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Abstract

The problem of reconstructing brain activity from electric potential measurements performed on the surface of a human head
is not an easy task: not just because the solution of the related inverse problem is fundamentally ill-posed (not unique), but
because the methods utilized in constructing a synthetic forward solution themselves contain many inaccuracies. One of these
is the fact that the usual method of modelling primary currents in the human head via dipoles brings about at least 2 modelling
errors: one from the singularity introduced by the dipole, and one from placing such dipoles near conductivity discontinuities
in the active brain layer boundaries.

In this article we observe how the removal of possible source locations from the surfaces of active brain layers affects the
localisation accuracy of two inverse methods, sLORETA and Dipole Scan, at different signal-to-noise ratios (SNR), when the
H(div) source model is used. We also describe the finite element forward solver used to construct the synthetic EEG data, that
was fed to the inverse methods as input, in addition to the meshes that were used as the domains of the forward and inverse
solvers. Our results suggest that there is a slight general improvement in the localisation results, especially at lower noise levels.
The applied inverse algorithm and brain compartment under observation also affect the accuracy.
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1. Introduction

The electroencephalography (EEG) forward problem of at-
tempting to mathematically construct the electric potentials
u produced by given electrical activity Jp in the human brain
is almost a century-old endeavour [1][2], the requirements
of which are fairly well known. For simplified cases, such
as homogenous and unbounded conductors, layered con-
ductors and spherical head models, there exist analytical
or formulaic solutions [3][4][5]. However, realistic head ge-
ometries require the application of numerical approaches,
such as the finite difference method [6], boundary or sur-
face element method [7][8] and finite or volume element
method [9][10][11] to solve the same problem.

The primary currents Jp themselves are often modelled as
electrical dipoles. One of the problems that arises in for-
mulating the forward problem in this way is the appear-
ance of singularities in the potential field u generated by the
dipoles [9][10]: u is inversely proportional to the distance r
from the dipole position x, where u is singular. This has impli-
cations on the convergence of numerical methods, which at-
tempt to build the forward solution based on a finite element
model of the human head, with conductivity jumps between
the different brain compartments. More specifically, in the
finite element formulation [12], the load vector f is not well-
defined in the case of a singular source. The accuracy of the
forward solution also ends up being reduced, as a dipole is
placed near a boundary of an active compartment [9][13][12].

To tackle the issue of potential singularities themselves, a
so called subtraction method [9][10][14][15] has been recently
utilized. It involves splitting the potential field u into a sum
of two separate potentials, a problematic singularity poten-
tial u∞ and a correction potential ucorr, and solving the EEG
forward problem in the case of ucorr. This amounts to remov-
ing the singularity from the dipole model.

Another approach to handling the dipolar singularity is
the so-called H(div) model [13][12], which assumes a higher
smoothness or regularity at the primary source level, being
neurophysiologically well motivated [7][16]. Assuming such
smoothness, the H(div) approach resolves the ill-definedness
of the load vector f by replacing the theoretical dipole with
a non-singular function. This is achieved by requiring that
the model of a dipole is square-integrable in the finite ele-
ment domain Ω, or belongs to the space H(div) = H(div,Ω),
whose elements can be constructed as linear combinations
of divergence-conforming basis functions. Here dipolar mo-
ments d are approximated by a vector, whose orientation is
defined by a set of finite element nodes surrounding a central
node, taking into account the a priori information about the
primary currents which are normally oriented to the surface
of the gray matter layer. Since the vector is only supported by
a few nodes, it is very focal and is therefore able to fit inside
the thin gray matter layer, if the resolution of the mesh is fine
enough.

Both approaches suffer from inaccuracies near conductiv-
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ity jumps. In the case of H(div), which is used in this work,
a dipole might still be placed at the very edge of an active
brain compartment, with some of the supporting finite ele-
ment nodes in a neighboring compartment. Due to the dif-
ferent conductivities in the different compartments, the vol-
umetric current between the compartments ends up being
altered, resulting in a change in the modelled potential field
u [13]. For the subtraction method, its numerical accuracy
decreases as a dipole is placed near a conductivity jump, as
the upper bound of its error is a function of the distance from
the conductivity jump [9].

The main purpose of this article is to find out how limiting
the possible source positions to a given distance from con-
ductivity jumps affects the localisation accuracy of two in-
verse methods, sLORETA [17] and Dipole Scan [18], when a
set of synthetic EEG measurements has been given to them
as input. This is all performed in an adapted high-resolution
finite element mesh, with a base resolution of 2 mm, with ad-
ditional refinements performed on the active surfaces, to ac-
commodate the H(div) approach in the 1–4 mm-thick gray
matter layer. The motivation behind choosing the two in-
verse methods lies in the fact that sLORETA has been sug-
gested to localise distributed patch-like sources in the entire
head volume, if the number of sources and the amount of
measurement noise remains low, with SNR > 10dB [19][20].
Dipole Scan has been shown to work well in the case of cor-
tically constrained single-dipole EEG reconstructions, with
only a few millimeters’ spatial deviations between recon-
structions and original source dipoles, in the simulation stud-
ies of [21].

In this article, Section 2 will focus on discussing the
anatomy of the forward problem, how the utilized inverse
methods localise sources based on the forward solution and
how the peeling or removal of possible source positions from
surfaces of active brain layers is performed at the start of the
forward algorithm. In Section 3, we then present our results,
evaluate the performance of the peeling algorithm, compare
the numerical forward solver to an analytical one and finally
see how the peeling of possible source locations affects the
localisation accuracy in a realistic head model. In Section 4
results are discussed, Section 5 summarizes our results and
Section 6 presents possible future directions of study.

2. Methods and models

2.1. Mathematical methods

For the purpose of testing inverse reconstructions of brain
activity, we apply the Matlab-based software suite Zeffiro In-
terface [11], which builds H(div)-based lead field matrices
L for different brain imaging modalities, such as electroen-
cephalography (EEG) or magnetoencephalography (MEG) in
a volumetric domain Ω, discretized with a finite element
mesh[22]. Here a forward solver refers to finding a scalar
or vector field, generated by a (synthetic) set of dipole-like
sources or the primary current distribution Jp = Jp(x) at po-
sitions x in the domain Ω. This is done by mapping Jp to an

electric or magnetic set of sensors placed on the surface ofΩ,
i.e., by multiplying Jp with L [7], as in [11][12]

M = LJp +E . (2.1)

Here M could consist of electric potentials u or magnetic field
strenghts H at the sensors S, and E is the error arising from
numerical approximation and measurement noise. Once L
is constructed, it plays a pivotal role in producing the in-
verted dipoles or primary current distribution J∧p in a given
volume [23][24]. This is illustrated in Figure 2.1.

Jp

human brain

u or H

sensors

{u,H} = L{EEG,MEG}Jp +E

forward problem

inverse problem

Jp = K (L){u,H}+∆

Figure 2.1: A simplified [25] illustration of the duality between forward and
inverse problems in EEG and MEG imaging. Here L is the lead field matrix
and K = K (L) an inversion method -specific kernel, that provides a recon-
struction of the original activities Jp based on the measurements at the sen-
sors. [26]

Regardless of the modality of L and in the absense of coarse
artefacts, the origins of the localisation error ∆ of Figure 2.1 in
the entire inversion process can be split roughly into 3 com-
ponents:

∆= ET +Jp +EM +EK . (2.2)

Here ET +Jp is the modelling error resulting from the dis-
cretization or tetrahedralization T of the head model and
the configuration such as positioning and orientation of
the source space Jp [27][28][29]. The symbol EM repre-
sents the error brought to the measurements u and/or H
by (simulated) measurement noise [30][31][32] and EK is
an inverse method -specific error brought about by, among
other things, the biasing nature of each method, caused by
prior assumptions regarding the measurements M or the pri-
mary current distribution Jp in the derivation of said meth-
ods [33][34][30][35].

One of the most significant contributors to the term ET +Jp

in (2.2) is the actual shape and structure of the head model
used. It has been reported that using spherical models
instead of realistic ones generated by segmenting MRI or
CT data increase the localisation error ∆ by as much as
40 mm [36]. On the other hand, inaccuracies in the mesh-
ing procedure, such as labeling finite elements into compart-
ments they do not belong to, or not modelling enough dif-
ferent compartments to accurately simulate brain structure
also contribute to the error. For example, it has been con-
cluded [37], that the absence of a cerebrospinal fluid (CSF)
layer would have detrimental effects on the accuracy of the
forward solution L and the ensuing inverse reconstruction
J∧p [38][39][40].
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The tetrahedralization T might also affect the genera-
tion of the source space Jp, as it has the possibility of re-
stricting how synthetic sources can be placed into the head
model. In the case where Jp forms a divergence-conforming
field, the source space is directly anchored to the tetrahe-
dra, and interpolated across their faces and edges, due to
the presence of a face-intersecting and edgewise divergence-
conforming source model [13]. This is visualized in Fig-
ure 2.2, where the directions of the dipoles are given by the
vectors d. These align with the dipole moments p of the cor-
responding dipoles.

n1

n2
n3

n4

n5

face-intersecting

d

n1

n2

n3

n4

edgewise

d

Figure 2.2: Face-intersecting and edgewise dipoles. In the first case, the op-
posing node pair (n5,n1) function as the ends of a dipole, whereas in the
second case it is the pair (n1,n2). The red vectors d denote the directions of
the dipoles from negative to positive end. The H(div) source model places
both kinds of sources into the FE mesh. [13]

This holds significance, because as as a direct consequence
of Maxwell’s equations the electric and magnetic compo-
nents of an electromagnetic field are perpendicular to each
other [41]. Hence EEG electrodes are sensitive to the radial
dipoles pointing in their direction, whereas MEG sensors best
detect tangential sources, that are perpendicular to the ideal
EEG orientations [40]. Therefore, both EEG and MEG might
fail to detect some source orientations, which are themselves
subject to modelling errors.

The possible causes for the measurement noise compo-
nent EM of the localisation error ∆ are numerous. These in-
clude insufficient shielding of the imaging room, poor prop-
erties of the measuring equipment, the ill-positioning of the
sensors on the scalp, the lack of establishment of proper elec-
trical contact between electrodes and skin via the application
of electolyte gel, and so forth. [31][32] To model the uncer-
tainties related to EM , we add Gaußian noise to the simulated
signal. To understand how the added noise affects the recon-
struction of Jp in the inversion phase, we investigate a sample
of inverse estimates obtained with random Gaußian noise re-
alizations.

To finally consider the EK component of ∆ in (2.2), the
ill-posed nature of the inverse problem needs to be taken
into account [34][42][43]. The problem is underdetermined,
characterized by a larger number of variables or degrees of
freedom than there are restrictions or equations in the for-
ward model. This leads to the need to incorporate prior-

assumptions regarding the primary current distribution Jp of
equation (2.1) into the model. This can be achieved by ap-
plying regularization or penalty functions to the related cost
function [42][44]. In what follows, we briefly review two in-
verse methods, sLORETA and Dipole Scan, that represent dif-
ferent approaches to favouring certain kinds of unique esti-
mates J∧p of Jp.

2.2. sLORETA

In Standardized Low Resolution Tomography or
sLORETA [17], the Moore–Penrose pseudoinverse

L† = (︁
LTL

)︁−1
LT of the typical least-squares solution is

modified to produce an initial regularized solution J∧p as
follows:

J∧p = LT(︁
LLT +λI

)︁†
LJp = L‡LJp = L‡M . (2.3)

This initial solution is then standardized by dividing its en-
tries by the square roots of the corresponding diagonal en-
tries in the resolution matrix L‡L. As shown in [17], standard-
ization balances out the initial solution that otherwise is a
priori known to be biased towards the sensors. Equation (2.3)
is a solution to the objective functional [17]

F = min
Jp,c

∥M −LJp − c1∥2
2 +λ∥Jp∥2

2 , (2.4)

which represents a regularized fit between the measurements
and the lead field projection of the primary current Jp. The
role of c is to set the zero potential level of the electric field.
The term λ∥Jp∥2 is the regularization penalty function in
which the coefficient λ ≥ 0 is the regularization parameter,
chosen here according to [45].

2.3. Dipole Scan

A second inverse method used in estimating source posi-
tions in this paper is the so-called Dipole Scan method [18],
where following the inverse kernel idea of Figure 2.1, a filter
matrix W =W (x) gives a local estimate J∧p of the primary cur-
rent distribution Jp at x as follows [46]:

J∧p (x) =W (x)M . (2.5)

Here M is the measured data. The filter can be chosen to be
the Moore–Penrose pseudoinverse, which does not perform
any kind of filtering on the data [18], or a truncated singu-
lar value decomposition (tSVD) of L at x [21][47][44]. The
latter of these methods has a regularizing effect on the solu-
tion [18][44], meaning the high spatial noise components are
not amplified.

This alone does not suffice for actually locating sources,
since for that purpose one needs an actual objective func-
tion to be optimized. Dipole Scan then minimizes the relative
residual variance

RRVx = ∥Mavg −LW (x)Mavg∥2

∥Mavg∥2 , (2.6)
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with Mavg being an average measurement, or maximizes its
complement, the goodness of fit

GoFx = 1−RRVx (2.7)

to determine the best source position.

2.4. Head models and the computation of the lead field

To compute the forward and inverse solutions to the bio-
magnetic source modelling problem presented in the previ-
ous subsection, one has to discretize the volume conductor
such that a computer can process it. To this end, Zeffiro Inter-
face builds finite element domains from given MRI segmen-
tations [22]. Figure 2.3 presents a cross-section of a spherical
3-layer finite element Ary model [4] generated in Zeffiro In-
terface.

(a) (b) (c)

Figure 2.3: Cross sections of a finite element construction of an Ary sphere
model. In (a), the FE edges are not displayed and the layers in the model are
clearly visible. In (b), the edges and therefore the high resolution of the gen-
erated mesh are displayed. Subfigure (c) displays the location of the thin gray
matter layer, with the yellow streaks indicating its inner and outer bound-
aries.

The spherical volume conductor has an analytic or for-
mulaic solution to the computation of the lead field L [4],
and hence it provides a useful point of comparison when
analysing the goodness of the result. Later on, we analyse
the differences between the numerical and analytical solu-
tions to the forward EEG problem. In addition to the spher-
ical head model, we also take a look at the realistic human
head model [48] seen in Figure 2.4.

It is also known that jump discontinuities in the conduc-
tivities of the brain compartments affect the stiffness matrix
needed in construction of the finite element forward solu-
tion [9][10][13][40]. Hence the amount of peeling of the active
brain layers seen in Figure 2.4 (b) is also varied slightly, to see
how outliers in the reconstruction are affected.

To this end, the lead field routine of Zeffiro Interface was
augmented to first peel off the unwanted layers and only then
start the lead field construction and source positioning. The
algorithm now has the following structure:

1. use the peeling algorithm to select a true subset of
the active brain elements and evenly distribute allowed
source positions into those tetrahedra,

2. build a system matrix A [49] for the finite element mesh,

3. use A to build a transfer matrix T [50][13][51, 9] by solv-
ing one linear system per sensor position,

(a) (b)

Figure 2.4: A realistic head model used in the computations with Zeffiro In-
terface. (a) shows a cross section of the head with different brain compart-
ments visible, whereas (b) shows the active layers in dark red and yellow,
with the yellow streaks indicating peeled off tetrahedra. The peeling depth
used was 0.1 mm. The active brain compartments include Cerebellum cortex,
Amygdala, Thalamus, Caudate, Nucleus accumbens, Putamen, Hippocam-
pus, Pallidum, Brain stem and Ventral Diencephalon.

4. build a source space interpolation matrix D based on the
H(div) source model [12][26][13] with either position-
based optimization (PBO) [52] or mean position and ori-
entation (MPO) [26] used as optimization methods,

5. compute the lead field as the matrix product L = T D and
6. subtract the mean measurement from each column of L

to set the zero potential level of the solution.

To further disseminate on how the peeling algorithm
zef_deep_nodes_and_tetra functions, it

1. determines the surface- and non-surface node indices of
the given active layers by relying on the Zeffiro Interface
function zef_surface_mesh.

2. It then finds the indices of the nodes that are far enough
from the surface nodes with Matlab’s rangesearch
functionality and

3. observes which tetra have all 4 of their nodes far enough
from the surface mesh by relying on the Matlab func-
tions ismember, sum and find.

Note that step 3 results in the outermost layer being peeled
off, regardless of what the peeling depth is. This is desirable,
as it removes the chance of singularities due to discontinu-
ities appearing in the solution.

2.5. Measures for comparing the numerical and analytical
lead fields

To compare the EEG lead fields produced by the forward
solver in the case of Figure 2.3, the relative difference measure

RDM =
⃦⃦⃦⃦

Ln

∥Ln∥2,1
− La

∥La∥2,1

⃦⃦⃦⃦
2,1

(2.8)

and magnitude measure

MAG =
⃓⃓⃓⃓
1− ∥La∥2,1

∥Ln∥2,1

⃓⃓⃓⃓
(2.9)

were employed to compute differences between the analyti-
cal [4] and numerical lead fields La and Ln. Here ∥L∥2,1 de-
notes the 2-norm of L along the rows of L.
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2.6. Evaluation of the localisation error

To evaluate the localisation error∆ of equation (2.2), 10000
synthetic sources were placed evenly into the active regions
of the volume conductor: Cerebellum cortex, Amygdala, Tha-
lamus, Caudate, Nucleus accumbens, Putamen, Hippocam-
pus, Pallidum, Brain stem and Ventral Diencephalon. Then a
lead field L corresponding to these sources was computed, as
specified at the end of subsection 2.4. For each source given
by the position–direction–amplitude triplet (x,d, a), synthetic
measurements M(x,d,a) were constructed according to

M(x,d,a) = a (L | S,x)d+10−SNR/20N , (2.10)

with ∥d∥ = 1, a > 0, and the notation (L | S,x) indicating a re-
striction of L to the rows corresponding to all sensors S and
the columns corresponding to the dipole position x. Here
SNR is the noise level in decibels, as in [SNR] = dB, and N
is a normally distributed random variable, with mean µ = 0
and variance σ2 = 1.

With the simulated measurements M(x,d,a) in place, they
were then inverted with sLORETA and Dipole Scan, to pro-
duce a distribution of reconstructions: one invdi for each xi

in the original source space1. The position of the most focal
reconstruction xI was sought by finding the index I of the di-
rection with the largest norm or dipole moment, as in

I = indmax
i

∥invdi∥2 , (2.11)

following the maximum principle of source localiza-
tion [53][17][54]. The localisation error was then computed
as

∆= 1⎷
3
∥xi −xI∥2 , (2.12)

as in the differences among the positions in the original
source space. The

⎷
3 in (2.12) is the norm of a Cartesian

dipole.

2.7. Spatial dispersion

As Figure 2.1 implies, to construct an estimate J∧p of the
original synthetic source distribution Jp in a linear fashion,
one can multiply a lead field L by an inverse kernel K to ob-
tain a so-called resolution matrix R, such that J∧p = K LJp =
RJp. In such a case, the columns of R or Ri describe how the
activity at the corresponding source positions xi are blurred
in this process [23]. The width of this blurring is given by the
so-called spatial dispersion measure [55]

SD
i

=
√︄∑︁

k (dk,i∥pk∥)2∑︁
k∥pk∥2 , (2.13)

where k ranges over the indices of the source positions xk in a
given ROI around xi , pk are the dipole moments of the recon-
structions in the ROI and dk,i are the distances of each dipole
in the ROI from xi . In this study, it is observed how varying
the peeling depth dp affects the measure in equation (2.13).

1Constituting an inverse crime. [44]

3. Results

3.1. Evaluating the peeling algorithm

We start off with a discussion on how well the peeling al-
gorithm itself works. Figure 3.1 presents the effects of refin-
ing the gray matter layer of the Ary model of Figure 2.3 on its
peeling, the disqualification of nodes and associated tetrahe-
dra from the set of valid source positions. The peeling was
done within the distances of 0.5 and 1.0 mm from the inner
and outer surfaces of the thin gray matter layer. We consider
peeling to be necessary, because placing H(div) dipoles in
positions of conductivity discontinuities would cause signifi-
cant forward errors [13].

(a): Unrefined, dp = 0.5mm. (b): Refined, dp = 0.5mm.

(c): Unrefined, dp = 1.0mm. (d): Refined, dp = 1.0mm.

Figure 3.1: The effects of mesh refinement on peeling, or the disqualification
of tetrahedra from the set of valid source positions. The yellow triangles indi-
cate which tetrahedra were peeled off the inner and outer surfaces of the thin
gray matter layer, after the peeling algorithm had been applied to the mesh.
In (a) and (b) the peeling depth dp has been set at 0.5 mm whereas in (c) and
(d) we have dp = 1.0mm. A more refined mesh produces a more consistent
peeling outcome.

As can be observed, refinement plays an important role in
the peeling process: it prevents an excessive reduction of pos-
sible source positions from the active layer. This can be ob-
served in the unrefined 1.0 mm case shown in Subfigure (c),
where a hole is punched through the gray matter layer. This
means that a perfectly valid dipolar source location is ex-
cluded from the possible set of source positions during for-
ward modelling, or the computation of the lead field matrix
L. Taking a closer look at the realistic head model of Fig-
ure 2.4 (b) also displays a similar effect with a peeling depth
of 0.1 mm, which is displayed in Figure 3.2.

Peeling will remove all those tetrahedra with one or more
nodes closer to surface than a given peeling depth. The rea-
son for this is to make sure that at least one layer of tetrahe-
dra is removed, so that sources absolutely cannot be placed in
tetrahedra, that are right next to another compartment with
possibly differing conductivity.

It turns out that even with the refinement performed on
the surface of the active gray matter layer, there are still parts
of the compartment which are not fine enough with 0.1 mm
peeling, and hence holes in possible source positions, such as
the ones seen in the upper left and right corners of Figure 3.2,
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Figure 3.2: A portion of the 4 mm thick active layers (dark red + yellow) of
Figure 2.4 (b), displayed with the edges of the finite element mesh visualized,
but with only 0.1 mm peeling (yellow).

are formed. This is again due to the requirement that at least
one tetrahedral surface layer is removed from the set of pos-
sible source positions, which results in the effective peeling
depth being greater than the low numerical value provided
by the user. The peeling algorithm then seems to function as
intended.

3.2. Measuring the goodness of the solver against an analyti-
cal model

Figure 3.3 contains visualizations of the measures (2.8) and
(2.9) for PBO, in the case of the analytical model of Figure 2.3.
The base resolution of the mesh was 2 mm, with refinement
referring to the surface of the active layer being refined as
seen in Figure 3.1. Eccentricity refers to the relative radius
of the position at which the comparison was performed. As
suggested by [10], eccentricities of over 98 % are of special in-
terest, as they correspond to where a primary dipole might
be physiologically located, somewhere between the external
granular and pyramidal layers (layers 2–3) of the cerebral cor-
tex, and hence observed here.

With (2.8), in almost all cases the PBO medians remain
below the 0.02 limit, except at the highest two eccentrici-
ties. The upper outlier quantiles qu = q75% +1.5(q75% −q25%),
which the whiskers of Figure 3.3 correspond to, mostly re-
main close to 0.1, with the case of unrefined dp = 0.5mm ap-
proaching 0.02 at the two highest eccentricities. With (2.9),
the median remains below 0.04, with the upper quantile qu

behaving similarly to what was observed with (2.8).
Increasing the resolution of the finite element mesh near

active layer boundaries via mesh refinement seems to be
mostly reducing (2.8), especially towards the higher eccen-
tricities. For (2.9), the refinement actually seems to increase
the median differences between the analytical and numeri-
cal lead fields by roughly 0.02, which is seen in the horizontal
middle lines of the box plots of Figure 3.3. However, the quan-
tiles qu were lowered by a few percent with dp = 0.5mm, sug-
gesting that refinement has a net positive statistical impact
on the result.

3.3. Source localisation in a realistic head model

In the spirit of Cuffin et al. [56], Tables 3.1–3.2 present mean
values µ of localisation errors ∆ of equation (2.12) and their

standard deviations σ for 10000-source lead fields L, corre-
sponding to different peeling depths dp. The lead fields were
inverted 20 times with sLORETA [17] and Dipole Scan [18] at
different measurement noise levels, each inversion having a
different white noise realization. The cells of the Tables 3.1–
3.2 are color mapped based on the largest ∆ and σ in each
table.

Table 3.1: sLORETA average localisation error ∆ statistics. Here dp is the
peeling depth, µ is the sample mean and σ is the sample standard deviation.

dp (mm) 0.0 0.5 1.0

SNR (dB) µ (mm) σ (mm) µ (mm) σ (mm) µ (mm) σ (mm)

5 41.76 18.88 41.57 18.90 41.57 18.72
10 30.84 15.62 30.62 15.55 30.77 15.43
15 20.45 9.57 20.35 9.52 20.66 9.54
20 13.81 5.69 13.73 5.71 14.01 5.80
25 10.76 3.36 10.70 3.36 10.78 3.46
30 9.87 2.04 9.81 2.05 9.79 2.12

Table 3.2: Dipole Scan average localisation error∆ statistics. The meaning of
notations is the same as in Table 3.1.

dp (mm) 0.0 0.5 1.0

SNR (dB) µ (mm) σ (mm) µ (mm) σ (mm) µ (mm) σ (mm)

5 26.87 13.57 26.83 13.60 26.88 13.53
10 16.01 7.92 15.97 7.92 16.08 7.99
15 9.13 4.66 9.11 4.66 9.17 4.75
20 5.09 3.01 5.07 3.01 5.07 3.05
25 2.65 2.01 2.64 2.01 2.64 2.00
30 1.18 1.22 1.18 1.22 1.20 1.21

Here Dipole Scan produces superior localisation results
when compared to sLORETA, with both low and high SNR lev-
els, which is an expected result in search of a single source,
matching the prior model of Dipole Scan. Especially in the
case of Dipole Scan, the mean error ∆ ≈ 10.5mm reported
by Cuffin is reached already at SNR = 15dB, whereas with
sLORETA a value as high as 30dB has to be used, for com-
parable values to manifest themselves.

To graphically observe how the peeling affects outliers of
∆, Figures 3.4 and 3.5 were formed. They display box plots of
∆ against the two lowest noise levels in the case of sLORETA
and Dipole Scan, respectively.

In the case of sLORETA, going from a peeling of 0 mm to
0.5 mm results in a disappearance of at least few outlier mark-
ers. Further, moving from 0.5 mm to 1.0 mm peeling further
reduces the outliers, which is seen in the sparsity of the out-
lier point clouds. With Dipole Scan, the peeling results are
similar, as the extent of outliers is reduced with increased
peeling.

To further observe how peeling affects the outliers, Ta-
bles 3.3 and 3.4 show the per-noise-level numbers of sources,
whose localisation errors satisfy ∆ > µ+ 2σ, for a sample of
20 reconstructions obtained with a given noise level. Here µ
and σ are the expected sample mean and standard deviation
values of ∆, provided by Cuffin et al [56, Table 1]. These are
contrasted against the numbers of columns in each respec-
tive 10000-source lead field L by color-mapping each data
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Figure 3.3: High-eccentricity (2.8) (a) and (2.9) (b) for PBO in the case of a spherical Ary model.
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Figure 3.4: sLORETA localisation errors∆ against two lowest noise levels and
all peeling depths dp.

point against the largest number of columns. Each Carte-
sian source has coordinates pointing in the x-, y- and z-
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Figure 3.5: Dipole Scan localisation errors ∆ against two lowest noise levels
and all peeling depths dp.

directions, and hence the number of columns in L is three-
fold, when compared to the mentioned number of sources.
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Table 3.3: The number of outliers with∆>µ+2σ, for a sample of 20 sLORETA
reconstructions. The expected means µ and standard deviations σ for each
noise level have been gathered from [56, Table 1]. Again, dp refers to the
peeling depth.

dp (mm) 0.0 0.5 1.0

Number of columns in L 30288 30459 29367

SNR (dB) µ (mm) σ (mm) Number of sources

5 10.3 5.3 29535 29710 28646
10 10.4 5.4 21029 20965 20154
15 10.3 4.6 12079 12104 12050
20 10.6 4.1 5507 5552 5936
25 10.2 3.7 3039 3120 3355
30 9.8 3.6 2494 2582 2652

Table 3.4: The number of outliers with ∆> µ+2σ, for a sample of 20 Dipole
Scan reconstructions. The definitions of µ, σ and dp are the same as in Ta-
ble 3.3.

dp (mm) 0.0 0.5 1.0

Number of columns in L 30288 30459 29367

SNR (dB) µ (mm) σ (mm) Number of sources

5 10.3 5.3 19546 19652 18923
10 10.4 5.4 6935 6975 6866
15 10.3 4.6 1893 1857 1836
20 10.6 4.1 429 411 411
25 10.2 3.7 36 31 24
30 9.8 3.6 1 0 0

For sLORETA we observed the following: the more tetra are
peeled, the more outliers occur at noise levels below 15 dB.
On the other hand, Dipole Scan displays a rather consistent
outcome at and below 15 dB noise level, with increased peel-
ing reducing the numbers of outliers. In either case, it seems
that noise might be the major contributing factor below the
15 dB mark, with Dipole Scan being slightly more resistant to
noise effects.

To get a sense of where the statistical outliers are lo-
cated, Figures 3.6 and 3.7 display the localisation error ∆ of
sLORETA and Dipole Scan as a function of position, in the
active gray matter compartment. Colors in the figures have
been adjusted, such that the obvious outlier positions with
∆ ≥ µ+2σ are highlighted in red. The displayed noise levels
are the ones where peeling was discovered to have an observ-
able reduction in ∆.

To illustrate how the localisation error fluctuates locally at
lower noise levels, both deep in the brain and more superfi-
cially, Figures 3.9 and 3.11 display thalamically focused views
of the above images, whereas Figures 3.8 and 3.10 do the same
for the cortex. The displayed noise levels are chosen to be the
ones, where visible improvements can be seen.

These mappings demonstrate that peeling can help in re-
ducing localisation error universally in the active domain,
when the noise level is low enough: for example at 30 dB SNR

(a): dp = 0mm at 25 dB. (b): dp = 0.5mm at
25 dB.

(c): dp = 1mm at 25 dB. 0 

4 

8 

11

15

19

(d): dp = 0mm at 30 dB. (e): dp = 0.5mm at
30 dB.

(f ): dp = 1mm at 30 dB. 0 

3 

6 

9 

12

15

Figure 3.6: Sagittal views of localisation error ∆ = ∆(x) (mm) in the active
gray matter layer in the case of sLORETA, contrasted against the different
peeling depths dp of Table 3.1. The red color indicates where ∆ ≥ µ+2σ, as
in outliers in the entire distribution.

(a): dp = 0mm at 25 dB. (b): dp = 0.5mm at
25 dB.

(c): dp = 1mm at 25 dB.
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(d): dp = 0mm at 30 dB. (e): dp = 0.5mm at
30 dB.

(f ): dp = 1mm at 30 dB.
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Figure 3.7: Sagittal views of localisation error ∆ = ∆(x) (mm) in the active
gray matter layer in the case of Dipole Scan, contrasted against the different
peeling depths dp of Table 3.2. The meaning of the colors is the same as in
Figure 3.6.

(a): dp = 0mm at 30 dB. (b): dp = 0.5mm at
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3 

6 

9 

12

15

Figure 3.8: Focused views of ∆ = ∆(x) in the parietal region, in the case of
sLORETA.

(a): dp = 0mm at 30 dB. (b): dp = 0.5mm at
30 dB.

(c): dp = 1mm at 30 dB.
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Figure 3.9: Focused views of ∆ = ∆(x) in the thalamic region, in the case of
sLORETA.
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(a): dp = 0mm at 30 dB. (b): dp = 0.5mm at
30 dB.

(c): dp = 1mm at 30 dB.
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Figure 3.10: Focused views of ∆ = ∆(x) in the parietal region, in the case of
Dipole Scan.

(a): dp = 0mm at 30 dB. (b): dp = 0.5mm at
30 dB.

(c): dp = 1mm at 30 dB. 0
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Figure 3.11: Focused views of ∆=∆(x) in the thalamic region, in the case of
Dipole Scan.

in Figure 3.11, the localisation error in the part of the frontal
lobe in front of the thalamus decreases, as dp is increased. A
similar effect can be seen in Figure 3.8, where localisation er-
ror in the cerebrum, in front of the central sulcus decreases.

To observe how the peeling of the active layers affects the
accuracy of localisation with sLORETA and Dipole Scan lo-
cally, Figures 3.12–3.13 display relative strenghts of dipole
moments of the reconstructed dipolar distribution J∧p = J∧p (x)
for a single dipole near Brodmann area 3b, around the cen-
tral sulcus. Both tangential and radial sources are observed,
as these correspond to the ideal cases of MEG and EEG, re-
spectively.

(a) (b) (c)

(d) (e) (f )

Figure 3.12: Relative strengths of J∧p in the case of Dipole Scan, near Brod-
mann area 3b with 30 dB noise. Subfigures (a)–(c) display the case of a tan-
gential source and Subfigures (d)–(f) show normal sources, with dp = 0,0.5
and 1.0mm respectively. The stronger the reconstruction located in a partic-
ular tetrahedron, the more yellow the tetrahedron is.

In the case of sLORETA, the region around the single recon-
structed tangential source increases in amplitude, as peeling
depth dp is increased, which can be seen as the moving of the
bright yellow area from right to left, towards the dipole posi-

(a) (b) (c)

(d) (e) (f )

Figure 3.13: Relative strengths of J∧p in the case of sLORETA, near Brodmann
area 3b with 30 dB noise. The subfigures and colors are as in Figure 3.12.

tion itself. The difference in the normal case is much smaller.
With Dipole Scan, the effects of dp on the inversion of the tan-
gential measurements are not obvious. The case of a radial
or normal source allows the differences to become more ap-
parent: the area that contains the strongest intesity shrinks,
which makes the reconstruction more localised.

Finally, we observe the dispersion measures of equa-
tion (2.13) for sLORETA and Dipole Scan at 30 dB noise level.
These are presented in Figures 3.14 and 3.15, respectively.
The ROI of dispersion around each source position was set
at 30 mm.

(a): dp = 0mm. (b): dp = 0.5mm. (c): dp = 1mm.
20.2

21.1

22.1

23  

24  

24.9

Figure 3.14: Dispersion of equation (2.13) (in mm) of sLORETA at 30 dB noise
level in each position in the active gray matter layer.

(a): dp = 0mm. (b): dp = 0.5mm. (c): dp = 1mm.
21.2

21.9

22.5

23.2

23.9

24.5

Figure 3.15: Dispersion of equation (2.13) (in mm) of Dipole Scan at 30 dB
noise level in each position in the active gray matter layer.

We see a clear reduction in the width of the peak around
the reconstructed dipoles, both around the thalamic region
and in the cortex. For example the dipersion at the back of the
thalamic region decreases from roughly 24.5 mm to 23.5 mm
between Subfigures (a)–(c) of Figure 3.14. A similar effect
can be observed with Dipole Scan in the subfigures of Fig-
ure 3.15.
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4. Discussion

EEG source modelling is often performed on spherical
head models [4][36][57], or head models that are realistically
shaped, but which only contain 3 or 4 brain compartments,
such as gray matter, skull, skin and maybe the cerebrospinal
fluid layers [37]. In addition, instead of these models being
volumetric, only boundaries of the modelled brain compart-
ments might be included, if forward modelling is based on
boundary element methods [7][8]. Those are less resource-
intensive than finite element methods, but also do not model
the volumetric aspects of the problem as accurately.

In a realistic situation, there are at least 19 different brain
tissue types, and this is only if one does not take into account
the inhomogeneities within these major compartments, such
as different types of bone in the skull [58]. Each compart-
ment can have its own isotropic or anisotropic conductivity
structure, which affects the forward solution L. Simplified ap-
proaches thus have little hope of modelling the subtleties in-
troduced by a realistic head model [57]. Therefore in this pa-
per, we performed our investigations in a realistically shaped
high-resolution finite element head model [48], with 19 ma-
jor brain compartments present. Most importantly, the mod-
elled brain activity was restricted to realistically shaped and
volumetrically refined compartments of gray matter, where
especially the cortical portion is only a few mm thick. This
again required (as one option) the use of the tightly supported
H(div) source model, which allowed the placement of dipoles
with nonzero lengths into these thin gray matter layers.

In this setting, we investigated how restricting tetrahedra,
into which a set of H(div) dipoles Jp = Jp(x) might be placed,
affects the source localisation error∆ of sLORETA and Dipole
Scan. The restriction was based on disallowing the place-
ment of dipoles near surfaces of active layers. The relevance
of this study comes from the well-known fact, that the con-
vergence of the forward EEG solution is negatively affected,
when sources are placed near conductivity discontinuities
at said tissue boundaries. This applies both to boundary
element methods [59][60], and different finite element ap-
proaches, such as the Subtraction Method [9] and the H(div)
approach [13], which was used in this paper. This again nega-
tively affects the localisation of synthetic sources via different
inverse methods.

Before presenting the above results, we observed how the
peeling algorithm works. In addition to this, our numerical
forward solver was compared to a semi-analytical one, to en-
sure that it works appropriately in a simplified spherical do-
main and at higher eccentricities, where cortical sources are
known to reside, but where the errors are also known to be
more extensive.

The peeling algorithm, which restricts the positions x
where sources can be placed, was found to function as in-
tended: it recognized the intended tetrahedra and always
removed at least one layer from the surfaces of the speci-
fied brain layers, to prevent singularities from appearing in
the forward solution because of discontinuities or jumps in
conductivities between neighbouring source tetra. The only

anomaly related to the source positioning after peeling was
that the dp = 0.5mm case seemed to contain more sources
than the dp = 0mm case. This can be explained with Zeffiro
Interface’s iterative way of evenly distributing sources into the
active volume, if the initial guess is not near the user-given
amount.

Comparing the numerical lead field or forward solution L
to that of the semi-analytical 3-layer Ary model [4] produced
appropriately good results, even at above 98 % eccentricities,
with upper 75 % quantiles of magnitude measure (MAG) and
relative difference measure (RDM) being at most 0.06 and
0.04, respectively. It was not obvious, whether a more re-
fined mesh would diminish differences between the semi-
analytical and numerical solutions La and Ln. In fact, having
a more refined mesh seems to produce deteriorated median
results in the case of MAG, whereas with RDM the outcome
is slightly improved. This was especially true when PBO [52]
was used for synthetic source interpolation, and hence it was
chosen as the optimization method in the case of the realistic
head model. MPO [26] was also considered, but was deemed
less suitable, as according to [13] MPO is less stable than PBO.

When looking at the average localisation errors ∆, and
comparing the results to those of Cuffin et. al. [56], one can
observe that the performance of sLORETA is inferior to that
of Dipole Scan. The reported ∆ < 10.5mm is only reached at
lower noise levels, when SNR ≥ 30dB, whereas with Dipole
Scan an average within acceptable boundaries can be ob-
tained all the way down to SNR = 15dB. In the case of
sLORETA, the peeling cannot be said to improve the aver-
age localisation accuracy, as utilizing it seems to first im-
prove the result when going from a peeling depth dp = 0mm
to dp = 0.5mm, but then localisation accuracy is decreased
again, when dp is increased to 1 mm. Only at the very high-
est SNR can a slight but systematic decrease in the average ∆
be seen. Dipole Scan is slightly more consistent in its per-
formance with respect to peeling, as with SNR ≥ 20dB the
added peeling no longer increases the average∆. It should be
noted, that Cuffin used a 3-compartment boundary element
model with a simplex search method to locate sources [61],
and hence our results are not directly comparable.

The behaviour of localisation error outliers also reflect the
above state of matters. In the case of sLORETA, the initial im-
pression is that peeling seems to reduce the general dense-
ness of the outliers clouds further above the box plots, but at
the same time some maximum outliers are further away from
the tops of the whiskers, especially in the case of dp = 0.5mm.
Peeling somewhat increases the number of outliers for the in-
verse method at higher SNR, although with SNR < 20dB there
seem to be cases where the outliers are reduced with added
peeling. A possible explanation for this is that peeling re-
duces statistical variability in the low-SNR cases of sLORETA.
Dipole Scan again performs more consistently, with the num-
bers of outliers being reduced at every SNR ≥ 15dB, when the
peeling depth dp is increased. It might then be said that for
Dipole Scan, the effects of random noise seem to dominate
when SNR is reduced beyond this point.

When observing the localisation error as a function of
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primary dipole position, ∆ = ∆(x) of sLORETA and Dipole
Scan, the superior performance of the latter becomes obvi-
ous. With sLORETA, while the actual scale of the localisa-
tion error is reduced as SNR increases, we end up having
more outliers with a relatively large ∆ in the entire volume.
In contrast, the behaviour of Dipole Scan is again more con-
sistent: not only does the localisation error go down with in-
creasing SNR, as one would expect, the localisation error out-
liers become more focused into the deep structures of the
brain, where the sources are further away from the sensors.
The benefits of increasing the peeling depth dp are also not
unambiguous in either case. It seems that especially in the
case of sLORETA, increasing dp simply moves the positions
where outliers occur around the volume, instead of elimi-
nating them. There are still places where the areas contain-
ing larger errors become less focal, such as in the parietal
region at SNR = 25dB. The fluctuation of the higher locali-
sation error patches around the volume is also visible in the
case of Dipole Scan, although maybe to a lesser extent. The
consistent reduction in ∆ with increased peeling seems to be
slightly more prominent, as can be seen in the environment
of corpus callosum and around the lower part of the frontal
lobe at SNR between 20–30 dB. The takeaway from this is,
that peeling the active brain layers does not guarantee un-
ambiguously better localisation results, but that it might do
so on a regional and SNR basis.

A look at the relative strengths of reconstructions at SNR =
30dB also mostly supports this interpretation from the point
of view of varying the peeling depth dp, although there seems
to be a hope of seeing an actual improvement in the case of
Dipole Scan and a normal source, which is the ideal case for
EEG: we can see the reconstruction becoming slightly more
focal around the plotted source. With sLORETA, the peeling
seems to increase the general strength of the reconstruction
around the tangential source, whereas in the case of a nor-
mal source we see a very slight shift of the local peak of the
distribution J∧p towards the source itself.

The dispersion measures of the results of different inverse
methods were seen to be improved, with parts of regions of
largest dispersions seeing a reduction of 1.0 mm in the width
of the peak around a reconstructed dipole position. This is
yet another indication of the reconstruction becoming more
focal in those regions, as a reduction in dispersion indicates,
that the amplitude of J∧p is reduced in the 30 mm ROI for the
dispersion around each respective source position, with the
most focal point being at the center of the ROI.

5. Conclusions

Summa summarum, while restricting the synthetic dipoles
Jp, that model brain activity to be further away from active
brain compartment boundaries, and therefore from conduc-
tivity jumps, the reconstructed distribution of dipoles J∧p is al-
tered, but not definitely improved. The peeling algorithm re-
sponsible for the application of the above restriction was en-
abled by a local refinement or resolution increase of the finite

element mesh, and was shown to uniformly reduce statisti-
cal outliers in the forward solution L, which maps Jp to the
observed potentials at the EEG electrodes, thereby increasing
its robustness.

This reduction in outliers is best observed with noise lev-
els below 30 dB, which occur in medical studies, where pos-
sibly thousands of stimuli might be applied over the duration
of the experiment, such as when measuring somatosensory-
evoked potential responses [62]. In addition to improving
the robustness of the forward solution, peeling had the same
effect on the reconstruction, in addition to enhancing the
regularity of it. The importance of the regularity of a re-
construction comes from the need to locate multiple or dis-
tributed sources, such as in the case of localising epilepto-
genic zones or their irritative regions for the purposes of treat-
ment [63][64].

6. Future prospects

Follow-up studies might include further increasing the
base resolution and/or the refinement of the active layers in
the mesh, so that the possible locations of dipoles would be-
come more varied. Peeling depths might also be observed
in a wider or more refined range than was presented in this
study, to find out whether there is some optimal value for it.
This optimal value might depend on the mesh geometry, and
therefore the tests might be performed on multiple different
head models with the same mesh resolution.

For case studies, the use of the peeling technique might
be applied to head models of patients with conditions such
as microlissencephaly [65], where the cortex is flattened and
possibly thickened. A schizencephalic [65][66] brain model,
where a part of the brain has been displaced, and the dis-
placed sections are connected only by a thin ribbon of gray
matter is another possibly interesting target of peeling.
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