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The Localized Subtraction Approach For EEG and
MEG Forward Modeling

M. Holtershinken, P. Lange, F. Wallois, A. Buyx, S. Pursiainen, C. Engwer, C. Wolters

Abstract—One of the basic problems in EEG and MEG source
analysis is simulating the sensor measurements that a given
neural activity would generate, i.e., the so-called EEG and MEG
forward problem. The neural activity is typically modeled as a
linear combination of mathematical point dipoles. When using
a finite element method (FEM) for the forward problem this
leads to difficulties, as it is not clear how the singularity of
a point dipole can be properly incorporated. Various FEM
approaches have been proposed, and among these are the so-
called subtraction approaches. Subtraction approaches are not
only well-founded in theory, but also produce accurate results in
practice. Their major downside is that they are computationally
prohibitively expensive in practical applications. To overcome this
we developed a new approach, called the localized subtraction
approach. This approach is designed to preserve the mathemati-
cal foundation of the subtraction approach, while also leading
to sparse right hand sides in the FEM formulation, making
it efficiently computable. In this work, this approach will be
presented and compared to other state-of-the-art FEM right
hand side approaches with regard to accuracy and computational
effort. In multi-layer sphere models, the localized subtraction
approach will be shown to be as accurate, and in many cases
even more accurate, than the other investigated approaches while
being largely more efficient than the subtraction approach.

Index Terms—Source analysis, EEG, MEG, FEM, Source
modeling

I. INTRODUCTION

When simulating sensor measurements using a FEM ap-
proach, the question of how to treat the singularity at the
source position arises. Answers to this question are called
potential approaches and can be roughly divided into so-called
direct approaches, which directly incorporate the singularity
into the FEM right hand side, and subtraction approaches,
which “subtract” the singularity out of the problem formula-
tion and then post-process the resulting FEM solution to add
the singularity back in. State-of-the-art direct approaches, such
as the Venant approach [1] and the H(div) approach [2], have
the undesirable property that they do not compute the potential
induced by a dipole. They instead substitute the singular
object with a more well-behaved function, which can be easily
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incorporated into a FEM model, and looks like a dipole from
afar. Subtraction methods do not suffer from this shortcoming,
and were shown to produce highly accurate results [3]. Despite
this, they are typically not used in practical applications. The
main reason for this is their exceedingly high computational
demand, leading researchers and practitioners to instead use
the still quite accurate direct approaches, whose corresponding
FEM right hand sides can be computed rapidly [4]. Different
approaches have been suggested to remedy this drawback of
subtraction type methods, such as reducing the computational
burden by approximating complicated integrands by simpler
ones [5], [6], or by deriving analytical formulas and thus re-
moving the need for an expensive numerical computation [4].
While these approaches all lead to faster computation times,
none of them have achieved the goal of making subtraction
methods viable in practice.

The fundamental reason for this is that all previous sub-
traction type methods lead to FEM formulations with dense
right hand sides, whose computation requires an iteration over
the whole mesh for every dipole position under consideration.
Especially for realistic head models, consisting of millions
of elements, this leads to the aforementioned severe compu-
tational demand. The direct approaches in contrast produce
sparse right hands sides, yielding a fast assembly. Based on
this observation, we developed a new approach, called the
localized subtraction approach, possessing the accuracy and
mathematical rigor of the subtraction approach, while also
leading to sparse right hand sides, whose computation is only
based on the local mesh structure around the source position
and can be performed in a fast manner.

Another difficulty for subtraction methods arises in the
context of MEG forward simulations. Here, one typically
first computes the EEG forward solution and then applies
Biot-Savart’s law [7]. For subtraction methods, this leads to
integrals over singular functions. This was addressed in [8],
whose work we expanded on and transferred to our new
approach.

All methods described in this paper are implemented in the
open source DUNEuro toolbox [9] and are available through
https://gitlab.dune-project.org/duneuro/duneuro.

II. METHODS

Let Q be the head domain and Of) its boundary. Let
o : 2 — R3*%3 be the conductivity tensor. Using the quasistatic
Maxwell equations, as is typically done, and assuming a
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dipolar source, the electric potential v can be described by
div (cVu) = div (57)
(eVu,n) =0

on {2, (D)
on OS2, 2)

where 7 is the unit outer normal and 7 = M - J,, is a
mathematical point dipole with moment M and position zg
(see e.g. [10]). We assume that o is constant on a neighborhood
of the source position xy. Let 0 be the value of ¢ on this
neighborhood. Then the equation

div (6 Vu™) = div(j?) on R? 3)

has a solution ©4*° with an analytic representation, which is
hence easily computable (see e.g. [5]). Now let x : Q@ — R be
a function such that
« on a neighborhood of the source position we have y = 1.
e x is only nonzero on a small set 2 C €.

We then define the correction potential u¢ by the equation
u=u’~+x- u™. 4)

The approach now is to use (1), (2), (3) and (4) to derive
an equation for u°. By construction, u*° cancels the point
dipole, leading to an equation without a singularity. This
enables a straightforward computation of »¢. Furthermore, by
construction the corresponding FEM right hand side is only
non-zero on degrees of freedom corresponding to €2, leading
to sparse right hand sides, and hence fast computation times.

III. RESULTS

We validate the localized subtraction approach in multi-
layer sphere models, where analytical formulas for electric
potentials and magnetic fields caused by a dipolar source
exist [11], [12]. Comparisons in this setting show that the
localized subtraction approach is as accurate as other state-
of-the-art potential approaches and in many cases even more
accurate. More concretely, in high-quality meshes with suf-
ficiently small elements the localized subtraction approach
is about as accurate as the Venant approach [1]. If on the
other hand there are badly shaped or sized mesh elements,
employing the Venant approach can lead to inaccuracies, while
the localized subtraction approach stays accurate. This is illus-
trated in Figure 1, where a computation in a suboptimal mesh
produced many outliers for the Venant approach. Furthermore,
the localized subtraction approach is largely more efficient
than previous versions of the subtraction approach. On an
AMD Ryzen Threadripper 3960X CPU, where the experiments
of this work were run, simulating the electric potential for
1000 dipolar sources took less than 1 second for the localized
subtraction approach, while the corresponding computation for
the ordinary subtraction approach, as described in [4], took
about 10 minutes.

IV. CONCLUSION

The localized subtraction approach is a theoretically sound
method that rivals, and in many cases even surpasses, other
state-of-the-art potential approaches in terms of efficiency and
accuracy.
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Fig. 1: Relative error between analytical and numerical solutions
for the Venant [1] and the localized subtraction approach. For each
eccentricity, 1000 radial dipoles were simulated. We used 200
electrode positions distributed approximately uniformly on the
sphere surface. Relative errors were computed by first shifting the
potential vectors to have zero mean and then using the euclidean
distance. The eccentricity is computed as M, where xg is the
dipole position, c is the sphere center and r is the radius of the
innermost sphere. A dipole is called radial if its moment is a
multiple of xg — c. The whiskers extend to 1.5 times the IQR.
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