is that brain and CSF both have very
thin areas, with thicknesses of only a few voxels. In particular, the CSF be-
tween two gyral folds or the branching of white matter into a gyral crown
are susceptible to smoothing algorithms such as Gaussian or median kernel
filters. To smoothen TPMs in an edge-preserving manner, we therefore use
an anisotropic diffusion filter based on Perona and Malik, 1990. Binary maps
can be turned into smooth signed distance functions by applying an anti-
aliasing algorithm such as Whitaker, 2000. The anti-aliasing also reduces the
edgy staircase pattern. For surface triangulations, simple algorithms exist to
extract signed distance functions from them, the one we used can be found
at https://github.com/christopherbatty/SDFGen. It is probably more rea-
sonable to apply smoothing to the surface triangulations than to the subse-
quent level set.

In Figure 5.1., you can see a sagittal slice of the gray matter represen-
tation of final FEM meshes, with level sets created from tissue probability
maps, level sets from binary maps, a geometry-adapted hexahedral FEM,

https://github.com/christopherbatty/SDFGen
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a tetrahedral model created with the SimNIBS CHARM toolbox (Saturnino
et al., 2019; Thielscher, Antunes, and Saturnino, 2015) as well as the origi-
nal T1- and T2-weighted MRI slices. The subject was a healthy 27-year-old
male. Voxel resolution is 1x1x1 mm, the same as for all MRIs considered in
this thesis. The MRIs were recorded using a 3 Tesla MagnetomTrio Scanner
with a 32-channel head coil built by Siemens (Siemens, Munich, Germany).
The T1w was acquired from a fast gradient-echo pulse sequence (TFE) with
water-selective excitation to avoid fat shift (TR/TE/FW = 2300/3.51 ms/8°,
pre-pulse inversion with TI = 1.1 s). The T2 was measured using a turbo spin
echo pulse sequence (TR/TE/FA = 3200/408 ms/90°).

The MRIs were segmented using CAT12 (Gaser et al., 2022) with default
parameters. The tissue probability maps were thresholded at a value of 0.2.
The T1 was used for the distinction between gray and white matter, and the
T2 to delineate the CSF/gray matter interface. The geometry-adapted hex-
ahedral mesh was then created with a node-shift of 0.33 using the SIMBio
Vgrid toolbox http://www.mrt.uni-jena.de/simbio. The binary map level
set was anti-aliased in ITK (Yoo et al., 2002) to a maximum RMS-change value
of 1e-7. The TPM-based level set was also thresholded at a value of 0.2 and
then smoothed using the Matlab function imdiffusefilt with a gradient thresh-
old of 1.9 and 2 iterations. The SimNIBS Charm pipeline was run with default
parameters.

Notice the clear white matter/gray matter contrast in the T1 image and
the contrast between gray matter/CSF in the T2 image. Two different de-
fects can be seen to different extents in all 4 FEM meshes. First, an inflated
gray matter pushes the CSF out of the sulci. This is most present in the anti-
aliased level sets created from binary segmentations and least in the tetra-
hedral mesh, where there may even be an overestimation of CSF. Secondly,
fine white matter branches do not reach up to the gyral crowns. This effect is
very pronounced in the tetrahedral mesh, where also the white matter in the
cerebellum is represented very coarsely.

Overall the level set based on tissue probability maps is in this compari-
son the most faithful representation of the anatomical MRI data. This may be
because all other approaches use binary maps. The transition from TPM to
binary map marks a loss of information that, in the subsequent smoothing,
may lead to additional inaccuracy. We will therefore use TPMs to create gray
and white matter masks for our realistic volume conductor models. Note
however that this comparison is by no means complete. Smoothing is heavily
parameter-dependent and it may be that the presented defects differ signif-
icantly when switching subjects or optimizing the smoothing/segmentation
parameters. The presented algorithms only serve as an orientation on how
one might create level sets usable for CutFEM.

5.3 Three- and six-compartment realistic head models

In the previous section, we stated how to create the level sets needed for
CutFEM. Now, we want to focus on how to properly recombine the outputs
for different tissues into fully realistic head models.

The MRIs that are used for the realistic models all have a voxel resolution
of 1x1x1 mm. Hence, all our models, including spherical ones, are scaled to

http://www.mrt.uni-jena.de/simbio
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FIGURE 5.1: Sagittal T1w and T2w MRI scans and gray matter representa-
tions in different finite element meshes. Top row: T1-weighted MRI on the
left and T2-weighted MRI on the right. Center row: CutFEM model created
with level sets based on tissue probability maps (left) and binary maps (right).
Bottom row: Geometry adapted hexahedral mesh on the left and SimNIBS
Charm (Thielscher, Antunes, and Saturnino, 2015) tetrahedral mesh on the

right.
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approximately 1 mm resolution. For CutFEM, this means that when we use
a 2 mm background mesh we refine the cut mesh once, and twice, if a 4 mm
mesh is selected. The hexahedral models will have an initial side-length of
1 mm and tetrahedral meshes an average volume of 0.33 mm3 per element. In
this thesis, tetrahedral meshes are only used for the spherical models, while
hexahedral models will always to some degree include MRI segmentation
results.

In the chapters with realistic models, we will usually compare a six-
compartment CutFEM model, a six-compartment geometry-adapted hex-
ahedral FEM model, and a three-compartment boundary element method
(BEM) model. We start by describing the head model generation process for
the hexahedral FEM. It is based on Antonakakis et al., 2019; Aydin et al.,
2014.

The six compartments we distinguish between are scalp, skull compacta
[SC], skull spongiosa [SS], CSF, gray matter [GM], and white matter [WM].
They are based on the T1 and T2 images. The T2 is registered onto the T1
using FSL FLIRT (Jenkinson et al., 2002), and the tissue segmentation is done
using CAT12 (Gaser et al., 2022). The T1 is used for gray matter, white mat-
ter, and scalp while CSF and skull compacta are segmented from the T2. The
spongiosa mask was created by performing Otsu thresholding (Otsu, 1979)
on the skull compacta mask that was eroded by 2 mm. Overlap of the skull
and CSF or the brain tissues was removed and unrealistic holes within the
masks were detected and filled using the imfillfunction in MATLAB. Segmen-
tation holes and tiny fragments of the skull or scalp were removed using
Matlab internal functions. Following the recommendations of Lanfer et al.,
2012, the model was cut 4 cm below the skull using an axial plane. From
the segmentations, geometry-adapted hexahedral meshes with a node shift
of 0.33 were created (Wolters et al., 2007).

The CutFEM level sets for gray and white matter are based on tissue prob-
ability maps of the T1. Using TPMs for the skull was considered too un-
reliable, as thin skull areas with low contrast, especially near the temples
often lead to unrealistic cranial holes in the level sets. Instead, we use the
binary skull mask that was also used for the hexahedral model as a basis for
our level set creation. To avoid empty spaces inside the cranium, the CSF
level set is also based on a binary mask that contains the entire inside of the
skull. Note that this process ensures an accurate pial and inner skull sur-
face. For the scalp, no significant differences between TPM-based and binary
map-based level sets were observed. We therefore used the binary map from
the hexahedral model as the applied hole filling eliminates the possibility of
empty spaces between the skull and scalp. Exemplary coronal slices of the
hexahedral FEM and the CutFEM model can be seen in Figure 5.2.

For the BEM model, skin, skull, and brain surfaces have to be specified.
They were created from the 6-compartment model to ensure maximum com-
parability between the methods. The brain was defined as the union of gray
matter, white matter, and CSF, and the skull as the union of compacta and
spongiosa. Surfaces are extracted using the fieldtrip (Oostenveld et al., 2011)
function ft_prepare_mesh.
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FIGURE 5.2: Realistic six-compartment geometry-adapted hexahedral FEM
(left) and CutFEM model (right). Tissues include white matter (white), gray
matter (gray), cerebrospinal fluid (blue), skull compacta (green), skull spon-

giosa (red), and scalp (brown).

5.4 Calculating CutFEM lead fields in DUNEuro

As mentioned, CutFEM is implemented into DUNEuro, see Schrader, 2022
for a detailed installation description. Alternatively, collaborations with
other software toolboxes such as Brainstorm exist (Medani et al., 2023). The
pipeline to create the six-compartment hexahedral FEM lead fields, the skull
conductivity calibration, and the tDCS optimization has been uploaded
to Zenodo, see https://zenodo.org/doi/10.5281/zenodo.11066431. It
covers descriptions and code ranging from MRI registration, segmentation,
anisotropic white matter tensors, source space creation, sensor-to-head
registration, mesh generation, lead field generation, skull conductivity
calibration, and subsequent D-CMI-based tDCS optimization.

Additionally, updated configuration files for the installation of DUNEuro
can also be found on Zenodo, as well as an exemplary script to create level
sets and CutFEM lead fields. The level set creation script deviates from the
description in Chapter 4 in one detail. Rather than using anti-aliasing for
the creation of the skull and scalp mask, the script uses diffusion anisotropy
smoothing as well. This was done to keep the level set creation contained in
MATLAB. The resulting differences were negligible in two test cases.

We demonstrated the creation of level sets based on realistic anatomical
data. As shown, level sets can be created from a variety of segmentation
inputs, highlighting CutFEM’s versatility as any combination of tissue prob-
ability maps, binary segmentations, and surface triangulations can be used.
In particular, the use of tissue probability maps shows promise in modeling
details in the millimeter range.

CutFEM allows for arbitrarily touching skull and brain surfaces, accu-
rately modeling the vanishing CSF. As the brain moves inside the skull de-
pending on whether the subject sits, or lies supine/prone, we can therefore
consider the positioning of a subject during EEG/MEG measurement as a
parameter in our analysis. In Justin K. Rice et al., 2013, it is stated that the
CSF thickness in occipital areas, measured in the MRI, differs by thirty per-
cent when moving from supine to prone positioning. Recorded occipital EEG
amplitudes changed by up to eighty percent.

https://zenodo.org/doi/10.5281/zenodo.11066431
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Chapter 6

Numerical sphere model studies

The previous chapters have motivated CutFEM and described the process of
creating suitable level set functions. In this chapter, we calculate FEM-based
EEG/MEG lead field matrices and tDCS current densities for spherical head
models. As mentioned in Chapter 2, spherical head models have the ad-
vantage of the existence of (quasi-)analytical solutions that serve as reference
solutions. While they are only inaccurate approximations of the human head
and its tissues, they are still widely used for the initial validation of new for-
ward modeling approaches (Cuartas Morales et al., 2019; Mosher, Leahy, and
Lewis, 1999a).

The comparisons we perform here have three dimensions. First, we distin-
guish between two sphere models, one concentric multi-layer sphere model
and another that includes semi-realistic brain tissues. Secondly, we calculate
forward solutions for EEG, MEG, and tDCS, and lastly, the numerical meth-
ods to solve the forward problems will be CutFEM and CG-FEM in addition
to the quasi-analytic reference solution.

6.1 Concentric and semi-realistic sphere models

Our basic spherical head model consists of four concentric layers, including
skin, skull, cerebrospinal fluid (CSF), and brain. Radii and standardized elec-
tric conductivities for the four layers can be found in table 6.1.

In addition to the concentric sphere model, we extracted realistic gray and
white matter from the same 27-year-old subject mentioned in the last section
of the previous chapter. A minimal bounding sphere of CSF with a radius
of 91.03 mm and additional scalp and skull layers of 6 mm thickness each
were placed around the brain tissues, resulting in a total of 5 layers. Skin and
skull use standard conductivities, but the 3 inner layers, white matter, gray
matter, and CSF were assigned the same conductivity value. From a volume

Concentric spheres Semi-realistic spheres
Radii (mm) S/m Radii (mm) S/m

White - - - 0.33
Gray 78 0.33 - 0.33
CSF 80 1.79 82.63 0.33
Skull 86 0.01 88.63 0.01
Skin 92 0.43 94.63 0.43

TABLE 6.1: Radii and conductivities for sphere models
Radii and conductivities for 4-layer concentric sphere and semi-realistic 5-layer sphere mod-
els.
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conduction perspective, we therefore only have a concentric 3-layer sphere
model where we also have quasi-analytical reference solutions.

For comparison, we use a geometry-adapted hexahedral model with a
node shift of 0.33 (Wolters et al., 2007). The CutFEM level sets for gray and
white matter are calculated from tissue probability maps, and the sets for the
spherical CSF, skull, and scalp layer are based on Anti-aliasing (Whitaker,
2000).

This additional model is another step towards the realistic head model.
For CutFEM, it is interesting for two reasons. First, the level sets in the stan-
dard sphere model can be calculated analytically, up to arbitrary precision.
In this semi-realistic sphere model, we can investigate whether our process of
creating tissue probability maps based on level set functions interferes with
the accuracy of our numerical solution. Additionally, the standard sphere
model has a large brain area where the fundamental cells are not cut by level
sets. We can therefore investigate whether CutFEM incurs instabilities when
almost all fundamental cells are cut and stabilized, as is the case in a realistic
head model.

EEG/MEG

As sensor locations, we place 200 evenly spaced electrodes onto the scalp
and 256 evenly spaced MEG coils at a distance of 18 mm around the out-
ermost sphere. For the MEG the orientation of the coils is of importance,
hence we compute the flux of the secondary magnetic field in all three spa-
tial directions, yielding a total of 768 MEG channels. As EEG/MEG source
locations, we place 50000 uniformly spread points into the brain compart-
ment. The semi-realistic sphere model uses 16686 sources located inside the
gray matter compartment and spaced 2 mm apart. From the literature, it is
known that errors for all modalities increase for decreasing distance to the
next conductivity jump (Wolters et al., 2008). Hence, we group the sources
by eccentricity. An eccentricity of 0 implies that the source is at the center
of the sphere model, a value of 1 means that the source is on the brain/CSF
interface. Physiologically, the cortical gray matter has a thickness of 1-4 mm
(Fischl and Dale, 2000). The pyramidal cells which are primarily responsible
for the EEG/MEG fields are located in layer 5 of the gray matter. Hence, the
most realistic sources have a distance of 1-2 mm from the closest conductivity
jump, corresponding to an eccentricity of 0.96-0.98 in our model.

In addition to grouping sources by eccentricity, we have to distinguish
them by source orientation. In the MEG, a dipole moment that points radi-
ally outward from the sphere induces no magnetic field outside the volume
conductor, hence we only consider tangentially oriented MEG sources. For
the EEG, we distinguish between radial and tangential sources.

Quasi-analytical solutions for the EEG are computed in fieldtrip (Oost-
enveld et al., 2011) based on the formulas derived in Munck, Peters, et al.,
1993. The MEG reference solutions are based on Sarvas, 1987. As error mea-
sures, we use the relative difference measure (RDM) and the magnitude error
(MAG). For analytical and numerical solutions uana, unum ∈ Rs, they are de-
fined as

RDM(uana, unum) := 50|| unum

||unum||2
− uana

||uana||2
||2, (6.1)
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MAG(uana, unum) := 100(
||unum||2
||uana||2

− 1). (6.2)

The MAG measures differences in total signal strength in percent. However,
it is blind to differences in the signal distribution across channels. The RDM
ignores amplitude differences by normalizing the signals and then compar-
ing their across-channel difference in signal distribution. It is normalized to
values between 0 and 100.

tDCS

For tDCS we employ the same sphere models but only use two electrodes at
opposite sites of the spheres. With tDCS, we are not limited to evaluating the
electric field at gray matter locations but can investigate the spread of errors
throughout the entire head model. For the semi-realistic model, this means
that we can trace whether errors accumulate near interfaces irrespective of
the eccentricity.

Quasi-analytic solutions are calculated from Ferree, Eriksen, and Tucker,
2000. As point-wise error measures, we quantify the angle and the magni-
tude difference between quasi-analytical and numerical electric field vectors.

MAG(Eana, Enum) =:= 100(
||unum||2
||uana||2

− 1), (6.3)

ANGLE(Eana, Enum) := acos(
< unum, uana >

||unum|| · ||uana||
(6.4)

FEM models

The level set functions for the standard concentric sphere model are calcu-
lated directly as distance to the center of the sphere minus the radius of the
respective tissue. The gray and white matter level sets in the semi-realistic
case are calculated from tissue probability maps, see the previous chapter for
more information. For Cutfem, we use two variants for both sphere mod-
els. A 2 mm fundamental mesh with first-order trial functions and a 4 mm
resolution with second-order functions. The 2 mm model has been refined
once, and the 4 mm model twice to simulate a 1 mm MRI resolution. For
the second-order trial functions, we additionally distinguish between partial
integration and Venant lead field matrices.

For comparison in the concentric sphere model, we additionally calculate
a lead field from a 4 mm unfitted discontinuous Galerkin approach and a
tetrahedral mesh with an average element size of 0.3 mm3 volume. In the
semi-realistic case, we compute a lead field from a 1 mm geometry adapted
hexahedral mesh with 0.33 node-shift.

Degrees of Freedom and the number of cut cells/mesh elements can be
found in Table 6.2. We see that a 2 mm first-order CutFEM uses a similar
number of DoFs as a 4 mm second-order CutFEM/first-order UDG approach.
We use a higher number of DoFs in the CG approaches to match the post-
refinement mesh resolution of CutFEM/UDG. All calculations are performed
using the DUNEuro toolbox (Schrader, 2022).
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DoF Elements/Cut cells Snippets
Tetrahedral FEM 1,714,016 10,697,673 -

Concentric spheres CutFEM Q1 636,560 521,935 2,957,877
CutFEM Q2 732,927 77,512 3,236,136
UDG 620,096 77,512 3,236,136
Hexahedral FEM 4,651,409 4,551,183 -

Semi-realistic spheres CutFEM Q1 986,769 660,723 5,565,445
CutFEM Q2 1,170,340 123,250 6,882,743

TABLE 6.2: Number of degrees of Freedom, cut cells and snippets for Cut-
FEM. DoF and mesh element numbers for hexahedral/tetrahedral meshes.

6.2 Results in the concentric multi-layer sphere model

EEG

EEG RDM and MAG errors for both radial and tangential source orientations
can be found in Figure 6.1. We see that for all three CutFEM variants (first or-
der trial functions with venant source model, second order with both venant
and partial integration) all error categories remain below 1 percent MAG
and 0.5 percent RDM. The UDG in turn reaches outlier values of more than
3.1 percent RDM and 9.44 percent MAG. The maximal errors resulting from
the tetrahedral FEM approach are 2.32 percent RDM and 2.42 percent MAG.
The absolute differences between the different CutFEM approaches are small
but in the physiologically most relevant eccentricity categories 0.96-0.98, the
second-order CutFEM approach with the partial integration approach yields
10.1 percent lower average MAGs and 22.7 percent lower average RDMs than
when using the venant source model. Switching from first-order CutFEM
with Venant source model to second-order CutFEM with partial integration
source model reduces MAGs by 18.5 percent and RDMs by 52.5 percent. Dif-
ferences between radial and tangential source orientations are negligible.

MEG

The MEG results can be found in Figure 6.2. Note that we only investigate
the error of the secondary part magnetic field as the primary is calculated
directly. Also, only tangential source orientations are considered as radial
sources would produce neither primary nor secondary B-field components at
the sensors. Qualitatively, the same statements as for the EEG hold. The UDG
in turn reaches outlier values of more than 8 percent RDM and 10 percent
MAG. The maximal errors resulting from the tetrahedral FEM approach are
2.15 percent RDM and 3.07 percent MAG. The main difference to the EEG is
that UDG now performs worse than tetrahedral FEM also in the eccentricity
groups from 0.96- 0.98.

tDCS

For tDCS, we split the errors in angle and Magnitude errors. The advan-
tage we have in tDCS is that in our error analysis, we are not bound to the
gray matter source positions, but can also investigate the error distribution
in other tissue compartments. The results can be seen in Figure 6.3. Ab-
solute magnitude errors for first-order CutFEM stay below 5 percent in the
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FIGURE 6.1: EEG errors in a concentric sphere model. From top to bottom:
MAG errors for radial sources, MAG errors for tangential sources, RDM for
radial sources, RDM for tangential sources. Errors are grouped by proximity
to conductivity jump (eccentricity). Separate boxplots for first order CutFEM
with Venant source model, second order CutFEM with both Venant and par-
tial integration, unfitted discontinuous Galerkin with Venant source model,

and tetrahedral CG method with Venant.
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FIGURE 6.2: MEG errors in a concentric sphere model. From top to bottom:
MAG errors for tangential sources, RDM for tangential sources. Errors are
grouped by proximity to conductivity jump (eccentricity). Separate boxplots
for first order CutFEM with Venant source model, second order CutFEM with
both Venant and partial integration, unfitted discontinuous Galerkin with

Venant source model, and tetrahedral CG method with Venant.

FIGURE 6.3: TDCS errors in a concentric sphere model. From top to bottom:
MAG errors, Angles. Errors are grouped by proximity to conductivity jump
(eccentricity) for brain targets, or compartment. Separate boxplots for first
order CutFEM, second order CutFEM, unfitted discontinuous Galerkin, and

tetrahedral CG.
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eccentricity groups 0.96-0.98, but reach up to 10 percent in CSF and skull
compartments. The angles between numerical and analytical current den-
sity vectors also remain below 5 degrees in the brain and below 10 in the
CSF and skull. UDG is again outperformed by the tetrahedral FEM. Tetrahe-
dral FEM and first-order CutFEM perform similarly, with CutFEM featuring
on average 49.8 percent lower angles and 26.4 percent lower Magnitude er-
rors. This trend however decreases for higher eccentricities and for CSF and
skull, both methods perform similarly. Second-order CutFEM outperforms
all other methods throughout all eccentricity groups. Its angles remain com-
fortably below 2 degrees and brain magnitude errors below 3 percent.

Moving forward to our semi-realistic sphere model, 2 simplifications to
our study are made. Second order CutFEM so clearly outperforms UDG
at 4 mm fundamental mesh resolution that we no longer consider UDG in
the semi-realistic scenario. Also, we no longer feature second-order CutFEM
with the Venant source model as it was slightly outperformed by the partial
integration version.

6.3 Results in the semi-realistic sphere model

In the semi-realistic sphere model, our source space is limited to the realistic
gray matter compartment. As we have a three-layer volume conductor here,
the first conductivity jump is the brain-skull-interface. This greatly reduces
the number of points in the higher eccentricity groups as there are only a
few places where realistic gray matter and the spherical skull layer intersect.
Hence, all 205 points with eccentricity equal to or larger than 0.98 were com-
bined into one group. Note that with this study, our interest is not primarily
in the behavior at high eccentricities, but rather whether the use of realistic
level sets deteriorates our numerical accuracy in CutFEM.

MEG

We start with the MEG, the results can be found in Figure 6.4. Overall,
most results from the previous section also hold here. First-order CutFEM is
slightly outperformed by second-order and slightly outperforms the continu-
ous Galerkin FEM approach that uses geometry-adapted hexahedrons in this
scenario. Median errors differ slightly when compared to the 4-layer sphere
model from the previous section. CutFEM Q1 relative error increases are less
than 43 percent, Q2 CutFEM less than 39 across all eccentricity groups, and
RDM/MAG. CutFEM RDM and MAG both stay below 1 percent for both
first and second-order trial functions. Noticeably, there are more and higher
outlier values in lower eccentricity groups, where before error values typi-
cally ranged below 0.1 percent RDM/MAG. This is however also the case for
the hexahedral FEM approach, where RDMs reach up to 2.5 percent.

tDCS

As mentioned before, we can investigate the error dynamic throughout the
volume conductor. This is visualized over a grayscale image of the volume
conductor in Figure 6.5. For all three methods, high angles of 5 degrees or
more can only be observed in the skull layer. In the brain, angles reach their
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FIGURE 6.4: MEG errors in a semi-realistic sphere model. From top to bot-
tom: MAG errors for tangential sources, RDM for tangential sources. Errors
are grouped by proximity to conductivity jump (eccentricity). Separate box-
plots for first order CutFEM with Venant source model, second order CutFEM

with partial integration, and hexahedral CG method with Venant.

maximum at 2.5 degrees near the electrodes and decrease with increasing dis-
tance to the electrodes. The spread of errors into the brain is slightly higher
for second-order CutFEM than for the other two approaches, making this
the first investigation where second-order CutFEM does not outperform all
other methods. The distance to the electrodes is for all three methods the
determining factor, not whether the evaluated point lies near the boundary
of a realistic tissue compartment. This can be seen more clearly when look-
ing at the magnitude differences between analytic and numerical solutions.
The overall results are in a similar range as in the concentric sphere model,
and the highest errors are again inside the skull and near the electrodes. The
color scale is chosen in a manner such that the contrasts in the interior parts
of the brain can be seen more clearly. We see that the MAG distribution in
the CutFEM models broadly follows the realistic gray matter compartment.
The MAG jumps at an interface are however below 0.5 percent, making this
a negligible effect. This effect is not present in the hexahedral FEM model.

The EEG results follow the trends observed in MEG. They have already
been published and can be found in Erdbrügger et al., 2023.

6.4 Conclusion

In this chapter, we created the first set of EEG/MEGCutFEM lead fields and
compared them to other FEM approaches. The simplified, spherical geome-
tries that were used as volume conductors allowed for the calculation of
quasi-analytical solutions as reference.

The first investigations were performed in a standard 4-layer concentric
sphere model that included a brain, cerebrospinal fluid, skull, and scalp
layer. For EEG/MEG and tDCS, we calculated forward solutions using a
first-order trial function CutFEM with the St. Venant source model, and two
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FIGURE 6.5: TDCS errors in a semi-realistic sphere model. Left column: MAG
errors. Right column: Angles. Top row: Errors for first order CutFEM. Center
row: Errors for second order CutFEM. Bottom row: Errors for hexahedral

FEM.
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second-order trial function CutFEM approaches, one with the Venant and
one with the partial integration source model. As a comparison, we also cal-
culated solutions using an unfitted discontinuous Galerkin method (UDG)
that operates on the same cut mesh as the second-order CutFEM approaches,
and a tetrahedral continuous Galerkin FEM. The resolution for all methods
was chosen in a manner that maintains a comparable number of degrees of
freedom. The CG approaches, whose solutions at higher resolution can be
calculated more efficiently than CutFEM at this point, were given higher res-
olutions.

Several key points are apparent from analyzing this first model. First,
there is little qualitative difference between analyzing EEG, MEG, or tDCS.
This is unsurprising as all use the same stiffness matrix. The difference be-
tween EEG and MEG lies only in the right-hand side vector. The EEG trans-
fer matrix is due to Helmholtz reciprocity already the solution to the tDCS
forward problem.

Secondly, the UDG results were outperformed by all other approaches,
particularly near conductivity jumps. This may be because the current UDG
implementation does not use a ghost penalty to stabilize small snippets
(Nüßing et al., 2016; Nüßing, 2018).

All CutFEM approaches outperformed the tetrahedral CG approach. In
particular, at lower eccentricities, the CutFEM errors were orders of magni-
tude smaller.

The second-order CutFEM approach with the partial integration source
model was the overall most accurate approach. This highlights one of Cut-
FEM’s unique advantages, using higher-order trial functions without com-
promising on the faithfulness to the anatomic data or inflating the number
of DoFs. The use of the partial integration source model is simpler to imple-
ment and has fewer parameters to optimize than the Venant approach. It is
also not an approximation to the dipolar source model as the Venant. The use
of second-order trial functions alleviates the PI model’s main disadvantage
of not being able to distinguish between source positions in the same mesh
element.

The first sphere model had the advantage that we could calculate exact
level sets for the concentric spheres. To investigate whether this inherent
advantage over the CG approaches amounts to an unfair comparison, we
created a second sphere model. This 5-compartment model places realistic
gray and white matter, segmented from human MRI data, into the center
of three concentric spheres, CSF, skull, and scalp. Identical conductivities
for the inner three compartments effectively reduced this model to a three-
layer concentric sphere model in terms of volume conduction. Compared
to the first model, we no longer investigate UDG or second-order CutFEM
with the Venant source model. As a continuous Galerkin comparison, we
calculated a geometry-adapted hexahedral mesh. This type of mesh will also
serve as a reference for the comparisons in fully realistic head models in the
next chapters.

We saw that CutFEM still outperforms the CG FEM, albeit less clearly than
in the previous model. Additionally, we see several outlier values at lower
eccentricities that were not present in the previous model. These outliers
were however present in both CutFEM and CG-based forward models. All
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outliers ranged below 3 percent RDM/MAG. Looking at the tDCS error dis-
tribution showed us that while there are jumps in error magnitude near inner
compartment interfaces, these are dominated by errors due to proximity to
either the stimulation electrodes or a conductivity jump.

Using CutFEM with realistic level sets therefore does not deteriorate the
overall numerical results. The reason for the slightly higher error ranges
compared to the first model may be due to the way the spherical compart-
ments were created, possibly leading to sub-millimeter inaccuracies in the
shape or radius of the concentric spheres.

However, we did see that the second-order CutFEM approach no longer
clearly outperforms the first-order CutFEM. The error distribution in tDCS
even showed slightly higher errors in second-order CutFEM. One possible
explanation for this is that in a realistic scenario, the 4 mm fundamental mesh
cells contain more different cut cells than when using a 2 mm resolution,
possibly outweighing the advantage of using higher-order trial functions.
Whether this effect is even more pronounced in a fully realistic head model
is at this point unclear. For example, a scenario where one fundamental cell
contains snippets from two gyri separated by a thin layer of CSF or skull is
more likely in a 4 mm model. The same trial functions would then be used
for both gray matter snippets but the actual volume conduction would differ
strongly in the two gyri. In the following chapters, we will therefore use the
first-order CutFEM approach.

Regarding UDG, it may be promising to explore the possibility of adding
a ghost penalty to stabilize the method.

One motivation for using discontinuous Galerkin over continuous
Galerkin in MEG is a flux conservation property that can be used to calculate
the current density σ∇u (Piastra et al., 2018). In UDG, this may be harnessed
as well and could motivate its use over CutFEM. The other advantage of
DG methods, the prevention of skull leakages (Engwer et al., 2017), is likely
to be of lesser importance in the CutFEM vs. UDG comparison. Thin skull
areas can be modeled accurately using level sets, as anatomical details can
be precisely represented.

Concerning source modeling, there has recently been the addition of a
local subtraction method (Höltershinken et al., 2023). Local subtraction on
tetrahedral CG meshes produces similar error ranges as those of first-order
CutFEM with the Venant approach. In the future, it may therefore be
promising to combine CutFEM with the local subtraction method, in partic-
ular when compared to second-order CutFEM with the partial integration
approach.

In total, we found that the use of CutFEM shows promise in controlled
spherical scenarios, and we will continue with the analysis of fully realistic
head models in the following chapters.
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Chapter 7

EEG/MEG group study

In the previous section, we analyzed CutFEM’s performance in symmetric,
spherical models. We found that CutFEM outperforms continuous Galerkin
methods with either tetrahedra or hexahedra as well as an unfitted discon-
tinuous Galerkin approach when using a comparable number of degrees of
freedom. In this chapter, we want to extend upon these results and apply
CutFEM to real data obtained from MRI and EEG/MEG measurements. We
create realistic six-compartment and three-compartment head models and
calculate lead fields based on CutFEM, geometry-adapted hexahedral CG-
FEM, and BEM. These forward results are then used for the reconstruction of
somatosensory evoked potentials/fields in an n = 19 group study.

In the absence of analytical solutions, it is difficult to make statements re-
garding the accuracy of our results. Reconstruction differences alone will
therefore probably not give us a satisfactory answer as to whether to choose
one method over another. Except for the new CutFEM scheme, the use of the
investigated forward modeling approaches is widely accepted and the mar-
gin for localization errors is consequently small. Differences in orientation
output however may be significantly more relevant, for example when the
reconstructed dipole is used as a target for tDCS stimulation.

Throughout this chapter, we will not only quantify differences in local-
ization/orientation but also investigate further metrics. We will investigate
whether any of the 3 methods localizes closer to an anatomical estimate of the
post-central gyrus where the somatosensory evoked potentials and fields are
generated. Further, differences in the amount of data that can be explained
by the different forward models will be analyzed, and estimates of how well
sources can be separated will be given.

A particular focus will be set on the question of whether we can reliably
estimate both source location and orientation using only MEG data. This will
be of particular relevance in the chapter on the reconstruction of epileptic
activity, where we have patients whose tDCS stimulation caps will be based
on MEG reconstructions alone.

As we have both EEG and MEG data, we can determine whether more
realistic volume conductors increase the similarity of the reconstruction out-
comes of both modalities. The somatosensory stimulation paradigm used in
this study is also suitable for estimating the conductivity of the skull (Aydin
et al., 2014; Antonakakis et al., 2020a; Schrader et al., 2020). We can therefore
quantify the impact of forward modeling on the estimated skull conductiv-
ity and also whether more realistic volume conductor modeling leads to an
increase in coherence between EEG and MEG data.
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7.1 Data acquisition and head model creation

Before the measurements, the nineteen participants of this study (age 19-49,
mean age 26.15±7.76SD, 11 female, 8 male) gave written informed consent in
accordance with the declaration of Helsinki. Combined electro- and magne-
toencephalography was recorded during medianus nerve stimulation. For
EEG, a 60-electrode cap (EasyCap, Herrsching, Germany) was used, and
for MEG a setup of 275 axial gradiometers (VSM MedTech Ltd., Vancou-
ver, Canada). The sampling rate was set to 600 Hz. The medianus nerve
stimulation consisted of 1932 monophasic electrical square-wave pulses of
length 0.5 ms with an inter-stimulus interval uniformly jittered between 350
and 450 ms. The ethics committees of the Universities of Münster (#2015-263-
f-S) and Lübeck (#20-459) approved the study and the recorded data was also
used in Radecke et al., 2023. Following Buchner et al., 1995, we preprocessed
the data with a band-pass filter between 20 and 250 Hz. A 50 Hz notch filter
that included harmonics was applied to account for the power line artifact.
The data was epoched between -50 and 150 ms relative to the stimulus onset.
Bad trials were removed semi-automatically. The data was averaged across
trials and an individual 20 ms post-stimulus component with frontal posi-
tivity, the so-called P20 (or M20 in MEG Nakamura et al., 1998), was deter-
mined. The P20/M20 component is generated in the primary somatosensory
cortex Buchner et al., 1995. It can be evoked reliably and creates a very fo-
cal response with a high Signal-to-noise ratio (SNR). An exemplary P20/M20
component can be seen in Figure 7.1.

Applications for the analysis of the P20/M20 component include intra-
operative neurophysiological monitoring (Sarnthein et al., 2022), diagnos-
tics (Cruccu et al., 2008), or the calibration of skull conductivity (Baysal and
Haueisen, 2004).

The MRI data was acquired from a 3 Tesla Magnetom Skyra scanner
(Siemens, Erlangen, Germany) with a 64-channel head coil. The T1 se-
quences were acquired using a 3D MP-Rage sequence (TR = 2300 ms TE =
3.6 ms, TI = 1100 ms, FA = 8°). For the T2, a spin echo sequence was used
(TR = 3200 ms, TE = 408 ms, FA = 120°). Inter-subject comparisons of source
reconstructions are undertaken in normalized space. Using a nonlinear
transformation, the T1 is registered onto a normalized MNI (Montreal Neu-
rological Institute, Collins et al., 1994) MRI using the fieldtrip (Oostenveld
et al., 2011) integration of SPM12 (Ashburner et al., 2014). For the MNI
image, an AAL atlas stating the labels of the different brain regions was
then used to identify the post-central gyrus (Rolls et al., 2020). We will
later use this nonlinear transformation to investigate whether our source
reconstruction results end up in the correct gyrus. Note however that we
only transform the final reconstruction results to MNI space. Forward and
inverse modeling takes place on a personalized level for each subject.

For information on the image segmentation and the creation of six-
compartment CutFEM and hexahedral CG-FEM head models, see the
chapter on head model creation. For MEG in particular, it is common to
use a more homogenized head model, as the skull conductivity is of less
importance (van den Broek et al., 1998; Gramfort et al., 2010). We therefore
opted for a three-compartment BEM model to investigate the impact of head
model simplification. Choosing BEM over FEM for our three-compartment
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FIGURE 7.1: Averaged evoked somatosensory potentials and fields for sub-
ject 1. Top panel: Butterfly plot of averaged MEG data. Center panel: aver-
aged MEG data. Bottom row: P20/M20 peak topographies for EEG (left) and

MEG(right).



54 Chapter 7. EEG/MEG group study

model will pose the question of whether differences are due to head model
simplification or due to the different numerical approach. However, there
are already several BEM-FEM comparison Vorwerk et al., 2012; Mahjoory
et al., 2017, and in practice, FEM is mostly used in combination with a higher
number of compartments.

The surfaces for the BEM models are created from the same binary seg-
mentation result used for CutFEM and the hexahedral model. We define the
brain as the union of gray matter, white matter, and CSF, while the combined
compacta and spongiosa masks define the skull. To obtain nested compart-
ments, cranial holes were filled and smooth surfaces were extracted with
the fieldtrip (Oostenveld et al., 2011) function ft_prepare_mesh. The dif-
ferent models vary in the restrictions that they impose on the feasibility of
source positions. For the 3C-BEM model, any point within the inner com-
partment is suitable, except for points too close to the skull (Gramfort et al.,
2010). The six-compartment models place their sources only into the gray
matter. We maintain comparability by using a regular grid with 2 mm spac-
ing. Grid nodes outside the gray matter were removed and the remaining
nodes moved such that the closest mesh vertex is inside the gray matter. On
average, the source spaces for the 19 subjects have 33940 ± 14088 SD nodes.

The BEM lead field is then calculated using the fieldtrip (Oostenveld et
al., 2011) integration of OpenMEEG (Gramfort et al., 2011), the FEM lead
fields are calculated in DUNEuro (Schrader et al., 2021; Medani et al., 2023).
CutFEM lead fields will be called 6C-CutFEM throughout this chapter. The
lead fields based on the geometry-adapted hexahedral model are called 6C-
HexFEM and the ones created by the three-compartment boundary element
method 3C-BEM.

7.2 Solving the inverse problem

We have measured and preprocessed both EEG/MEG and MRI data, seg-
mented and set up our head models, and calculated the lead fields, meaning
we have solved the forward problem. Therefore, we can now proceed to lo-
calize the generators of the somatosensory evoked fields. In other words, we
need to apply a suitable algorithm to solve the inverse problem. We want to
solve a linear equation system of the type

Lx = y,

where y ∈ Rs is our measured data, L ∈ RsxN is our lead field, and x ∈ Rs

states the pattern of active sources. As we have tens of thousands of sources
in the brain and only a few hundred sensors at the most, this problem is
ill-posed. We therefore have an infinite number of possible solutions. Conse-
quently, there is also a host of possible inversion algorithms to choose from.
Broadly, they fall into two categories. Single-source reconstruction or cur-
rent density approaches. Single-source reconstructions such as dipole scan-
ning or fitting assume that there is only a limited set of active dipoles in the
brain, typically no more than 1 or 2 (Darvas et al., 2004). As their output is
a single dipole location and moment (or a probability distribution over the
source space), the differences when switching subjects and forward methods
are easy to quantify. In reality, an EEG/MEG signal is only measurable if a
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sufficiently large patch of neurons is active, hence the assumption of a dipo-
lar model only holds well for focal generators. If the source is dominated
by noise, e.g. from muscle artifacts, beamformer algorithms may be used
instead (Buschermöhle et al., 2024; Neugebauer et al., 2022).

Current density approaches such as minimum norm estimation do not
place a limit on the number of simultaneously active sources (Hauk, 2004).
Their reconstruction output is a patch rather than a single dipole. While we
have an active patch of neurons in reality, in practice, current density ap-
proaches may feature smeared results if the underlying source is focal.

Our goal in this thesis is to quantify the impact forward modeling has
on the final source localization. With the somatosensory evoked poten-
tials/fields from our medianus stimulation, we have a very focal source with
a dipolar pattern, motivating the use of a single-source inversion model.
Muscle or eye artifacts are either removed in the preprocessing or averaged
out over trials, giving us a clear signal with high SNR. We may therefore
use a simple dipole scan for our inversion. Note that the assumption of a
single active source is not entirely correct. The generators of the P20/M20
response that are located in the post-central gyrus in Brodmann area 3B are
temporally preceded by thalamic activation than can be seen in the EEG but
due to its depth not in the MEG (Buchner et al., 1995; Scherg and Buchner,
1993). To account for a possible overlap of thalamic and cortical activation,
it has been suggested to place an additional source into the thalamus when
performing an EEG dipole scan/fit (Götz et al., 2014). Before doing so, we
want to give a short introduction to EEG/MEG dipole scanning.

Dipole Scanning

In its basic formulation, a dipole scan is the solution of the least squares prob-
lem

min
x,η

||C−1(y − L(x)η)||22, (7.1)

where y is the measured data, x is the location within the source space,
L(x) ∈ Rs×3 the lead field at location x ∈ Ω with one column per spatial
direction. η ∈ R3 is the source strength with each entry stating the con-
tribution of the different directions. C ∈ Rs×s is a diagonal matrix that
contains the channel-wise standard deviations of the noise activity in the
pre-stimulus interval from -50 to -5 ms. Channels with higher noise levels
are weighed lower when estimating the residual variance. In practice, we
can iterate over all x in the source space, determine the optimal orientation
ηx,opt using the pseudo-inverse of L(x) and calculate the residual variance
||C−1(y − L(x)ηx,opt)||22/||C−1y||22. The residual variance (RV) states the pro-
portion (in %) of the signal power left unexplained by our reconstruction.

For both EEG and MEG, we perform slight adaptations to the inserted lead
field matrix. For the EEG, we investigate the addition of a secondary thalamic
source. We use the AAL atlas to determine the center of the thalamus in MNI
space, then transform that location to each subject’s MRI and identify the
closest source position x0. The modified EEG lead field L(x, x0) then contains
6 columns. 3 from the thalamic source x0 that stays constant throughout the
minimization and 3 that depend on the changing source location x. From
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the pseudoinverse of this modified lead field, we then obtain an individual
source strength for the cortical and the thalamic source.

Due to its depth, the thalamic source is not visible in the MEG and can
therefore be neglected. In spherical head models, we distinguished between
radial and tangential sources because the radial sources produced no mag-
netic field outside the volume conductor. While this is no longer the case
in less homogenized, more realistic head models, we still have a sensitivity
bias towards quasi-tangential sources (Ahlfors et al., 2010). Note that the
terms radial and tangential are only well-defined in spherical head models.
By quasi-radial or quasi-tangential sources we refer to the orientation of the
vector that points from the source towards the inner skull surface (Haueisen
et al., 2012). The issue with this sensitivity bias is that the noise present in
the data might lead to an amplification of the radial reconstruction compo-
nent. Therefore, it is common practice to regularize the MEG lead field in
some manner. One way is to add a Tikhonov-based regularization term that
dampens the magnitude of η (Tikhonov and Arsenin, 1977). It is however
difficult to select a proper regularization strength.

An alternative is to truncate the lead field by removing the quasi-radial
contributions. In practice, the quasi-radial orientation is calculated through
a singular value decomposition (Piastra et al., 2021; Ahlfors et al., 2010). Let
x ∈ Ω. Then the MEG lead field can be written as a singular value decompo-
sition L(x) = UΣVt, where Σ is a diagonal matrix with 3 non-zero entries, the
singular values. The smallest of these is then the singular value correspond-
ing to the quasi-radial direction. Setting it to zero truncates the lead field
and removes any quasi-radial contributions and therefore any blow-up in the
quasi-radial direction. However, the reconstructed dipole moment is now re-
stricted to a 2D plane. While the M20 is a predominantly quasi-tangential
source, the cortical normal is unlikely to be purely quasi-tangential. This
option is the default in toolboxes such as fieldtrip.

The option we propose here is a modification from (Wolters et al., 1999).
We perform the truncation based on a ratio of the size of the smallest singular
value and the noise level of the data individually at each source location x in
our grid. Whether the radial contribution is exceeded by measurement noise
is quantified based on the signal-to-noise (SNR) definition in (Piastra et al.,
2021; Goldenholz et al., 2009). Let x ∈ Ω, N be the number of MEG sensors,
νx be the singular vector corresponding to the quasi-radial direction. The
noise level σs at sensor s. is calculated for each channel individually as the
standard deviation of the pre-stimulus interval from -50 to -5 ms. The σi’s are
the squares of the entries of the normalization matrix C. Then the SNR of a
quasi-radial source at location x in the source space is given as

SNR(x) = 10 log10
1
N

N

∑
s=1

(aLxνx)2
s

σ2
s

. (7.2)

The lead field matrix can be chosen based on 3C-BEM, 6C-HexFEM, or 6C-
CutFEM, leading to an individual SNR value for each forward modeling ap-
proach. The source strength a is adapted to our somatosensory experiment.
In the literature, a source strength of 21 nAm has been reported for the M20
(Antonakakis et al., 2020a). The M20 is primarily a quasi-tangential source,
but if we assume it to be about 10° out of the quasi-tangential plane, we
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FIGURE 7.2: Calibrated EEG skull conductivities based on different forward
approaches. Values in Siemens per meter. 6-compartment Hexahedral FEM
values in black, 6-compartment CutFEM values in green, and 3-compartment

BEM values in blue.

would end up with a radial contribution of about 4 nAm as sin(10) ∗ 21 ≈ 4.
We then perform the truncation of the lead field if the SNR(x) at a given point
is lower than 3. A value larger than 3 implies that the average signal power
across all channels exceeds twice the power of the noise.

Piastra et al., 2021 and Goldenholz et al., 2009 used a source strength of
10 nAm but investigated sources with orientations estimated from the corti-
cal normal. These oblique source orientations contain both quasi-tangential
and quasi-radial components whereas we only focus on the quasi-radial part
here.

The conditional truncation of the lead field that we perform here is
strongly based on the structure of the somatosensory field data we analyze.
Whether a similar procedure can be performed in different experimental
setups largely depends on the availability of a reliable noise covariance
estimate and a priori knowledge of the source strength.

Skull conductivity calibration

A central parameter in EEG source reconstruction is the conductivity of the
skull layers. It has a strong influence on the depth of the reconstructed
dipoles. As the MEG is less sensitive to the skull conductivity, a combina-
tion of EEG and MEG data can be used to optimize the skull conductivity
for the EEG (Aydin et al., 2014; Antonakakis et al., 2020a). We first perform
an MEG dipole scan and save the resulting dipole location xMEG. Then we
minimize the EEG residual variance at xMEG over a range of skull compacta
conductivities, between 0.008 and 0.3 Sm. For the 6-compartment methods,
the skull spongiosa conductivity is set to a fixed 3.6 times the compacta
conductivity. Minimizing the residual variance is assumed to be a convex
problem, hence a Brent algorithm can be used to minimize the number of
tested conductivity values (Schrader, 2022). The conductivity value that min-
imizes the residual variance is then used to calculate a full, calibrated EEG
lead field for all source positions in the grid. Note that the MEG skull con-
ductivity is not affected by this calibration procedure. An overview of the
calibration values for all subjects can be found in Figure 7.2. 6C-HexFEM
yielded 2.92 % higher skull compacta conductivity values than 6C-CutFEM,
3C-BEM 10.55 % higher values. The higher conductivity values for BEM
probably offset the presence of the more conductive spongiosa layer in the
6-compartment methods. The differences are small and a repeated measures
ANOVA shows no statistically significant differences.
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FIGURE 7.3: Differences in the reconstructed dipoles’ location (top) and ori-
entation (bottom). Differences are computed between 6C-CutFEM and 6C-
HexFEM (black), 6C-CutFEM and 3C-BEM (green), and 6C-HexFEM and 3C-
BEM (blue). Location differences in mm, angles in degrees. Differences based

on MEG data are on the left, based on EEG on the right.

7.3 Results

Location and Orientation

We now turn to the first source reconstruction results. The first, and from
a user’s perspective possibly most significant results that we look at are
differences in location and orientation. We compare individual differ-
ences between 6C-CutFEM vs. 6C-HexFEM, 6C-CutFEM vs. 3C-BEM, and
6C-HexFEM vs. 3C-BEM. Angles in degree and distances in millimeters
for both EEG and MEG can be found in Figure 7.3. MEG dipole location
differences are small on average, but can exceed 10 mm between the FEM
approaches and reach 17.55 mm when comparing 6- and 3-compartment
methods. Average angles are around 10 degrees but can exceed 30 degrees
in MEG-based BEM-FEM comparisons and 25 degrees in EEG. Overall, as
one would expect, the differences between 6-compartment CutFEM and
HexFEM are smaller than the differences between either 6-compartment
method and 3C-BEM.

For most subjects, the impact of switching forward models may therefore
be small, but a difference of 1 cm may mean the difference in reconstructing
to one gyrus or another. This is particularly important when the reconstruc-
tion is used to guide further invasive diagnostics, such as in epilepsy (An-
tonakakis et al., 2024a). The differences in angle are of relevance when the
reconstruction is used as a target for a subsequent optimized tDCS stimula-
tion (Khan et al., 2022). A small difference in the reconstructed angles may
significantly alter the electrode placement.

As mentioned, we can also project our reconstructions into normalized
MNI space, where the AAL atlas gives us an estimate of the post-central
gyrus where the generators of the P20/M20 are located. A visualization
of the reconstructions and the somatosensory cortex can be found in Figure
7.4. We see that all reconstructions broadly lie in the somatosensory cortex
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and point tangentially toward the motor cortex. As could be expected from
the previous results, average differences in the sub-centimeter range and un-
der 10 degrees are difficult to identify by the naked eye. Note that the re-
constructed orientations are only approximations as the transformation into
MNI space is nonlinear.

The EEG reconstructions have a higher spread than the MEG reconstruc-
tions. When we compute the center of the 19 6C-CutFEM MEG reconstruc-
tions, then the average distance of each single reconstruction to that center is
4.95 mm. The 6C-CutFEM EEG spread is 7.77 mm. The other two methods
have similar spreads, 5.38 and 8.78 mm for 6C-HexFEM, 5.60 and 9.29 mm
for 3C-BEM.

We can further measure the distance between the projections of the re-
constructed dipoles and the post-central gyrus. The corresponding EEG and
MEG distances can be found in Figure 7.5. When reconstructing the MEG
data, we see that the six-compartment methods localize closer to the post-
central gyrus than the three-compartment method. Both average distance
and standard deviation are approximately 1 mm smaller. 3.36±2.92 mm
SD for 6C-CutFEM, 3.70±3.44 mm SD for 6C-HexFEM, 4.95±4.08 mm SD
for 3C-BEM. Comparing the distances to the post-central gyrus and the be-
tween method distances, we see that the subject with the highest difference
(17.54 mm) between 6C-CutFEM and 3C-BEM also has the highest 3C-BEM
distance to the post-central gyrus (16.13 mm) while CutFEM reconstructed
3.50 mm away from the somatosensory cortex. Similarly, the subject with the
highest difference between 6C-CutFEM and 6C-HexFEM (9.74 mm) also has
the highest 6C-HexFEM distance to the post-central gyrus (10.35 mm) where
CutFEM only has 3.7 mm.

While CutFEM yields the best results here, these should not be overstated.
The quality of the transformation into MNI space depends strongly on how
similar the individual subjects’ cortex can be matched with the MNI152 aver-
age. Our results may also depend on the choice of the atlas. The anatomical
AAL atlas with the entire post-central gyrus covers a much larger area than
the Brodmann area 3B. Choosing a functional atlas that explicitly covers only
Brodmann area 3B yields distances about 2 times higher, but does not quali-
tatively change the statements of the previous section.

Coherence between EEG and MEG reconstructions

So far, we have looked at EEG and MEG reconstructions separately. Now we
investigate whether the use of a more realistic volume conductor increases
the coherence between EEG and MEG reconstructions. To do so, we again
compute location differences and angles, this time between EEG and MEG
reconstructions. The results can be seen in Figure7.6. The average distance
between a MEG-based and an EEG-based reconstruction is 10.14 mm for 6C-
HexFEM, 10.76 mm for 6C-CutFEM, and 10.24 mm for 3C-BEM. The average
angles are 28.25°, 27.83°, and 22.87° respectively. Adding more tissue com-
partments therefore does not directly increase the similarity of EEG and MEG
reconstructions in our test scenario.
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FIGURE 7.4: Source reconstructions in normalized MNI space. EEG source
reconstructions are red, MEG reconstructions are black. One arrow corre-
sponds to the reconstructed dipole of one subject. Top panel: 6C-HexFEM
reconstructions. Center: 6C-CutFEM reconstructions. Bottom: 3C-BEM re-
constructions. In white we see the averaged white matter of the MNI152 T1

image. The post-central gyrus based on the AAL-atlas is green.
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FIGURE 7.5: Distances (mm) to post-central gyrus depending on the forward
model. 6C-HexFEM-based distances in black, 6C-CutFEM in green, 3C-BEM
in blue. Distances of MEG reconstructions on the left, EEG distances on the

right.

FIGURE 7.6: Location differences (left panel) and angles (right panel) be-
tween EEG and MEG-based source reconstructions when using different for-
ward models. 6C-HexFEM-based distances in black, 6C-CutFEM in green,

3C-BEM in blue.

Residual variance

In the next step, we want to investigate whether we can better explain the
measured data by creating realistic, six-compartment head models. Our
first metric here is the residual variance. Boxplots showing the individual
residual variances of each subject, grouped by the forward approach can be
found for EEG and MEG in Figure 7.7. Starting with the MEG, we see the
3-compartment BEM model produces higher residual variances, meaning the
BEM-reconstructed dipole explains a smaller proportion of the data than the
six-compartment models. The average residual variance for 6C-CutFEM and
6C-HexFEM is identical at 3.6 %, 1.0 % lower than the average for 3C-BEM.
A repeated measures ANOVA shows a significant main effect of the forward
method (CutFEM/HexFEM/BEM) on the residual variance ((F(1.11, 19.9)
= 14.054, p = 0.0009, η2 = 0.077). A subsequent pairwise t-test with Holm
correction (Holm, 1979) shows no significant differences between the six-
compartment methods, but significant differences between 6C-CutFEM and
3C-BEM (p<0.001) with a large effect size of 0.907 as measured by Cohen’s
d (Cohen, 1972b). The residual variances resulting from the reconstruction
of EEG data are significantly higher with averages of 11.18 %, 11.30 %, and
11.55 % for 6C-CutFEM, 6C-HexFEM, and 3C-BEM respectively.

We can therefore state that the six-compartment methods are significantly
better at explaining the measured data, especially in the MEG case. At this
point, we cannot say whether this difference is due to a better fit to the
P20/M20 signal or whether the six-compartment methods overfit noise.
However, we have an excellent noise estimate based on the pre-stimulus in-
terval and can use that to quantify the expected Euclidean distance between
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FIGURE 7.7: Residual variance (%) of the P20/M20 reconstruction using lead-
field matrices from different forward models. The asterisk marks significant
differences (MEG only) 6C-HexFEM in blue, 6C-CutFEM in red, and 3C-BEM
in yellow. Outliers are depicted as circles, and the horizontal bar inside the
boxes states median values. The x-axis is divided by the modality. MEG on

the left, EEG on the right.

measured data and reconstructed source

E(||Ŷ − Y∥|22). (7.3)

Here, Y is again our measured data, and Ŷ = L(xopt)ηxopt,opt is the result of
our dipole scan. For simplicity, we omitted the noise normalization matrix
C−1 here. We assume that xopt is the true source location and L is the true lead
field, meaning that we do not have a modeling error in our lead field. Our
intent here is only to quantify the impact of additive noise on our residual
variance. Abbreviating Lx = L(xopt)ηxopt,opt, we then have

Y = Lx + N,

where N is the noise present in the data. It is assumed to be uncorrelated to
the actual P20/M20 component. With the pseudoinverse L+ of L we have

Ŷ = LL+Y = LL+(Lx + N) = LL+Lx + LL+N

= Lx + LL+N.

Hence
E(||Ŷ − Y||22) = E(||LL+N − N||22)

= E(||(I − LL+)N||22) = E(||(I − PIm(L))N||22)

= E(||PIm(L)⊥N||22),

where PIm(L)⊥N is the orthogonal projection of N onto the complement of the
span of the lead field matrix L. Note that (I − PIm(L))N = PIm(L)⊥N.

This means that the expected difference between measured and recon-
structed data is only affected by noise components that cannot be explained
by the lead field. Now let V = (v1, ..., vk) be a basis of Im(L)⊥. Then by the
Pythagorean theorem, we have

E(||PIm(L)⊥N||22) = E(||∑
i
< vi, N > vi||22) = ∑

i
E(||vi, N > vi||22)

= ∑
i

E(< vi, N >2) = ∑
i

E(vt
i NNtvi) = ∑

i
vt

iCvi = Tr(PIm(L)⊥C.
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FIGURE 7.8: Expected MEG Residual variance (%) of the M20 reconstruction
using leadfield matrices from different forward models. 6C-HexFEM in blue,
6C-CutFEM in red, and 3C-BEM in yellow. Outliers are depicted as circles,
and the horizontal bar inside the boxes states median values. The x-axis is
divided by the modality. MEG residual variance without SNR normalization

on the left, expected residual variance on the right.

C is again the estimated noise covariance matrix from the prestimulus inter-
val. In other words, we can calculate the expected difference from the trace
of the projection of the noise covariance matrix onto the orthogonal comple-
ment of L. Normalizing E(||Ŷ − Y||22) with ||y||22 in the same manner as the
residual variance gives us an approximation of the expected residual vari-
ance (eRV).

A comparison of expected and actual residual variance for the different
forward modeling approaches can be found in Figure 7.8. Note that to main-
tain consistency, the residual variance here was calculated without the SNR
normalization with C−1. We see that the expected residual variance is al-
most identical for all 3 forward modeling approaches. The average eRV is
1.68±1.30 % SD. Only in one subject was the eRV higher than the actual
residual variance (0.04 % for 6C-HexFEM, 0.16 % for 6C-CutFEM, 0.19 % for
3C-BEM).

We can therefore state that all lead fields are identical in the way they
fit the additive noise in the data. Differences in residual variance are most
likely not due to the overfitting of additive noise. Note that the eRV is not
a measure for the amount of noise present in the reconstructed dipole. It
only states the proportion of the observed residual variance that is due to
noise that cannot be explained by the lead field. The actual residual vari-
ance is additionally affected by all other modeling errors. This includes all
the inaccuracies incurred by preprocessing the data Y and creating the lead
field matrix L, such as the dipolar source model, the limited number of head
tissues, uncertainties in the electric conductivities, and sensor-to-head regis-
tration. It also includes the artifact from the electric stimulation and possible
contributions of thalamic activity.

Source separability

In this section, we investigate the behavior of the residual variance as a func-
tion over the source space. We first look at the distribution of the RV over
the cortex for subject 1 from our study. In Figure 7.9, we see that the differ-
ence between the six-compartment models features a similar residual vari-
ance distribution. The RV has an ellipsoidal shape on the cortex, the short di-
agonal is parallel to the direction of the reconstructed dipole, while the long
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FIGURE 7.9: Absolute MEG residual variance (%) interpolated on cortex for
subject 1. Left panel: Residual variance based on 6C-HexFEM lead field. Cen-

ter panel: Based on 6C-CutFEM. Right panel: Based on 3C-BEM.

diagonal follows the central sulcus. Along the short diagonal, there is no ap-
parent difference between three- and six-compartment methods but 3C-BEM
is more spread along the long diagonal. This gives us a first indication that
there might be a difference in the slope of the residual variance distribution
which we will investigate in the next step.

While the shape of the RV distribution may be irregular, it will always
have one global minimum at xopt. We associate source separability with the
shape of the residual variance function. If the RV(x) increases more rapidly
for one lead field over another when increasing ||x − xopt||2, the minimum
at xopt is also clearer. A greater proportion of the measured data can only
be explained by the lead field matrix at xopt. Therefore a steeper increase
in residual variance means that the reconstructed sources can be better dis-
tinguished by the surrounding sources. Note that source separability states,
given one active source, how confident we are in choosing one location over
another in close vicinity. It does not tell us how well we can distinguish two
proximate active sources. All considerations here are derived from a single-
source scenario.

We now state an exemplary process for calculating the source separability
for 6C-CutFEM. The procedure is identical for all three forward models. For
each subject, we first extract all source locations from the source grid whose
distance to xo pt is less than 20 mm, between 218 and 295 total points depend-
ing on the subject. For each point x we then calculate the ratio of the residual
variance RV(x)/RV(xopt and sort the points by their distance to xopt. This
gives us the CutFEM ratio for the source separability. We then repeat the
process for the other lead fields. Note that xopt depends on the lead field,
hence the selected points also differ for each method. In total, we then have
three sets of RV-ratios and spatial distances, with 30702 total points for the
MEG and 30225 points for the EEG.

In Figure 7.10., we see Ratio vs. distance plots for each forward model
and for both EEG and MEG. The curves are interpolated from the average RV
ratio for each distance bin (bins are all integers from 0 to 20). Shaded areas
indicate one standard deviation, also calculated per bin. Note that the scale
is logarithmic and different for EEG and MEG. The MEG ratios exceed 10
where the maximal EEG ratios are below 2.5 as the overall residual variances
are much lower in MEG than in EEG. The large standard deviation values
are due to a high per-subject variance in residual variance. We see that the
ratio increases most rapidly for 6C-CutFEM, followed by 6C-HexFEM, and
3C-BEM in both EEG and MEG.

In the second step, we perform an ANCOVA analysis to analyze the main
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FIGURE 7.10: Source separability estimates for MEG (left panel) and EEG
(right panel) depending on the forward model. X-axis: distance to recon-
structed source ||x − xopt||. Y-axis: Residual variance ratio RV(x)/RV(xopt,
scaled logarithmically. Curves for 3C-BEM in yellow, 6C-CutFEM in blue,

and 6C-HexFEM in red. Shaded areas indicate one standard deviation.

effect of the forward method (6C-HexFEM, 6C-CutFEM, 3C-BEM), distance
to the minimum, and their interaction on the RV-ratio. For MEG, the AN-
COVA shows two significant main effects and an interaction effect (Forward
model: F(2,30190) = 108.77, p < 0.001, η2 = 0.007. Distance to xopt: F(2,30190)
= 8240.73, p < 0.001, η2 = 0.214. Interaction of the two: F(2,30190) = 5.601,
p < 0.001, η2 = 0.0004) were observed. For EEG, the ANCOVA yields similar
results. Forward model: F(2,30219) = 35.502, p < 0.001, η2 = 0.002. Distance
to xopt: F(2,30219) = 9283.664, p < 0.001, η2 = 0.235. Interaction of the two:
F(2,30219) = 7.086, p < 0.001, η2 = 0.0004.

Next, we perform pairwise comparisons between the forward models.
The R (R Core Team, 2013) function estimate_contrasts from the modelbased
toolbox is used to estimate the pairwise contrasts (6C-CutFEM - 3C-BEM, 6C-
CutFEM - 6C-HexFEM, 6C-HexFEM - 3C-BEM) at 4 bins (5, 10, 15, 20 mm) of
distances to xopt. Holm-adjusted p-values and confidence intervals are then
calculated per bin.

The contrasts and their statistical significance can be seen in Table 7.1. for
MEG and in Table 7.2. for EEG. The contrast has to be understood as a dif-
ference in ratios. At 10 mm distance to xo pt, the MEG-based 6C-CutFEM
RV-ratio has increased on average 77 % more than the 3C-BEM ratio. The
95 % confidence interval is 53-101 %. 6C-CutFEM yields a statistically sig-
nificant better source separability than 3C-BEM already at 5 mm distance to
the source, where the difference between 6C-HexFEM and 3C-BEM is only
significant at 10 mm distance or more.

Qualitatively, similar statements hold for the EEG, but the contrasts are
smaller, and statistical significance is only reached at higher distance levels.
The expectation, that the larger influence of volume currents in EEG leads to
larger differences in source separability therefore does not hold in this set-
ting.

MEG radial contributions

The final investigations we perform in this chapter are concerned with the
reliable reconstruction of quasi-radial components using MEG data alone.
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MEG Contrast Distance to Source Mean difference p CI_low CI_high
6C-CutFEM - 3C-BEM 5 50 0.011 9 92
6C-CutFEM - 3C-BEM 10 77 <0.001 53 101
6C-CutFEM - 3C-BEM 15 103 <0.001 87 119
6C-CutFEM - 3C-BEM 20 129 <0.001 103 156
6C-CutFEM - 6C-HexFEM 5 9 0.601 -33 52
6C-CutFEM - 6C-HexFEM 10 29 0.006 4 54
6C-CutFEM - 6C-HexFEM 15 48 <0.001 32 64
6C-CutFEM - 6C-HexFEM 20 68 <0.001 41 94
6C-HexFEM - 3C-BEM 5 41 0.036 -1 83
6C-HexFEM - 3C-BEM 10 48 <0.001 24 72
6C-HexFEM - 3C-BEM 15 55 <0.001 39 71
6C-HexFEM - 3C-BEM 20 62 <0.001 38 88

TABLE 7.1: Source separability: Relative increase in MEG residual variance
(rv) ratio with increasing distance (mm) to the minimal source location rv.
Pairwise contrasts of the three different forward models. Columns from left
to right: Contrast formula (reads Model1 ’minus’ Model2), distance to the
source that minimizes the rv, Difference between the methods in %, p-value,
and the 95 % Confidence Interval for the difference in rv-ratio. Bold p-values

indicate significant (p< 0.05) differences.

EEG Contrast Distance to Source Mean difference p CI_low CI_high
6C-CutFEM - 3C-BEM 5 -0.42 >0.99 -4 4
6C-CutFEM - 3C-BEM 10 2 0.035 0.00 4
6C-CutFEM - 3C-BEM 15 5 <0.001 3 6
6C-CutFEM - 3C-BEM 20 7 <0.001 5 10
6C-CutFEM - 6C-HexFEM 5 <0.1 >0.99 -4 4
6C-CutFEM - 6C-HexFEM 10 <0.1 0.33 -1 3
6C-CutFEM - 6C-HexFEM 15 2 <0.001 1 3
6C-CutFEM - 6C-HexFEM 20 3 <0.001 1 5
6C-HexFEM - 3C-BEM 5 <0.1 >0.99 -4 3
6C-HexFEM - 3C-BEM 10 1 0.32 -1 3
6C-HexFEM - 3C-BEM 15 3 <0.001 2 4
6C-HexFEM - 3C-BEM 20 4 <0.001 2 7

TABLE 7.2: Source separability: Relative increase in EEG residual variance
(rv) ratio with increasing distance (mm) to the minimal source location rv.
Pairwise contrasts of the three different forward models. Columns from left
to right: Contrast formula (reads Model1 ’minus’ Model2), distance to the
source that minimizes the rv, Difference between the methods in %, p-value,
and the 95 % Confidence Interval for the difference in rv-ratio. Bold p-values

indicate significant (p< 0.05) differences.
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Going back to the SNR-based truncation described at the beginning of the
chapter, we quantify the SNR distribution over the cortex. For each subject,
we calculate the SNR of a quasi-radial source of 4 nAm strength at every loca-
tion in the individual source grid. The grid is then projected into normalized
MNI space and interpolated onto the same cortical surface. Here, the average
across all 19 subjects is calculated and visualized. The cortical sheet and an
inflated representation stem from the Freesurfer (Fischl, 2012) surfrend tool-
box.

The SNR distribution can be seen in Figure 7.11. For 6C-CutFEM, we see
that quasi-radial contributions are weakest on the gyral crowns and increase
when moving down the gyral walls. Overall, the strength of a quasi-radial
contribution is more dependent on the location of the source on the gyrus
rather than the location of that gyrus in the brain. In contrast, the SNR in 3C-
BEM changes more depending on where the source lies in the brain rather
than where on the gyrus the source is positioned. In other words, 3C-BEM
changes are spatially low-frequent, and 6C-CutFEM changes in SNR distri-
bution are high-frequent. This becomes most apparent in the images in the
fourth row of Figure 7.11., where the difference between 6C-CutFEM and 3C-
BEM is depicted. 6C-HexFEM follows a similar pattern as 6C-CutFEM, but
the differences between the gyral crown and fold are less distinct. The overall
average SNR for 6C-CutFEM is 3.51 dB, and the one for 3C-BEM is 2.29 dB.
6C-HexFEM has an average SNR of 3.32 dB. For reference, the average SNR
of the measured M20 components is 19.54± 3.20 SD.

It may seem surprising that in many places the SNR increases with in-
creasing source depth as the overall signal strength decreases with increasing
distance to the sensors. The reason for this stems from the fact that we only
investigate quasi-radial contributions here. In addition, we therefore quanti-
fied the magnitude of the strongest and weakest singular values. The results
can be seen in Figure 7.12. We see that an increasing source depth has op-
posing effects on the magnitude of the smallest and largest singular values.
The smallest, representing the quasi-radial orientation, increases in a fashion
that matches the SNR distribution while the largest decreases rapidly. The
resulting condition of the lead field matrix - measured as a ratio of smallest
to largest singular value - rapidly decreases with increasing source depth.
The differences between the three methods follow the results from the SNR
distribution, high frequent changes for six-compartment methods, and low-
frequent changes for 3C-BEM. 6C-HexFEM is again slightly smeared when
compared to 6C-CutFEM.

We have two possible explanations for this behavior. First, the volume
conductor near the gyral crowns may be more symmetric around the gyral
crowns, with the skull above, CSF to the sides, and gray/white matter below.
In contrast, a source on a gyral wall may have CSF to one side, gray matter
to the other, and a combination of the two above, resulting in a less homoge-
neous environment that is more distinct from a spherical volume conductor
that would result in a zero field.

Secondly, our method of distinguishing quasi-radial and -tangential ori-
entations may be less precise when the source lies deep inside the volume
conductor. As the skull is not perfectly spherical, a deeper source may be
equidistant to different areas of the skull, possibly reducing the accuracy of
the singular value decomposition.
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FIGURE 7.11: Signal-to-noise ratio (SNR) induced by quasi-radial sources
with 4 nAm amplitude. Upper 3 rows: SNR maps for 6C-HexFEM, 6C-
CutFEM, and 3C-BEM on MNI normalized cortex and inflated cortex. Bot-
tom row: Difference between 6C-CutFEM and 3C-BEM SNR. Scaled from -10

to 10 dB.

Impact on tDCS stimulation outcome

In our final analysis of this chapter, we want to investigate how much of
an impact the differences in source reconstruction have on the computation
of optimized stimulation caps for tDCS. Multi-channel tDCS caps are calcu-
lated in a manner that optimizes the directionality (DIR), meaning the scalar
product between the normalized target vector η at target position x0 and the
induced current density vector. The tDCS forward problem is solved at x0
for a set of s predefined stimulation electrode positions on the scalp. The
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FIGURE 7.12: Largest and smallest singular value and Lead field condition
interpolated onto inflated MNI cortex. Top row: values for 6C-HexFEM, cen-

ter row: values for 6C-CutFEM. Bottom row: values for 3C-BEM.

result is a tDCS matrix Cx0 ∈ R(s−1)x3 whose i-th column contains the cur-
rent density vector induced at x0 by a ±1 mA stimulation of electrode i. The
0-th electrode is the cathode and is implicitly modeled, hence there are only
s-1 columns. For an arbitrary current pattern q ∈ Rs−1, the directionality in
the target is then defined as DIR= ηCq. The stimulation strength at the 0-th
electrode amounts to q0 = −∑i qi, implying that the injected current pattern
adds to zero. To optimize the stimulation cap over possible current patterns
q, we use the distributed constrained maximum optimization (D-CMI). We
maximize the directionality given the side constraints that the total injected
current does not exceed 2 mA, and that no single electrode has more than
1.5 mA. A dampening term λ||q||2 is added to spread the current over 8 elec-
trodes. The reasoning here is that we want to further limit the excitation of
non-target brain tissue. The dampening term forces us to use 8 total elec-
trodes at a minimal expense of directionality. λ is gradually increased until 8
different electrodes are used, while 8 is simply the number of possible elec-
trodes in the stimulation device that is used at our lab. The full optimization
approach is then stated as

max
q

ηCx0q − λ||q||2

s.t. |q0|+ ||q||1 = 4, ||q||0 ≤ 1.5.

For more information about constrained maximum intensity optimization,
see Dmochowski et al., 2011. For more information on the D-CMI see Khan
et al., 2019.



70 Chapter 7. EEG/MEG group study

FIGURE 7.13: Relative changes in directionality (top) and target intensity
(bottom) when using changing stimulation caps. On the x-axis are the as-
sumed true targets. Each boxplot then contains each subject’s change in

DIR/IT if a different stimulation cap is used.

We will now analyze two metrics, the directionality (DIR), and the in-
tensity in target (IT). The IT measures the strength of the current density
||Cx0q||2. For this chapter, we will not focus on the differences that arise
from calculating Cx0 using different forward approaches such as CutFEM or
hexahedral FEM. Rather, we want to focus on the impact of changing the
target. Based on our P20/M20 reconstructions, we calculate 6 stimulation
patterns for each subject. One each for MEG using the reconstructions from
6C-CutFEM, 6C-HexFEM, 3C-BEM, and another one each for the EEG. We
therefore have 6 targets x1−6, 6 tDCS matrices Cx1−6 , and 6 current patterns
q1−6. In a second step, we then calculate the directionalities ηxi Cxi qj and tar-
get intensities Cxi qj for i = 1, ..., 6, j = 1, ..., 6. Note that each C-matrix is
calculated based on the geometry-adapted hexahedral FEM model.

The results can be seen in Figure 7.13. and can be interpreted as follows.
On the x-axis, we see the targets x1−6. The boxplots then indicate relative
changes in DIR/IT if the stimulation pattern qj that corresponds to the color
bar stated in the legend was chosen. By relative changes, we mean that for
each target xi the DIR/IT values have been normalized by the values induced
when using the "correct" stimulation pattern qi. The results can therefore be
considered as relative reductions/increments in DIR/IT of a true target when
using a stimulation cap that is based on a faulty source localization.

We see that the overall differences between forward modeling approaches
are dominated by the differences between EEG and MEG-based stimulation
caps. Using an EEG pattern on an MEG target resulted in an average reduc-
tion in DIR of 43.45 percent and 22.53 percent IT. Using a BEM-based cap on
a CutFEM-based target reduced DIR by 9.67 percent and IT even increased
by 1.81 percent. When using a HexFEM-based pattern, the reduction in DIR
decreases to 0.49 percent and IT increases by 2.76 percent. It can overall be
stated that the reduction in directionality is greater than the potential differ-
ences in IT. That the IT is less sensitive to the target selection is sensible as all
methods localize to roughly the same area. The directionality also depends
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on the target orientation, making it the more sensitive parameter.
DIR values slightly larger than 1 can be explained by the use of the reg-

ularization factor λ. If λ has to be chosen larger to obtain an 8-electrode
spread, the effect on the DIR is stronger. A CutFEM-based cap may use a
smaller lambda value to reach 8 electrodes than a HexFEM-based cap, and
the CutFEM pattern may then induce a larger DIR at the HexFEM target lo-
cation due to its lower dampening. The effect is small, however, with the
largest increase in DIR due to a different cap being 4.1 percent.

We notice that even though there was a slightly higher coherence between
3C-BEM-based EEG and MEG source localization, this did not translate to a
higher coherence in either DIR or IT simulation outcomes.

7.4 Conclusion

In this chapter, we transitioned from controlled spherical to realistic state-
of-the-art, six-compartment head models. Additionally, we no longer
made statements about differences in the lead field matrices but inves-
tigated the reconstruction of real EEG/MEG data. For comparison, we
chose two established EEG/MEG forward modeling approaches: A six-
compartment geometry-adapted hexahedral finite element method and a
three-compartment boundary element method. The recorded data stems
from a combined EEG/MEG measurement of somatosensory evoked
fields/potentials, induced by electric wrist stimulation. The first somatosen-
sory peak, the P20/M20, a very focal signal that has been studied extensively
in the literature, was analyzed. To add stability to our findings, the analysis
was performed over a group of n = 19 participants.

In both EEG and MEG, we found that the differences in reconstructed
dipole location and moment were smaller when comparing the six-
compartment FEM approaches than when comparing a six-compartment
and a three-compartment approach. This corresponds to Vorwerk et al.,
2012, where a comparison of three-compartment BEM and FEM models
was performed. Our findings concerning differences between three- and
six-compartment models are in line with the findings in Antonakakis et al.,
2019, who also investigated the use of different stimulators to elicit the
P20/M20 response.

The average differences between 6C-CutFEM and 6C-HexFEM are
small. In individual cases, however, differences between 6C-CutFEM and
6C-HexFEM exceeded a centimeter in location and 20 degrees in orientation.

When compared against an anatomical atlas, we found that all three meth-
ods localize close to or into the Brodmann area 3b which is host to the neu-
rons that generate the P20/M20. This is a desirable outcome as it states that
all three methods lead to roughly similar results. We found that CutFEM re-
constructed closer to the post-central gyrus than the other two methods, an
effect that was more pronounced in MEG than EEG. Atlas comparisons rely
on a nonlinear registration to a template and come with a level of uncertainty
that is difficult to quantify. However, we see that the MEG reconstructions
are overall more in line with the atlas than the EEG. As the MEG reconstruc-
tion is overall considered to be spatially more accurate than the EEG, this
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gives us a first indicator that CutFEM reconstructions may lead to more reli-
able results. Of note, an MEG-based three-compartment BEM reconstruction
was on average only as close to the post-central gyrus as either EEG-based
six-compartment approach. The subjects that had the highest distance to the
post-central gyrus in 6C-HexFEM or 3C-BEM were also the subjects where
the difference to 6C-CutFEM was highest. We therefore have a first indicator
that CutFEM reconstructions are more reliable than the two alternatives.

The second part of this chapter was concerned with the analysis of resid-
ual variances (RV), meaning the proportion of measured data that is left un-
explained by our reconstruction. Here, we saw that the average RV is lower
for the six-compartment than for the three-compartment methods. The effect
is statistically significant and more present in MEG than in EEG, where the
overall RVs are higher for all approaches. Additional anatomical informa-
tion therefore improves the fit to the measured data. To assess whether this
is due to a better fit to the actual signal or due to an overfitting of noise, we
performed several investigations.

First, we derived a way to calculate the expected residual variance based
on additive noise. This expected RV is based on the prestimulus interval and
gives an estimate of how much RV we would expect given a perfectly accu-
rate forward model. We found that this value is overall lower than the resid-
ual variance observed in our reconstructions, indicating that we are at least
not overfitting additive noise here. However, we cannot make statements
regarding the inaccuracy of our reconstruction incurred by e.g. erroneous
sensor registration or data preprocessing.

We then introduced a measure for source separability by quantifying how
quickly the residual variance increases with increasing distance to the recon-
struction optimum. We found a steeper increase in 6C-CutFEM than in 6C-
HexFEM, which in turn rose more steeply than 3C-BEM. From this result, we
can state that the spatially more homogeneous BEM lead field is less able to
distinguish between proximate source candidates. Therefore, there are parts
of the signal that are unique to the neural generator’s location and would
not exist if a proximate source was active instead. If our lead field cannot
properly distinguish the actual and a proximate source, these signal parts
would be left unexplained, resulting in a higher residual variance and possi-
bly explaining the difference in RV between the three- and six-compartment
approaches.

The following investigation was concerned with the sensitivity to quasi-
radial sources. For each source location, the quasi-radial orientation was
derived through singular value decomposition, and a signal-to-noise ratio
(SNR) was calculated based on the definition in Piastra et al., 2021; Golden-
holz et al., 2009. This was done for all three forward modeling approaches
and all subjects. The results were translated into MNI space and interpolated
onto a cortical surface.

We found that six-compartment methods are insensitive to quasi-radial
sources on gyral crowns, but the sensitivity increases rapidly when moving
down the gyral walls. The 3C-BEM SNRs depended more on the position
of the gyrus that the source was on rather than the position of the source on
the gyrus. As mentioned in the chapter on neurophysiology, the generators
of the EEG and MEG signal are pyramidal cells in layer 5 of the cortex and
aligned normally to the cortical surface (Murakami and Okada, 2006b). Our
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results therefore align with the fact that predominantly quasi-radial sources
are not visible in the MEG. Piastra et al., 2021 performed a similar SNR anal-
ysis using sources aligned with the cortical normal and also found a higher
sensitivity to sources on the gyral walls when using six-compartment mod-
els rather than three-compartment models. With our study, we can now add
that this higher sensitivity is not entirely due to quasi-tangential components
but that quasi-radial contributions can also be reconstructed. In practice, this
means that a source located on the gyral wall and whose cortical normal is
around 10 degrees out of the quasi-tangential plane produces an MEG sig-
nal from which an accurate estimate of the same 10 degrees may be derived
even in the presence of noise. This leaves us with another indicator that the
lower residual variance in six-compartment FEM is not due to noise overfit-
ting. Rather, it may be due to an accurate reconstruction of the quasi-radial
signal components present in the data.

The differences between 6C-CutFEM and 6C-HexFEM were smaller than
three-compartment vs six-compartment differences, but all the effects men-
tioned are more pronounced in CutFEM than in HexFEM. Where 6C-CutFEM
shows very distinct SNR-troughs on the gyral crowns, the 6C-HexFEM SNR
maps are slightly more smeared.

In addition to SNR-based comparisons, we investigated the lead field con-
ditioning for each method, meaning the ratio of largest to smallest singular
value. Ahlfors et al., 2010 found that the average conditioning of a 3C-BEM
model is 16.67, corresponding to the value of 16.92 in this study. 6C-CutFEM
has an average condition of 14.08, slightly higher than 6C-CutFEM’s 13.89.
We found that with increasing distance to the head surface, the radial sin-
gular value increased in strength while the quasi-tangential ones decreased,
resulting in overall lower signal strength and corresponding with the MEG’s
decreasing sensitivity when increasing source depth.

As mentioned, a central goal of this chapter was to determine the reliabil-
ity of MEG-based dipole orientations. The dipole moment is of particular im-
portance when the source is used as a target for subsequent tDCS stimulation
(Dmochowski et al., 2011; Antonakakis et al., 2024b; Khan et al., 2022). With
our SNR analysis, we gave strong evidence that quasi-radial contributions
are reconstructable using six-compartment modeling and CutFEM in partic-
ular. In principle, there are two regions, where the cortical normal is aligned
with the quasi-radial direction, the gyral crown and the sulcal fundus. While
the MEG is insensitive to gyral crowns, six-compartment modeling may aid
in reconstructing bottom-of-sulcus signals. Focal cortical dysplasias for ex-
ample are predominantly located at the bottom of a sulcus (Liu et al., 2019).
In the next chapter, we will give more context on epilepsy scenarios where
an MEG-based target selection is necessary or preferable.

It has to be noted that the noise levels present in the study are compa-
rably low after averaging over almost 2000 trials per subject, making this a
very controlled scenario. To balance this, we also chose a comparatively low
estimate of 4 nAm for the source strength. Investigations with higher noise
scenarios have not yet been performed and may be part of a future analysis.

Also, we only investigated somatosensory evoked potentials here. In par-
ticular, the 3C-BEM approaches’ SNR map varies significantly across cortical
regions. An analysis of visually evoked potentials (VEP) may therefore yield
different results. VEPs would also serve as a better basis for investigating
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subject positioning as was done in Justin K. Rice et al., 2013. In particular,
a comparison between six compartment CutFEM and a tetrahedralized FEM
model that features nested tissue compartments may be of interest.

We used a radial setup of gradiometers in this study, as that is the default
configuration of the used CTF system. Positioning the gradiometers in a tan-
gential fashion increases the MEG-sensitivity to quasi-radial sources as was
shown in Haueisen et al., 2012. Performing a similar sensitivity analysis with
tangential gradiometers may be particularly interesting with the introduction
of optically-pumped magnetometers (OPM). With OPMs, the magnetic flux
may be simultaneously measured in multiple directions at the same sensor
location (Brookes et al., 2021).

Independent of the application, the differences in location of up to a cen-
timeter and the differences in orientation of more than 20 degrees justify
the additional computational load of finite element approaches and Cut-
FEM in particular. The better correspondence with an anatomic atlas, de-
creases in residual variance, improvements in source separability, and sen-
sitivity to quasi-radial sources all suggest that the reconstructions based on
six-compartment models and CutFEM in particular are more reliable than
those achieved using three-compartment BEM models. However, in a direct
comparison of EEG and MEG reconstructions, we did not find a higher co-
herence of the two modalities when using six over three compartments. The
differences with respect to a simulated tDCS stimulation were small. Here,
the choice of basing the stimulation on an EEG or an MEG reconstruction
dominated the choice of the numerical forward model.
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Chapter 8

Source reconstruction and tDCS
cap optimization in epilepsy
patients

In the previous chapters, we investigated CutFEM’s performance in con-
trolled spherical scenarios and a group study of somatosensory evoked po-
tentials. They were concerned with the accuracy or reliability of CutFEM
forward modeling. The final parts of this thesis are concerned with its ap-
plication in epilepsy diagnostics and therapy through transcranial electric
stimulation. Epilepsy is one of the most common neurological diseases with
around 50 million patients worldwide (Leonardi and Ustun, 2002). Classical
treatment options are medication or invasive surgery. Both have a limited
success rate and possibly severe side effects. About one third of patients
have refractory epilepsy, i.e. they have persistent seizures under medication
(Beleza, 2009). A surgical excision first requires an accurate localization of
epileptogenic tissue and the surgeon has to be very conservative in not dam-
aging healthy tissue. Around 60 percent of epilepsy surgeries in patients
with focal cortical dysplasias (FCD) result in complete seizure freedom, also
called Engel class 1A (Veersema et al., 2019).

EEG, MEG and tDCS may aid in the diagnosis and treatment of epilepsy
in multiple ways.

The presence of interictal epileptic discharges (IEDs or spikes) in EEG or
MEG measurements serves as an indicator for the diagnostics of epilepsy
but may also serve as an aid in guiding invasive diagnostics and subsequent
surgery. In Tassi et al., 2010, 30 % of surgically treated epilepsy patients had
FCD, highlighting their importance in epilepsy treatment. However, experts
often fail to recognize FCDs based on the MRI alone. Providing a region of
interest significantly increased the detection rate in Wehner et al., 2021. In
Rampp et al., 2019, it was shown that the seizure freedom after surgery was
significantly more probable if the tissue identified by MEG source localiza-
tion was fully resected. In Antonakakis et al., 2024a, a focal cortical dysplasia
was identified as a resection target only after a combined EEG/MEG source
localization.

TDCS on the other hand is currently investigated as a non-invasive treat-
ment option (Yang, Shin, and Hong, 2021; Kaufmann et al., 2021; Anton-
akakis et al., 2024a). A typical setup for tDCS is a bipolar stimulation, one
cathode, and one anode. The cathode is then placed over the target zone
(identified by fMRI, EEG/MEG, patient semiology, etc.) to inhibit epileptic
activity. This procedure may neglect the orientation of the induced electric
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fields. A higher level of personalization may be achieved if the stimulation
montage is optimized in a manner that the introduced currents directly op-
pose the measured epileptic EEG/MEG data. Calculating such optimized
stimulation caps can increase the intensity of the stimulation in the target and
reduce side effects (Dmochowski et al., 2011; Khan et al., 2019). Beumer et al.,
2022 outline a workflow to create such personalized montages for epilepsy
patients. Spike data is measured by EEG and reconstructed using a dipole-fit
algorithm that determines a location and an orientation, much like the dipole
scan we applied in the previous chapter.

Choosing EEG or MEG for source localization depends on several factors.
While the EEG has in theory no sensitivity bias towards any source direc-
tion, gyral crowns may produce stronger quasi-radial signals due to their
closer proximity to the sensors. Also, as EEG and tDCS solve an almost iden-
tical problem, one has a direct correspondence between source localization
and optimized stimulation setup. The downside is a stronger dependence
on accurate volume conductor modeling.

An epilepsy-specific issue is that neither modality is guaranteed to show
all the spikes. In Iwasaki et al., 2005 and Knake et al., 2006 it was found that
18 and 13 percent of epileptic patients display spikes in the MEG, but not in
the EEG.

There is therefore no conclusive answer as to whether one can base a tDCS
stimulation on EEG or MEG source reconstruction or even a combination of
the two. Rather, the decision has to be made on a patient-to-patient basis.

This is the first of two chapters that are concerned with epilepsy. In the
first chapter, we will introduce two patients, their patient history and semi-
ology, and notable particularities concerning volume conductor modeling.
Similar to the group study from the previous chapter, we will investigate the
impact of different forward modeling approaches on the reconstruction and
the final stimulation caps.

One of the patients proceeded with the tDCS stimulation. The second
chapter covers the stimulation paradigm and outcome.

8.1 Patient 1

Patient history and preliminary data analysis

Patient 1 is a 36-year-old male with a long history of epilepsy. He had a re-
section in the left somatosensory cortex in 2008. From the histopathology, a
focal cortical dysplasia type 2b was confirmed. As of December 2022, he still
suffers from refractory epilepsy. His prescribed antiseizure medications are
Briviact, Ontozry, and Apydan extent. His attending epileptologist describes
his seizures as an initial sensation in the head, followed by sensations in the
right arm and behind the eyes, like a wave or a flickering. Later, the patient
reports an increased sensitivity of the fingers 4 and 5 of the right hand. The
entire seizure lasts about 60 seconds and is not accompanied by motor im-
pulses, a decrease in reaction speed, or loss of perception. Seizures occur
multiple times per week, in particular on stressful days.

In 2022, a one-hour combined EEG and MEG measurement was per-
formed in Münster. During the first 10 minutes, an electric wrist stimulation
was performed to elicit P20/M20 components in the right somatosensory
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FIGURE 8.1: EEG and MEG averaged spike markings for Patient 1. Top row:
Global mean field power (left) of EEG (red) and MEG (blue). On the top
right are butterfly plots of MEG (top) and EEG (bottom). The spike peak
was selected based on the MEG and is at t = 100 ms. Bottom row from left
to right: MEG topography at the spike onset (t = 90 ms) and spike peak, EEG

topography in the same order.

cortex. This dataset was used for skull conductivity calibration. Note that
his semiology points to a left somatosensory epileptic focus and that is also
where the surgery was performed. In Allison et al., 1991, a 59-year-old
epilepsy patient underwent excision of the somatosensory cortex. After-
ward, no somatosensory evoked potentials could be measured on the cortical
surface. However, this patient’s resection affected a larger area than the one
we investigated here. Additionally, our patient still suffers from epilepsy. We
therefore decided to stimulate the right somatosensory cortex instead, as it is
unclear how the resection affects the processing of the wrist stimulation. See
the previous chapter for more information on skull conductivity calibration
and specifics of the EEG/MEG measurement protocol.

A certified epileptologist from Bochum then marked 259 epileptic spikes
based on the remaining 50 minutes of MEG data. The patient also suffered
from a seizure during the measurement. As his seizures do not lead to invol-
untary movements, we have the rare opportunity to perform source local-
ization for both spikes and seizures. In this chapter, we will emphasize the
reconstruction of spikes and the volume conductor modeling. See the next
chapter for an analysis of the seizure data. We used fieldtrip (Oostenveld
et al., 2011) to preprocess the data. The steps are similar to the preprocess-
ing for somatosensory evoked potentials. Following a baseline correction we
applied a bandpass filter from 1 to 100 Hz, a 50 Hz notch filter including har-
monics to eliminate powerline noise, and averaged the data. No spikes were
excluded from the averaging process.

See Figure 8.1. for EEG/MEG butterfly plots and spike onset and peak
topographies. The spike onset is 10 ms before the MEG spike peak. The MEG
shows a clear peak with a distinctly dipolar topography at the spike onset
and very limited pre-spike activity. At the peak, we see a dipolar pattern,
but also contralateral activity, suggesting propagation. In comparison, the
EEG butterfly plot is less clear. The pre-spike noise level is higher, and the
sensors differ with respect to their peak time point. Namely, three channels,
CP3, C5, and TP7 feature a distinct peak before the other channels do. These
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channels are located near the resection hole, possibly explaining their earlier
onset and peak compared to the remaining sensors. The EEG topography
shifts from a tangential dipolar pattern at the time of the MEG onset to a
radial one at the peak. At the EEG peak, the topographies are similar to
the MEG peak topographies, with even more contralateral activity visible in
the MEG and a more clearly radial pattern in the EEG. The EEG main peak
is several milliseconds later than the MEG peak as indicated by the global
mean field power (GMFP).

To summarize, we have a single spike scenario and a single dipolar on-
set that features contralateral propagation at the spike peak. We expect the
onset to be due to tangentially oriented pyramidal neurons, as suggested by
the EEG topography. Following the onset, quasi-radially oriented neurons
synchronize. These are captured more strongly in the EEG than in the MEG,
which is confirmed by the global mean field power. The MEG reaches its
peak before the EEG when the highest number of tangentially oriented neu-
rons are active. The EEG peak is reached later, at peak quasi-radial synchro-
nization.

For source localization, we expect the MEG to be the modality of choice
as the onset appears to be tangentially oriented. The noise level is lower, the
peak is more distinct, and uncertainties in the skull modeling, which will be
discussed in the next section, have a smaller impact on the MEG than the
EEG.

Going back to the results from the previous chapter, patient 1 is an
ideal candidate to investigate whether we can track the transition from
quasi-tangential to quasi-radial source orientation properly using the MEG
alone.

Head modeling

T1- and T2-weighted MRI data was measured following the same protocol
as the group in the previous chapter, the only difference being the usage of
a 3-Tesla MagnetomTrio MRI scanner (Siemens, Munich, Germany) as the
measurement was performed in Münster, not in Lübeck. During the surgical
intervention, a portion of the patient’s skull had to be temporarily removed.
While the removed skull plate was returned after the excision, the patient
still has several cranial holes. These have a major impact on the EEG source
reconstruction, but also the readability of the EEG itself (Lanfer et al., 2012; Li
et al., 2007). Following Montes-Restrepo et al., 2014, a computer tomography
(CT) image was measured, and used to model the patient’s skull.

See Figure 8.2. for a depiction of the resected brain area and the cranial de-
fects. From the T2 image, we see that the area of the resected brain tissue has
is indistinguishable from cerebrospinal fluid (CSF) and is therefore modeled
accordingly. Modeling the cranial holes is a more challenging task. As the
surgery was in 2008, we have no exact information about the material that
was used to fill the holes. Studies that analyze the effects of cranial holes on
the EEG typically either simulate a variety of conductivities or model them
as scalp/muscle tissue (Vanrumste et al., 2000; Lanfer et al., 2012). Feed-
back from a neurosurgeon suggests that the holes are typically filled with fat
tissue or bone dust. Whether these are still present 12 years later or whether
skin/scar tissue has replaced them, is difficult to determine. From the CT, we
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FIGURE 8.2: Head modeling for patient 1. Top row: coronal and axial T1
slices. Note the resected area in the coronal slice and the light-shaded areas
connecting the scalp and brain in the axial slice. Bottom row: CT-based skull
compacta segmentation (left) and T1-based gray matter segmentation (right).

see no difference between scalp and holes. Neither the T2 nor the T1 show
clear differences between the scalp tissue and the tissue in the cranial holes.
After consultation with several physicians, we decided to model the holes as
scalp tissue. This was also the procedure in Antonakakis et al., 2024a, where
another subject is described that underwent a similar epilepsy diagnosis and
subsequent tDCS stimulation as patient 1.

Following the analysis pattern from the previous chapter, we again com-
pute lead fields based on the three different forward approaches. Six com-
partments (Gray matter, white matter, CSF, skull spongiosa, skull compacta,
and scalp) for CutFEM and geometry-adapted hexahedral FEM, and three
compartments (brain, skull, scalp) for BEM. CutFEM-based reconstructions
will again be referred to as 6C-CutFEM, hexahedral results as 6C-HexFEM,
and BEM results as 3C-BEM. The six-compartment models accurately model
the cranial holes, the fieldtrip-openmeeg pipeline used for 3C-BEM requires
nested surfaces, hence all skull holes have been closed here. The source space
is again a 2 mm spaced regular grid that conforms to the venant condition of
6C-HexFEM, resulting in 16752 total sources.

As mentioned, somatosensory evoked potentials/fields were measured in
this patient, allowing for EEG skull conductivity calibration (Antonakakis et
al., 2020b; Schrader, 2022). The calibrated skull conductivity values for 6C-
CutFEM, 6C-HexFEM, 3C-BEM are 0.00084, 0.00083 and 0.0012 S/m respec-
tively. See the section on data acquisition and head model creation from the
previous chapter for more information on the head model/lead field creation
and skull conductivity calibration.
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Source reconstruction

For inversion, we again use the dipole scan described in the previous chap-
ter. As mentioned, we are interested in tracking the transition from quasi-
tangential to quasi- radial source in the MEG data. To do so, we perform a
separate dipole scan for each data sample ranging from the MEG onset 10 ms
before the MEG peak to the EEG peak which is 10 ms after the MEG peak.
The results can be seen in Figure 8.3.

From the EEG reconstructions, we see that the localizations start tangen-
tially near the resection before moving to deeper areas with a quasi-radially
inward pointing orientation. This behavior can be seen with all three for-
ward models that were used. However, using the 6C-FEM approaches and
CutFEM in particular, the transition is smoother. The reconstructions follow
a single line as trajectory while in 3C-BEM, we have three separate spatial
clusters.

For the MEG reconstructions, we again performed an SNR-based cut-
off of the quasi-radial singular value with an expected source amplitude of
40 nAm, as the global mean field power of the epilepsy peak is about 10 times
higher than for the M20. See the previous chapter for more information.
The MEG reconstructions are more eccentric than the EEG reconstructions.
In particular, the transition to deeper areas is less pronounced than in the
EEG case. Only the 3C-BEM reconstructions feature a similar depth profile
in EEG and MEG at later stages. Note however that there is a significant
amount of secondary activity present in the MEG data at all time points after
100 ms, with MEG residual variances increasing to more than 40 % in all
three models at the EEG peak. MEG residual variances at the onset are 11.06,
10.27 and 9.62 % for 6C-CutFEM, 6C-HexFEM, and 3C-BEM respectively.
MEG peak RV’s are 2.99, 2.12, and 1.93 %.

In 3C-BEM, the SNR-based cut off was performed at all time points before
95 ms, a transition from quasi-tangential to quasi-radial dipole orientations
can therefore not be investigated. The final reconstructions based on the FEM
models included radial orientations and the temporal transition from quasi-
tangential can be seen in both sets of reconstructions.

The MEG magnitudes from MEG onset to peak increased from 90.11 to
171.8 nAm in 6C-CutFEM, from 132.5 to 211.9 nAm in 6C-HexFEM, and from
152.3 to 240.7 nAm in 3C-BEM. The increase in global mean field power and
dipole amplitude is therefore best matched by 6C-CutFEM. Notably, the
dipole strengths at the EEG peak are still above 100 nAm for all three models
(100.1 for 6C-CutFEM, 128.8 for 6C-HexFEM, and 155.8 for 3C-BEM). A
blow-up due to erroneous reconstruction of quasi-radial noise components
is not apparent from the reconstruction magnitudes.

The EEG magnitudes from MEG onset to MEG peak to EEG peak transi-
tion from 154,7 to 221.1 to 219.5 nAm in 6C-CutFEM, from 123.0 to 207.5 to
197.2 nAm in 6C-HexFEM, and from 203.4 to 256.4 to 458.7 nAm.

The EEG is more sensitive to deeper areas than the MEG (Piastra et al.,
2021). As the spike activity appears to transition from a quasi-tangential
source to a deep quasi-radial one, this could explain the different peak pro-
files in EEG an MEG. The MEG peaks at peak tangential synchronization,
while the deep quasi-radial peak is less present in the MEG.
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FIGURE 8.3: MEG and EEG dipole scan results for epilepsy patient 1. MEG
on the left, EEG on the right. Top row: 6C-CutFEM-based results. Center row:
6C-HexFEM-based. Bottom row: 3C-BEM-based. One arrow per data sam-
ple, coloration based on time with respect to MEG peak at t = 100 ms. White

matter surrounding the resection area outlined at the top of each image.
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FIGURE 8.4: Differences between MEG and EEG dipole scan results for
epilepsy patient 1. X-Axis: Time in miliseconds, Y-Axis: Location differ-
ences/Angles. Angles in degree on the right, distances in mm on the left.
Differences when using 6C-HexFEM in blue, when using 6C-CutFEM in red,

3C-BEM in yellow.

Before comparing tDCS optimization results, we now look at the align-
ment of EEG and MEG reconstructions by calculating the angles and dis-
tances between EEG and MEG dipole separately for each forward method.
The results can be found in Fgiure 8.4. In the time-range between MEG on-
set and peak we see that there are significant differences between the three
methods. Location differences below 10 mm can only be found here and only
in the six-compartment methods. 3C-BEM differences start at over 4 cm and
gradually decrease with increasing time. 6C-CutFEM and 6C-HexFEM fea-
ture similar distances at the onset, but 6C-HexFEM differences increase more
rapidly after that. We see that near the MEG peak, both the location and the
angle of the reconstructed dipoles are similar at around 20 mm and 35 de-
grees. With increasing time, the MEG and EEG reconstructions diverge. This
behavior is more pronounced in the six-compartment methods than in 3C-
BEM. The angles between EEG and MEG localizations are massively lower
near the MEG onset when using 6C-CutFEM rather than the other two meth-
ods with angles around 10 degrees vs 45 and 63 degrees at half the rising
flank.

For a source localization of epilepsy activity, one typically chooses a time-
point at half the rising flank of the spike (Antonakakis et al., 2024a; Aydin
et al., 2014; Lantz et al., 2003). The intent in doing so is to obtain a sufficiently
large signal-to-noise ratio with limited propagation. We therefore see the
biggest alignment differences between our methods at the most important
time-point for source reconstruction (t = 95 ms).

tDCS optimization

Our final analysis for patient 1 is concerned with the creation of multi-
channel optimized tDCS caps. The procedure for the calculation of these
caps is congruent with the description in the previous chapter. We use the
distributed maximum intensity (D-CMI) approach based on Khan et al., 2019
to distribute the current over a total of 8 stimulation electrodes out of 74
possible positions that are based on the EEG1010 system. We use twice the
injected current (±4 mA), and a per electrode limit of 2 mA.
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FIGURE 8.5: tDCS optimization caps from 6C-CutFEM and 6C-HexFEM for-
ward solutions. Depicted are cortical gray matter, stimulation electrode la-
bels, positions are colored based on current strength (mA) at the respective
electrode. Top row: Caps using 6C-HexFEM for tDCS forward solutions.
Bottom row: 6C-CutFEM based tDCS forward solutions. Left side: Targets
selected based on 6C-HexFEM MEG lead fields. Right side: Targets based on

6C-CutFEM MEG reconstructions.

As targets, we select the 6C-CutFEM and 6C-HexFEM MEG reconstruc-
tions at half the rising flank (t = 95 ms). TDCS optimization matrices are cal-
culated using both the six-compartment hexahedral mesh and CutFEM. Note
that in the previous chapter, we only used tDCS forward results from the
hexahedral mesh, not CutFEM. In this chapter, the tDCS forward problem
is solved using both hexahedral and CutFEM. Four optimized caps are then
calculated, two that use the CutFEM-based tDCS matrix and either the 6C-
CutFEM or 6C-HexFEM-based dipole reconstruction as target and two that
use the Hexahedral FEM-based tDCS matrix. Calculating four caps allows
us to individually quantify the impact that MEG source reconstruction and
tDCS forward modeling have on the optimization. No three-compartment
method was investigated here, as these are less common in tDCS optimiza-
tion (Thielscher, Antunes, and Saturnino, 2015). The resulting caps can be
seen in Figure 8.5.

When selecting the 6C-HexFEM based MEG target, we see close to no dif-
ference in the optimization outcome. The largest difference over all stimu-
lation electrodes between a 6C-CutFEM and a 6C-HexFEM cap is 0.087 mA.
The maximum directionality is 0.27 A/m2 for 6C-HexFEM and 0.22 A/m2

for 6C-CutFEM. Differences are larger when using the 6C-CutFEM MEG tar-
get. Here CP3, one of the principal stimulation electrodes when using 6C-
HexFEM tDCS is not used in the 6C-CutFEM-based cap. Directionalities are
0.31 vs 0.23 A/m2.
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Notably, the choice of MEG reconstruction primarily leads to a difference
in anode positioning. This is to be expected as the cathodes lie closer to the
resection and the targets. A change in orientation therefore corresponds to a
change in anode positioning.

For this patient, we can therefore state that the choice of the target domi-
nates the choice of the tDCS forward solver due to the orientation differences.

8.2 Patient 2

Introduction and preliminary data analysis

Patient 2 was 24 years old at the time of data collection in April 2023. He has
had a left hemispheric suprasylvian porencephalic cyst since birth and has
been suffering from epilepsy since the age of 8. His cyst is presumably the
result of a perinal infarction. The brain tissue that died in the process was
replaced by CSF. In contrast to patient 1, no focal cortical dysplasia has been
diagnosed but his epilepsy may be due to left hippocampal sclerosis. He suf-
fers from gait and cognitive impairments. His attending physician describes
his seizures as an initial feeling of dizziness and changes in gaze, sometimes
accompanied by a loss of awareness. This initial phase lasts about 1-2 min-
utes. If the seizure continues, his eyes deviate to the right, and the right side
of his body stiffens and starts jerking, followed by a generalized stiffening
and jerking all over. The entire seizure lasts about 4-5 minutes. At the point
of data collection, no invasive diagnostics/surgery had been performed, his
skull should therefore be free of defects. He is currently seizure-free under
medication. Whether he is interested in a tDCS stimulation as treatment is at
this point unclear.

He underwent a similar measurement protocol as patient 1, with the ex-
ception that no combined EEG/MEG measurement was possible as due to
his head size he did not fit into the MEG dewar when wearing an EEG cap.
Therefore, only MEG data was measured and no somatosensory evoked po-
tentials/fields were measured as there is no need for skull conductivity cali-
bration without the EEG.

This time, the full one-hour measurement was used for spike markings,
resulting in a total of 111 spikes. The markings were performed by the same
epileptologist who did the markings for patient 1. No seizure occurred dur-
ing the measurement. Preprocessing was also identical to patient 1, see Fig-
ure 8.6. for a butterfly plot of the averaged MEG spike data. We see a central
dipolar topography that remains stable throughout the entire peak. The ratio

||yt=95/||yt=95||2 − yt=100/||yt=100||2||2

marks the change in topography distribution from half the rising flank to
spike peak (basically the relative difference measure from before) is also un-
der 8 %. No propagation is visible, again making a single dipole scan the
method of choice. The extent of quasi-radial contributions is not foreseeable
due to the absence of EEG data.

In the 100 ms before the spike peak, a signal peak that would suggest a
deep hippocampal onset could not be found either with or without filtering.
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FIGURE 8.6: MEG averaged spike markings for Patient 2. Butterfly plots of
MEG (left). The spike peak is at t = 100 ms. Right panel: MEG topography

after the spike onset (t = 95 ms)

FIGURE 8.7: First 3 panels: sagittal, coronal, and axial T2 slice of patient 2.
Right panel: Final white matter segmentation based on T1 image.

Head modeling

T1- and T2-weighted MRIs were measured following the same protocol as
patient 1. As mentioned, this patient suffers from a large porencephalic cyst
that can be seen in Figure 8.7. The cyst is considered to be filled with CSF
and from the T2, we see no difference in contrast between the area of the cyst
and the CSF in other areas. Therefore, it was assigned the conductivity value
of CSF. CSF-segmentation via our standardized pipeline in SPM12/CAT12
failed. Rather, we thresholded the T2 to obtain the CSF. The gray and white
matter could be extracted from the T1 image. However, the thin strip of
brain tissue that separates the cyst and the skull could not be segmented
automatically and had to be segmented manually. In this area, the distinction
between gray and white matter is challenging, hence we decided to simply
model it as a layer of gray matter. The binary masks for 6C-CutFEM and 3C-
BEM could therefore be set up without further problems but we do not have
a tissue probability map for gray and white matter in the area between the
cyst and skull. Rather, we calculated signed distance functions (SDF) based
on anti-aliasing the binary segmentation results as mentioned in the chapter
on head model creation and Whitaker, 2000. We then used the SDF for the
area between the skull and cyst and level sets based on tissue probability
maps for the remaining head.

Source reconstruction

As the spike has a single dipolar topography, we again use a dipole scan
for inverse reconstructions. We analyze the time-range from spike onset to
peak, in this patient from 91.7 to 100 ms by again performing a single dipole
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scan for each data sample. As mentioned, we do not have an a-priori esti-
mate for the quasi-radial contribution. Therefore, we will perform the en-
tire dipole scanning twice for all forward approaches. Once with only the
quasi-tangential components of the lead fields and once with the SNR-based
conditional truncation we have been using for patient 1 and the group study
(source amplitude for the quasi-radial part is again 40 nAm, SNR-threshold
is 3). The difference data y− L(xopηopt, i.e. the part of the data that cannot bet
explained by the source reconstruction, can be visualized as a topography.

In Figure 8.8, we see the reconstructions based on quasi-tangential lead
field components only. There is almost no difference between the six-
compartment reconstructions. All localizations are almost constant over
time, the six-compartment reconstructions are about 2 cm more central than
those based on 3C-BEM. Depth differences are visible only at the signal
peak, where the six-compartment methods jump to a slightly deeper source.
Residual variances at half the rising flank are 16.87, 16.28, and 13.68 % for
6C-HexFEM, 6C-CutFEM, and 3C-BEM respectively. The unexplained data
in the right column is notable for two reasons. First, we see that there
is a clear quadrupolar activity left unexplained by both six-compartment
methods, suggesting that we may have significant quasi-radial activity.
The second is that the 3C-BEM is unable to properly explain the two poles
in the MEG data, possibly due to the modeling error of not addressing
the large CSF-filled cyst. There are almost no differences between the
six-compartment methods, with location differences below 4 mm and angles
below 7 degrees. Differences between three- and six-compartment methods
increase over time, from 20 degrees to almost 60 degrees and from 16.4 mm
to 32 mm from onset to peak. Source amplitude are 160.7, 236.4, 153.7 nAm
for 6C-HexFEM, 6C-CutFEM, and 3C-BEM respectively.

In our second dipole scan, we admit quasi-radial components if their
SNR exceeds a threshold of 3. The results can be seen in Figure 8.9. As
expected, we see a marked difference in the unexplained data. The to-
pographies are less clear and a significant amount of noise is visible in the
six-compartment reconstructions. The 3C-BEM looks virtually unchanged,
quasi-radial components did not change the two unexplained poles from
before. Residual variances at half the rising flank dropped significantly in
the six-compartment methods, with decrements of 9.34, 8.02, and 4.02 %
(6C-HexFEM, 6C-CutFEM, 3C-BEM) again measured at half the rising flank.
These decrements are highest in the six-compartment methods. While the
amount of unexplained signal power decreased significantly, the dipole
orientations are now dominated by the radial component, now pointing
radially inward. This behavior is also represented in the source amplitudes,
which increased by a factor of 4.6, 2.41, and 1.99 (6C-HexFEM, 6C-CutFEM,
3C-BEM). If we move to the peak, the discrepancy increases as source
amplitudes increase to up to 1800 nAm.

To summarize, we have a dataset with a very clear tangential topography
where neither secondary activity nor significant noise levels are visible. Af-
ter reconstructing the quasi-tangential signal components, we are left with
quadrupolar topographies that indicate the presence of quasi-radial source
contributions. The residual topographies are also clear and free of noise.
Allowing quasi-radial orientations into our reconstructions has the desired
effect of explaining a large amount of the residual data, but at the cost of
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FIGURE 8.8: MEG dipole scan reconstructions for patient 2 using only tan-
gential lead field components. Left column: Reconstructions over time. Right
column: data left unexplained by the reconstruction at half the rising flank.
Top row: 6C-HexFEM based reconstructions. Center row: Based on 6C-
CutFEM. Bottom row: Based on 3C-BEM. One dipole per data sample col-

ored by time-point from 91 to 100 ms.
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FIGURE 8.9: MEG dipole scan reconstructions for patient 2 using the SNR-
based truncation of quasi-radial components . Left column: Reconstructions
over time. Right column: data left unexplained by the reconstruction at half
the rising flank. Top row: 6C-HexFEM based reconstructions. Center row:
Based on 6C-CutFEM. Bottom row: Based on 3C-BEM. One dipole per data

sample colored by time-point from 91 to 100 ms.
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FIGURE 8.10: Two-dipole scan results for patient 2. From left to right: recon-
structions based on 6C-HexFEM, 6C-CutFEM and 3C-BEM. One dipole per

data sample colored by time-point from 91 to 100 ms.

a massive blow up in the quasi-radial orientation. Also, the quadrupolar
topographies are reduced, but not fully explained. There is thus no single
dipole in the source grid that properly explains both quasi-radial and quasi-
tangential components.

There are three different possible explanations for the observed behavior.
First, the true source orientation really is best represented by a quasi-radial
dipole. The residual quadrupolar topography is due to inaccuracies in the
volume conductor model as we only modeled gray matter around the cyst.

Second, the error is due to source modeling. The measured signal has a
large magnitude, suggesting an extended patch of active neurons. The ap-
proximation of a single sum-dipole may not hold here.

The last option is the presence of an additional active source. Recall that
the patient’s semiology indicated hippocampal sclerosis as possible trigger of
his epilepsy. A deep quasi-radial source in the hippocampus may be hidden
by the eccentric quasi-tangential source that we reconstructed.

Option 1 may be explored by adding a better distinction of gray/white
matter and CSF around the cyst. Additionally, measuring and reconstructing
EEG data may yield more clarity on the target’s true orientation.

For Option 2, investigations may be performed on the inverse or the for-
ward modeling side. We could turn to current density approaches such as
minimum norm estimation or perform a patch-dipole scan, where instead
of a single dipole, an extended patch of the source grid is admitted to the
reconstruction at any time. The center of the patch is then moved over the
cortex. Alternatively, multipolar source models could be tested, where the
source at a single position is not represented only by the dipole moment, but
by quadrupolar moments as well (Beltrachini, 2019).

The last option may be investigated by performing another dipole scan,
where we try to reconstruct the deep quasi-radial source. We fix the source
reconstructed in the truncated dipole scan and perform a grid-wide scan for
the second source. More precisely, for each point in the grid we calculate the
pseudo-inverse not for the sx3 lead field matrix at that location, but rather
add another 3 columns from the truncated lead field at the reconstruction
optimum from the truncated scan. The results can be seen in Figure 8.10.

The quasi-radial reconstructions are not located significantly deeper than
the initial quasi-radial ones. The hypothesis of an additional deep hippocam-
pal source can therefore not be confirmed based on the quadrupolar signal
parts.
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FIGURE 8.11: Optimized tDCS caps for patient 2. Left: target selection based
on the SNR-regularized reconstruction. Right: Based on the truncated re-
construction. Stimulation electrodes colored by current strength (mA). Red
dipoles indicate the optimization targets, with orientations anti-parallel to

the MEG reconstructions.

tDCS optimization

Given the mentioned uncertainties in this patient source reconstruction, any
optimized tDCS cap comes with a great deal of uncertainty with respect to
the optimal orientation. If the source is a large extended patch with a prin-
cipally quasi-tangential orientation, the truncated reconstruction may be the
optimal target, if its quasi-radial, the SNR-regularized reconstruction may be
preferable. In Figure 8.11., we see the 6C-HexFEM based D-CMI optimized
tDCS caps for both scenarios.

We see that both optimizations result in similar caps, with the cathodes
near the target and the anodes located more fronto-temporal. the Anode
placement in the SNR-regularized case is limited by the absence of stimu-
lation electrode below the head. We refrained from showing 6C-CutFEM
based caps as well as HexFEM and CutFEM yielded virtually identical re-
sults in this patient.

8.3 Conclusion

In this chapter, we transition from evoked potentials/fields in healthy human
subjects to spike data from two epilepsy patients with multiple anatomical
defects. We again performed reconstructions using lead fields from CutFEM,
hexahedral FEM, and BEM.

Patient 1 already had surgery and has therefore cranial holes and a size-
able resection area in his left somatosensory cortex. Patient 2 has hippocam-
pal sclerosis and a porencephalic cyst that covers most of his left hemisphere.

In both patients, we found large differences between reconstructions
based on three- and six-compartment lead fields. Where in the group study,
we only found differences of around 1 cm, the differences in these patients
ranged between 1.5 and 4 cm, highlighting the importance of modeling the
defects present in both patients’ volume conductors.

In patient 1, both EEG and MEG data are available. A single spike pop-
ulation was marked that has a clear transition from tangential to radial to-
pographies in the EEG. Following up on our investigations with respect to
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the reconstructability of quasi-radial sources in MEG, we saw that CutFEM
was able to track the transition from quasi-tangential to quasi-radial better
than the other two forward methods. Additionally, we found a greater align-
ment of EEG and MEG reconstructions, especially at half the rising flank.
However, we did not see lower residual variances in the six-compartment
methods in this patient. As the patient has two defects, future investigation
could show whether the cranial holes or the resected brain tissue are respon-
sible for the deviations in the MEG source reconstructions.

When creating optimized multi-channel tDCS caps, it proved to be more
relevant which forward method was used for source reconstruction, rather
than which forward method was used to solve the tDCS forward problem.

Patient 1 continued with a two-week tDCS stimulation, the procedure and
outcome of which are found in the next chapter.

In patient 2, we only have MEG data available. The reconstructed
sources are closer to the surface, yet we still see a depth difference be-
tween three- and six-compartment forward models at the spike peak. The
two six-compartment methods on the other hand yielded almost identical
reconstructions.

Performing reconstructions based only on quasi-tangential lead fields left
much of the data unexplained. As the residual data appeared quadrupolar,
we admitted quasi-radial orientations, resulting in lower residual variance
and a blow-up in source strength. Scanning with two dipoles yielded no
indication of a secondary deep source. Therefore, the quadrupolar terms are
likely due to the extent of the active neuron patch. We set up two tDCS
stimulation caps, one with and one without quasi-radial target components.
The two caps differ mainly in their anode placement, with cathodes located
over the reconstruction targets.

Update from September 17th, 2024: The patient agreed to a tDCS stim-
ulation and an additional EEG topography was provided by his attending
epileptologist. The EEG spikes feature a clear radial topography. Source
reconstruction in BESA performed by the epileptologists indicated a quasi-
radial source orientation at a location matching the reconstructions shown in
this chapter.

Aside from this patient’s future tDCS stimulation, his data should con-
tinue to be investigated for numerous reasons. It may yet be that given more
sophisticated inversion algorithms such as RAMUS (Rezaei et al., 2021), an
active hippocampal source may be identified. The large extent of the ac-
tive neuron patch motivates the investigation of non-dipolar source models
(Beltrachini, 2019). A follow-up investigation could determine optimal tDCS
parameters for an extended cortical area. If the source cannot reasonably be
explained by a dipole, then the tDCS optimization should not assume the
target to be a dipole either.
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Chapter 9

tDCS stimulation of an epileptic
patient

In the final chapter, we investigate the effects of transcranial direct current
stimulation on the first subject (P1) from the previous chapter, where we ana-
lyzed the impact of forward modeling on the reconstruction of epileptic spike
activity and the subsequent computation of optimized stimulation caps. The
stimulation protocol is based on Antonakakis et al., 2024a. In this double-
blind study, a 26-year-old female patient with left-frontal lobe epilepsy was
subjected to two weeks of non-invasive tDCS stimulation: one week of active
sham stimulation and one week of multi-channel tDCS (mc-tDCS), where the
target was selected based on a combined EEG/MEG reconstruction of epilep-
tic spike activity. The mc-tDCS cap was created by applying a distributed
constrained maximum intensity (D-CMI) approach. One hour of EEG was
recorded both before and after each stimulation and given to three blinded
epileptologists who independently marked ictal and interictal events. Find-
ings included a decrease in the number of seizures after mc-tDCS stimulation
but also after active sham.

9.1 A seizure-based multi-channel tDCS cap

We performed a similar stimulation and analysis for subject P1 from the
previous chapter. However, there is one crucial difference: During the
EEG/MEG measurement, P1 suffered from a mild seizure, giving us the rare
opportunity to base our mc-tDCS cap on the recorded ictal event rather than
interictal spikes. As mentioned, the patient’s attending physician describes
his seizures as an initial sensation in the head, followed by sensations in the
right arm and behind the eyes, like a wave or flickering. Later, the patient
reports an increased sensitivity of the fingers 4 and 5 of the right hand.
The entire seizure lasts about 60 seconds and is not accompanied by motor
impulses, a decrease in reaction speed, or loss of perception. Seizures occur
multiple times per week, in particular on stressful days.

There are thus multiple reasons for performing the tDCS-optimization
based on his seizure rather than spikes. As the seizures do not lead to in-
voluntary movements, the EEG/MEG data during the seizure is of similar
quality as the seizure-free periods and not distorted by muscle artifacts. His
high number of seizures per week implies a high probability that there will
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FIGURE 9.1: Average EEG and MEG spike activity. Left panels: Butterfly
plots and global mean field power (GMFP). Marked peaks are at 100 ms.
Right panels: MEG (top) and EEG (bottom) topography averaged over the

first half of the peak (90-100 ms)
.

be seizure events during the EEG measurements before and after the stim-
ulation, allowing us to base comparisons on markings from certified epilep-
tologists and not a possibly biased and faulty seizure diary from the patient.
Additionally, we can investigate further metrics such as seizure intensity and
duration. The downside of a seizure-based mc-tDCS cap is that we no longer
have a clear hypothesis for changes in interictal activity.

The following sections are structured as follows: We start by discussing
how to create a mc-tDCS cap based on seizure activity and investigate simu-
lation results such as directionality and intensity in target at the reconstructed
onsets of both seizure and spike. We proceed with a more thorough explana-
tion of the two stimulation weeks and the recorded data. Finally, we analyze
the stimulation outcome regarding changes in both ictal and interictal activ-
ity.

Analysis of seizure markings

The patient underwent one hour of combined EEG/MEG measurement in
Münster in March 2022. Twenty-five minutes into the measurement, he suf-
fered from a mild seizure that lasted a total of 22 seconds. Based on the
measured data, the epileptologist marked a total of 112 separate peaks that
occurred during the seizure. The data was preprocessed in fieldtrip (see also
the previous section: baseline correction, bandpass filter from 1 to 100 Hz,
50 Hz notch filter to eliminate powerline noise) and averaged, see Figure 9.1.

We first note that each peak marking is followed by another clear peak
with an almost flipped topography. This secondary peak has a topography
similar to the spike markings from the previous section. With the mc-tDCS,
we intend to inhibit the epileptic activity at the earliest stage possible, max-
imally disrupting the synchronization of neurons. Therefore, we decided to
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FIGURE 9.2: EEG and MEG spike activity, averaged over the first 10 spikes
only. Left panels: Butterfly plots and global mean field power (GMFP).
Marked peaks are at 100 ms. Right panels: MEG (top) and EEG (bottom)

topography averaged over the first half of the peak (90-100 ms)
.

select the onset of the first peak as a stimulation target, implying a possible
excitation of the interictal activity.

Secondly, the topography of the first peak is not characterized by a single
dipole alone, but we find additional contralateral activity in the right hemi-
sphere as well. From the semiology, we can expect that the activity propa-
gates into somatosensory areas during the later stages of the seizure. This
could explain the contralateral activity even though the right arm and hand
are affected by the seizure and not the left. We minimize the contributions of
propagation to our data by only averaging the first 10 marked peaks, yield-
ing the desired reduction in contralateral activity while maintaining a clearly
dipolar peak topography (Figure 9.2.).

Volume conductor modeling

The volume conductor for P1 distinguishes five isotropic compartments
(gray matter, cerebrospinal fluid, spongiosa, compacta, and scalp) plus
anisotropic white matter. Gray and white matter segmentations are based on
a T1-MRI image, the scalp on a T2, and the skull layers are created using a CT
image. White matter anisotropy tensors are calculated from diffusion tensor
imaging. For more information, see the previous section or Antonakakis
et al., 2024a; Radecke et al., 2023. We use a geometry-adapted hexahedral
mesh with a node-shift of 0.33 (Wolters, Grasedyck, and Hackbusch, 2004)
and the standard continuous Galerkin finite element approach from the
previous section. Note that we do not make use of CutFEM forward mod-
eling as at the time there was no CutFEM implementation for MEG and the
tDCS implementation was at an early stage. We employ the venant source
model including mixed moments from Nüßing, 2018 on a 2 mm source grid
containing 85540 nodes for both EEG and MEG forward calculations.
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FIGURE 9.3: MEG-based source reconstructions of spike onset (green) and
seizure onset (yellow). Visualized over white matter segmentation. The spike

reconstruction points toward the resection.

Source reconstruction

Before performing source reconstruction, we have to decide whether to in-
clude the use of EEG data or not. In the previous chapter, we discussed the
uncertainties connected to the patient’s volume conductor model, from the
cranial holes of unknown conductivity, a generally lower SNR and goodness
of fit compared to MEG, deeper lying reconstruction results for the spikes,
and high uncertainty in the calibrated skull conductivity. Additionally, the
marked spikes have a primarily tangential orientation, motivating the use of
MEG. Therefore, we decided against the use of EEG-based source reconstruc-
tion for this patient.

A single dipole deviation scan is performed to identify the origin of the
onset of the first peak. As onset, we define the first sample whose data lead
to a residual variance of less than 10 %, in this case, 4.2 ms before the spike
peak. See Figure 9.3. for a comparison of seizure and spike onset (spike
results from the previous chapter). The spike onset points to an area about
18 mm more occipitally and has an almost flipped orientation (151°).

tDCS stimulation and active sham caps

For our stimulation protocol, we require two caps: one for the actual stimu-
lation, calculated based on the source reconstruction of the onset of the first
seizure peak, and one for the active sham stimulation used to quantify pos-
sible placebo effects. The stimulation cap is based on the distributed con-
strained maximum intensity (D-CMI) approach (Khan et al., 2019).
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FIGURE 9.4: Optimized multi-channel tDCS and active sham caps. Circles
indicate electrode positions, the labels are based on standard EEG-10-10 con-

figuration. The color indicates stimulation strength (mA).
.

Electrode mc-tDCS (mA) active sham (mA)
P3 -2 2
P5 -2 -2
FC2 0.041 0.5
FC4 0.572 0.5
F2 0.822 1
F4 1.217 -1
F6 0.598 -0.5
AF4 0.75 -0.5

TABLE 9.1: Optimized multi-channel tDCS and active sham stimulation
setup.

.

In essence, we have a set of predetermined electrode positions given by
the holes in the stimulation cap, in our case 74 positions following the 10-10
system (Oostenveld and Praamstra, 2001). The D-CMI approach then finds
a set of currents that maximizes the scalar product between the target vector
and the current density vector induced by the stimulation electrodes. Note
that in our case the target vector is the opposite of the reconstructed dipoles’
orientation. The optimization is constrained by a 4 mA total current limit,
maximally 2 mA per electrode, and a penalty term is added to ensure that
the injected current is split over at least 8 electrodes, minimizing side effects.
8 is the maximum for our starstim (-)Neuroelectrics, Barcelona, Spain) tDCS
device. For the active sham cap, we used the same 8 electrodes used for
mc-tDCS. See Figure 9.4. and Table 9.1. for an overview of both stimulation
setups. For brevity, we will refer to the D-CMI optimized mc-tDCS cap as
mc-tDCS from here on.

The stimulation intensity in the target region is measured by two metrics:
Intensity in target (IT), the Euclidean norm of the induced current density
vector at the target location, and directionality (DIR), the scalar product of
the current density vector and the normed target vector. The values for both
stimulation types can be seen in Table 9.2., the induced current density in the
target region due to either stimulation is visualized in Figure 9.5. The active
sham reduces intensity in the seizure target by 76.8 %, and directionality by
88.2 % (84.5 % and 89.1 % if the reconstructed spike onset is selected as the
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FIGURE 9.5: Cortical mc-tDCS (left) and active sham stimulation (right) cur-
rent density vectors (A/m2). Targets are green (spike onset) and orange

(seizure onset).
.

active sham mc-tDCS
Spike DIR 0.0184 0.1691

IT 0.0486 0.3138

Seizure DIR 0.0304 0.2576
IT 0.1061 0.4575

TABLE 9.2: Stimulation metrics for mc-tDCS and active sham stimulation
(A/m2). Directionality (DIR) states the scalar product of induced current
density and target vector, IT refers to the 2-norm of the induced vector. Quan-

tified for targets reconstructed based on either the spike or seizure onset.
.

target).

Stimulation protocol

As mentioned, our study follows the general stimulation protocol described
in Antonakakis et al., 2024a: 2 weeks (Monday-Friday) tDCS stimulation, one
of which is active sham. The active sham condition took place in Septem-
ber 2022, and the actual stimulation in December 2022, ensuring a wash-out
period of more than 6 weeks to minimize carry-over effects (Woods et al.,
2016). Each day’s stimulation protocol started with a one-hour EEG ses-
sion between 9 and 10 am, 2 times 20 min tDCS stimulation intercepted by
a 20 min break, concluded by another hour of EEG, yielding a total of 20 one-
hour blocks of EEG data.

EEG was recorded using a 19-electrode Waveguard cap (Ant Neuro, Hen-
gelo, Netherlands). During the stimulation weeks, the patient was admitted
to the University Hospital Bochum. He spent both the EEG recording and
tDCS stimulation sessions reading or using electronic devices. Neither the
patient nor the medical technical assistants who attended to him and who
handled the stimulation device could distinguish the two stimulation condi-
tions and were therefore blinded. The stimulation time took place at roughly
the same time each day to minimize the influence circadian rhythms have
on the number of (inter-)ictal epileptic discharges (Kaufmann et al., 2021). A
stimulation protocol of 2 times 20 min stimulation with a 20-minute break has
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been shown to outperform single 20 min stimulation protocols (Yang, Shin,
and Hong, 2021).

After the two stimulation weeks, any meta data such as the stimulation
date was removed from the 20 recordings before shuffling them and giving
them to 3 independent epileptologists who marked ictal and interictal epilep-
tiform discharges. The epileptologists had one meeting on how to mark the
data and decided on distinguishing spikes, polyspikes, and seizure activity.
For spikes, they marked the peak, for polyspikes - 3 or more spikes in rapid
succession - the beginning, and for seizures both beginning and end. See Fig-
ure 9.6. for a comparison of the three events. Adding polyspikes as a metric
may seem controversial, as the decision when to mark something as a single
polyspike or several separate spikes is highly subjective, in particular as the
patient has a very high number of IEDs. However, it significantly decreased
the workload for the marking epileptologists and since we have 3 indepen-
dent sets of markings, we already take great care to minimize random effects
from inconsistent markings.

Evaluation metrics

A 2021 meta-study (Sudbrack-Oliveira et al., 2021) found 9 original sham-
controlled studies that investigated the effects of tDCS stimulation on
epilepsy. While both the type of epilepsy and electrode placement varied,
they all quantified either the number of IEDs, seizures, or both.

Our patient also gives us the rare opportunity to analyze the seizure inten-
sity and duration from the EEG data. The duration is defined as the time in
seconds between start and stop marking, as intensity we look at the average
global mean field power during that timeframe.

Regarding spikes, we can additionally quantify the peak strength and
whether it changes its topography from before to after the stimulation. Peak
strength is defined as the global mean field power (GMFP) at the point of
the peak, topography changes are measured as relative difference measure
(RDM) between the average peak topography before and after the stimula-
tion.

Statistical analysis of the tDCS intervention effect has to take into consid-
eration as many confounding parameters as possible. We eliminated as many
of these factors as possible, from adding a sham condition to quantify placebo
effects, blinding the patient, medical technical assistants, and the marking
epileptologists as well as maintaining similar stimulation times every day
and adding a 6-week wash-out period between conditions, yet several re-
main: Variance in epileptic activity may be affected by the ultradian rhythms
(Spencer et al., 2016) and who of the 3 epileptologists performed the mark-
ing. Therefore, we perform a mixed-effects analysis of variance (ANOVA),
where the outcome, i.e. the number of marked events in a single 1-hour
EEG dataset, depends on the main effects pre-/post-stimulation, whether it
was an active sham or a stimulation week, the day in the week. Our tDCS
intervention effect is then given as the interaction effect between pre-/post-
stimulation and week. Note that given our limited sample size (20), setting
up the ANOVA with this many parameters strongly reduces the number of
degrees of freedom for each condition.
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FIGURE 9.6: Seizure lengths (top) and global mean field power (GMFP, bot-
tom) during the 4 different conditions: Before and after active sham stimula-
tion, before and after mc-tDCS. One graph per epileptologist who performed

the marking
.

9.2 Stimulation outcome

Seizures

First, we look at seizure-based metrics, see Figure 9.6. As the total num-
ber of seizures is low, we only compare them on a week-to-week basis. All
epileptologists marked a total of 25 seizures, two of them agreed on the
markings, while the third marked an additional seizure in the EEG data
before the sham condition and one less before the stimulation condition.
Both stimulation conditions resulted in reductions, 33 % in the active sham
week, and 50 % in the mc-tDCS week. We found two significant main ef-
fects: pre-/post-stimulation (F(1,50) = 15.57), p < 0.001, η2 = 0.24) and active
sham/stimulation week (F(1,50) = 5.968), p = 0.018, η2 = 0.11). In other words,
whether an EEG was measured before or after the (sham-)stimulation and
whether it was measured in the first or second week both have a statistically
significant impact, but the interaction of the two does not. The weekday, or
which epileptologists performed the marking are also no significant factors.
From Figure 9.6., we see that there is no clear effect on either the length of
seizures or the GMFP. The average seizure duration is 30.20 seconds with an
average GMFP of 14.07 µV.

Spikes

Compared to the seizure markings, where coherence over expert markings
was high, we see in Figure 9.7. that the same is not the case for interictal
activity. Epileptologist 1 marked 5060 events, 3593 of which are polyspikes,
expert 2 marked 10080 with 2490 polyspikes, and the third marked 2256 of
5090 total IEDs as polyspikes. Marker 2 was more likely to mark an event
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as multiple single spikes rather than one polyspike. The similarity in total
marked events between experts 1 and 3 does not mean that they marked the
same events. If expert 1 marked an event as a spike, only in 49 % of cases did
expert 3 also place a marker within a timeframe of 40 ms.

Additionally, there is a high variance in the total IED number depending
on the day and week. Each expert has marked at least 108, 297, and 133 total
IEDs per day and a maximum of 1653, 1825, and 1172 respectively.

Still, we observe several trends. The overall number of spikes and
polyspikes increases after (sham-)stimulation, in the mc-tDCS week between
22 % and 136 %, in the active sham week between 0 % and 38 %, depending
on the expert who performed the marking. There is also a higher variance in
peak topographies in the sham week, as measured by the RDM. We observe
no trends in peak strength. The variance due to epileptologist, day, and
week seems to dominate the mc-tDCS-based effects in this patient.

Interaction between spikes and seizures

We found a slight increase in spikes after stimulation and a slight decrease
in seizure number, indicating that the two are inversely correlated. We test
this by performing another ANOVA, this time quantifying the impact of
epileptologist, number of spikes/polyspikes, week, and day onto the num-
ber of spikes. Neither day of the week nor number of spikes alone is a
significant predictor for seizure count, yet the interaction between them is
(F(4,29) = 7.02), p < 0.001, η2 = 0.49). No other significant effects were found.

9.3 Discussion

We stimulated an epileptic patient for two weeks, one week of multi-channel
optimized transcranial direct current stimulation (mc-tDCS), and one week
of active sham stimulation. The optimization was performed using the
distributed constrained maximum intensity stimulation approach (D-CMI,
Khan et al., 2019). The stimulation target was selected based on the source
reconstruction of Magnetoencephalography (MEG) data. MEG data was
marked by an epileptologist who found both ictal and interictal epileptic
activity, allowing us to base the stimulation on the ictal activity. Ictal activity
was associated with an inverse topography compared to interictal dis-
charges, leading to the assumption that the stimulation would have opposite
effects on seizure and spike activity.

The stimulation of P1 is the second entry in what is supposed to become
a group study targeted at investigating the effects of tDCS on epileptic ac-
tivity. Therefore, the stimulation protocol that the patient underwent is not
sufficient to create statistically significant results for every single subject but
is designed for a larger group of patients.

During the mc-tDCS week, we observed a 50 % decrease in seizure activ-
ity, compared to 33 % in the sham week. Post-stimulation spike numbers in-
creased in both weeks, more strongly so in the mc-tDCS week. These results
align with our initial hypothesis of inhibiting seizures and exciting spikes.
To explain our results, we look at the zone concept discussed in Rosenow
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FIGURE 9.7: Number of spikes (top), polyspikes(2nd row), spike peak
strength(GMFP, 3rd row), and relative difference measure (RDM, bottom)
during the 4 different conditions (2 for RDM): Before and after active sham
stimulation, before and after mc-tDCS. One graph per epileptologist who per-
formed the marking. RDM is calculated based on average peak topographies

before and after each (sham-)stimulation day.
.
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and Lüders, 2001. In essence, there are 5 zones of interest for our analy-
sis. The symptomatogenic zone is activated during seizures and produces
the tingling and visual aura reported by the patient. The irritative zone pro-
duces interictal spikes, the epileptogenic zone contains both the area that
produces the clinical seizures (the seizure onset zone) and an area that po-
tentially could produce seizures, if the seizure onset zone is removed. The
latter is the case in our patient, who had parts of his cortex surgically re-
moved. The definition of the epileptogenic lesion, or focal cortical dysplasia
(FCD) in this case, is usually based on MR imaging and therefore limited by
the quality of the imaging. If it is epileptogenic, it has a strong overlap with
the epileptogenic zone, but one does not necessarily contain the entirety of
the other (Rosenow and Lüders, 2001).

Important is the distinction between the irritative zone and the seizure
onset zone. As we see from our source reconstruction, seizure and spike
localize to proximate, but distinct locations in the cortex, giving us evidence
that they originate from different regions that are possibly connected by the
post-surgery remnants of the FCD. We have further seen that an increase
in spike activity is connected to a significant decrease in seizure numbers.
This decrease corresponds to the concepts described in Avoli, Curtis, and
Köhling, 2013; Chang et al., 2018, who discuss the existence of good and bad
spikes that either prevent or facilitate ictal activity. These theories however
operate on a cellular or even molecular basis, with unclear implications for
the surface EEG/MEG that we can measure. For future mc-tDCS candidates,
where we do not have high-quality seizure data, there is therefore no strong
argument for when to excite spikes rather than inhibit them. At least, no
argument that goes beyond quantifying both events.

Both stimulation weeks are associated with a significant reduction in
seizures after the stimulation. There may be a variety of reasons for this.
First, the patient’s stress level may have changed throughout the stimu-
lation, possibly due to an increasing discomfort associated with wearing
EEG/stimulation caps, starting to work, or the general noise level in the
hospital. However, he did not indicate such on his daily questionnaires and
his attending epileptologists also find such a scenario implausible. Secondly,
a decrease in seizure activity may be part of his circadian rhythm (Kaufmann
et al., 2021; Spencer et al., 2016).

There is however a third possibility. The active sham still induced a cur-
rent about 1/4 as strong as the mc-tDCS. Given how the uncertainties in the
volume conductor model due to the cranial holes translate to uncertainties
in the reconstructed orientations and locations it may well be that the active
sham stimulation also had an inhibitory effect on the seizures. Additionally,
the patient suffers from a type 2b FCD, where the cortex loses most of its lam-
ination and where balloon cells without apical dendrites are present. How
these neurons, which do not produce extracranial electromagnetic fields, re-
act to electric stimulation is also unclear. Possibly a sufficiently strong cur-
rent interferes with the activity of these neurons to disrupt their epileptogenic
process. An additional argument for the active sham explanation is the lower
increase in spike numbers, less than 40 % compared to up to 136 %. Our sim-
ulation shows that for active sham, the intensity in the spike target is 54 %
lower than in the seizure target region, possibly leading to a less substantial
effect on the spikes.
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TDCS may add to the treatment of epilepsy in several ways: Epilepsy is a
condition where treatment options such as medication or seizure are highly
invasive. While medication is often effective at first, between 20-40 % of pa-
tients will develop refractory epilepsy, where the medication loses its effec-
tiveness. TDCS may offer an alternative for these patients.

Regarding surgical excision, the epileptogenic zone may be larger than
the seizure onset, thus even after surgical intervention, epilepsy patients
with FCD are often not entirely seizure-free (59 % reached Engel class 1A in
Veersema et al., 2019). Here, long-term tDCS may be used to delay or inhibit
the long-term formation of new epileptogenic neuron clusters at the expense
of minimal side effects.

Aside from its promise as a new treatment, a successful tDCS stimulation
that has a measurable impact on ictal or interictal activity provides additional
diagnostic value, linking the stimulated brain region directly to the patient’s
epilepsy and strengthening the diagnosis on the way to surgical resection.

The requirements for an optimized mc-tDCS treatment as we investigated
here are high. There is no guarantee that the subject’s EEG/MEG shows ic-
tal or even interictal activity, with 25 % of refractory epilepsy patients not
showing either MEG or EEG spikes in Knake et al., 2006. Even given spikes
of sufficient frequency and signal-to-noise ratio, a multi-focal source recon-
struction or a target lying in a deep brain structure may limit the value of
tDCS as a treatment option.

9.3.1 Outlook for the patient

The trends observed from the transcranial direct current stimulation of pa-
tient 1 indicate that the patient may profit from a stimulation over an ex-
tended period of time. Such a stimulation could be performed in several dif-
ferent ways, each posing distinct practical challenges. Performing the stimu-
lation at the hospital clinic would ensure an accurate application of the stim-
ulation. It would however bind more of the already limited spatial and per-
sonal hospital capacities and force the patient to visit the clinic on a regular
basis. Home stimulation performed by the patient himself is comparatively
cheap. The patient however has to be reliable both in his ability to perform
the stimulation unsupervised and in not overdosing or in other ways abusing
the device (Charvet et al., 2020).

A third option is the implantation of a subdural stimulation device. The
device would perform the stimulation independently from the patient based
on a protocol determined by his attending epileptologist, offsetting both cost
and reliability concerns raised by clinical/home stimulation. The down-
side is the limited number of feasible electrode patterns and the invasive
surgery. At the time of writing this thesis, the epileptologists treating pa-
tient 1 were in the process of considering the implantation of an EASEE
(Precisis GmbH, Heidelberg, Germany) device. Several long-term studies
investigating the effect of EASEE devices are currently in the making, see
https://easee.precisis.de/en/health-care-professionals/studies/.

https://easee.precisis.de/en/health-care-professionals/studies/
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Chapter 10

Summary and Outlook

Summary

In this thesis, we presented a cut finite element method (CutFEM) and
applied it to forward modeling for Electro- and Magnetoencephalography
(EEG/MEG) as well as transcranial direct current stimulation (tDCS). Af-
ter introducing the neural sources inside the brain and how to stimulate
them transcranially, we show how to derive the forward problems for
EEG/MEG/tDCS from the Maxwell equations. We then briefly describe
solving the EEG forward problem in three-compartment scenarios using the
boundary element method (BEM). In chapter two, we then describe how
to solve the forward problems using the finite element method (FEM) in
more complicated scenarios. FEM heavily relies on accurate meshing, the
facilitation of which is the central motivation for the CutFEM described in
chapter three. CutFEM relies on a fundamental mesh for its trial functions,
intersected by level-set functions representing tissue boundaries. Before
moving towards simulation results, chapter four describes how to create
the level set functions needed for CutFEM based on segmentation results.
This chapter also focuses on creating realistic six-compartment hexahedral
meshes and three-compartment surface triangulations. These are used for
the computation of FEM and BEM forward solutions that are compared
against CutFEM in later chapters.

Chapter 5 consists of sphere model scenarios, where CutFEM outperforms
both competing tetrahedral FEM approaches and an unfitted discontinuous
Galerkin approach when compared against (quasi-)analytical reference solu-
tions. The first realistic data sets are analyzed in Chapter 6, where we present
the results of an n = 19 group study of somatosensory evoked potentials and
fields. We found that CutFEM shows promise in several categories when
compared against results from six-compartment hexahedral FEM and three-
compartment BEM approaches. Among these is proximity to an atlas-based
estimation of Brodmann area 3b, residual variance, source separability, and
sensitivity to quasi-radial contributions.

The final two main chapters of the thesis are concerned with the analysis
of two epilepsy patients and the subsequent tDCS stimulation of one of them.
Both patients differ in the origin of their affliction and also pose several chal-
lenges for head modeling since one of them had previous resective surgery
and the other has a large porencephalic cyst. Comparing source reconstruc-
tions based on three- and six-compartment forward models showed more
pronounced differences than in the group study investigations in healthy
subjects.
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The outcome of the multi-channel optimized tDCS stimulation performed
on the patient who has already had surgery shows a trend in seizure reduc-
tion. The second patient also agreed to participate in a tDCS stimulation.

Outlook

In this thesis, we examined CutFEM’s performance in applications in neural
bioelectromagnetism. We showed that CutFEM yields competitive results
in spherical and realistic head model scenarios. One caveat is the compu-
tation time CutFEM requires in MEG due to a slow convergence of the it-
erative solver. The convergence can be sped up by applying an overlapping
Schwarz smoother before the algebraic multigrid (AMG) solver. This reduces
the number of iterations but does not significantly decrease the total compu-
tation time for the transfer matrices due to longer computation times per it-
eration. A separate AMG preconditioning on each tissue interface may yield
a better balance of convergence speed and time per iteration.

The investigation of second-order trial functions combined with the par-
tial integration source model has shown promise in purely spherical scenar-
ios and holds promise for realistic head models. Integrating the local subtrac-
tion source model may benefit the overall accuracy of CutFEM independent
of the number of trial functions.

The greater sensitivity to quasi-radial sources in MEG and the better
source separability we found in CutFEM should be investigated in datasets
with an ambiguous source orientation or where there is a higher number
of simultaneously active sources. Also, further investigations could show
whether the increased quasi-radial sensitivity is particularly important when
the MEG sensor is not oriented radially towards the head. Sensors that can
measure tangential and quasi-radial fluxes at the same location are possible
with the upcoming optically pumped magnetometers. Their introduction
may result in an increased demand for more realistic head modeling.

Concerning tDCS, it may be promising to investigate whether the use of
CutFEM yields a change in the sensitivity profile of the cortex.

As DUNEuro is already part of toolboxes such as Brainstorm and Field-
trip, future updates to these toolboxes should include CutFEM forward mod-
els as well, reducing hurdles in the use of complex forward models for clini-
cal applications and increasing the visibility of the impact forward modeling
has on source localization and transcranial electric stimulation.
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Appendix A

Numerical solvers for CutFEM

The computationally most expensive part of FEM-based solving the
EEG/MEG/tDCS forward problem is setting up and solving the tDCS/transfer
matrix problems Au = b, where b is either the EEG or MEG transfer matrix
right-hand side, see Chapter 3. As the FEM models we employ typically
consist of millions of degrees of freedom, the system is not solved directly,
but via an iterative solver. The time it takes to solve this equation system
depends on multiple factors, among these the condition number of the
matrix A, the iterative numerical solver used, and the desired reduction

||Ax − b||

in some solver-dependent metric.
As indicated in Chapter 4, a central motivation for the ghost penalty is

its impact on the conditioning of A. In Burman, 2010, it was shown for tri-
angular meshes that using the ghost penalty renders the conditioning of A
independent of the way the level set functions intersect the mesh.

Currently, the iterative solver used for CutFEM is an algebraic multi-
grid solver (AMG). Multigrid methods create a grid hierarchy of several
levels over the stiffness matrix. The levels are connected by prolonga-
tion/restriction matrices, the weights of which depend on the type of
multigrid method used. In each iteration, the solver steps from level to level,
applying a smoother in-between. On the coarsest level, the system is solved
directly and the solution is updated.

The weights connecting the levels can be chosen based on the spatial loca-
tion and geometric information about the trial function associated with the
respective stiffness matrix entry, resulting in a geometric multigrid approach.
The downside is that the choice of weights along the coarser levels is not
straightforward, particularly in unstructured meshes.

Algebraic multigrid methods create the coarsening weights based primar-
ily on information contained in the stiffness matrix. Since Wolters et al., 2002,
the AMG has been used to solve the EEG forward problems, the version im-
plemented in DUNEuro is based on Blatt, 2010. Weights are chosen primarily
based on the coupling of two matrix entries ai,j, aj,i.

For the EEG, a reduction of residual l2-norm by a factor of 1e-8 results in
relative difference measure and magnitude errors below 0.1%. For the MEG,
we need a reduction of 1e-11 to achieve similar values. This may be due to
the increased distance between sensors and source, and the lower sensitivity
to quasi-radial contributions.

To investigate the performance of the ghost penalty and the AMG, we
create a set of 4 mm 4-layer sphere models. The models are identical to those
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Min. CSF thickness (mm) 2 1.5 1 0.5 0
Condition Nr (in billions) 6.44 7.01 6.51 6.57 6.50
Nr. Iterations 70 71 74 84 159

TABLE A.1: Matrix condition and pure AMG solver iterations until a reduc-
tion of 1e-11 is achieved for shifted spheres.

used in Chapter 6, but the innermost sphere (brain) is iteratively shifted to
the right, until it touches the skull sphere, resulting in a hole in the CSF. We
then calculate the condition number of the resulting CutFEM stiffness matrix
and track the number of iterations required to reach a reduction of 1e-11. All
CutFEM-related parameters are identical to the ones chosen in Chapter 6.
The iterations are averaged over 20 electrodes and rounded to the next digit.

The results can be found in Table B.1. We note the condition number is in-
dependent of the position of the spherical gray matter level set. However, the
number of iterations increases with decreasing minimal CSF thickness, more
than doubling from 70 to 159 iterations. For reference, a 1 mm geometry-
adapted hexahedral mesh with 3 million nodes requires less than 30 itera-
tions for the same reduction.

This behavior indicates that choosing a different solver setup rather may
be more important than increasing the ghost penalty, in particular as an in-
creased ghost penalty results in higher numerical errors Erik Burman and
Peter Hansbo, 2012.

In Gross and Reusken, 2023, a sub-space splitting process is recom-
mended, one subspace is the continuous Galerkin space on the fundamental
mesh, and the other is the space of all cut basis functions. Precondition-
ers with bounded condition number are then derived, and a symmetric
Gauss-Seidel method is suggested. Note that the assumption for these pre-
conditioners is a much smaller dimensionality of the space with the cut basis
functions, i.e. only a few fundamental cells are assumed to be intersected by
the level sets. In our application, with six or more compartments which are
often only a few millimeters thick, this assumption does not hold.

In discontinuous Galerkin (DG) and unfitted discontinuous Galerkin
(UDG), the addition of a first coarsening step has shown promise Blatt, 2010;
Nüßing, 2018. Note that the DG-space VDG contains the CG-space VCG. The
first coarsening step reduces the stiffness matrix to the CG space, where the
AMG is applied. For UDG, the reduction is from the UDG space to the Cut-
FEM space. On the fine (U)DG-space, a multiplicative overlapping Schwarz
smoother is applied Bastian et al., 2008. In the DG case, the overlapping
patches are based on the vertices, with one patch per vertex. Each patch
consists of the trial functions in the mesh elements surrounding the vertex.
For UDG, the patches are created based on the faces of fundamental cells
cut by level sets. For each face, all trial functions acting on the two cut cells
neighboring the face are aggregated. In UDG, this has the added benefit of
smoothing over the contributions of small cut cells in the absence of a ghost
penalty term.

Combining the subspace splitting from Gross and Reusken, 2023 with the
overlapping Schwarz smoother from Nüßing, 2018, we obtain the following
method.

Starting from the full CutFEM space, the first restriction matrix aggregates
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all trial functions associated with the same vertex in the fundamental mesh,
effectively clearing up the overlap of trial functions. On this coarse space,
we then apply the standard AMG. On the fine level, an overlapping Schwarz
smoother is applied. The patches are created in the same manner as in the
UDG case.

For the test model from before, we end up with an average of 16 iterations
for 2 mm minimal CSF thickness and 17 iterations for a minimal thickness of
0 mm, effectively cutting the number of iterations by 89%.

However, the time per iteration is 34.89 seconds when using the Schwarz
Smoother, compared to 0.95 when using the AMG alone. The total compu-
tation time therefore increases by a factor of 3.7 when using the Schwarz
smoother rather than the AMG alone.

Calculations were performed without parallelization on an Intel Core i7-
6700 with 3.4 GHz, 8 cores, and 32 GB RAM.

A future study could investigate using a more efficient smoother on the
fine mesh. A separate AMG-based preconditioner for each level set may be
effective at smoothing over the interfaces at a more reasonable time per itera-
tion. Alternatively, the use of fewer, larger patches could be investigated for
the overlapping Schwarz method.
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Appendix B

Software tools

For the creation of this thesis, several software toolboxes were used. Many of
them are part of an automated pipeline to create six-compartment geometry-
adapted hexahedral head models and lead field matrices for EEG/MEG as
well as the tDCS optimization matrices. The pipeline including documen-
tation can be found on Zenodo https://zenodo.org/doi/10.5281/zenodo.
11066431.

Fieldtrip
EEG/MEG data preprocessing, interfaces to SPM12, Openmeeg, calculat-

ing EEG analytical solutions, see https://www.fieldtriptoolbox.org/
Gmsh
Tetrahedral mesh generation, see https://www.gmsh.de/
FSL
MRI registration, MRI visualization, see https://fsl.fmrib.ox.ac.uk/

fsl/docs/#/
SPM12
Skull segmentation, see https://www.fil.ion.ucl.ac.uk/spm/software/

spm12/
CAT12
Creation of tissue probability maps, see https://neuro-jena.github.io/

cat12-help/
ITK
Anti-aliasing of binary segmentations, see https://itk.org/
Brainstorm
Sensor registration onto the scalp surface, see https://neuroimage.usc.

edu/brainstorm/
Paraview
Visualization, see https://www.paraview.org/
VGrid
Creation of geometry-adapted hexahedral meshes, see http://vgrid.

simbio.de/
SimBioInterface
Source space generation, see https://www.mrt.uni-jena.de/simbio/

index.php?title=Main_Page
SDFGen
Turning surface triangulations into signed distance functions, see https:

//github.com/christopherbatty/SDFGen
Openmeeg
Three-compartment Boundary element method lead field calculations, see

https://openmeeg.github.io/

https://zenodo.org/doi/10.5281/zenodo.11066431
https://zenodo.org/doi/10.5281/zenodo.11066431
https://www.fieldtriptoolbox.org/
https://www.gmsh.de/
https://fsl.fmrib.ox.ac.uk/fsl/docs/#/
https://fsl.fmrib.ox.ac.uk/fsl/docs/#/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://neuro-jena.github.io/cat12-help/
https://neuro-jena.github.io/cat12-help/
https://itk.org/
https://neuroimage.usc.edu/brainstorm/
https://neuroimage.usc.edu/brainstorm/
https://www.paraview.org/
http://vgrid.simbio.de/
http://vgrid.simbio.de/
https://www.mrt.uni-jena.de/simbio/index.php?title=Main_Page
https://www.mrt.uni-jena.de/simbio/index.php?title=Main_Page
https://github.com/christopherbatty/SDFGen
https://github.com/christopherbatty/SDFGen
https://openmeeg.github.io/
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DUNEuro
Finite element-based lead field generation, see https://www.medizin.

uni-muenster.de/duneuro/startseite.html. DUNEuro is based on the
DUNE toolbox.

DUNE
Modular numerics toolbox for solving partial differential equations, see

https://dune-project.org/
Matlab
General scripting, data processing, see https://de.mathworks.com/

products/matlab.html
Latex
Thesis typesetting, see https://www.latex-project.org/

https://www.medizin.uni-muenster.de/duneuro/startseite.html
https://www.medizin.uni-muenster.de/duneuro/startseite.html
https://dune-project.org/
https://de.mathworks.com/products/matlab.html
https://de.mathworks.com/products/matlab.html
https://www.latex-project.org/
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