
Standardized Kalman Filtering for Time Serial SourceStandardized Kalman Filtering for Time Serial Source
Localization of Simultaneous Subcortical and Cortical BrainLocalization of Simultaneous Subcortical and Cortical Brain
ActivityActivity
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY-NC-SA 4.0

SUBMISSION DATE / POSTED DATE

27-10-2023 / 01-11-2023

CITATION

Lahtinen, Joonas; Ronni, Paavo; Subramaniyam, Narayan; Koulouri, Alexandra; Wolters, Carsten; Pursiainen,
Sampsa (2023). Standardized Kalman Filtering for Time Serial Source Localization of Simultaneous
Subcortical and Cortical Brain Activity. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.24427180.v1

DOI

10.36227/techrxiv.24427180.v1

https://www.techrxiv.org
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://dx.doi.org/10.36227/techrxiv.24427180.v1


IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2023 1

Standardized Kalman Filtering for Time Serial
Source Localization of Simultaneous Subcortical

and Cortical Brain Activity
Joonas Lahtinen , Paavo Ronni, Narayan Puthanmadam Subramaniyam, Alexandra Koulouri, Carsten

Wolters, Sampsa Pursiainen

Abstract— In this article, we present a new Bayesian
filtering method for non-invasive electroencephalography
(EEG) that is capable of reconstructing spatiotemporal
brain activity, including both cortical and weakly detectable
deep components. Our approach improves upon the stan-
dard Bayesian recursive filtering method, also known as
Kalman filtering, by introducing an additional step that
re-weights the instantaneous reconstructions akin to the
Standardized low-resolution brain electromagnetic tomog-
raphy (sLORETA). This interim step helps to reduce any
potential source depth biases, resulting in more accu-
rate tracking of the dynamics of brain activity and better
localization of dipolar components than distributed spa-
tiotemporal Kalman filtering without any standardization
or time-independent approaches, such as sLORETA. Our
numerical simulations and reconstructions of real real-
istic somatosensory evoked potentials demonstrate that
our proposed algorithmic framework can effectively track
the time evolution and localize simultaneously both deep
and superficial brain activity. Therefore, our method of-
fers a promising solution for researchers and clinicians
interested in investigating the dynamic behavior of brain
activity.

Index Terms— Electroencephalography (EEG), Finite ele-
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I. INTRODUCTION

Electroencephalograph (EEG) is a standard non-invasive
modality to record neuronal activity from the scalp surface
with high temporal resolution [1]. EEG source imaging prob-
lem is the reconstruction of the brain activity using the EEG
potential recordings [2]. This problem is severely ill-posed
without a unique solution if no prior assumptions are given
for brain activity. Nowadays, there are numerous inversion
methods for source localization with diverse prior assump-
tions [3]. Only some of them take the temporal aspect of
biopotential recordings into account in the modeling [4]–[8].
These methods employ spatiotemporal priors and aim to solve
a large optimization problem. To reduce the computational
effort of these large problems, a coarse source space is often
used which results in deteriorating the spatial resolution of the
source reconstruction [9].

An alternative path to capture the source activity course
with high spatiotemporal resolution is to use Bayesian filter-
ing. Considering linear Gaussian state-space modeling, this
leads to the well-known Kalman filter (KF) [10]. Kalman
filter has been previously used to reconstruct simulated and
real brain activity distributions from EEG recordings using a
regular grid-based low-resolution brain model [11], [12], and
later coupled with LORETA method forming DynLORETA
[13], where an approximation of the Kalman filter is used.
It is also used to reconstruct cortical components of so-
matosensory evoked potentials from magnetoencephalography
(MEG) recordings [14] and in combination with EEG/MEG
in localization of epileptic spikes [15] using high-resolution
models. The regional version of spatitemporal Kalman is
obtained to localize deep brain activity correctly [16], where
the nearest-neighbor coupling is used to simplify the computa-
tion. However, the fully-coupled state-space Kalman filtering
approaches suffer from depth-biased estimations, meaning that
it favors reconstructions in superficial brain locations while
failing to recover deep activity, similarly to the well-known
minimum norm estimate [17]. To overcome the depth bias
of MNE, Standardized low-resolution brain electromagnetic
tomography (sLORETA) has been developed [18]. The idea
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is to modify the minimum norm estimation so that the esti-
mated variables are standardized current densities, which were
found to have high localization accuracy [19], [20] and high
measurement noise robustness [21], [22].

In this work, we propose a standardized Kalman filtering.
As the first step, we give a probability-based interpretation for
sLORETA. Then, we introduce a novel sLORETA-type stan-
dardization to the dynamical EEG source imaging problem,
namely to the Kalman filtering, where the state-space output
of the Kalman filter is modified so that the estimated source
reconstruction is standardized in order to reduce the depth
bias. After that, we conduct experiments with synthetical and
real non-invasive EEG recordings of somatosensory evoked
potentials (SEP) showing the difference of spatial sLORETA,
Kalman, and standardized Kalman filtering (SKF) estimation.
We have selected SEP data because it is previously well-
studied known originator locations [23]–[26]. We want to
pinpoint that reconstruction of weak deep activity is a difficult
task that has grown in interest in recent years [27].

In the result section, we demonstrate the difference of
spatial sLORETA, Kalman, and standardized Kalman filtering
(SKF) estimation. Our results show that the usage of the
Kalman filter smooths the estimation while the standardization
improves the localization. In effect, the combination of the
standardization and dynamical filtering was found to improve
the localization and ability to track dynamical changes in
the system containing cortical and subcortical activity better
than these approaches separately. Moreover, the subcortical
components of SEP data are correctly localized only with
a standardized Kalman filter. Finally, we test our algorithm
with real SEP. Our findings reveal that SKF produces a more
coherent and focal reconstruction of the underlying activity
compared to the two other methods.

II. METHODS

A. Bioelectromagnetic Forward Problem
The purpose of the EEG forward model is to model the

biosignals inside the brain when the primary current field JP

is given inside the brain. The quasi-static approximation of
Maxwell’s equations leads to the following Poisson’s problem
with isolation condition for the electric field as the boundary
condition

∇ · (σ∇u) = ∇ · JP in Ω,

n · (σ∇u) = 0 on ∂Ω,
(1)

where σ is a positive definite conductivity tensor, u denotes
electric potentials, and n is the normal vector of the head
model’s boundary. In a FEM-based approach, the electrical
potentials and current density field are approximated via a
finite set of basis functions. In this study, the primary current
field is approximated using H(div) basis functions [28]. This
yields a linearized problem written here in time-varying form

yt = Lxt + rt, (2)

where yt ∈ Rm denotes the recorder scalp potentials at time
step t, L ∈ Rm×n is the FEM lead field matrix, xt ∈ Rn is
called reconstruction that gives the coefficients for the basis
function representation of the discretized primary current field,

and rt ∈ Rm denotes the measurement noise that is assumed
to follow a zero-mean Gaussian distribution N (0, Rt), where
Rt is the time-varying covariance matrix.

B. Bayesian MNE and sLORETA
Minimum norm estimate (MNE) [17] can be interpreted

within the Bayesian framework when one introduces the
measurement noise covariance matrix R and prior covariance
matrix P instead of a regularization term [29]. The posterior
distribution of Bayesian MNE will follow the Gaussian since
the maximum of the distribution

p(x | y) ∝ exp

(
−1

2
(y − Lx)TR−1(y − Lx)

)
× exp

(
−1

2
xTP−1x

) (3)

with respect to the brain activity reconstruction x will con-
stitute the solution that is equivalent to MNE. This so-called
maximum a posteriori (MAP) estimate can be also viewed as
Gaussian distributed in the frequentist sense:

x̂ ∼ N
(
0, PLT(LPLT +R)−1LPT

)
, (4)

where the source activity is considered fixed, whereas the
observations are random. The derivation of the distribution
above is given in Appendix I. The aim of standardization
is to equalize the variability of x̂ components corresponding
to each source location so that no particular source location
is favoured [20], which is achieved by post-hoc weighting
the MAP estimate. Additionally, Pascual-Marqui states in the
Generalization section in [18] that the standardization can be
taken only from a reconstruction vector whose components
are uncorrelated and standardized, in the Gaussian sense with
respect to the prior. Thereby, the outcome of the matrix
product LP 1/2 is considered as the lead field operator in point
spread function-based derivation. We denote the corresponding
random variable as µ̂ := P−1/2x̂.

This way the current power estimation, denoted here as the
inner product of sLORETA reconstruction ẑ with itself at d-
dimensional index set I , reads

⟨ẑI , ẑI⟩ = ⟨x̂I , x̂I⟩sLORETA

= µ̂T
I

[(
P 1/2LT(LPLT +R)−1LP 1/2

)]−1

II
µ̂I ,

(5)

where the dimension d indicates the degree of orientational
freedom of a dipole. One can now see that the standardization
as post-hoc weighting is analogical with location-wise stan-
dardization of MAP interpreted as a Gaussian random variable
for which ⟨·, ·⟩sLORETA induces a Mahalanobis distance [30].

C. Standardized Kalman Filter
The standardization given in (5) can be interpreted as a

block-diagonal matrix, which can be decomposed into two
symmetric matrices by matrix square root. Due to the sym-
metry of this sLORETA weighting matrix and the square root
of a prior covariance matrix, there is a linear transforma-
tion between any Gaussian distributed reconstruction and its
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Fig. 1. (A) shows the dipole components used in generating synthetic media nerve SEP data. The black marker in pons represents the originator
of the P14 component (positive pole of the 14 ms post-stimulus response); the purple one corresponds to the subcortical P16 component; the
green marker in the central sulcus (Brodmann area 3b) and the blue one in ventral posterolateral (VPL) thalamus show the cortical and subcortical
originator of P20/N20 component (positive/negative pole of the 20 ms post-stimulus response), respectively; green marker in the central sulcus
together with the red one in the postcentral gyrus (Brodmann area 1) illustrate two cortical originators of P22/N22. The green marker in the VPL
thalamus and the blue one in the central sulcus illustrate the thalamo-cortical originator pair of P30/N30. (B) is the EEG recordings produced by
the components when 25 dB noise is applied. (C) presents the time-evolution and overlap of thalamic (blue) and cortical sulcal (green) source
maximized at 20 and 22 ms, respectively, and together constituting the source configuration of simulation I.

standardized counterpart. This includes the dynamic model,
i.e., the evolution model and the Gaussian initial state, of
the Kalman filter. Moreover, as we show in the Appendix II,
linear and bijective (invertible) time-depend transformation of
the dynamic model of states leads to a similarly transformed
posterior state. Here we define the dynamical standardization
matrix Wt at time step t for the MAP estimate of Kalman
filter given the states up to t − 1 following the reasoning in
section II-B. This leads to the following formulation of the
block-diagonal elements of the weighting matrix

[Wt]II =
[
P

−1/2
t|t−1KtStK

T
t P

−1/2
t|t−1

]−1/2

II
, (6)

where Pt|t−1 is the predicted a priori covariance matrix and
Pt|t is the posterior covariance matrix of Kalman filter. The
auxiliary matrices are St = LPt|t−1L

T + Rt and Kt =
Pt|t−1L

TS−1
t . With the over-carried transformation of the

posterior state and the dynamical standardization matrix, there
is the following connection between standardized and regular
posteriors

N (zt, P̂t|t) = N
(
WtP

−1/2
t|t−1xt,WtP

−1/2
t|t−1Pt|tP

−1/2
t|t−1W

T
t

)
.

(7)
A concrete benefit from the presented identity is that the
standardization weighting can be applied at the end of each
update step, thereby, decreasing the computational burden we
would otherwise have in the transformation of the model
and auxiliary matrices of the algorithm. The full algorithm
is presented in Appendix III.

III. EXPERIMENTS

A. MRI-based Segmentation and Source Space for the
Head Model

We modeled the head as an 18-compartment volume con-
ductor constructed using openly available T1-weighted MRI
data from a healthy subject. The tissue conductivities were set,

i.e., 0.14, 0.33, 0.0064, 1.79, 0.33 and 0.33 S/m for the white
and grey matter, skull, cerebrospinal fluid (CSF), sub-cortical
structures, and skin, respectively, based on the studies of
Dannhauer et al. [31] and Shahid et al. [32]. Of the remaining
compartments, sub-cortical nuclei were associated with the
conductivity of the grey matter and the ventricles with that of
CSF according to e.g. [27] and the citations therewithin. The
tissue compartments were segmented via FreeSurfer software1.
The head model within 1 mm resolution and the finite element
method (FEM) based forward solution were obtained using
Matlab-based Zeffiro Interface toolbox [33]. The source space
of the forward model contains 10,000 source locations which,
for example, is Brainstorm software package’s standard source
count2

B. Media Nerve SEP Simulations

We developed simulated EEG recordings of media nerve
SEP data using 9 dipolar originators based on their description
given in the literature to validate our approach. We modeled
the time interval of 14–30 ms post-stimulus, where the first
three components (P14 and P16) are sub-cortical located in
the brainstem and thalamus following P20/N20, P22/N22 and
P30/N30 components with simultaneous cortical and sub-
cortical neural activity.

The SEP activity follows the medial lemniscus pathway
and travels to thalamocortical volley [34] which starts from
the dorsal column and eventually reaches the somatosensory
cortex (SI) [26] where the first cortical responses are expected
to be detected. The earliest component P14 is expected to
originate from the medial lemniscus [34]. Based on the find-
ings of Buchner et al. [35], P16 dipoles are placed in the
ventral thalamus [35] and the lower part of the brainstem [36].
The P20/N20 component occurring at 20 ms is modeled by

1https://surfer.nmr.mgh.harvard.edu/
2https://neuroimage.usc.edu/brainstorm/

https://surfer.nmr.mgh.harvard.edu/
https://neuroimage.usc.edu/brainstorm/
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two dipoles, one placed at Brodmann area 3b and another in
the thalamus. Götz et al. have found simultaneous subcortical
activity, particularly at ventral posterolateral (VPL) thalamus
[37] suggesting that the thalamus can be active at the same
time in this phase [38]. The peak of the 22 ms component is
located either in Brodmann area 1 or 4 [26] from which we
have chosen the first one. Similarly to the 20 ms events, the
thalamus has been found to be active during the maximum
peak of the P22/N22 [39]. At 30 ms, the peak of the cortical
generator is placed in the frontal lobe, and the sub-cortical
dipole at the ventral thalamus [40].

The exact dipole locations and orientations are presented in
Figure 1. The amplitude of dipolar activities are all set to be
equally 10 nAm as suggested for a simulation [41], [42]. The
time evolution of each component is modeled as a Gaussian
pulse with 7 ms duration. We apply a 5 kHz sampling rate in
the data generation.

In the simulations, we compare the performance of the
Kalman filter (KF), standardized Kalman filter (SKF), and
sLORETA to cover the effect of dynamical filtering and the
standardization.

In simulation (I) we are focusing on the trackability and
smoothness of the reconstructed time evolution of the over-
lapping pair of thalamic and cortical sulcal sources occurring
at 20 and 22 ms, respectively, to investigate the dependence
of cortical and deep activity in reconstructions presented in
the Figure 1(C). Ideally, the pulses should be recovered as
independent tracks. The simulation is performed using signal-
to-noise ratios (SNR) of 25, 15, and 5 dB that are chosen to
be particularly low to highlight the differences. For each noise
level, 50 samples of measurement data were gathered and then
reconstructed. The results are displayed as time-depend curves
of averaged activity that are normalized by the maximum value
obtained at 25 dB.

In the follow-up simulation (II), we reconstruct the whole
time series of 9 sources and display the reconstructions of
the component originators at their peaks, where SNR is the
highest. The data was created using 25 dB SNR. The simulated
EEG recordings are presented in Figure 1(B).

C. Experiment Using Real SEP Data

The dataset used in the experiment was obtained from 49
years old right-handed male. The subject had no history of
psychiatric or neurological disorders and had given written
informed consent before the experiment. The institution’s
ethical review board (Ethik Kommission der Ärztekammer
Westfalen–Lippe und der WWU) approved all experimen-
tal procedures on 02.02.2018 (Ref. No. 2014-156-f-S). The
dataset contains defaced head model and montage-averaged
EEG recordings. MRI dataset, from which the head model was
constructed, was measured by MAGNETOM Prisma scanner
3.0 T (Release D13, Siemens Medical Solutions, Erlangen,
Germany) with T1-weighting (T1W) fast gradient-echo pulse
sequence. SEP measurements were performed using 80 AgCl
sintered ring electrodes (EASYCAP GmbH, Herrsching, Ger-
many) with 74 EEG channels in the 10–10 system. A notch
filter was applied in order to remove the interference caused

by harmonics of the 50 Hz power line frequency and the
60 Hz of the monitor from which the subject watched a
video during the measurement as a means to increase their
attention. A total of 1200 stimuli were recorded for averaging,
following the guidelines for spinal and subcortical SEPs [43].
We are obtaining the reconstructions at the time spots of the
major SEP components, the activity corresponding to the 14-
30 ms post-stimulus peaks P14, P16, P20/N20, P22/N22, and
P30/N30 similar to the simulated experiment described in the
previous section III-B. The dataset is openly available [44].

D. Model Parameter Selections

In this study, we use a simple random walk of the recon-
struction as the evolution model of KF that reads

xt = xt−1 + qt, (8)

where qt obeys Gaussian N (0, Qt). In practice, we let the
current density change in Gaussian distributed increments over
time at every calculation node of the head model. To select
the initial prior covariance, we use the prior estimation method
based on the concept of total variation over the present head
model [45], where the activity on individual source locations
are assumed to be identically distributed and independent.
Thus, the evolution covariance matrix is a diagonal matrix
with equal variances θ. Prior covariance is initialized equally
for both Kalman filter implementations to ensure a fair com-
parison. Applying the same technique to evolution prior, the
evolution is set to be identically and independently distributed
with variances q. Assuming that the expected L2-norm of
activity change is equal in every source location, we get the
estimation for evolution variance

q = σ1(L)
2 10−ρ/20θ/f, (9)

where σ1(L) denotes the largest singular value of the lead
field, f is the sampling frequency of the measurements, and
ρ is a free parameter relating prior variance and evolution of
prior variance in decibels. The value was set to be 34 dB
by estimating the variance of the change rate of MNE and
sLORETA reconstructions.

IV. RESULTS

A. Media Nerve SEP Simulations

The results of simulation (I), concerning the temporally
overlapping thalamo-cortical pair of sources at 20 and 22 ms,
show an inability to detect the deep source while using the
basic implementation of Kalman as seen in the blue deep
activity strength curve that over time stays zero during the
whole time series on the first row of Figure 2 for each noise
level case 25, 15, and 5 dB from left to right, respectively.
On one hand, the Kalman filter tracks the beginning of the
cortical activity (green curve) with only slight deviations on
the postcentral gyrus at 25 dB (the first on the left in the
figure) as the lighter coloring represents the standard deviation
of activity tracks at each time point. On the other hand, the
damping of the activity is slower than it should be as we can
see comparing the track to Figure 1(C). sLORETA is able to
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Fig. 2. Mean and the standard deviation of tracked brain activity time evolutions of deep (blue) and cortical (green) components in simulation (I)
under different noise levels (25, 15, 5 dB from left to right). The area covered in a lighter coloring represents the standard deviation over samples
and the darker green curve represents the sample mean. The data contains 50 noise realizations.

Fig. 3. Left: Topographic plots and cortical part of the reconstructions on peak time points of simulated SEP data for all three methods.
Reconstructions are scaled from 0 to 1 normalizing by the highest reconstruction magnitude over the whole time series. Right: Sub-cortical part of
the reconstructions on thalamus and brainstem.

detect both sources with only minor deviations at 15 and 25
dB. However, the strength of deep activity is suppressed and
non-independent. In an independent scenario, the estimated
strength of the peaked deep activity would be equal to the
cortical activity, and we would not see increased activity on the
thalamus when cortical activity appears. In the case of Kalman
coupled with the standardization, we obtain the highest activity
strength on the deep structure among the compared methods.
Also with SKF, small deviations can be observed in the results
of 15 and 25 dB.

In simulation (II), presented in Figures 3, all reconstruc-
tions display the cortical activity at the correct location for
tangential sources at 20 and 30 ms. The basic Kalman slightly
mislocalizes the radially oriented gyral source at 22 ms.
Subcortical sources at 14 and 16 ms produce a faint cortical
projection for sLORETA, which yielded overall less focal
results than with filtering approaches while SKF was the most

focal. While KF does not detect any activity in deep structures,
its standardized counterpart localizes the activities correctly
in the medulla-pontine junction at 14 ms, the bottom of the
brainstem at 16 ms, and in left thalamus at 20, 22, and 30 ms.

B. Experiment With Real SEP Data

In Figure 4, for SKF and sLORETA, the reconstruction peak
on the brainstem is located at pons for the 14 ms component
and at the bottom of the brainstem at 16 ms. In line with
the simulations, deep activities are not detected by KF. In
addition, KF localizes the cortical activity to the superior
parietal lobule while SKF and sLORETA have the cortical
maximum on the central sulcus at 20, 22, and 30 ms. Of
the two, SKF has a slightly more focal reconstruction, i.e., a
smaller spread of activity distribution. Reconstruction maxima
of the thalamic component of P20/N20 are obtained on the
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Fig. 4. Left: Topographic plots and cortical part of the reconstructions obtained from real SEP peak time points for all three methods. Right:
Sub-cortical part of the reconstructions on thalamus and brainstem.

brainstem in a different location with SKF than sLORETA.
Both of the reconstruction peaks extend to the left thalamus.
The reconstructions of subcortical activity at 22 ms found via
SKF and sLORETA are similar, and their maxima locate at the
left thalamus. A small discrepancy can again be observed in
SKF and sLORETA reconstructions of the subcortical activity
at 30 ms as the SKF peak is located at the left thalamus and
the peak of sLORETA is at the bottom of the brainstem.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a way to couple the
standardization of sLORETA with the Kalman filter in a
mathematically rigorous manner. Our formulation allows the
utilization of the entire source space without the use of the
nearest neighborhood space reduction [13], [16], simplified
mesh [11], or rank-reduced model [5], and of a common fine
spatial resolution, e.g., a space of 10.000 sources, without
the need for high-performance computing [14]. Based on
the two numerical simulations considering the traceability of
time evolution and localizability of activity peaks of synthetic
median nerve SEP originators., in comparison to sLORETA
and Kalman filter (KF), the standardized Kalman filter (SKF)
inherits the advantages of both methods while seeming to
provide a greater focality of the reconstruction as its own
ability. The results show how the KF without any aid cannot
recover deep activity from EEG recordings. This is no surprise
since KF is closely related to MNE which is notorious for
its ineptitude to recover far-field sources. The low-resolution
aspect of sLORETA manifested itself in reconstructions of
deep activities: other than reconstruction of 20 ms are so
widespread that the activity is hard to be localized in sub-
levels of thalamus and brainstem. As is the case with the
standardized MNE (sLORETA), standardization makes the
subcortical activity detectable with the Kalman filter. Also,
robustness to measurement noise obtained with standardiza-
tion in earlier studies [21], [22] and in our simulation (I)

considering trackability, is present with SKF as only slight
deviations are obtainable. Moreover, the benefits of dynamical
modeling can be seen when comparing the track of SKF to
sLORETA’s ones: SKF is the only method compared that is
able to retain the time evolution of subcortical and cortical
activity at 5 dB. Reconstructions obtained with real SEP data
seem clearer compared to the simulated cases which may
be due to a high number of averaged montages in real data
compared to 25 dB noise used in the simulated simulation
(II). Locations of cortical and subcortical peaks of sLORETA
and SKF are mostly according to the literature reviewed in
the section III-B, but 22 ms cortical peak at the central
sulcus and extending over its walls is inconclusive due to
the given options of Brodmann areas 2 and 4. Interestingly,
the basic Kalman filter mislocalizes the cortical activity. A
probable explanation could be that the earlier subcortical
components get reconstructed evenly on the cortex because
of KF’s depth bias which interferes with the estimation of
cortical dynamics causing false localization. At 20 ms, the
subcortical reconstruction of SKF and sLORETA are partly
spread over the VPL thalamus, peaking in different parts of the
brainstem. The deviated peaks, as compared to the expected
thalamic activity, might follow from the given prior, which
affects the reconstruction in weakly distinguishable areas. due
to the standardization, SKF and sLORETA might have slightly
exaggerated the depth of the gyral 22 ms originator, which is
present in each reconstruction found in the simulated exper-
iment (II). With 30 ms SKF’s peak is located in agreement
with the literature as the sLORETA peak is at the bottom of
the brainstem.

A lot of the estimation power of the Kalman filter comes
from the carefully selected evolution model, which is yet to
be unlocked since we used the random walk which is the
simplest model assumption after static dipoles in this study. A
proper evolution model could resolve some of the issues raised
from the results, e.g., slight non-independency of cortical
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and sub-cortical activities and too slowly vanishing activities.
However, even with this simple evolution model, the results
are encouraging for further experiments and the development
of evolution models tailored to neural imaging. Due to the
focality and high noise robustness of SKF, the applicability of
the method to recover epileptic sources could be investigated
as a potential future work.

APPENDIX I
DISTRIBUTION OF MAXIMUM A POSTERIORI ESTIMATES IN

THE CASE OF A GAUSSIAN POSTERIOR

Let us consider the following marginal likelihood consti-
tuting from a Gaussian measurement noise r ∼ N (0, R) and
prior x ∼ N (0, P ), stating

p (Lx+ r) =

∫
Ω

p(Lx+ r | x)p(x) dx = N (0, LPLT +R).

(10)
By taking advantage of the linearity of MNE estimation with
respect to the measurement data, we obtain the distribution for
maximum a posteriori estimate as

x̂ = PLT (LPLT +R)−1(Lx+ r)

∼ N
(
0, PLT(LPLT +R)−1LP

) (11)

noting that covariance matrices are symmetric, i.e., PT = P .

APPENDIX II
LINEAR TRANSFORMATION ON KALMAN FILTER’S

ESTIMATION

In the case of a time-depend linear and bijective transfor-
mation of the state vector zt = Mtxt, the dynamical model
should be written as

zt = Mt(Atxt−1 + qt) = MtAtM
−1
t−1zt−1 +Mtqt. (12)

When the prior is distributed as xt | y1:t−1 ∼
N (Atxt−1|t−1, Pt|t−1), we get

zt | y1:t−1 ∼ N
(
MtAtxt−1|t−1,MtPt|t−1M

T
t

)
(13)

by the linear transformation property of Gaussian distributions.
Using the distribution above, we can write the joint distribution[

zt
yt

]
∼ N

([
zt|t−1

LW−1
t zt|t−1

]
,Σ

)
, (14)

where

Σ =

[
MtPt|t−1M

T
t MtPt|t−1L

T

LPt|t−1M
T
t LPt|t−1L

T +R

]
. (15)

Next, using the Bayesian rule, we obtain

p(zt | yt) =
p(yt | zt)p(zt | y1:t−1)

p(yt)

= N
(
zt|t,MtPt|tM

T
t

)
,

(16)

where

zt|t = zt|t−1 +MtKt(yt − LM−1
t zt|t−1) (17)

and

MtPt|tM
T
t = MtPt|t−1M

T
t −MtKtStK

T
t M

T
t , (18)

while

p(xt | yt) = N
(
xt|t−1 +Kt(yt − Lxt|t−1), Pt|t

)
. (19)

Now we can see that the linear transformation Mt has carried
from the prior estimate to the posterior state, i.e., zt | yt =
Mtxt | yt for all t = 1, · · · , T .

APPENDIX III
STANDARDIZED KALMAN FILTER ALGORITHM

Considering the typical measurement model of brain imag-
ing and a general linear dynamical model

yt = Lxt + rt, (20)
xt = Atxt−1 + qt, (21)

where rt ∼ N (0, Rt) and qt ∼ N (0, Qt). Now the prediction
step is executed as the following

xt|t−1 = Atxt−1|t−1

Pt|t−1 = AtPt−1|t−1A
T
t +Qt

and the update step reads as

St = LPt|t−1L
T +Rt

Kt = Pt|t−1L
TS−1

t

xt|t = xt|t−1 +Kt

(
yt − Lxt|t−1

)
Pt|t = Pt|t−1 −KtStK

T
t

[Wt]II =
[
P

−1/2
t|t−1KtStK

T
t P

−1/2
t|t−1

]−1/2

II

zt|t = WtP
−1/2
t|t−1xt|t.

The second last step introduces the time-depend post-hoc
weights as a block diagonal matrix, where each block is
d × d matrix and d is the degree of orientational freedom of
the dipole vector. Vector zt|t gives the standardized Kalman
estimation at time step t. Estimation is obtained first by
normalizing xt|t with respect to prior and then by taking the
standardization Wt as the procedure is described in [18] for
independent sources.
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[38] T. Götz, R. Huonker, O. W. Witte, and J. Haueisen, “Thalamocortical
impulse propagation and information transfer in EEG and MEG,”
Journal of clinical neurophysiology, vol. 31, no. 3, pp. 253–260, 2014.

[39] C. Papadelis, S. B. Eickhoff, K. Zilles, and A. A. Ioannides, “BA3b and
BA1 activate in a serial fashion after median nerve stimulation: Direct
evidence from combining source analysis of evoked fields and cytoar-
chitectonic probabilistic maps,” NeuroImage (Orlando, Fla.), vol. 54,
no. 1, pp. 60–73, 2011.
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