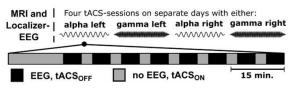

Personalized tACS targeting the dorsal attention network specifically modulates visuo-spatial attention

JO Radecke^{1,2,3}, M Fiene¹, J Misselhorn¹, CH Wolters^{4,5} R Lencer^{2,3,5} & TR Schneider¹

¹Dept. of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Germany ²Dept. of Psychiatry and Psychotherapy and ³Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
⁴Institute for Biomagnetism and Biosignalanalysis and ⁵Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany

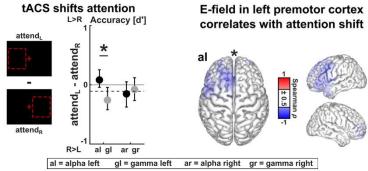
Background

Covert visuo-spatial attention is marked by lateralized neural alpha power along the dorsal attention network [1]. However, results from applications of normative alphatACS remain inconclusive about the contribution of neural alpha oscillations [2]. At the same time, electric field simulations showed high inter-individual variability that might account for the limits of normative tACS [3]. Here, we applied personalized alpha-tACS in a cued visuo-spatial attention paradigm, and recorded EEG aftereffects in an intermittent stimulation protocol.


→ We hypothesized that alpha-tACS targeting the left or right parietal cortex shifts attention to the ipsilateral hemifield and modulates lateralized EEG brain activity, respectively.

Methods

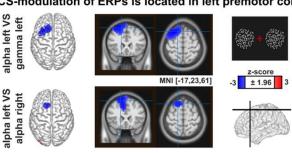
- N = 20 healthy human participants
- Personalized stimulation montages were defined based on individual alpha lateralization during visuo-spatial attention and six compartment finite-element headmodels
- Personalized tACS was applied in four pseudo-randomized sessions (10 Hz or 47.1 Hz targeting the left or right parietal cortex, within-subject design, 1.5 -2 mA baseline-to-peak)
- High-resolution EEG was recorded during tACS-free intervals (126 channels)
- Behavior, EEG and electric field simulations were analyzed


EEG activity during cued visuo-spatial attention Cue-related alpha Stimulus-related visual ERPs stimulus 10 ± 2 Hz

Personalized tACS application Electrode layout Four tACS-sessions on separate days with either: MRI and gamma left alpha right gamma right alpha left Localizer- I

Results

- Left, but not right, alpha vs. gamma-tACS shifted attention to the left hemifield and modulated visual ERPs in left premotor cortex.
- Simulated electric field intensities in left premotor cortex correlated with attention shift of behavior.
- Left alpha-tACS modulated stimulus-related visual ERPs in right posterior EEG sensors. Neural sources of ERPs were located in left premotor cortex.



Alpha-tACS targeting the left parietal cortex...

- ...modulates visuo-spatial attention and evoked EEG activity in the left dorsal attention network
- ... affects the left premotor cortex in terms of network modulation and/or co-stimulation

Left alpha-tACS modulates visual ERPs LEFT attend_L - attend_R [µV] alpha gamma alpha gamma 0.5 -- localizer 0.13 - 0.5 s0.6 Time [s] 0.2 0.4 alpha gamma alpha gamma ● LEFT ● ERP source localization (eLORETA)

tACS-modulation of ERPs is located in left premotor cortex

→ Left dorsal attention network, including the left premotor cortex, might be more susceptible to subtle tACSneuromodulation than the right hemisphere

References [1] Siegel, M., Donner, T. H., Oostenveld, R., Fries, P., & Engel, A. K. (2008). Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention. Neuron, 60(4), 709-719. https://doi.org/10.1016/j.neuron.2008.09.010. [2] Coldea, A., Morand, S., Veniero, D., Harvey, M., & Thut, G. (2021). Parietal alpha tACS shows inconsistent effects on visuospatial attention. PLOS ONE, 16(8), e0255424. https://doi.org/10.1371/journal.pone.0255424. [3] Radecke J-O, Khan A, Engel AK, Wolters CH, Schneider TR. Targeting Increases Variability Simulated https://doi.org/10.1109/ACCESS.2020.3028618.

