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Abstract

Objective: To investigate the ability of standardization to reduce source localization errors and measurement noise uncertainties
for hierarchical Bayesian algorithms with L1- and L2-norms as priors in electroencephalography and magnetoencephalography
of focal epilepsy.

Methods: Description of the standardization methodology relying on the Hierarchical Bayesian framework, referred to as the
Standardized Hierarchical Adaptive Lp-norm Regularization (SHALpR).

The performance was tested using real data from two focal epilepsy patients. Simulated data that resembled the available
real data was constructed for further localization and noise robustness investigation.

Results: The proposed algorithms were compared to their non-standardized counterparts, Standardized low-resolution brain
electromagnetic tomography, Standardized Shrinking LORETA-FOCUSS, and Dynamic statistical parametric maps. Based on
the simulations, the standardized Hierarchical adaptive algorithm using L2-norm was noise robust for 10 dB signal-to-noise
ratio (SNR), whereas the L1-norm prior worked robustly also with 5 dB SNR. The accuracy of the standardized L1-normed
methodology to localize focal activity was under 1 cm for both patients.

Conclusions: Numerical results of the proposed methodology display improved localization and noise robustness. The
proposed methodology also outperformed the compared methods when dealing with real data.

Significance: The proposed standardized methodology, especially when employing the L1-norm, could serve as a valuable
assessment tool in surgical decision-making.

Keywords: Hierarchical Bayesian model, EEG/MEG, Focal epilepsy, Standardization, Source localization

1. Introduction

In drug-resistant (refractory) epilepsy, resective surgery is
seen as a viable treatment option that can achieve seizure-
freedom as the best outcome (Engel, 1996; Lüders et al.,
2006; Conte et al., 2018). A successful surgery outcome pro-
ceeds from a successful localization of epilepsy source (ES)
as a part of presurgical evaluation (Rosenow and Lüders,
2001; Zijlmans et al., 2019; Murakami et al., 2016). While
invasive electroencephalography (iEEG) recordings are pre-
ferred from the standpoint of spatial precision (Engel Jr et al.,
1981), those are limited to small brain volumes, and there-
fore, are only able to define the seizure onset zone when
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covering it (Coito et al., 2019). The location of ES can
be estimated non-invasively using electroencephalography
(EEG) and magnetoencephalography (MEG) recordings of
interictal or ictal activity on the scalp (Diamond et al., 2023;
Mouthaan et al., 2019; Plummer et al., 2008). Epileptic ac-
tivity is often estimated from averaged spikes (Leal et al.,
2008; Lie et al., 2015; Eom et al., 2016; Mouthaan et al.,
2019). Either a realistic head model (Feng et al., 2016; Aydin
et al., 2017; Neugebauer et al., 2022) or simplistic spherical
model (Bast et al., 2006; Brodbeck et al., 2011; de Gooijer-
van de Groep et al., 2013; Mégevand et al., 2014; Hall et al.,
2018; Cai et al., 2021) can be used in source estimation. Nat-
urally, the better the model of the patient’s head, the greater
the accuracy of the source localization can be (Roth et al.,
1993; Vanrumste et al., 2002; Vatta et al., 2010). For that
reason, we use realistic head models constructed using mag-
netic resonance imaging (MRI) data gathered from the pa-
tients.

Estimation of ES is often a difficult task which is high-
lighted by a non-consistent performance of methods in com-
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parison studies (Kirsch et al., 2006; de Gooijer-van de Groep
et al., 2013; Hall et al., 2018; Neugebauer et al., 2022).
Sometimes concordance of different source localization esti-
mates can be linked with the Engel 1 outcome (Rampp et al.,
2019; Li et al., 2021). The commendability of a method
is usually measured in concordance between the resection
area and reconstruction or score map, meaning overlap or
partial overlap between a value peak produced by localiza-
tion estimator and resection volume in lobar level (Kirsch
et al., 2006; de Gooijer-van de Groep et al., 2013; Hall et al.,
2018; Coito et al., 2019). Nevertheless, the definition of
concordance varies between studies (Mouthaan et al., 2019)
and it can be a gracious measure of the estimation accuracy
since it is not necessarily clear what proportion of recon-
struction is counted as the peak. Especially, the overlap of
a widespread and blur reconstruction peak, as in the case of
Standardized low-resolution brain electromagnetic tomogra-
phy (sLORETA) (Hauk et al., 2011), can be misleading in
such a context.

In ES location estimation, the most common approach
is to use a single dipole fitting, also called single equiva-
lent current dipole fitting, (Baumgartner et al., 2000; Otsubo
et al., 2001; Knowlton et al., 2006), where the estimated lo-
cation of the activity is defined to be the source point with
the greatest goodness of fit (GoF) (Fuchs et al., 1998). In
the study of Hall et al., the estimated candidate location with
a GoF of more than 70% has been seen as reliable enough
for further clinical evaluation (Hall et al., 2018). However,
the dipole fitting approach is highly sensitive to signal-to-
noise (SNR) ratio (Sekihara et al., 1996; Sakuma et al., 1999;
Scherg et al., 2002). Moreover, dipole fitting can be seen
to be overly simplistic to model complex electrical phenom-
ena such as epileptic activity (Alarcón et al., 1999; Shiraishi
et al., 2005). Indeed, the dipolar fitting is highly dependent
on the applied forward model and with regard to neural ac-
tivity as well as other factors such as the conductivity values
of the scalp, skull, and different brain tissues (Vorwerk et al.,
2019). In distributed modelling, not only dipolar activity can
be recovered, but extended source configurations can be re-
constructed too (Plummer et al., 2008). With those distribu-
tional methods, which are classified as hierarchical Bayesian
methods (HBMs) (Calvetti et al., 2009), the properties of
the brain’s activity distribution are determined according to
prior assumptions. Suitably chosen priors can improve the
prediction power of a source estimation method. Another
benefit of HBM is that the noise can be appropriately taken
into account in the modelling scheme leading to stable esti-
mations which have been demonstrated, for example, in the
non-invasive recovery of weak subcortical brain activity us-
ing sparsity priors (Krishnaswamy et al., 2017; Rezaei et al.,
2021; Sohrabpour and He, 2021).

In this study, we introduce a new robust methodology to
estimate the location of interictal epileptic discharges in fo-
cal epilepsy with the goal to localize underlying epileptic
sources. Our work is motivated by the current density stan-
dardization technique of Standardized low-resolution brain
electromagnetic tomography (sLORETA) (Pascual-Marqui,

2002), the success of sLORETA in localization of ESs (Leal
et al., 2008; de Gooijer-van de Groep et al., 2013; Coito
et al., 2019), and employment of standardization with FO-
CUSS method (Liu et al., 2005). The standardization uti-
lizes the resolution matrix of the lead field to ensure unbi-
ased and correct localization estimation in a noiseless case
when one source needs to be recovered (Sekihara et al.,
2005; Greenblatt et al., 2005; Pascual-Marqui, 2007). Even
when the measurement data is noisy, sLORETA has shown
to be robust (Saha et al., 2015; Dümpelmann et al., 2012),
i.e., the measurement noise can perturb the estimation only
slightly, which is a relevant feature for ES localization.
Moreover, sLORETA outperformed depth-weighted mini-
mum norm estimate (wMNE) in a comprehensive simulated
study (Grech et al., 2008), and standard methods with statis-
tical parametrization have been shown to localize deep brain
activity while wMNE mislocalizes (Attal and Schwartz,
2013). In a recent study of epilepsy source reconstruc-
tion via high-density EEG, sLORETA estimates epilepsy
sources significantly smaller distances to resection volumes
than wME (van de Velden et al., 2023). These findings fur-
ther motivated us to focus on statistical standardization and
normalization instead of depth-weighting. Standardization
is a post-hoc weighting of the solution obtained from a lin-
ear or linearized localization algorithm to obtain a solution
that is free from lead field-induced bias. As a demonstration
of that, Standardized FOCUSS, referred to as Standardized
Shrinking LORETA-FOCUSS (SSLOFO), can estimate the
location of brain activity better than its basic counterpart (Liu
et al., 2005) and it has been successfully used to reconstruct
the P300 generator of event-related potentials aligning with
functional neuroimaging studies (Schimpf and Liu, 2008).
The development and theoretical research of standardization-
type post-weighting methods has recently attracted interest
in other inversion areas as well (Elvetun and Nielsen, 2021).
These observations motivated us to couple the standardiza-
tion with a recently introduced HBM that has conditionally
exponential prior and has been shown to localize cortical and
sub-cortical activity simultaneously with a high measure-
ment noise robustness in numerical cases (Lahtinen et al.,
2022) to investigate whether similar reconstruction improve-
ments can be obtained as with the standardization of Min-
imum norm estimate and FOCUSS. Utilizing the Bayesian
framework allows us to have freedom in the prior designs
that affect the properties of the estimation, potentially en-
abling a more realistic solution. The investigated HBM has
a prior parameter for adjusting the focality of the solution.
The aim of coupling these methodologies is, first, to ver-
ify through simulations that the combined method is robust
to additional measurement noise and examine what happens
to the prior-based focality in the presence of standardiza-
tion. Then, validate the method’s ability to localize the focal
epileptic source in patients.

We hypothesize that the epileptic activity can be explained
best by a focal solver because, at the onset of a spike in fo-
cal epilepsy, one would assume a circumscribed generator.
Otherwise, epilepsy surgery may not be viable. In this pa-
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per, the method is called by its algorithmic name, Hierarchi-
cal Adaptive Lp Regression (HALpR), and the standardized
counterpart as Standardized Hierarchical Adaptive Lp Re-
gression (SHALpR). We analyze the effect of the standard-
ization with simulated data of focal reference sources and
real presurgical epilepsy data using head models constructed
from MRI-data of two patients. Both of the patients under-
went surgery and were seizure-free during the follow-up pe-
riod that lasted more than four years. Standardized hierarchi-
cal methods are compared with their non-standardized coun-
terparts and the noise-normalized dynamic statistical para-
metric map (dSPM) (Dale et al., 2000). Similar to standard-
ized methods, dSPM aims to compensate for the depth bias
with its own post-hoc weighting (Lin et al., 2006). dSPM,
SSLOFO, and sLORETA are investigated as alternative dis-
tributional methods utilizing statistical parameterization that
can be classified as HBMs (Wipf and Nagarajan, 2009).
Hence, the purpose of this study partly includes the investi-
gation of localization improvement of HBM when standard-
ization is applied. For the sake of clarity and concrete results,
we use the numerical Euclidean distance between the loca-
tion of the reconstruction maximum and the boundary of the
surgical resection volume. The precision of the measure is
assured by patients’ small epileptogenic lesions due to focal
cortical dysplasia (Wellmer, 2018), prompted by the small
size of the resection volumes, see sub-section 3.1.

Our results suggest that (1) the standardization improves
the localization and noise robustness of the hierarchical
Bayesian inverse method with both of the examined ma-
jor prior degrees 1 and 2 corresponding to L1- and L2-
penalization (HAL1R/HAL2R), respectively and that (2)
SHAL1R can localize the activity inside the resection area
within 1 cm accuracy more often than any other method with
both numerically simulated and patient data.

2. Methodologies

The source estimation problem can be considered as a task
to solve the ill-posed linear equation

y = Lx + n, (1)

where the vector y ∈ Rm represents measurement data,
L ∈ Rm×n is the lead field matrix, n is Gaussian distributed
measurement noise, and x ∈ Rn is the brain activity to be
reconstructed. The model dimension m indicates the num-
ber of measurement sensors and n is the number of sources
(calculation nodes) in the source space multiplied by the ori-
entational degrees of freedom.

We have used the Zeffiro Interface (ZI) toolbox for elec-
tromagnetic brain imaging (He et al., 2019) to calculate the
lead fields. The forward model produced via ZI utilizes the
finite element method (FEM) and the current conservation-
based H(div) approach (Pursiainen et al., 2016; Bauer et al.,
2015; Miinalainen et al., 2019). The finite element mesh was
constructed from T1-weighted MRI sequences. The segmen-
tation of the brain volumes was performed using FreeSurfer

software1 and subcortical structures were extracted from
FreeSurfer’s Aseg atlas. The finite element (FE) mesh of
patients’ heads was created with 1 mm resolution. The head
model is based on a multi-compartment conductivity distri-
bution composed of altogether 18 different cortical and sub-
cortical segments. The conductivity values were selected fol-
lowing Dannhauer et al. (2011), associating the conductivity
of the subcortical nuclei as e.g. in Rezaei et al. (2021) and
Lahtinen et al. (2022). The conductivities are presented in
Table 1. Anatomy has been taken into account as a hard
constraint, meaning that there are no epileptic sources in the
white matter.

Tissue Value (S/m)
scalp 0.43
skull 0.0064
cerebrospinal fluid 1.79
white matter 0.14
grey matter 0.33
sub-cortical structures 0.33

Table 1: Conductivity values of used compartments in the forward model.
The values are based on the study of Dannhauer et al. (Dannhauer et al.,
2011).

To reconstruct the distributed current density or simply lo-
calize the brain activity, one needs to select an inversion al-
gorithm for the task. Each method is based on specific a pri-
ori assumptions about the nature of brain activity. Next, we
introduce the inversion methods investigated in this study.

2.1. Dynamic statistical parametric maps (dSPM)
Statistical parametric maps are methods to make infer-

ences about regional effects (Flandin and Friston, 2019). In
the case of dynamical statistical parametric mapping, the sta-
tistical scores for every source point i = 1, ..., n are obtained
by noise-normalizing the dipole strength

zi =
eT

i L†y√
eT

i L†C(L†)T ei

, (2)

where ei is ith unit basis vector, L† = PLT (LPLT + C)−1,
P ∈ Rn×n is the source covariance and C ∈ Rm×m is the
measurement noise covariance. These statistical parameters
are by definition t-distributed under the null hypothesis of no
dipolar activity at the ith source location (Dale et al., 2000).

2.2. Standardized low-resolution brain electromagnetic to-
mography (sLORETA)

sLORETA is a standardized minimum norm estimation
(MNE) approach, where the MNE estimate (Hämäläinen and
Ilmoniemi, 1994) is weighted by the diagonal or block diag-
onal elements of the resolution matrix R corresponding to the
MNE problem (Pascual-Marqui, 2002). The resolution ma-
trix or point spread function is a linear map between the true

1https://surfer.nmr.mgh.harvard.edu/
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x(true) and estimated x(est) reconstruction under the assump-
tions that the linearized model L is correct and the random
variables are distributed as y | x(true) ∼ N(Lx(true),C) and
x(true) ∼ N(0, P), where C ∈ Rm×m is measurement noise
covariance and P ∈ Rn×n is the prior covariance matrix, i.e.,

x(est) = PLT
(
LPLT +C

)−1
Lx(true) = Rx(true), (3)

when MNE and sLORETA are interpreted within the
Bayesian framework (Wipf and Nagarajan, 2009). The stan-
dardized estimation can be written as the power of source
estimation using the inverse of diagonal blocks of the reso-
lution matrix, (

x(est)
I

)T
R−1

II x(est)
I , (4)

where index set I represents the vector indices corresponding
to a source location. The dimension of the set I depends on
the number of orientational degrees of freedom on a dipole.

2.3. Standardized Shrinking LORETA-FOCUSS (SSLOFO)
Aiming at a method that combines the localization accu-

racy of sLORETA with the sparsity of FOCUSS, Liu et al.
proposed standardized FOCUSS (Liu et al., 2005). The ap-
proach differs from the FOCUSS’s iterations by updating the
resolution matrix on each step as follows:

R(k+1) = P(k)LT
(
LP(k)LT +C

)−1
L, (5)

where the prior covariance P(k) = W (k)(W (k))T with

W (k) =Diag
((∥∥∥L:,1

∥∥∥−1
, · · · ,

∥∥∥L:,n
∥∥∥−1

))
×

W (k−1)Diag
((∣∣∣x(k−1)

1

∣∣∣ , · · · , ∣∣∣x(k−1)
n

∣∣∣)) . (6)

Shrinking of the reconstructed current distribution is
achieved by first average smoothing the reconstruction x(k)

over a given range and excluding those source locations
where the estimated current density amplitude is smaller than
p percents of the estimated maximum current density ampli-
tude. The algorithm is given in Appendix A.

2.4. Hierarchical Adaptive Lp Regularization (HALpR)
Formulation of an inverse method using a hierarchical

Bayesian model (HBM) allows us to examine the brain ac-
tivity distribution statistically and to explain the given prior
assumptions in a probabilistic form as a prior distribution.
This article contemplates the HBM based on a Gaussian like-
lihood, conditionally exponential prior, and Gamma hyper-
prior, thus giving us the posterior distribution

p(x,γ | y) ∝ exp
(
−

1
2

(Lx − y)T C−1 (Lx − y)
)
×

exp
(
−

∥∥∥Diag(γ)1/px
∥∥∥p

p

)
Ga(γ, κ, θ),

(7)

where C is a noise covariance matrix, γ is a hyperparameter
vector, κ is the shape parameter, θ is the scale parameter, and
p is called the prior degree which is used for determine the
sparsity of the prior (Lahtinen et al., 2022). A reconstruction

of the brain activity is obtained by evaluating the maximum
a posteriori (MAP) estimate. On one hand, if one selects
p = 2, the algorithm resembles MNE with reweighted reg-
ularization (Daubechies et al., 2010) in which fixed-point it-
eration attempts to gradually improve the regularization, ac-
cording to Calvetti et al. (2009), which is computationally
rather light. On the other hand, in a case where p , 2 we
face a mixed-norm minimization problem for which many
algorithms have been developed (Haufe et al., 2008). How-
ever, in a high-resolution FEM modelling scheme, the di-
mension of the problem is high, and, therefore, the compu-
tational burden can often be too much. For that reason, we
perform fixed-point iterations with a Gaussian prior density
that approximates the exponential prior that is shown to con-
verge to L1 regularized solution (Calvetti et al., 2019). In
that way, we can obtain the reconstruction via a linear map-
ping. The fixed-point iteration is continued until the duality
gap reaches a certain tolerance. The stopping criterion for
the duality gap approach is described in Appendix C.1. Be-
cause the estimate is obtained as a tuple (x,γ), we need to
use a sequential algorithm to update both variables. In this
study, we use the Iterative alternating sequential (IAS) al-
gorithm for updating the hyperparameter γ (Calvetti et al.,
2009, 2020).

2.5. Standardization of Hierarchical Adaptive Lp Regular-
ization (SHALpR)

Here we view standardization as a technique to transform
the recovered parameters to statistical scores that are free
from the lead field-induced localization bias when the task
is to localize a single source. From this point of view, there
are no restrictions for the applied linear inverse model.

To employ the standardization with the HBM, we use an
approach similar to SSLOFO, resulting in the following up-
dating rules for IAS iteration

γ(k)
i =

κ + 1/p − 1∣∣∣∣x(k)
i

∣∣∣∣p + θ for i = 1, ..., n,

x(k+1) = arg min
x

1
2

(Lx − y)T C−1 (Lx − y) +
n∑

i=1

γ(k)
i |xi |

p

 ,
P(k) =

1
2

Diag
((∣∣∣∣x(k+1)

1

∣∣∣∣2−p
/γ(k)

1 , · · · ,
∣∣∣∣x(k+1)

n

∣∣∣∣2−p
/γ(k)

n

))
,

R(k+1) = P(k)LT
(
LP(k)LT +C

)−1
L,

z(k+1)
I =

(
R(k+1)

II

)−1/2
x(k+1)

I .

(8)

The derivation of the formulation is presented in Appendix
B. We have decided to use the matrix square root as the de-
composition method for block-diagonal matrix R−1

II , as ad-
vised in Pascual-Marqui (2007), to obtain z because the ma-
trix is not necessarily positive semi-definite if the number of
dimensions is greater than one. By allowing the vector repre-
sentation for the standardized final estimation, then the direc-
tion of the dipole vectors can also be estimated if necessary.
The whole inversion algorithm is presented in Appendix C.
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Figure 1: Butterfly plot of EEG (left) and MEG (right) recordings. The vertical line shows the rising flank as the picked epoch for reconstruction. The time
point is chosen to balance the signal-to-noise ratio and the focality of the source, which weakens over time as the epileptic activity spreads in the brain structure.

3. Experimental data and simulations

The experiments conducted focused on reconstructing the
activity generated in the resection revealing the source of fo-
cal epilepsy. The following sections give the patient descrip-
tions, the observed non-invasive data with its pre-processing,
and experiments with the real data and simulations in more
detail.

3.1. Patient profiles
Patient 1 was 29 years old at the time of the EEG and

MEG measurements. She suffered from pharmaco-resistant
epilepsy. Her semiology was a somatosensory aura of the left
arm followed by tonic-clonic movements of the left arm and
hand. Data were evaluated and 248 interictal spikes were
marked by a board-certified epileptologist based on non-
invasive measurements. MRI measurements revealed focal
cortical dysplasia (FCD) IIb of 1.2 cm3 lesional volume at
the bottom of the sulcus according to high-resolution 3D-
FLAIR (Fluid Attenuation Inversion Recover) and ZOOMit
in the right superior parietal lobule. It was confirmed as a po-
tential epileptic source by EEG and MEG source analysis of
the marked spikes. The lesion and surrounding tissue (about
8 cm3) were surgically removed in February 2018. The pa-
tient was seizure-free for four years and the last follow-up
took place in 2022.

Patient 2 was 17 years old at the time of EEG and MEG
measurements. He had refractory seizures out of sleep, in-
cluding vocalization followed by right-sided head version,
asymmetrical tonic stiffening with right arm extension, and
generalized tonic-clonic seizures. A small (about 0.4 cm3)
FCD type IIb lesion was suspected in the anterior part
of the left superior frontal sulcus on MRI based on PET
(positron emission tomography) and EEG/MEG source anal-
ysis elicited from 54 marked spikes. Intracranial stereo-EEG
recordings with six depth electrodes implanted in and around
the MRI abnormality revealed interictal activity typical for a
FCD with seizure onset from the abnormality. The patient
was subsequently treated with stereotactically guided ra-
diofrequency thermoablation in August 2017 (Wellmer et al.,
2016), coagulating about 1.4 cm3. The patient was seizure-
free for six years and the last follow-up took place in 2022.

The study was conducted according to the guidelines of
the Declaration of Helsinki. Both subjects of this study have
given informed consent.

3.2. Clinical EEG and MEG data

A standard EEG system of 74 channels including basal
channels and common average reference was used for both
patients. EEG electrode positions were digitized using
a Polhemus digitizer (FASTRAK, Polhemus Incorporated,
Colchester, VT). The MEG system (CTF Omega 2005
MEG by CTF, https://www.ctf.com/, last accessed on
26.10.2023) had 275 gradiometers, 4 of which were defec-
tive, and 29 reference sensors. Non-working channels were
excluded when observed. The interference of magnetic fields
caused by distant locations was reduced using the MEG ref-
erence coils to calculate first-order synthetic gradiometers.
During the acquisition, the head position inside the MEG
was tracked via three head localization coils placed on the
nasion, left, and right distal outer ear canal. To get the
best concordance with the MRI, the measurements were per-
formed in the supine position, the patients were also mea-
sured in the supine position inside the MEG to reduce head
movements and to prevent cerebrospinal fluid effects due to a
brain shift when combining EEG/MEG and MRI (Rice et al.,
2013). The data were measured with a sampling rate of 2400
Hz.

3.3. Data pre-processing

The epileptic spike data was pre-processed using Field-
Trip (Oostenveld et al., 2011). The data was filtered using a
two-pass zero-phase Butterworth Infinite Impulse Response
Convolution (IIRC) filter of sixth order, where the high-pass
was 2 Hz, the low-pass 80 Hz, and a notch filter was 50 Hz.
Trials were created with 0.5 s of data before and after the
peak of the spikes. These trials were checked for similar to-
pographies and then averaged to improve the signal-to-noise
ratio (SNR) of the interictal spike patterns.

On selection of the time epoch, one needs to balance be-
tween the uncertainty following the spike propagation and
low signal strength on the spike onset. Thereby, the middle
point of the rising flank has been recommended as the time
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point for localization (Lantz et al., 2003) and hence used for
the patient data. The selected time points are displayed as
vertical lines over patients’ EEG and MEG recordings in Fig-
ure 1.

3.4. Setup of the synthetic experiments

Using the goodness of fit (GoF) measure of the dipole scan

gi = 1 −

∥∥∥y − LiL+i y
∥∥∥2

∥y∥2
, (9)

where Li is the sub-lead field matrix of ith source location
and (·)+ denotes pseudo-inverse, it seems that the EEG mea-
surements could be modelled reasonably well by a single
dipole: by having GoF scores 0.97 for Patient 1 and 0.85 for
Patient 2 on the scale from 0 to 1. However, MEG measure-
ments that describe essentially the same activity have GoF
values of 0.66 and 0.36, respectively. Thereby, one could
conclude that the activity cannot be explained as a point-
like source particularly well (Hall et al., 2018; Neugebauer
et al., 2022; Unnwongse et al., 2023). Hence, we use mul-
tiple Gaussian blurred sources to simulate the epileptic ac-
tivity. Blurring also partly prevents us from reinforcing the
assumptions behind the forward model, i.e., moving us fur-
ther away from an inverse crime.

For the first experiment setup, we aim to create synthetic
EEG and MEG data that simulates as well as possibly to
the epilepsy measurements of both patients and that origi-
nate from a source configuration that is smoothly distributed
in the resection volumes. Smoothness can be achieved by
Gaussian blurring of point sources and the similarity be-
tween the synthetic and measured data depends on the num-
ber of smoothed dipolar sources used in measurement mod-
elling. First, we define the Gaussian blur matrix G that
spreads the activity of each source position inside the resec-
tion area on neighboring source points. After that, we calcu-
late the least absolute deviation between modelled and real
measurement data, i.e., minimize ∥LGd − y∥1, with respect
to d. This way, vector Gd gives us a data-describing blurred
brain activity distribution where every calculation node in-
side the resection has a non-zero contribution to norm mini-
mization including dipolar vectors that cancel each other out
while projected to measurements due to the ill-posed nature
of the system. To avoid the condition described above, we
select 20 % of the dipoles from d having the highest con-
tribution in the norm minimization. Next, recalculate the
minimization problem for the sub-system induced by the
most fitting dipoles represented in dsub. The percentage is
selected so that the relative error is less than 1 % for each
case. In the end, the activity to be reconstructed is Gsubdsub.
Reconstruction is obtained using previously presented meth-
ods HAL2R, HAL1R, SHAL2R, SHAL1R, SSLOFO, and
sLORETA without filtering or altering the lead field through
smoothing or other means.

That way, we decrease the number of redundant dipoles
and avoid over-fitting. The signal-to-noise ratio is assumed
to come from the fitting to actual noisy data, which is why

the simulated noise component is not added to this experi-
ment. Figure 2 shows real and synthetic data side-by-side.
To avoid an inverse crime, we have removed 30 % of ran-
domly selected source points from the head models. The
main point of the experiment is to verify that the reconstruc-
tion obtained using the measurement modeling scheme is in
accordance with the results we get with real data. Therefore,
this experiment serves as a validation for the following, sec-
ond numerical experiment.

The location estimate is decided by the commonly used
maximum principle which is a suggested approach with dis-
tributed methods like MNE and sLORETA (Hämäläinen and
Ilmoniemi, 1994; Fuchs et al., 1999; Sekihara and Nagara-
jan, 2008; Samuelsson et al., 2021), meaning that we de-
cide the location of reconstruction maximum to be the es-
timated location of the activity. According to (Pascual-
Marqui, 2002), estimating the source by maximum compo-
nent is the core principle for standardization as the recovered
parameters of inversion are statistical scores assigned to each
source point individually, not current density distributions.
In this sense, it is similar to spatial filtering or dipole scan-
ning with GoF measure but different in the sense that the
stated inversion method like MNE, FOCUSS, or presented
HBM allows the source to have an extended nature in which
the center is evaluated via maximum principle.

Here we use the Euclidean distance from the location es-
timation to the nearest boundary of resection volume as the
measure of the localization error. Additionally, we calcu-
lated the earth mover’s distance (EMD) (Kantorovich, 1940;
Vaserstein, 1969; Rubner et al., 1998) as a measure of re-
construction’s spread outside the resection volume. The
earth mover’s distance describes the work needed to push the
whole reconstruction inside the resection volume and match
the shape of the true activity distribution (Lucka et al., 2012;
Lahtinen et al., 2022).

In the second synthetic experiment, we aim to verify that
the standardization applied to the studied HBM leads to
noise robustness similar to the case of MNE. Additionally,
we desire that the experiment setup would reflect the pa-
tients’ epilepsy data as much as possible. For this reason,
we use a single blurred dipole that best explains the data for
25 % of the sensors nearest to the resection area. This pro-
portion of optimally selected subset of electrodes was found
to increase the estimation accuracy compared to the full set
of electrodes (Soler et al., 2022). In fact, the SNR is poor
for channels far from the source of the activity, suggesting
that appropriate channel reduction can increase the clarity of
the activity we are seeking via reverse engineering. More-
over, principles of linear inversion imply that the polarity of
the measurements does not affect the localization when the
location estimation is determined by the maximum of the re-
construction magnitude. The reconstructed blurred dipolar
activity is assumed to present a noiseless activity. To ensure
a fair comparison, we use the same random number gener-
ator seed in generating an additional Gaussian noise for 50
samples used for each noise level and all methods. The SNR
levels used are 30, 20, 10, and 5 dB. To investigate the sta-
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Patient 1
Real Simulated

Patient 2

Figure 2: Patient measurements (left) and simulated measurements (right)
of the epoch projected and interpolated on the scalp models. The first row
of both sets presents EEG measurements and the second row displays MEG
measurements.

tistical significance, we use the Siegel-Tukey test which is a
non-parametric test for equal variability (Siegel and Tukey,
1960). In this case, we want to test does the standardization
decreases the variability of the estimation error, i.e., whether
it reduces the effect of randomized noise.

3.5. Localization result visualization

To visualize the reconstruction spreads in localization ex-
periments with simulated and real data, we utilize the volu-
metric visualization of ZI providing images including skull,
white and grey matter layers, and sub-cortical structures,
e.g., brainstem, thalamus, and cerebellum. The white mat-
ter layer is presented with a white color since no activity can
be placed there for physiological reasons discussed at the be-
ginning of Section 2. The reconstructions are visualized in
three main cutting planes (transversal, coronal, and sagittal).
Locations of the planes are set by the location of the maxi-
mum reconstruction magnitude. From the perspective of one
orthogonal plane, the locations of the other two planes are
shown with horizontal and vertical lines. Their intersection
points to the maximum reconstruction point.

For visual clarity and to give a sense of the spread dif-
ference across the localization methods, the visual presenta-
tions of the reconstructions are thresholded to 70 % (about
3 dB) below the maximum strength following a trend set by

(Li et al., 2016) in their study of epilepsy source localization.
The thresholding is not used as a post-processing technique
in calculations of the metrics.

3.6. Inverse model parameters

Investigated HBMs and SSLOFO have parameters to be
set by the user. To have a reliable picture of the effects of
standardization, we set the parameters for non-standardized
and standardized methods to be the same. With all HBM
methods, we used 20 IAS iterations that have been shown
to be sufficient for convergence (Lahtinen et al., 2022).
Rezaei et al. have suggested a method for hyperparame-
ter selection for HBM with conditionally Gaussian priors
(Rezaei et al., 2020) that we utilize with HAL2R, SHAL2R,
and sLORETA. Unfortunately, such an approach is not
highly applicable with a method of mixed norms, therefore,
(S)HAL1R hypermodel’s parameters are selected via the se-
lection method described in (Lahtinen et al., 2022). For
SSLOFO, we have set the space reduction percentage to 10
% suggested by Liu et al. (Liu et al., 2005), and the smooth-
ing radius is chosen to be 1 cm.

3.7. Supplementary material

In addition to the aforementioned analysis, a numerical
experiment to reconstruct a deep (mesocortical) source in
the posterior cingulate cortex was conducted (Supplemen-
tary Materials 1.1) together with a test using real data in
which the source space was limited into the cerebral cor-
tex omitting the cerebellar cortex and subcortical structures
(Supplementary Materials 1.2) which, otherwise, were in-
cluded in the active part of the domain. The results of these
additional numerical experiments have been included as sup-
plementary material of this study.

4. Results

We have conducted an experiment to localize the epilep-
tic source based on non-invasive EEG and MEG recordings
using the resection area as the ground truth of location. Ad-
ditionally, we simulated the epileptic activity on the resec-
tion area by blurring a dipolar point activity with a Gaussian
convolution kernel to cover the whole area. Localization re-
sults obtained with selected inversion methods are consistent
with the real and synthetic cases. We also conducted an ex-
periment of multiple signal-to-noise ratios to verify that the
standardization leads to more noise-robust localization for
the studied HBM. Meaning, localization estimates vary less
due to measurement noise and the increase of it.

4.1. Noise robustness experiment

Increased robustness of HBMs after standardization is
obtainable for both patients’ resection volumes and both
modalities in the box plots presented in Figure 3 achieving
statistical significance examined with Siegel-Tukey test, see
Table 2. Significant noise reduction can be seen in most of
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Figure 3: Results of the noise robustness test performed using simulated data generated using Gaussian blurred activity over the resection areas of two patients’
head models. Localization error (y-axis), measured as the Euclidean distance from the boundary of the resection volumes, is displayed in millimeters. Signal-
to-noise ratios (x-axis) are displayed in decibels. The thick line on the boxes indicates the median. Each data group with a certain signal-to-noise ratio contains
50 samples. Compared methods are (standardized) hierarchical adaptive Lp regression ((S)HALpR) for two penalty degrees L1 and L2, standardized Shrinking
LORETA-FOCUSS (SSLOFO), standardized low-resolution brain electromagnetic tomography (sLORETA), and dynamic statistical parametric maps (dSPM).

the experimented cases except S-/HAL2R comparison us-
ing Patient 1 head model at 15 dB SNR and lower, and S-
/HAL1R comparison using Patient 2 head model at 15 and
5 dB both for EEG. Particularly, we can see that in the re-
duction of the interquartile range (size of colored boxes)
comparing non-standardized HBMs HAL2R and HAL2R
to their standardized counterparts SHAL2R and SHAL1R.
The change in robustness is the most noticeable with L2-
penalized HBM, HAL2R, using MEG data. However, the
measurement noise robustness of the compared methods was
deemed inferior compared to the basic sLORETA at the
noise level of 5 dB. A similar effect can be obtained also for
SSLOFO and dSPM. The median localization accuracies of
the standardized HBMs, indicated by darker horizontal lines
on boxes, are less than 1 cm in 10 dB and above for Patient
1. In the case of Patient 2, the same is true in 20 and 30 dB.
Localization error of L1-penalized version is slightly above
1 cm. Non-standardized counterparts can have localization

errors less than 1 cm at high SNR levels but not consistently
throughout the studied cases. MEG as the modeling scheme
appears more favorable for non-standardized methods con-
sidering the accuracy and noise robustness. With EEG data,
SSLOFO demonstrates comparably high localization accu-
racy with 15 dB or greater SNR, while for 10 dB or lower
SNR, the results deteriorated. On the other hand, the method
exhibits an error larger than 3 cm in 154 cases out of 300
for the Patient 1 model and 288 out of 300 for the Patient 2
model with MEG data all SNR levels combined. The basic
sLORETA and dSPM have the highest noise robustness of
all the methods compared. Regardless, localization accuracy
of dSPM is mostly on the same level as non-standardized
HAL1R, and sLORETA is able to produce significant mislo-
calizations as outliers, indicated as individual dots, starting
from 15 dB in the case of simulated Patient 2 EEG.
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Figure 4: Highest 70 % of reconstructed source strengths and reconstruction maximum-based localization estimates for simulated Patient 1 data visualized on
the main orthogonal planes of the volumetric head model. The dot marker indicates the location estimation and the vertical and horizontal lines represent the
placement of the other two cut planes. The resection area is displayed in turquoise color. Turquoise borders are visible in each plane to indicate the location of
the resection. Reconstructions are normalized such that the value 1 indicates the highest estimated magnitude. The color bar on the right shows the color-value
correspondence and the threshold. The names of the cut planes are displayed on the top of the image columns and the name of the method corresponding to
each row is shown on the left. Labels L/R indicate the anatomical left and right of the patient. In sagittal views, L and R represent the displayed hemisphere.
The hemisphere is chosen by the estimated location. Compared methods are (standardized) hierarchical adaptive Lp regression ((S)HALpR) for two penalty
degrees L1 and L2, standardized Shrinking LORETA-FOCUSS (SSLOFO), standardized low-resolution brain electromagnetic tomography (sLORETA), and
dynamic statistical parametric maps (dSPM).

4.2. Simulated localization experiment

In EEG source localization (left column on Figures 4 and
5), methods’ localization accuracy varies between 1 mm to
4.5 cm for synthetic data. Only SHAL1R and sLORETA
of the methods compared have localization accuracy that is
consistently less than 1 cm, as shown in Table 3. Moreover,
SHAL1R and sLORETA localization estimate points mainly
on the same mesh node.

In the left-hand side of Figure 4, SHAL2R and sLORETA
reconstructions of the synthetic Patient 1 EEG epoch extend
between superior frontal lobes and reach sub-cortical areas.

Whereas the reconstruction via SSLOFO extends slightly to-
wards the central gyrus. dSPM reconstruction peak is lo-
cated at the thalamus and extends over the region of true ac-
tivity. HAL1R and HAL2R point falsely to the right tem-
poral lobe. MEG reconstruction of SHAL1R, SHAL2R,
and sLORETA formed false activity concentration extend-
ing on the cerebellum and brainstem. Unlike SHALpRs,
sLORETA does not recover the actual location of the ac-
tivity at all. SSLOFO produced focal reconstruction about
2 cm away from the resection towards the longitudinal fis-
sure. dSPM have a widespread reconstruction over the right
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Figure 5: Highest 70 % of reconstructed source strengths and reconstruction maximum-based localization estimates for simulated Patient 2 data visualized on
the main orthogonal planes of the volumetric head model. The dot marker indicates the location estimation and the vertical and horizontal lines represent the
placement of the other two cut planes. The resection area is displayed in turquoise color. Turquoise borders are visible in each plane to indicate the location of
the resection. Reconstructions are normalized such that the value 1 indicates the highest estimated magnitude. The color bar on the right shows the color-value
correspondence and the threshold. The names of the cut planes are displayed on the top of the image columns and the name of the method corresponding to
each row is shown on the left. Labels L/R indicate the anatomical left and right of the patient. In sagittal views, L and R represent the displayed hemisphere.
The hemisphere is chosen by the estimated location. Compared methods are (standardized) hierarchical adaptive Lp regression ((S)HALpR) for two penalty
degrees L1 and L2, standardized Shrinking LORETA-FOCUSS (SSLOFO), standardized low-resolution brain electromagnetic tomography (sLORETA), and
dynamic statistical parametric maps (dSPM).

cerebellum, reaching the bottom of the temporal lobe and
the longitudinal fissure. In contrast to EEG, the activity lo-
calization of non-standardized HAL1R and HAL2R are less
than 1 cm when reconstructing using MEG data (right-hand
side of Figure 4). Both HBMs reconstructions gained spread
when the standardization was applied to them. Considering
Patient 2 in Figure 5, most EEG reconstructions extend be-
tween the superior frontal lobes, except dSPM which shows
activity on the thalamic area and cingulate cortex. The su-
perior frontal lobe extension can be obtained in sLORETA
and SHAL2R for MEG. Localization estimations of HAL1R
and sLORETA are further on the anterior than the resection

and the SSLOFO and dSPM estimates are too much on the
lateral, see right-hand side of Figure 5.

Considering earth mover’s distances in Table 3, SSLOFO
has the smallest spread due to its source space shrinkage
procedure. Comparing standardized HBMs to sLORETA,
HBMs have generally smaller earth mover’s distances even
in cases where the localization is better for sLORETA. EMD
for dSPM is the largest almost in every case except Patient 1
MEG, where sLORETA has the largest value.
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Figure 6: Highest 70 % of reconstructed source strengths and reconstruction maximum-based localization estimates for the measured Patient 1 epilepsy data
visualized on the main orthogonal planes of the volumetric head model. The dot marker indicates the location estimation and the vertical and horizontal lines
represent the placement of the other two cut planes. The resection area is displayed in turquoise color. Turquoise borders are visible in each plane to indicate
the location of the resection. Reconstructions are normalized such that the value 1 indicates the highest estimated magnitude. The color bar on the right
shows the color-value correspondence and the threshold. The names of the cut planes are displayed on the top of the image columns and the name of the
method corresponding to each row is shown on the left. Labels L/R indicate the anatomical left and right of the patient. In sagittal views, L and R represent
the displayed hemisphere. The hemisphere is chosen by the estimated location. Compared methods are (standardized) hierarchical adaptive Lp regression
((S)HALpR) for two penalty degrees L1 and L2, standardized Shrinking LORETA-FOCUSS (SSLOFO), standardized low-resolution brain electromagnetic
tomography (sLORETA), and dynamic statistical parametric maps (dSPM).

4.3. Localization experiment with clinical data
In the case of Patient 1, SHAL1R, SHAL2R, and

sLORETA provide consistent localization estimates for EEG
and MEG (Figure 6). Reconstructions of EEG recordings ex-
hibit focal activity while most MEG reconstructions present
activity that extends to the opposite hemisphere, except
HAL1R and HAL2R. Reconstructed EEG data of Patient
2 (the left-hand side of Figure 7) extends to the ventral ar-
eas near the hypothalamus in sLORETA and SHAL1R. Ac-
tivity between superior frontal lobes is obtained with every
method for EEG and with SHAL1R, SSLOFO, sLORETA,
and dSPM for MEG, as shown in the right-hand side of

Figure 7. It is worth noting that activity extends of this
kind are obtained in simulated cases, where the true activ-
ity is limited inside the resection volume. The focality of
the L2-penalized HBM’s reconstruction is better when stan-
dardization is applied, but a significant spread can be ob-
tained for the standardized L1-penalized method (SHAL1R)
which produces a focal estimation without standardization.
Whereas sLORETA has the most spread reconstruction.

In Patient 2, the activity is not localized from real data as
accurately as in synthetic cases, see Figures 5 and 7. Most
MEG-based source localization estimates are concentrated
in a small region including the Broca’s area while SSLOFO
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Figure 7: Highest 70 % of reconstructed source strengths and reconstruction maximum-based localization estimates for the measured Patient 2 epilepsy data
visualized on the main orthogonal planes of the volumetric head model. The dot marker indicates the location estimation and the vertical and horizontal lines
represent the placement of the other two cut planes. The resection area is displayed in turquoise color. Turquoise borders are visible in each plane to indicate
the location of the resection. Reconstructions are normalized such that the value 1 indicates the highest estimated magnitude. The color bar on the right
shows the color-value correspondence and the threshold. The names of the cut planes are displayed on the top of the image columns and the name of the
method corresponding to each row is shown on the left. Labels L/R indicate the anatomical left and right of the patient. In sagittal views, L and R represent
the displayed hemisphere. The hemisphere is chosen by the estimated location. Compared methods are (standardized) hierarchical adaptive Lp regression
((S)HALpR) for two penalty degrees L1 and L2, standardized Shrinking LORETA-FOCUSS (SSLOFO), standardized low-resolution brain electromagnetic
tomography (sLORETA), and dynamic statistical parametric maps (dSPM).

and dSPM estimates are almost in the center of the model.
Considering the low goodness of fit (0.36) and the visual dis-
similarity of the fitted multiple blurred sources (Figure 2),
poor localization to the resection area is expected. With
non-standardized HBMs, we obtained overall similar recon-
structions. When standardization is applied to the methods,
the reconstruction of SHAL1R has more similarities with
sLORETA reconstruction than SHAL2R.

The localization of the brain activity for Patient 1 ended
up being more consistent overall. Under one-centimeter lo-
calization accuracy was reached via HAL2R, standardized
HBMs, and sLORETA for both EEG and MEG. HAL1R and

SSLOFO were able to localize the resection volume with
EEG only, localization error being 2.0 and 0 mm, respec-
tively. The greatest accuracy was obtained with standardized
HAL1R and sLORETA with equally small distances to the
resection volume, 2.0 mm for EEG and 2.8 mm for MEG.
SHAL1R was the only method to localize the activity within
1 cm of the resection area in the case of Patient 2, but only
based on EEG data. Basic and standardized HAL2R with
SSLOFO have accuracy around 2 cm. Localization errors
are displayed in Table 4.
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Table 2: P-values given by Siegel-Tukey test for comparing measurement
noise results of Hierarchical adaptive Lp regression and its standardization
in Figure 3. p < 0.05 rejects the null hypothesis that both inversion results
have the same variability. Shades represent the significance level as indi-
cated in the table. Inconclusive cases where the localization error does not
vary for either method are marked by ×. L1 and L2 on the leftmost column
indicate the Lp degree of the regression compared.

Patient 1’s head model

SNR (dB): 30 20 15 10 5

EEG L1
L2

MEG L1 × ×

L2

Patient 2’s head model

EEG L1
L2

MEG L1 × × × × ×

L2

p < 0.001
0.001 ≤ p < 0.02
0.05 < p < 0.1

5. Discussion

The standardization as a post-hoc weighting has two de-
sirable qualities: enhanced localization accuracy and robust-
ness to measurement noise (Saha et al., 2015; Dümpelmann
et al., 2012; Neugebauer et al., 2022) obtained previously by
standardizing MNE (Pascual-Marqui, 2002) and FOCUSS
(Liu et al., 2005). In this study, we present the mathemat-
ically rigorous modus operandi to couple the standardization
to the hierarchical Bayesian methods and apply it with the
method utilizing exponential prior, where two of the ma-
jor prior degrees were considered, resulting in L2 and L1
penalized minimization algorithms to find the reconstruc-
tion. The performance of the algorithms was investigated
regarding the non-standardized versions, standardized FO-
CUSS, sLORETA, and dSPM. The last one is added as an-
other post-hoc weighting scheme to reduce the depth bias
to further motivate the decision to apply standardization in-
stead of noise normalization. The results suggest that while
noise normalization makes the estimation noise robust and
reduces the depth bias, the localization is not as good as with
standardization. The reason might be that as the standard-
ization removes the lead field-induced bias in noiseless and
theoretical settings (Sekihara and Nagarajan, 2008), dSPM
is only claimed to compensate it (Hauk et al., 2011; Knösche
and Haueisen, 2022). As a depth-weighting strategy, dSPM
could just move the bias deeper from the vicinity of the
model boundary.

In this study, we decided to construct our own numer-
ical simulations to compare the EEG/MEG reconstruction
methods and evaluate the effects of standardization instead
of employing other custom-made validation procedures, e.g.,
Grova et al. (2006) that are limited to fixed forward models
and fails to consider other noise generators than the one com-
ing from the measurement device, e.g., a simultaneous and

spontaneous activity that could obscure the localization of a
cortical epilepsy source.

We found that while 30 dB was the only SNR level
where the estimates obtained via non-standardized counter-
parts HAL1R and HAL2R are not affected by the measure-
ment noise, noise robustness is achieved in every examined
noise level above 5 dB with both of the standardized HBMs
called SHAL1R and SHAL2R, which is also the case with
compared the standardized SLOFO. However, sLORETA
was found to be noise robust even with the smallest exper-
imented SNR in the simulated experiment. The localization
accuracy with SHAL1R was found to be within 1 cm in every
simulated localization experiment conducted. In the numeri-
cal experiment considering measurement noise levels from
5 to 30 dB, the previous was found to be true except for
EEG in the noise level of 5 dB, which is, however, extremely
poor signal-to-noise ratio. For SHAL2R, the results are also
within 1 cm but inferior to those of sLORETA for EEG. In
addition, considering the EMDs as a measure of reconstruc-
tion spread, SHAL1R has significantly smaller EMDs than
sLORETA in almost all cases.

The results suggest that by using Laplace prior, i.e., L1 pe-
nalized minimization problem, we can achieve the accuracy
of sLORETA while maintaining some of the focality coming
from the prior model when the estimates are standardized.
The focal solution makes the location of the epileptic source
easier to perceive based on the reconstruction map plotted
over the brain tissue. Even if the localization of the recon-
struction maxima is accurate for sLORETA, it is sensitive to
all possible model uncertainties. Therefore, it is not advis-
able to use the maximum reconstructed value in the guidance
of surgical decisions instead of the full distribution. Even
if the usage of reconstruction to indicate the source loca-
tion can be considered enough when the source is focal and
because source localization is only one guiding tool out of
many in presurgical workup routine (Rosenow and Lüders,
2001; Mouthaan et al., 2019; Neugebauer et al., 2022). A
shortcoming of the standardization technique itself, as it is
designed to reduce the bias defined by diagonal elements of
a resolution matrix (Sekihara and Nagarajan, 2008), is that
the approach is based on the underlying assumption of a sin-
gle true source. Therefore, it can cause a significant mislo-
calization when multiple regions have strong activities as has
been found in practical cases via sLORETA by Wagner et al.
(2004); Mohd Zulkifly et al. (2022).

In light of our results, Standardized FOCUSS presents it-
self also as a considerable method for localizing epileptic
activity using EEG when the noise level is not particularly
low. However, the method seems to fail with experimented
MEG data. The reason might be in the depth-balancing pre-
sented in formula (6) and the fact that the MEG signal, as it
is modelled in the forward model, decays rapidly by depth
leading the reconstruction maxima near the focus point of
sensors that is in the middle of the model, i.e., near the tha-
lamic area.

Applying the methods to the epilepsy data, we see similar
behavior with simulated and real EEG data in which stan-
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HAL2R HAL1R SHAL2R SHAL1R SSLOFO sLORETA dSPM
Patient 1

Dipole localization errors (mm)
EEG 44.2 20.6 2.0 2.0 1.1 2.0 25.8
MEG 0.9 9.0 2.8 2.8 8.1 59.7 34.8

Earth mover’s distances (mm)
EEG 42.3 28.2 24.4 20.8 13.8 25.4 48.1
MEG 15.2 25.4 23.0 23.7 4.5 56.3 53.2

Patient 2
Dipole localization errors (mm)

EEG 16.4 45.2 9.7 9.7 24.4 9.7 48.0
MEG 4.4 34.7 7.8 2.3 21.5 17.2 33.8

Earth mover’s distances (mm)
EEG 30.9 44.8 31.3 35.9 12.5 30.5 55.7
MEG 22.6 39.8 21.0 14.5 11.7 36.7 48.6

Table 3: Dipole localization errors as Euclidean distance from the estimated location to the boundary of the resection volume and the earth mover’s distances
of reconstructions for synthetic EEG/MEG data. Both measures are in units of millimeters. Compared methods are (standardized) hierarchical adaptive
Lp regression ((S)HALpR) for two penalty degrees L1 and L2, standardized Shrinking LORETA-FOCUSS (SSLOFO), standardized low-resolution brain
electromagnetic tomography (sLORETA), and dynamic statistical parametric maps (dSPM).

HAL2R HAL1R SHAL2R SHAL1R SSLOFO sLORETA dSPM
Patient 1

EEG 0.4 2.0 2.0 2.0 0 2.0 24.2
MEG 9.0 48.8 7.3 2.8 25.3 2.8 34.8

Patient 2
EEG 22.4 45.2 20.7 9.7 21.6 47.5 48.0
MEG 52.1 52.1 43.7 44.0 49.5 44.0 37.8

Table 4: Dipole localization errors as Euclidean distance from the estimated location to the boundary of the resection volume for patients’ EEG/MEG data.
Both measures are in units of millimeters. Compared methods are (standardized) hierarchical adaptive Lp regression ((S)HALpR) for two penalty degrees
L1 and L2, standardized Shrinking LORETA-FOCUSS (SSLOFO), standardized low-resolution brain electromagnetic tomography (sLORETA), and dynamic
statistical parametric maps (dSPM).

dardized HBMs localize almost on the boundary of the re-
section volume in both patients. However, deviance is ob-
servable with MEG reconstruction, more with Patient 2 than
with Patient 1. It should be noted that the simulated and
real datasets are notably different, indicating discrepancies
between the actual head and its electromagnetic properties
and the MEG forward model used. Moreover, we cannot
rule out the possibility of the multifocal interictal activity or
functional connections between brain areas resulting in the
methods to localize at another possible activity region. In-
deed, the goodness of dipole fit for Patient 2’s MEG data is
very low (0.36), which might indicate the presence of other
activity outside the resection area. It could also mean that the
orientation of the source is exceedingly radial, which makes
it hard to detect via MEG but prominent in EEG since the
modalities give complementary information about the activ-
ity (Dassios et al., 2007; Aydin et al., 2014). This could ex-
plain why SHAL1R can detect epilepsy activity in nearby
regions of the resection from EEG data. In order to ex-
clude the influence of other brain regions than the cerebral
cortex, where the resections are located, on the accuracy of
source localization, we also performed source localization in
this limited source space without achieving a substantial im-
provement in accuracy for Patient 2 MEG (Supplementary
Materials 1.2).

The reason why we obtain source estimations most of-
ten near the boundary of the resection but almost never in-
side could also be explained by the characteristics of the fo-
cal cortical dysplasia (FCDs), the epileptogenic lesions in

these patients. FCD does not have the typical layered cor-
tical structure, therefore potentially leading to a (partially)
closed field. FCD might prevent the pyramidal cells from in-
ducing an open electromagnetic field structure whose source
can be estimated inside the resection volume (Neugebauer
et al., 2022).

As a limitation of this study, one should also note that the
localized epileptic source corresponds to an irritative zone,
which may not be the epileptogenic zone that guarantees
seizure-freeness when removed (Wellmer, 2018). However,
the irritative zone could be neighboring the FCD (Neuge-
bauer et al., 2022) and these zones often overlap (Diamond
et al., 2023). An epileptogenic zone is a hypothetical con-
cept that cannot be verified because the seizures can come
back after years from the surgery (de Tisi et al., 2011; Chen
et al., 2016; Jehi et al., 2018). In a lack of better verifica-
tion measures, we are making an assumption of the epileptic
source location based on the resected volume of the brain,
relying on the length of the patients’ symptom-free period
after surgery (Nissen et al., 2016; Hall et al., 2018; Neuge-
bauer et al., 2022). Another limitation is the irritative zone of
both patients lay in the cerebral cortex even if mesocortical
epilepsy activity is a possibility (Aydin et al., 2014) and an
interesting case with its own challenges as the deep sources
are usually hard to detect (Krishnaswamy et al., 2017).

However, HAL1R is previously coupled with RAMUS
technique to enhance the detectability of deep sources with
a promising set of results based on numerical experiments
(Lahtinen et al., 2022), and it is shown that sLORETA (as
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standardized MNE) can recover even the subcortical origi-
nators of somatosensory evoked potentials with equal accu-
racy as MNE coupled with RAMUS (Rezaei et al., 2021)
which lends credence to the possibility that SHALpR could
also function in the localization of deep sources. To investi-
gate it slightly further, we conducted a numerical experiment
where a focal source is placed on the posterior cingulate cor-
tex (Supplementary Materials 1.1) suggesting that locating
deep sources with an error of less than 1 cm is also possible.

Our results support the hypothesis that applying a focal
solver yields a greater localization accuracy of focal epilepsy
source than a solver providing a sparse and smooth but
widespread distribution when the location of the source is es-
timated by the reconstruction maximum and one originator
for the measurement can be assumed reliably. The hypothe-
sis is supported by the volumetrically small resection regions
of the patients examined in this study. Moreover, when con-
sidering the results of our numerical experiments, standard-
ization seems to be the key to accurate and noise-tolerant
estimates in these cases. This finding was anticipated since
sLORETA is known to be a reliable method for locating ES.
In previously published studies, sLORETA has been found to
localize 8 out of 9 epileptogenic zones (Li et al., 2021) and
to be equally accurate as connectivity measures to localize
an epileptic source based on standard density EEG (Coito
et al., 2019), and to provide consistent results in localizing
the epileptic generators of four patients suffering from tuber-
ous sclerosis complex (Leal et al., 2008). SHAL1R’s ob-
tained localization accuracy of 1 cm together with sparsity
can be considered useful in the planning of resection, e.g., to
guide non-invasive, invasive epilepsy work-up, retrospective
FLAIR-MRI or Zoomed-MRI, iEEG electrode positioning,
or skull opening in neurosurgery (Riney et al., 2012; Aydin
et al., 2017).

In Neugebauer et al. (2022) the epileptic activity of the
same two patients was reconstructed via dipole scans as well
as via event-related and averaged beamforming for a range
of regularization parameters. Beamforming techniques have
been shown to be able to localize the activity with zero local-
ization error within a small interval of regularization values.
However, the intervals found were different for Patient 1 than
for Patient 2, and neither of the compared techniques had a
clear advantage: methods that worked well in the case of
Patient 1 produced a poor localization with Patient 2, and
some methods worked with EEG but not with MEG data
by estimating the ES location to be more than 2.5 cm away
from the resection. The localization accuracy of the aver-
aged beamformer was around 10 mm and 5 mm with event-
related beamforming via the optimal regularization parame-
ter. The dipole scan was able to localize the epileptic activity
with around the same distance to the resection boundary as
sLORETA and HAL1R in our study, but it failed with Patient
2 by estimating ES to 3 cm away from the resection volume.

A broader conclusion about the usefulness of the focal
standardized solver or standardization in general in localiz-
ing focal epilepsy cannot be drawn with this trial data. The
sample sizes or difficulty of the patient cases is not enough

to draw conclusions about the superiority between SHAL1R
and sLORETA.

This study demonstrated the usefulness of the standardiza-
tion technique in improving the localization and suppress-
ing the susceptibility to interference caused by measure-
ment noise. The results suggest that the epileptic source can
be localized accurately by using a standardized distributed
method. In such a case, the accuracy and features of the esti-
mations depend on the used prior model. The original stan-
dardized method, sLORETA, is already meritorious, but the
case-wise consistency and the resolution of the reconstruc-
tion could be improved by using the Laplace prior.

For further investigation, we could apply standardization
for an inversion technique with richer structures, e.g., taking
the temporal aspect of biopotential signals into account.

6. Conclusions

In this study, we have demonstrated the applicability of
the current density standardization on noise robustness and
enhancing the epileptic source localization accuracy by cou-
pling it with a hierarchical Bayesian method with condition-
ally exponential prior. The inverse model allows us to dic-
tate the focality of the solution to match the assumed focal-
ity of the true activity. By examining the localization ac-
curacy with two major sparsity inheriting from the degree
of the norm in penalty term of the minimization problem,
L1 and L2, we have observed that L1 yielding a greater fo-
cality matches better with focal epileptic activity obtained
from the patients. L1-penalized SHAL1R outperformed
compared standardized methods in most of the source lo-
calization cases making it a considerable candidate for focal
epilepsy localization.
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Appendix A. SSLOFO Algorithm

Algorithm 1 SSLOFO
Require: source space S, smoothing range r, space reduc-

tion proportion p, noise covariance matrix C.

Use range search to find neighborhood within range r for
each source point in S.
Define the diagonal matrix Pii = ∥L(:, i)∥−1

Φ = Diag(1)
MΦ = LT

(
LLT +C

)−1

for k = 0, . . . ,Kmax do

R = MΦL
û = MΦy
Compute current power estimation

Ji = ûT
I (RII)−1ûI

Use average-based smoothing within range r to obtain
smoothed Ĵ

Set the source space S = {i : Ĵi ≥ p max(Ĵ)}
W = PWDiag(|û|)1/2

Φ = WWT

MΦ = ΦLT
(
LΦLT +C

)−1

end for

Appendix B. Derivation of Standardized Hierarchical
Adaptive Lp regularization method

The following minimization problem gives sLORETA es-
timate as the solution for

min
z

{
1
2

(
y − LT−1z

)T
C−1

(
y − LT−1z

)}
subject to

1
2

∥∥∥P−1/2T−1z
∥∥∥2
≤ t,

(B.1)

for every positive t, where T is the inverse of the decomposi-
tion of the diagonal or block diagonal resolution matrix, i.e.,
T 2

II = R−1
II , due to the symmetry of the matrix T . To standard-

ize the HBM of conditionally exponential prior and a gamma
hyperprior (7), substitute x = T−1

γ z. Now the posterior max-
imizing γ constitutes to the minimization problem

min
γ

{∥∥∥Diag(γ)1/pT−1
γ z

∥∥∥p
p

}
subject to

n∑
j=1

(
γ jθ − (κ + 1/p − 1) log γ j

)
≤ t,

(B.2)

for all positive t, with the minimizing solution of the form

γ̂ j =
κ + 1/p − 1∥∥∥∥[T−1
γ

]
j,I

zI

∥∥∥∥p

p
+ θ
=
κ + 1/p − 1∣∣∣x j

∣∣∣p + θ , (B.3)

for every j = 1, · · · , n and I denotes d-tuple of indices corre-
sponding to d-dimensional position in the modelling scheme.

Due to the scaling property of IAS algorithm (Calvetti et al.,
2020), the viability of the algorithm is guaranteed.

In the fixed-point iteration, the aim is to find a Gaus-
sian covariance matrix P(k) such that

∥∥∥(P(k))−1/2x
∥∥∥2

2 /2 =∥∥∥Diag(γ(k))1/px
∥∥∥p

p for any x. The Gaussian covariance matrix
is an essential part since it is a component of the resolution
matrix. This leads to the minimization problem similar to
(B.1) with the solution

ẑ = TγP(k)LT
(
LP(k)LT +C

)−1
y = Tγx̂ (B.4)

and the power estimation as the following

ẑT
I zI = x̂T

I

[
Tγ

]2

II
x̂I = x̂IR−1

II x̂I . (B.5)

Appendix C. Algorithm of Standardized Hierarchical
Adaptive Lp Regularization (SHALpR)

Here we present the algorithm to calculate the reconstruc-
tion via Standardized Hierarchical Adaptive Lp Regulariza-
tion (SHALpR). Next, we take a look at the mathematical

Algorithm 2 Hierarchical Adaptive Lasso for the standard-
ized algorithm
Require: hyperpriors κ and θ, noise covariance matrix C,

prior degree p, γ(0) < ∥LT y∥∞,tolerance ϵtol, primal vari-
able x(0) = 0, uold = x(0)

for k = 0, . . . ,Kmax do

do ▷ Solve the Lasso problem

D = diag
(
γ(k)

i

ϵ+|uold
i |

p

)
R = D−1LT (LD−1LT +C)−1L ▷ Calculate

resolution matrix
û = D−1LT (LD−1LT +C)−1y
z = Lû − y and λi = γ

(k)
i for i = 1, . . . ,N

f (û) = 1
2 ∥Lû − y∥22 +

∑N
i=1 λi|ûi|

p ▷ Primal problem,
for p = 1 detailed presentation in Appendix C.1

τ = min
{
λi
|LTz|i

for i = 1, · · · ,N
}

and ν = τz ▷ Dual
feasible

g(ν) = −0.5νTν − νTy ▷ Dual problem
η = f (û) − g(ν) ▷ Duality gap
uold = Diag(R)−1/2û ▷ Update

sLORETA-weighted solution
while η/g(ν) > ϵtol ▷ Stop if the duality gap less than

threshold
x(k+1) = û ▷ Update the solution for the Adaptive

Hierarchical Lasso
γ(k+1)

i = κ+1
θ+|x(k+1)

i |p
, for i = 1, . . . ,N

end for

motivations behind the presented dual problem-based stop-
ping criterion.
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Appendix C.1. Stopping Criterion for Lasso Problem-
Duality Gap

In this section, we give a derivation of the dual problem of
the lasso problem and its duality gap used in the solution of
the ℓ1-norm minimization problem (LASSO):

min
x∈Rn

1
2
∥Lx − y∥22 +

n∑
i=1

λi|xi|

 , (C.1)

where L ∈ Rm×n. In particular, for the estimation of a robust
overall stopping criterion for the LASSO problem, we can
employ the duality gap which is defined as the difference be-
tween the values of functional (C.1) with its Lagrange dual
function (Boyd and Vandenberghe, 2004). The Lagrange
dual function is always concave and yields lower bounds on
the optimal value of the problem (C.1) which can be used as
a non-heuristic criterion for the termination of an algorithm
(Boyd and Vandenberghe, 2004).

We derive a Lagrange dual by introducing a new variable
z ∈ Rm and the equality constraint z = Lx−y. The functional
in (C.1) can be written with the equal expression

min
(x,z)

1
2

zTz +
n∑

i=1

λi|xi|

 subject to z = Lx − y. (C.2)

The Lagrangian of (C.2) is

L(x, z, ν) =
1
2

zTz +
n∑

i=1

λi|xi| + ν
T(Lx − y − z), (C.3)

where ν ∈ Rm. We estimate the Lagrange dual function g :
RM → R by minimizing the Lagrangian over (x, z)

g(ν) = inf
(x,z)

1
2

zTz +
n∑

i=1

λi |xi | + ν
T(Lx − y − z)


= inf

z

{
1
2

zTz − νTz
}
+ inf

x

 n∑
i=1

λi |xi | + ν
T(Lx)

 − νTy.

(C.4)

From the previous equations, we have that

min
(x,z)∈C

1
2

zTz +
n∑

i=1

λi|xi|

 = min
(x,z)∈C

L(x, z, ν) ≥ g(ν), (C.5)

where C = {z ∈ Rm, x ∈ Rn|z = Lx − y} is a feasible set.
This implies that the dual function (C.4) yields lower bounds
for the optimal values of problem (C.2) for feasible points x
and z. This bound has a practical meaning if we can make
sure that the dual problem is g(ν) > −∞ for some ν. An
important property of problem L1-norm is that for an arbi-
trary x, we can derive an easily computed bound on the sub-
optimality of x, by constructing a dual feasible point ν (Kim
et al., 2007).

From equation (C.4) we derive the Lagrange dual of prob-
lem (C.1)

maximize g(ν) = −0.5νTν − νTy

subject to λi ≥

∣∣∣∣[LTν
]
i

∣∣∣∣ for i = 1, . . . , n,
(C.6)

and a dual feasible point ν needs to satisfy the constraints of
(C.6). Similarly as in (Koh et al., 2007), we construct the
dual feasible point

ν = τz, where τ = min
{
λi

|[LTz]i|
for i = 1, · · · , n

}
(C.7)

and z = Lx − y. The non-negative difference between the
objective value of problem (C.1) and g(ν) is the so-called
duality gap, denoted by

η =
1
2
∥Lx − y∥2 +

n∑
i=1

λi|xi| − g(ν) ≥ 0. (C.8)

The algorithm terminates when the fraction of the duality
gap η over the value of the dual function g(ν) falls below a
tolerance ϵtol (see further notes in (Kim et al., 2007)).

Appendix C.2. Bound for Lasso parameter λ

Proposition 1. If λ > ∥LT y∥∞ then the unique minimizer is
given by x = 0. If λ < ∥LT y∥∞, then each solution is different
from zero.

Proof. Convexity and coercivity immediately imply the ex-
istence of a minimizer. Let λ > ∥LT y∥∞, then

J(x) =
1
2
∥Lx − y∥2 + λ∥x∥1

=
1
2
∥Lx∥2 +

1
2
∥y∥2 + λ∥x|1 − xTLTy

≥
1
2
∥Lx∥2 +

1
2
∥y∥2 + (λ − ∥LT y∥∞)∥x∥1

≥
1
2
∥y∥2 = J(0) ,

with inequality only for x = 0. Hence, x = 0 is the unique
minimizer. In the case where λ < ∥LT y∥∞ we can choose
x = ϵLT y with ϵ > 0 sufficiently small to verify that there
exists a x yielding a functional value lower than 1

2∥y∥
2.
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liveau, J.W., 2006. Dynamic magnetic resonance inverse imaging of
human brain function. Magn. resonance medicine 56, 787–802.

Liu, H., Schimpf, P., Dong, G., Gao, X., Yang, F., Gao, S., 2005. Stan-
dardized shrinking LORETA-FOCUSS (SSLOFO): a new algorithm for
spatio-temporal EEG source reconstruction. IEEE Trans. Biomed. Eng.
52, 1681–1691.

Lucka, F., Pursiainen, S., Burger, M., Wolters, C.H., 2012. Hierarchi-
cal Bayesian inference for the EEG inverse problem using realistic FE
head models: Depth localization and source separation for focal primary
currents. NeuroImage 61, 1364–1382. doi:10.1016/j.neuroimage.
2012.04.017.
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