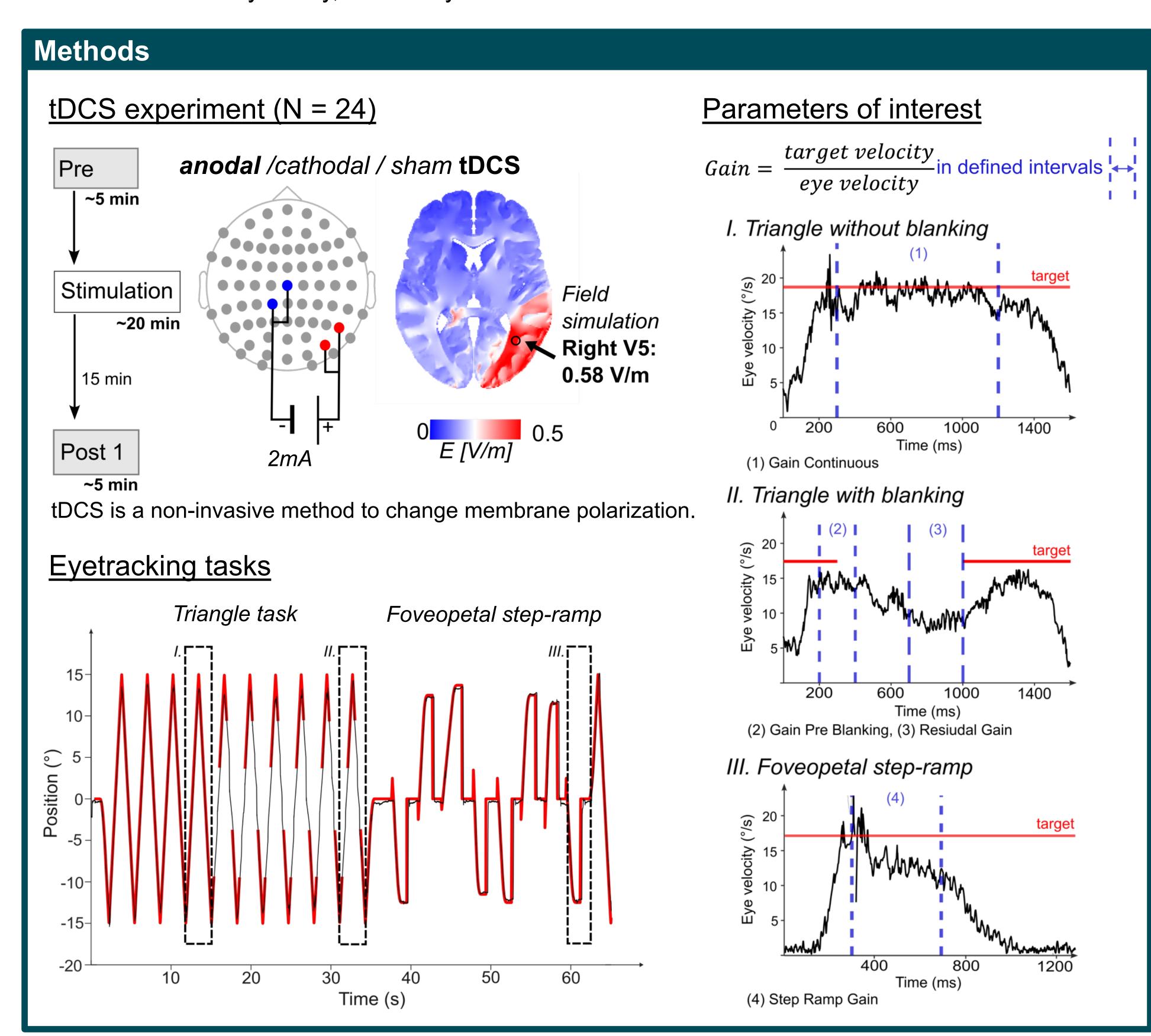


Effects of transcranial direct current stimulation (tDCS) over brain area V5 on smooth pursuit eye movements


H. Stöckler^{1,2}, J.-O. Radecke^{1,2}, M.-J. Reichhardt^{2,3}, Y. Buschermöhle⁴, T. Erdbrügger⁴, C. H. Wolters⁴, J. Gross⁴, A. Sprenger^{2,3,5} & R. Lencer^{1,2,6,†}

¹Dept. of Psychiatry and Psychotherapy, University of Lübeck, ²Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, ³Institute of Psychology II, University of Lübeck, ⁴Institute for Biomagnetism and Biosignalanalysis, University Münster, ⁵Dept. of Neurology, University of Lübeck, ⁶Institute for Translational Psychiatry, University Münster

Smooth pursuit enables clear vision of small moving objects in daily life. Patients with psychotic disorders show impairments of smooth pursuit, which are regarded as a potential biomarker 1.2. Frontal eye field Smooth Pursuit Network 3

Research question:

- (1) Can cathodal tDCS over V5 (MT/MST) simulate smooth pursuit dysfunctions in healthy subjects?
- (2) Can anodal tDCS over V5 (MT/MST) improve pursuit performance in healthy subjects?

Results

Learning effects

I. Triangle with blanking

(in: a) 0.40

(in: a) 0.95

(in: b) 0.30

(in: a) 0.95

(in: c) 0.40

(in: a) 0.30

(in: c) 0.40

(in: c) 0.40

(in: c) 0.30

(in

no significant side differences, * p < 0,05, a.u. = arbitrary unit

III. Foveopetal step-ramp

to the left
to the right

0.85

0.75

Pre Stimulation Post 1

Triangle with blanking to the left to the right To the left to the right O.10 Pre Stimulation Post 1 Triangle with blanking I Sham I Anodal I Cathodal

i differences to "Pre", * p < 0,05, n.s. = not significant , a.u. = arbitrary unit

- Improvement of smooth pursuit performance in all tasks over time independent from stimulation conditions.

Post 1

- Cathodal tDCS during active smooth pursuit to the left improves pre blanking performance compared to sham tDCS. rm ANOVA interaction effect ($F_{2.46}$ = 3.712, p = 0.032), post hoc analysis ($M_{cathodal}$ = 0.025 ± 0.21, M_{sham} = -0.035 ± 0.015, p = 0.036)

Conclusions

- 1. Cathodal tDCS over V5 did not disturb but rather improved smooth performance in intervals prior to target blanking.
- 2. Rather small effects of tDCS in healthy subjects may be explained by generally high performance levels and by disregarding individual anatomy in standard stimulation set-ups.
- 3. Learning effects within sessions may reflect extraretinal input such as predictive mechanisms.

¹ Sweeney, J. A. *et al.* Pursuit tracking impairments in schizophrenia and mood disorders: step-ramp studies with unmedicated patients. *Biol Psychiatry* 46, 671–680 (1999).

² Lencer, R. *et al.* Pursuit eye movements as an intermediate phenotype across psychotic disorders: Evidence from the B-SNIP study. *Schizophrenia Research* 169, 326–333 (2015).

³ Adapted from Eye Movement Research, by A. Sprenger, 2019, p.148.

hannah.stoeckler@student.uni-luebeck.de