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Abstract

Accurate source reconstructions of electroencephalography (EEG) or combined EEG and

magnetoencephalography (MEG) signals, as well as targeted optimized transcranial electric

stimulation (TES) are important for many clinical applications and neuroscientific research.

Both are strongly influenced by the conductive properties of the head volume conductor

model, most importantly by individual skull conductivity.

The aim of this thesis is to develop an automatic pipeline to calibrate head models with

respect to this influential parameter, which is validated in spherical head models and app-

lied to realistic data sets. The algorithm exploits the complementarities of EEG and MEG

modalities in reconstructing the underlying source of the somatosensory evoked P20/N20

component. It uses the DUNEuro toolbox for the numerical computation of the EEG/MEG

forward solutions with the finite element method (FEM) and can easily be integrated in-

to existing analysis pipelines. A well-controlled spherical head model scenario, for which

(quasi-)analytical solutions exist, is used to evaluate the accuracy of the calibration procedu-

re and investigate the influence of various conditions using realistic noise levels and dipole

characteristics. Subsequently, realistically shaped volume conductor models are calibrated

using different somatosensory experiments and settings.

The results indicate that skull conductivity can be reliably reconstructed by the calibra-

tion procedure for sources resembling the generator of the somatosensory evoked P20/N20

component. Additionally, the effect of erroneous assumptions about scalp conductivity on

source reconstruction results can be partly counterbalanced by using the individually fitted

skull conductivity. Electric stimulation of the median nerve at the wrist resulted in the best

signal-to-noise ratio and most accurate results and is therefore the recommended somato-

sensory stimulation setup.

In this work, we propose an automated procedure to individually fit skull conductivity

to create calibrated head volume conductor models which can be used to improve EEG

and combined EEG/MEG source analysis, e.g., in presurgical epilepsy diagnosis, and the

optimization of TES montages.
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Zusammenfassung

Präzise Quellrekonstruktionen von Elektroenzephalografie (EEG) oder kombinierten EEG-

und Magnetoenzephalografie (MEG)-Signalen sowie optimierte transkranielle Elektrosti-

mulation (TES) sind für viele klinische und neurowissenschaftliche Forschungsbereiche von

großer Bedeutung. Beide Anwendungen werden stark von den Leitfähigkeitseigenschaften

des Kopfvolumenleitermodells beeinflusst, vor allem von der individuellen Schädelleitfä-

higkeit.

Ziel dieser Arbeit ist es, ein automatisches Verfahren zur Kalibrierung von Kopfmodellen

hinsichtlich dieses einflussreichen Parameters zu entwickeln, das in sphärischen Kopfmo-

dellen validiert und auf realistische Datensätze angewendet wird. Dabei wird die Komple-

mentarität der EEG- und MEG-Modalitäten ausgenutzt um die zugrunde liegende Quelle

der somatosensorisch evozierten P20/N20-Komponente zu rekonstruieren. Der Algorithmus

nutzt die DUNEuro-Toolbox zur numerischen Lösung der EEG/MEG-Vorwärtsprobleme

mithilfe der Finite-Elemente-Methode (FEM) und kann leicht in bestehende Analyse-

Pipelines integriert werden. Ein mehrschichtiges Kugelmodell, für das (quasi-)analytische

Lösungen existieren, wird verwendet um die Genauigkeit des Verfahrens zu bewerten

und den Einfluss verschiedener Faktoren unter realistischen Bedingungen zu untersuchen.

Anschließend werden realistische Volumenleitermodelle unter Verwendung verschiedener

somatosensorischer Experimente und Rahmenbedingungen kalibriert.

Die Ergebnisse zeigen, dass die Leitfähigkeit des Schädels mit dem vorgeschlagenen

Kalibrierverfahren für Dipole, die der kortikalen Quelle der somatosensorisch evozierten

P20/N20-Komponente ähneln, zuverlässig rekonstruiert werden kann. Darüber hinaus kann

die Auswirkung falscher Annahmen über die Haut-Leitfähigkeit auf die Ergebnisse der

Quellenrekonstruktion teilweise durch die Verwendung der individuell angepassten Leitfä-

higkeit des Schädels ausgeglichen werden. Die elektrische Stimulation des Medianusnervs

am Handgelenk ergab das beste Signal-Rausch-Verhältnis unter den berücksichtigten soma-

tosensorischen Experimenten und wird daher für optimale Ergebnisse empfohlen.

In dieser Arbeit schlagen wir ein automatisiertes Verfahren zur individuellen Anpassung

der Schädelleitfähigkeit vor um kalibrierte Kopfvolumenleitermodelle zu erzeugen, die für

eine verbesserte EEG- und kombinierte EEG/MEG-Quellenanalyse, z. B. bei der prächirur-
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gischen Epilepsiediagnostik, und der Optimierung von TES, verwendet werden können.
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1. Introduction

The spatial distribution of electric activity in the head due to neuronal generators in the brain

is largely influenced by the conductive and geometric properties of the constitutive tissues.

A realistic modeling of the head volume conductor model is therefore essential for many

applications in neuroscience. In particular, the impact of volume conduction effects have

been emphasized in the contexts of electroencephalography (EEG), combined EEG and

magnetoencephalography (MEG) and transcranial electric stimulation (TES) (Bikson et al.,

2016; Brette and Destexhe, 2012). Modern imaging techniques such as magnetic resonance

imaging (MRI) provide more detailed geometrical information about the head composition

and have been used to create realistically shaped individual head models (Céspedes-Villar

et al., 2020; Vorwerk et al., 2014). In most cases, literature values are assigned to a set of

homogenized tissue compartments (Vorwerk et al., 2014; Wendel et al., 2009). However,

depending on the measurement modality, experimental conditions and modeling assump-

tions, reported values for most tissue types vary considerably (McCann et al., 2019). This

is especially the case for skull conductivity, which is assumed to vary largely inter- and

intra-individually, e.g., depending on age (Antonakakis et al., 2020; Hoekema et al., 2003;

Wendel et al., 2010). Due to its relatively high resistivity compared to the other head tissues,

the importance of skull conductivity and the ratio between skull and skin conductivity has

been stressed in several sensitivity studies in the context of EEG and TES (Saturnino et al.,

2019; Schmidt et al., 2015; Vallaghé and Clerc, 2009; Vorwerk et al., 2019a). Additionally,

varying modeling approaches of the skull composition and assigned conductivity parame-

ters were shown to have a strong effect on EEG source reconstruction results (Chen et al.,

2010; Montes-Restrepo et al., 2014; Roche-Labarbe et al., 2008).

Due to the large variability of skull conductivity and its strong influence on bioelectric

modalities, it has been suggested to individually calibrate head volume conductor mod-

els with respect to this influential parameter. Several methods have been proposed for

this purpose, some of which rely on single-modality EEG (Akalin Acar et al., 2016; Lew

et al., 2009a). Due to its complementary nature and its insensitivity to skull conductivity

(Haueisen et al., 1997; Lew et al., 2013), adding MEG to the calibration procedure was sug-

gested in order to increase its robustness (Antonakakis et al., 2019; Baysal and Haueisen,
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1. Introduction

2004; Fuchs et al., 1998; Gonçalves et al., 2003b; Huang et al., 2007; Wolters et al., 2010).

In these studies, the calibration procedure involves the reconstruction of the source underly-

ing the P20/N20 component, i.e., the signal peak approximately 20 ms after the stimulus, of

somatosensory evoked potential (SEP) and field (SEF) data sets. This component has been

found to be well suited for this purpose due to strong evidence suggesting a mainly lat-

eral, focal single dipolar origin with a rather tangential orientation of the underlying source

(Allison et al., 1991; Antonakakis et al., 2020; Götz et al., 2014; Nakamura et al., 1998).

In this work, a novel algorithm to calibrate head volume conductor models is presented

that relies on the non-invasive modalities of EEG/MEG. In a procedure that exploits their

complementarities, the most influential conductivity parameter, i.e., skull conductivity (Sat-

urnino et al., 2019; Schmidt et al., 2015; Vorwerk et al., 2019a), is estimated in combination

with the reconstruction of the underlying source of the somatosensory evoked P20/N20

component. The calibration pipeline relies on solutions of the EEG and MEG forward

problems using the finite element method (FEM), and employs an automatic optimization

approach to find the optimal skull conductivity in a continuous parameter space. This pro-

cedure can easily be integrated into existing analysis pipelines for the evaluation of EEG

or combined EEG/MEG data, e.g., in the context of presurgical epilepsy diagnosis (Ay-

din et al., 2014), or for an improved targeting using individually optimized TES montages

(Guler et al., 2016; Huang et al., 2017; Sadleir et al., 2012; Saturnino et al., 2019; Schmidt

et al., 2015).

This work is structured as follows. Chapter 2 is devoted to providing general background

related to EEG/MEG modalities and the importance of head volume conductor modeling

in this context. In the following, the mathematical background related to the theoretical

derivation of the EEG and MEG forward problems and their (quasi-)analytical and numer-

ical solutions using the FEM is presented in Chapter 3. In Chapter 4, a novel algorithm to

calibrate head volume conductor models with respect to skull conductivity is introduced.

This automated procedure is systematically validated and tested in a controlled spherical

head volume conductor model in Chapter 5, followed by investigations in more realistically

shaped individual head models in Chapter 6. Subsequently, an example clinical application

of the pipeline is presented in Chapter 7, which focuses on EEG/MEG source reconstruc-

tions in presurgical epilepsy diagnosis. In the following, an overview of software-related

aspects is provided in Chapter 8. Finally, a discussion of the findings in this work is pre-

sented in Chapter 9, followed by a short summary in Chapter 10.
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2. Background of EEG and MEG modalities

Both EEG and MEG are non-invasive functional neuroimaging methods that directly reflect

neuronal activity, with an exceptional temporal resolution within the sub-millisecond range.

In this chapter, we will provide an overview of the biophysical background of the generation

and propagation of electromagnetic signals that can be detected by EEG and MEG. First,

the neurophysiological processes related to the generation of EEG and MEG signals are

explained in Section 2.1. Second, the geometric and conductive properties of the head

tissues are described in Section 2.2. Third, an overview of practical aspects related to the

measurement of both modalities is presented in Section 2.3.

2.1. Generators of EEG and MEG signals
In the human brain, there are about 1010 neuronal cells that transmit information by gener-

ating time-varying electrical currents (Hallez et al., 2007). In their resting state, the intracel-

lular environment of a neuron has a stable membrane potential of approximately −60 mV

compared to the extracellular tissue (Hari and Puce, 2017). This potential difference results

from an unequal concentration of sodium (Na+), chloride (Cl−) and potassium (K+), which

is actively maintained by ion pumps in the cell membrane that transport Na+ ions outside

and K+ inside the cell (Hallez et al., 2007).

Two main forms of neuronal activity can be distinguished which alter the potential dis-

tribution of the neuron, their description mainly follows Hari and Puce (2017). The first

form is given by action potentials which are short pulses fired by an activated neuron. Ac-

tion potentials propagate along the axon and reach an amplitude of approximately 100 mV.

Their duration is approximately 1–2 ms consisting of a short depolarization followed by a

repolarization phase returning to the resting membrane potential. The second form is given

by postsynaptic potentials which are more protracted potential changes triggered by ac-

tion potentials of presynaptic neurons. Typically, neurons receive input from other neurons

through thousands of synaptic connections at the dendrites and the cell body. Neurotrans-

mitters change the permeability of the postsynaptic membrane and either lead to a depo-

larization (excitatory postsynaptic potential) or a hyperpolarization (inhibitory postsynaptic

3



2. Background of EEG and MEG modalities

potential). Postsynaptic potentials reach magnitudes of only around 10 mV with a duration

of approximately 10–30 ms (excitatory) up to 80–100 ms (inhibitory). At the cell body, the

inhibitory and excitatory postsynaptic potentials from presynaptic cells are integrated and

if a depolarization threshold in the axon hillock is reached, an action potential is induced

which then in turn propagates to other neurons (Hallez et al., 2007).

In order to be detectable by EEG or MEG, the strength and duration of the neuronal ac-

tivity must be sufficiently large. This relates to the number of active neurons as well as

their temporal and geometric correlation. The main contribution to EEG and MEG signals

stems from pyramidal neurons in layers III, IV and V of the neocortex whose elongated api-

cal dendrites are aligned orthogonally to the cortical surface (Brette and Destexhe, 2012).

These intracellular net flows of ions along the dendrites of the pyramidal cells can be con-

sidered as current dipoles which represent the primary current. Since the human head is a

conducting medium, the primary current is associated with volume (return) currents, as the

current returns through the surrounding space closing the loop (Lopes da Silva and Rotter-

dam, 1982). A schematic representation of a pyramidal cell and the current dipole model is

depicted in Figure 2.1. According to the right-hand-rule of electromagnetism, these current

Soma

Apical dendrite

a) b)

Figure 2.1.: a) Schematic representation of pyramidal cell. b) Current dipole model: The
current dipole (yellow arrow) represents the primary current, the volume (re-
turn) currents are depicted as red arrows and the blue lines indicate the isopo-
tential lines. Modified from Hari and Puce (2017).

flows generate a magnetic field around them. Due to the synchronous activity and spatial

alignment of the pyramidal cells, these electromagnetic signals can be detected by EEG and

MEG sensors. The direction of the dipole may vary depending on the relative position of

4



2.2. Geometric and conductive properties of human head tissues

the synapses and the type of postsynaptic potential (excitatory/inhibitory) (Hari and Puce,

2017). Simulation studies suggest that several tens of thousands of pyramidal cells need

to be synchronously active in order to be detectable with MEG and EEG (Murakami and

Okada, 2006). The electric current distribution related to action potentials is geometrically

complex and can be modeled using higher order multipole sources (Brette and Destexhe,

2012). As a result, the signal at a distance (e.g., at the scalp) is dominated by dipolar sources

(Brette and Destexhe, 2012). Additionally, action potentials last only about 1%–5% of the

duration of postsynaptic potentials and therefore, they are not significantly contributing to

the measured EEG and MEG signals (Hari and Puce, 2017).

2.2. Geometric and conductive properties of human
head tissues

The current distribution resulting from cortical sources, and therefore also the measured sig-

nals by EEG/MEG, depend on the geometric and conductive characteristics of the human

head which acts as a passive volume conductor (Hari and Puce, 2017). This influence is es-

pecially pronounced for EEG, although MEG studies also suggest an influence of geometry

and resistivity, mainly for modeling differences in tissues in the vicinity of the source as

opposed to changes in the skull and scalp compartment (Haueisen et al., 1997; Lew et al.,

2013; Ramon et al., 2006). In this section, the anatomical characteristics of the human head

as well as common approaches and typical simplifications to model the head volume con-

ductor will be presented for the most important tissue compartments, with a focus on skull

modeling and conductivity.

Figure 2.2 provides an anatomical overview and presents a schematic representation of

the various tissue compartments in the human head. White matter mainly consists of nerve

bundles that connect the cortical gray matter (Hallez et al., 2007). The brain itself is en-

veloped by the three membranes of pia mater, arachnoid mater and dura mater, which form

the meninges (Yang and Lei, 2019). The subarachnoid space between the former two is

filled with cerebrospinal fluid (CSF). The layered skull consists of compact bone connected

by sutures with an enclosed spongiform layer (McCann et al., 2019; Yang and Lei, 2019).

Due to this complex organization, it is clear that simplifications and homogenizations

are necessary for the creation of suitable head volume conductor models. Head modeling

approaches typically differ in the shape, the number of tissues that are differentiated and

the conductivities assigned to each of them. These aspects are closely related, for instance,

it has been suggested to counterbalance the omission of the CSF tissue compartment by
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Figure 2.2.: Schematic representation of head tissues. The brain is encased by the meninges:
pia mater, arachnoid mater and dura mater. The subarachnoid space located
between the former two is filled with cerebrospinal fluid (CSF). The skull con-
sists of an outer and inner layer of compact bone connected by sutures, with a
spongiform layer enclosed. The labels are based on McCann et al. (2019) and
Yang and Lei (2019), the drawing is modified from Blausen Medical (2014).

adapting the conductivity of the other tissues (Stenroos and Nummenmaa, 2016). Concern-

ing the shape of the head model, in most applications, a standard spherical geometry is

used as a simplified model of the human head (Brette and Destexhe, 2012; De Munck and

Peters, 1993; Lalancette et al., 2011). For more realistic geometries, template head models

can serve as a readily available alternative (Akalin Acar and Makeig, 2013). Commonly

used template models consist of individual head models based on imaging modalities (e.g.,

MRI) which are averaged across multiple subjects (Fillmore et al., 2015; Fuchs et al., 2002;

Mazziotta et al., 2001; Valdés-Hernández et al., 2009), or from a single individual (Collins

et al., 1998). For an even more accurate modeling, individually segmented realistic head

models can be created if imaging data is available (Céspedes-Villar et al., 2020; Von El-

lenrieder et al., 2009). Regarding the number of tissues differentiated, in the simplest case,

one-compartment (single-shell) head models can be used for MEG analysis (Hämäläinen

and Sarvas, 1987; Nolte, 2003). Usually for EEG/MEG analysis, however, there are at least

three tissue distinctions, modeling scalp, skull and brain compartments (Fuchs et al., 1998;

Kybic et al., 2005; Stenroos et al., 2014). The distinction of further tissue compartments has

been suggested for CSF, gray/white matter and compact/spongiform layers (Ramon et al.,

2004; Wendel et al., 2008), resulting in up to six different tissues (Vorwerk et al., 2014).

In some cases, even more compartments have been taken into account, e.g., air cavities
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2.2. Geometric and conductive properties of human head tissues

(Montes-Restrepo et al., 2014). Ramon et al. (2006, 2004) used an eleven-compartment

head model additionally including muscle, fat, eyes, spinal cord/cerebellum and soft tissue.

The availability and quality of imaging data increases and more sophisticated automated

software pipelines for the segmentation of head models are offered, facilitating the genera-

tion of individual head models. However, the question of how to best assign conductivity

values to these different biological tissues remains an important issue. The segmentation

of additional tissue types may therefore not always be worth the effort, if the conductivity

of the added compartment is unknown and has to be guessed. Typically, literature values

are used to assign conductivities to each tissue compartment. This is problematic as firstly,

reported conductivity values for most tissue compartments vary depending on the experi-

mental setup, e.g., measurement modality, temperature, frequency and condition (in vivo,

ex vivo, in vitro) (McCann et al., 2019). Secondly, most tissue conductivities vary inter-

individually and may even be influenced by subject-specific factors such as pathology and

age (McCann et al., 2019). Each major tissue type will be addressed in more detail in the

following.

The outer tissue compartment usually referred to as scalp comprises the skin, fat and

muscle layers outside the skull and is often assigned a conductivity of 0.43 S/m or 0.33

S/m in case it is assumed to be identical to the brain conductivity (Geddes and Baker, 1967;

Gonçalves et al., 2003b; Haueisen et al., 1997; Vorwerk et al., 2014). This is in accordance

with the meta-analysis of McCann et al. (2019), reporting a weighted mean of 0.41 S/m

based on the reliability assessments of each study that was included.

The brain is usually either modeled as a homogeneous compartment or gray and white

matter are distinguished for a more detailed modeling. While the homogeneous tissue com-

partment is often assumed to have a conductivity of 0.33 S/m, values of 0.33 S/m and 0.14

S/m are commonly used for gray and white matter, respectively, in case they are modeled

separately (Gonçalves et al., 2003b; Ramon et al., 2004; Vorwerk et al., 2014). Weighted

mean values of 0.38 S/m (whole brain, gray matter) and 0.15 S/m (white matter) were re-

ported in McCann et al. (2019, 2021). Additionally, it has been suggested to take white

matter anisotropy into account, as the conductivity along the direction of nerve bundles

within the white matter has been reported to be approximately nine times higher compared

to the orthogonal direction (Nicholson, 1965). This directional information can be recon-

structed based on the characteristics of water diffusion detectable by DTI measurements

(Ruthotto et al., 2012; Tuch et al., 2001). Due to the influence of white matter anisotropy

on EEG and MEG forward and inverse analysis, which is especially pronounced for deep

sources, is has been suggested to incorporate this information into realistic head models,

provided it is available (Güllmar et al., 2010; Hallez et al., 2005; Wolters et al., 2006).
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If taken into account, the tissues between skull and brain are usually homogenized as the

CSF compartment. Often, the fixed conductivity of 1.79 S/m is used for this compartment

based on the average of seven CSF samples measured by Baumann et al. (1997) at body

temperature using directly applied current (DAC), while observing less than 2.4% devia-

tions. This value is similar to the weighted mean reported by McCann et al. (2019, 2021)

of 1.74 S/m. However, as the subarachnoid space filled with CSF is just part of the tissue

between skull and brain, it has been suggested to model further tissue types such as dura

mater (Ramon et al., 2014) and blood vessels (Fiederer et al., 2016) separately in addition

to CSF.

In general, tissue modeling and conductivity attribution is demanding for most head tis-

sues. However, skull conductivity seems especially important due to its high resistivity and

considerable influence especially on the electric forward solutions and has therefore been

intensely discussed. Sensitivity studies of EEG as well as TES forward and inverse solu-

tions have stressed the importance of skull conductivity and the ratio between skull and

scalp conductivity (Saturnino et al., 2019; Schmidt et al., 2015; Vallaghé and Clerc, 2009;

Vorwerk et al., 2019a). As a result, many studies suggest that variations in skull modeling

and conductivity strongly affect EEG source reconstructions and electric stimulation, e.g.,

shown in simulations in spherical and realistic head models (Chen et al., 2010; Montes-

Restrepo et al., 2014; Roche-Labarbe et al., 2008; Saturnino et al., 2019; Schmidt et al.,

2015) and in the context of localizing the irritative zone in presurgical epilepsy diagnosis

(Aydin et al., 2017). However, it has also been shown that the role of skull conductivity in

EEG and combined EEG/MEG source localizations using minimum-norm estimate (MNE)

methods is negligible, although the spread of the source was found to vary slightly (Stenroos

and Hauk, 2013). On the other hand, MNE methods have a depth bias favoring superficial

sources and may therefore be less reliable for deeper sources (Fuchs et al., 1999; Lin et al.,

2006).

There are different approaches how to best model the structure of the skull. Generally,

the human skull consists of an outer and inner layer of compact bone encasing a spongiform

layer in the middle with local inhomogeneities such as sutures which further complicate the

modeling, see Figure 2.2. In the simplest and most common case, the skull is simplified as a

homogeneous compartment , either as a spherical shell or realistically shaped, taking local

variations in thickness into account (Brette and Destexhe, 2012; Gramfort et al., 2011). This

strategy, however, does not account for the inhomogeneous distribution of the spongy and

compact bone tissues. Therefore, it has been suggested to individually segment the spongi-

form bone layer from imaging data if available (Montes-Restrepo et al., 2014; Ramon et al.,

2004). This would also take local skull inhomogeneities such as sutures into account, which
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2.2. Geometric and conductive properties of human head tissues

might form a path of higher conductance (Law, 1993; Ollikainen et al., 1999; Pohlmeier

et al., 1997; Tang et al., 2008). In addition, age-related anatomical changes, e.g., related

to the fontanels, should not be neglected due to their large impact in neonates and infants

(Azizollahi et al., 2016; Lew et al., 2013).

As for the other tissues, usually a standard literature value is assigned to the skull. Typical

isotropic values adopted for skull conductivity are 0.0042 S/m (Buchner et al., 1997; Gençer

and Acar, 2004; Güllmar et al., 2010) or 0.01 S/m (Cho et al., 2015; Dannhauer et al., 2011;

Vorwerk et al., 2014). Different measurement techniques such as DAC (Akhtari et al.,

2002; Hoekema et al., 2003; Tang et al., 2008), electrical impedance tomography (EIT)

(Abascal et al., 2008; Fernández-Corazza et al., 2018; Nissinen et al., 2015), EEG or com-

bined EEG/MEG (Baysal and Haueisen, 2004; Gonçalves et al., 2003b; Gutierrez et al.,

2004) and magnetoacoustic tomography (Li et al., 2016) have been suggested and applied

to individually determine this parameter. McCann et al. (2019) reported significantly lower

whole skull conductivity values measured by EIT compared to values reported by DAC and

EEG/MEG studies. Moreover, a higher conductivity can be observed in in vivo samples

(McCann et al., 2019), by a factor of approximately 2.5–4 (Wendel and Malmivuo, 2006).

In combination with different measurement conditions (e.g., temperature and frequency),

highly varying literature values for bulk skull conductivity are reported with a weighted

mean of 0.016 S/m (McCann et al., 2019). In addition to measurement characteristics, skull

conductivity is assumed to strongly vary inter- and intra-individually, e.g., based on age

(Antonakakis et al., 2020; Hoekema et al., 2003; Wendel et al., 2010). Often, the ratio of

skull to other tissue conductivity has been discussed, either to soft tissue (scalp and brain)

in general, usually assuming their conductivity is the same, or specifically to either brain

or scalp tissue. Earlier works indicated a ratio of approximately 1:80 (Rush and Driscoll,

1968), while higher factors of up to 1:15 have been reported more recently (Akalin Acar

et al., 2016; Dannhauer et al., 2011; Gonçalves et al., 2003a,b; Lai et al., 2005; Oosten-

dorp et al., 2000; Zhang et al., 2006). The weighted mean of brain-to-skull conductivity

ratios reported in McCann et al. (2019) was 50.4 with a standard deviation of 38.9. The

disadvantage of a homogeneous isotropic conductivity is that the skull anisotropy resulting

from its layered structure is not accounted for, which was found to have a smearing effect

on the EEG potentials (Wolters et al., 2006). The spongiform tissue is more conductive

than the compact bone layers (Akhtari et al., 2002), therefore the conductivity tangential

to the head surface is assumed to be higher compared to the radial direction. This can be

modeled by an anisotropic but homogeneous conductivity, i.e., by assigning each skull lo-

cation a tangential and a radial conductivity value (Hallez et al., 2005; Wolters et al., 2006).

This approach would account for the anisotropic nature of skull conductivity, but neglect
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local inhomogeneities. In case spongiosa is segmented separately, a ratio of approximately

3.6 between spongiform and compact skull conductivity has been suggested (Akhtari et al.,

2002). Dannhauer et al. (2011) compared various skull modeling approaches in the context

of EEG source analysis and concluded that the modeling of local variations of the skull was

more important than modeling the skull conductivity as isotropic or anisotropic.

Due to the emphasized importance of skull conductivity in EEG, combined EEG/MEG

and TES applications on the one hand, and largely varying individual measurements re-

ported in literature on the other hand, a subject-based estimation of this parameter has been

suggested and is subject of this thesis. In Chapter 4, a novel algorithm based on EEG/MEG

to individually estimate skull conductivity will be presented.

2.3. EEG and MEG recordings

In this section, practical aspects related to the measurement of EEG and MEG signals are

outlined. Although the underlying electromagnetic activity is identical, the acquisition of

EEG and MEG signals poses modality-specific challenges that define the methods’ applica-

bility and characteristics.

EEG measures voltage differences via electrodes that are attached to the scalp, typical

amplitudes measured from brain activity are in the range of 50–100 µV (Berger, 1929; Hari

and Puce, 2017). We will only consider surface EEG in this thesis, however, also intracra-

nial measurements are possible in clinical applications, e.g., in epilepsy diagnosis (Parvizi

and Kastner, 2018). The number of sensors may vary, usually a standardized system is used

for a better comparison such as the International 10–20 system (21 electrodes), the more

dense 10–10 system (81 electrodes) or even higher resolutions (Hari and Puce, 2017; Oost-

enveld and Praamstra, 2001). These systems imply that the distance between electrodes

is, for instance, based on 20% or 10% fractions of lines connecting anatomical landmarks,

i.e., the connection between nasion and inion and the one linking the preauricular points.

The electrodes are usually integrated in a cap for a more convenient setup and electrode

gel and mild skin scraping underneath each electrode can improve the signal quality. EEG

relies on a reference as it measures voltage differences and the particular choice of refer-

ence impacts its interpretation. Typically, a specific (ideally neutral) electrode is used as

a reference, during the preprocessing the signals are often re-referenced using the average

over all electrodes (Hari and Puce, 2017).

In MEG, magnetic fields generated by brain activity are detected which are typically in

the order of 100 fT (Cohen, 1972; Gross, 2019). These amplitudes are about six orders of
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magnitude smaller than urban noise and three orders of magnitude smaller than the magnetic

field strength generated by the human heart (Gross, 2019; Proudfoot et al., 2014). In order

to capture these weak signals, MEG measurements are conducted in a magnetically shielded

room and feature highly sensitive sensors. Typically used commercial whole-head systems

comprise around 300 sensors which are arranged in a helmet-shaped insulated tank (dewar)

in which the subject’s head is positioned (Baillet, 2017; Gross, 2019).

Currently, most MEG systems rely on sensor technology based on highly sensitive Su-

perconducting Quantum Interference Devices (SQUIDs) which operate in a state of super-

conductivity and can pick up signals in the fT range (Cohen, 1972; Gross, 2019). Every

SQUID is coupled to a pickup coil located at a typical distance of approximately 2 cm from

the subject’s head (Cohen, 1972; Hari and Puce, 2017). Each sensor measures the magnetic

flux through the surface area of this pickup coil in units of weber, although the output of

most MEG systems is indicated as the magnetic flux density or magnetic field, indicated in

units of tesla (Cheyne and Papanicolaou, 2017). In most MEG systems, pickup coils are

oriented parallel to the head surface, thus measuring the magnetic field component in radial

direction to the head surface, perpendicular to the coil surface (Cheyne and Papanicolaou,

2017). Pickup coils can have different shapes, some common designs are depicted in Fig-

ure 2.3. While a magnetometer consists of a single coil and therefore does not differentiate

between homogeneous and rapidly changing magnetic fields, gradiometers are designed to

measure the spatial gradient of the magnetic field in order to increase the signal-to-noise

ratio (SNR). A first-order axial gradiometer consists of two coils with a typical distance

(baseline) of 4–14 cm that are wound in opposite direction, measuring the changes in field

strength along the distance between the coils, typically in the direction radial to the head

surface (Hari and Puce, 2017). Consequently, sources that are far away which have a more

slowly changing magnetic field are attenuated (Cheyne and Papanicolaou, 2017). Planar

gradiometers operate similarly but consist of two coils arranged next to each other, measur-

ing the gradient along the direction parallel to this arrangement (Cheyne and Papanicolaou,

2017). When located over a current dipole source, a bipolar field pattern with minimum

and maximum field strengths on both sides of the dipole moment orientation is observed

when using magnetometers or axial gradiometers. Planar gradiometers lead to a monopolar

pattern with a maximum directly above the source in case the coils are arranged on a line

perpendicular to the dipole moment vector (Hari and Puce, 2017). As the output of planar

gradiometers depends on their orientation of coils in relation to the dipole moment, typi-

cally two planar gradiometers are combined orthogonally in one sensor array (Cheyne and

Papanicolaou, 2017; Hari et al., 2018). Due to the small amplitude of the signals of interest,

both EEG and MEG recordings are amplified and further preprocessed in order to minimize

11



2. Background of EEG and MEG modalities

a) b) c)

Figure 2.3.: Different designs of MEG sensors: a) magnetometer, b) first-order axial gra-
diometer and c) first-order planar gradiometer. While a magnetometer consists
of only one coil, a first-order axial gradiometer has two coils wound in opposite
direction. As a result, it filters out the uniform magnetic field (straight red ar-
row) that passes through the coils and instead only measures the change in the
magnetic field strength between both coils. A planar gradiometer consists of
two coils next to each other and measures the spatial gradient in the direction
parallel to the coils. Modified from Cheyne and Papanicolaou (2017) and Hari
and Puce (2017).

the influence of artifacts both originating from the environment (e.g., power line noise) and

from the subject’s body (e.g., eye movements) (Hari and Puce, 2017).

There are several technological advancements worth mentioning that may significantly

impact research in these fields. Regarding EEG, conventional wet electrodes typically re-

quire a large preparation and cleanup time. Recent developments include dry (gel-free)

electrode systems that almost achieve a comparable quality and may broaden clinical ap-

plications of EEG due to their easy setup and usability (Hinrichs et al., 2020; Lopez-Gordo

et al., 2014). Additionally, even though quality of EEG measurements improves in an elec-

tromagnetically shielded environment and body movements are usually discouraged, there

are also advances in small and wireless portable EEG systems that allow EEG measurements

in natural environments outside the laboratory (De Vos et al., 2014; Ratti et al., 2017). This

technological progress also offers new possibilities in providing viable neurofeedback ther-

apies, e.g., in the context of attention deficit hyperactivity disorder (ADHD) or epilepsy

(Egner and Sterman, 2006; Enriquez-Geppert et al., 2017; Monastra et al., 2002). Related

to MEG, a major drawback of SQUID technology is their requirement for extremely low

temperatures of approximately 4 K in order to function properly (Gross, 2019). To achieve

this, the dewar is filled with liquid helium which needs to be refilled regularly in some sys-
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tems, although there are also advances in helium recycling (Gross, 2019). As a result, MEG

systems typically have rather high acquisition and maintenance costs. Additionally, the

fixed arrangement of sensors within the dewar described above is sensitive to head move-

ments and poses restrictions for its applicability, for instance related to different head sizes

or children (Gross, 2019; Hari and Puce, 2017). There are several promising alternatives

to conventional SQUID technology emerging. Amongst others, high-transition-temperature

(high-Tc) SQUIDs can operate at the temperature of liquid nitrogen (77 K) and therefore re-

quire less insulation, potentially allowing them to be positioned closer to the scalp (Körber

et al., 2016; Öisjöen et al., 2012). In addition, a promising new sensor technology of op-

tically pumped magnetometers (OPMs) is evolving that might overcome the disadvantages

of conventional MEG systems, with a similar sensitivity (Borna et al., 2020; Gross, 2019;

Tierney et al., 2019). These sensors rely on principles of magnetic resonance and involve a

light-vapor (e.g., rubidium) interaction in a cell, which does not depend on expensive cryo-

genic components (Borna et al., 2020; Labyt et al., 2019). Therefore, they are more flexible

in their setup, as they can be placed directly adjacent to the scalp, allowing an integration

into wearable systems (Boto et al., 2018; Tierney et al., 2020).

EEG and MEG are closely related, but although the underlying cortical sources are iden-

tical, it can be advantageous to combine both modalities. Their mutual acquisition does not

only increase the number of sensors and therefore improve the spatial sampling, but also sta-

bilizes the analysis due to the complementary nature of both modalities. For instance, it is

well established that MEG is insensitive to quasi-radial orientation components, while EEG

is sensitive to radial activity as well (Cohen and Cuffin, 1983). Therefore, the benefits of a

combined analysis have been emphasized in order to capture the core characteristics of the

source by at least one modality and thereby stabilizing source analysis (Dassios et al., 2007),

e.g., in epilepsy research (see Chapter 7). Simulation studies in a realistic head model have

confirmed that the MEG is more sensitive to tangentially oriented sources, while the EEG

was shown to be more sensitive to radial and deep cortical sources (Piastra et al., 2021).

Combined measurements require that the EEG setup is non-magnetic and the subject’s head

still fits into the MEG dewar with electrodes attached to the head surface (Hari and Puce,

2017). Further technical aspects for combining EEG and MEG data sets are discussed in

Section 3.4.
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In many applications, the aim of EEG/MEG measurements is to reconstruct the underlying

cerebral sources from the electric potential (EEG) or magnetic field (MEG) measured at

the sensors. In order to solve this ill-posed inverse problem, accurate solutions of the for-

ward problem need to be computed by simulating EEG/MEG signals that result from brain

activity. Regarding EEG, the electric potential is computed by solving an elliptic partial

differential equation, while an integral is evaluated to calculate the magnetic field in case of

MEG (Brette and Destexhe, 2012).

In this chapter, the mathematical background related to the EEG and MEG forward prob-

lems is presented. Based on Maxwell’s equations of electromagnetism, the Poisson equation

for the electric potential is derived and an integral expression to compute the magnetic field

based on the law of Biot-Savart is introduced in Section 3.1. In simplified geometrical

head models, (quasi-)analytical expressions exist for the EEG and MEG forward solutions,

which are outlined in Section 3.2 for concentric spherical head models. As more realistically

shaped head models require numerical approaches, Section 3.3 presents the mathematical

framework for solving the forward problems using the finite element method (FEM). In

Section 3.4, postprocessing steps to prepare the forward solutions for inverse methods are

presented, including their evaluations at the sensors and SNR transformations for a com-

bined analysis. Additionally, the concepts of transfer and leadfield matrices are introduced.

In the following, we employ the convention of describing vector fields such as the mag-

netic field B : R3 → R3 with bold letters in order to better distinguish them from scalar

fields, e.g., the electric potential u : R3→ R.

3.1. Derivation of the EEG/MEG forward problems

The forward problem in EEG applications refers to the calculation of the electric potential

at the electrodes, while the MEG forward problem involves the computation of the magnetic

field components at the sensors outside the head, both generated by a given current distri-
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bution inside the brain. In the following, mathematical formulations for the EEG and MEG

forward problems will be derived based on Maxwell’s equations of electromagnetism.

In general, electromagnetic phenomena are governed by Maxwell’s macroscopic equa-

tions (Maxwell, 1861, 1865). Taking the bioelectrical properties and generators underlying

EEG and MEG into account, it has been argued that the contributions of the time deriva-

tives can be neglected and the quasi-static approximation of Maxwell’s equations can be

presumed (De Munck and Van Dijk, 1991; Hämäläinen et al., 1993; Plonsey and Hepp-

ner, 1967), which is defined as follows (De Munck and Van Dijk, 1991; Hämäläinen et al.,

1993).

Definition 3.1: Quasi-static approximation of Maxwell’s equations. For biological tissues,

we assume that the magnetic permeability µ approximately corresponds to the one in free

space µ0 = 4π10−7 Tm
A , so that the relations between the electric displacement field D and

the electric field E, as well as the magnetic field B and the magnetizing field H are governed

by the constitutive equations

D = ε0εrE,

H =
1
µ0

B,

where the electric permittivity of the material is given as the product of the permittivity

of free space ε0 and the relative permittivity εr. Then, the quasi-static approximation of

Maxwell’s equations in R3 can be stated as

∇ ·E =
ρ

ε0εr
,

∇×E = 0,

∇×B = µ0 j, (3.1)

∇ ·B = 0, (3.2)

where ρ denotes the electric charge density and j the electric current density.

The rotation-free electric field can be expressed as the gradient field of a scalar electric

potential u as E =−∇u. The current density j can then be stated as the sum of the primary

current density jp and the secondary current density resulting from return currents js = σσσE
following Ohm’s law, as

j = jp−σσσ∇u, (3.3)
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where σσσ denotes the electrical conductivity. Applying the divergence to both sides of (3.1),

and inserting (3.3) yields a Poisson equation for the electric potential, leading to the fol-

lowing definition of the EEG forward problem (Brette and Destexhe, 2012; De Munck and

Peters, 1993).

Definition 3.2: EEG forward problem. Let Ω⊂ R3 be the head domain with a sufficiently

smooth boundary ∂Ω and let the conductivity be given by symmetric, positive definite ten-

sors σσσ : Ω→R3x3. Then, the EEG forward problem is to find the electric potential u : Ω→R
that solves

∇ · (σσσ∇u) = ∇ · jp in Ω,

σσσ∇u ·n = 0 on ∂Ω,
(3.4)

where n denotes the outer surface normal.

In case of isotropic tissue, the conductivity can be written in a simplified way as a scalar

field σ : Ω→R+. Zero Neumann boundary conditions on the head surface ∂Ω are assumed,

as air has an electric conductivity several orders of magnitude smaller than biological tissue

(Seran et al., 2017).

Typically, the primary current is modeled as an equivalent current dipole (Brette and

Destexhe, 2012; Hämäläinen et al., 1993) which is defined as follows.

Definition 3.3: Current dipole model. For dipole location x0 ∈ Ω and moment vector q ∈
R3, the current dipole (or mathematical point dipole) is defined as

jp(x) = qδ (x−x0), (3.5)

where δ is the Dirac delta distribution.

Classical solutions u to the strong formulation of the EEG forward problem presented

in Def. 3.2, i.e., u ∈ C2(Ω)∩C1(Ω̄), only exist for restrictive regularity assumptions on

the right-hand side as well as the conductivity, which are typically not met (Braess, 2007).

As to the conductivity, it is usually either assigned to each tissue type or each voxel value

is inferred from DTI measurements. In both cases, only piecewise constant values can be

presumed, i.e., σσσ i j ∈ L∞(Ω), 1≤ i, j≤ 3. Additionally, the evaluation of the singular source

term ∇ · (qδx0), which results from inserting (3.5) into the right-hand side term of (3.4),

poses challenges to the applicability of the theoretical FEM framework. In Section 3.3, a

weak formulation for the EEG forward problem will be derived and different approaches to

deal with the singular source term are addressed.

Regarding MEG, the forward problem refers to the calculation of the magnetic field at

the sensor positions outside the head generated by a current distribution inside the brain.
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It is closely related to EEG, as the integral expression for the magnetic field which will be

derived in the following based on Hansen et al. (2010), Plonsey and Heppner (1967) and

Hämäläinen et al. (1993), requires the solution of the EEG forward problem.

As the magnetic field is characterized by zero divergence following Maxwell’s equation

(3.2), it can be expressed as the curl of the magnetic vector potential Â, i.e., B = ∇× Â.

Using Coulomb’s gauge ∇ · Â = 0, it follows from (3.1) that

µ0 j = ∇×B = ∇× (∇× Â) = ∇(∇ · Â)−∇
2Â =−∇

2Â. (3.6)

Consequently, Â can be written as the solution of the Poisson equation in (3.6):

Â(xs) =
µ0

4π

∫
Ω

j(x)
‖xs−x‖2

dx, (3.7)

for a measurement position xs. Using the relation B = ∇× Â in combination with (3.7)

and the quotient rule for the curl operator results in the law of Biot-Savart, which is stated

in the following definition of the MEG forward problem (Cheyne and Papanicolaou, 2017;

Hämäläinen et al., 1993).

Definition 3.4: MEG forward problem. Let Ω denote the head domain, σ the conductivity,

j a given current distribution in the brain and u the electric potential. Then, the MEG

forward problem refers to the computation of the magnetic field B outside the head volume

conductor for a measurement position xs ∈ R3 \Ω, which can be calculated using the law

of Biot-Savart as

B(xs) =
µ0

4π

∫
Ω

j(x)× xs−x
‖xs−x‖3

2
dx

=
µ0

4π

∫
Ω

jp(x)× xs−x
‖xs−x‖3

2
dx

︸ ︷︷ ︸
Bp

− µ0

4π

∫
Ω

σσσ(x)∇u(x)× xs−x
‖xs−x‖3

2
dx

︸ ︷︷ ︸
Bs

, (3.8)

where Bp(xs) denotes the primary magnetic field and the secondary magnetic field Bs(u,xs)

depends on the solution of the EEG forward problem.

While the secondary magnetic field is computed numerically once the EEG forward prob-

lem is solved, an analytical expression exists for the primary magnetic field.

Remark 3.1: Primary magnetic field. The primary magnetic field Bp can be computed

analytically for a dipolar source at location x0 ∈ Ω and moment vector q ∈ R3 (Sarvas,
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3.2. (Quasi-)Analytical solutions

1987):

Bp(xs) =
µ0

4π
q× xs−x0

‖xs−x0‖3
2
. (3.9)

Note that there are different definitions of the MEG forward problem, an alternative for-

mulation relies on the computation of the magnetic field component in measurement direc-

tion via the magnetic flux using Stokes’ theorem, which involves the computation of a coil

surface integral over the magnetic vector potential Â (Vorwerk, 2016).

3.2. (Quasi-)Analytical solutions

In simplified geometric scenarios, (quasi-)analytical expressions for the EEG and MEG

forward problems exist. Most relevant for applications in neuroscience are multi-layered

spherical head volume conductor models as a rough approximation of the head geometry,

which will be considered in the following.

For EEG, De Munck and Peters (1993) derived series expansion formulas to compute the

electric potential at the electrode positions on the outer sphere surface. Following De Munck

and Peters (1993) and Wolters (2017), the quasi-analytical EEG solution can be computed

as follows.

Definition 3.5: Quasi-analytical EEG solution in concentric spherical head model. Let

the head model consist of N concentric spheres, each layer is assumed to have a constant

conductivity σi ∈R+, 1≤ i≤ N. As previously, we consider a dipolar source at location x0

with moment q, and the electrode position on the outer sphere surface is denoted by xs. The

radial coordinates of the sensor and dipole locations are denoted by rs and r0, respectively.

Let ω0s further be the angular distance between electrode and source.

Then, the potential at the electrode can be computed as

u(x0,xs) =
1

4π
〈q,S0

xs

rs
+(S1− cos(ω0s)S0)

x0

r0
〉,

with the terms S0 and S1 defined as

S0 =
F0

r0

Λ

R3 +
1
r0

∞

∑
n=1

[(2n+1)Rn(r0,rs)−F0Λ
n]P′n(cos(ω0s)),

S1 = F1
Λ(cos(ω0s))−Λ2

R3 +
∞

∑
n=1

[
(2n+1)R′n(r0,rs)−F1nΛ

n]Pn(cos(ω0s)).
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3. Mathematical background to the EEG and MEG forward problems

The scalar terms F0, F1, Λ and R, which are independent of n, as well as the coefficients Rn

and their derivatives can be computed analytically using the geometric characteristics and

piecewise homogeneous conductivities (De Munck and Peters, 1993). Pn and P′n denote the

Legendre polynomials and their derivatives (Bronstein et al., 2008).

For the MEG forward solution, an analytical closed-form expression in a multi-layer

spherical head volume conductor model with piecewise homogeneous conductivities was

formulated by Sarvas (1987).

Definition 3.6: Analytical MEG solution in concentric spherical head model. Let the head

model consist of N concentric spheres and let the sphere center be the origin of the coordi-

nate system. Then, the B field at location xs outside the volume conductor can be computed

as

B(xs) =
µ0

4πF2 (Fq×x0− [(q×x0) ·xs]∇F) , with

F = a
(
xa+ x2−x0 ·xs

)
,

∇F =
(
x−1a2 +a−1a ·xs +2a+2x

)
xs−

(
a+2x+a−1a ·xs

)
x0,

a = xs−x0, a = |a|, x = |xs|.

Here, the physical constant µ0 denotes the magnetic permeability of vacuum, see Def. 3.1.

It is worth noting that in this simplified spherical head model, the magnetic field at a

sensor position outside the volume conductor does not depend on its conductive properties.

Additionally, the magnetic field is not influenced by the radii of spherical layers either, it

only depends on the source and measurement locations relative to the sphere center (Cheyne

and Papanicolaou, 2017; Sarvas, 1987). Another important implication is that the B field

vanishes for radial dipole orientations as the cross product between dipole moment and

position is zero. In case the brain is modeled as a sphere, this implies that sources located

on gyral crowns and sulcal valleys are not visible in the MEG, as the dipole orientation

perpendicular to the cortex is radial to the sphere surface in these cases.

3.3. Numerical solutions using the finite element
method

For more complex realistically shaped head models, without analytical formulations avail-

able, different approaches have been suggested and applied to solve the EEG/MEG forward
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3.3. Numerical solutions using the finite element method

problems numerically (Pruis et al., 1993). One commonly used approach is the bound-

ary element method (BEM) which computes the surface potentials using triangulated sur-

faces of head tissue compartments each assigned with a homogeneous isotropic conductiv-

ity (Geselowitz, 1967; Gramfort et al., 2011; Stenroos and Sarvas, 2012). Typically, three

nested surfaces (inner and outer skull, outer scalp) are used, although theoretically, non-

nested surfaces are also possible to incorporate (Kybic et al., 2006). This method is widely

used in practice due to its comparatively low computational effort. However, BEM does not

allow for anisotropic tissue, and the accurate modeling of complex-shaped layers such as

CSF would add a high number of additional degrees of freedom which would significantly

increase the computational effort, as BEM involves the inversion of a small but dense sys-

tem matrix (Hallez et al., 2007; Vorwerk et al., 2012). Other numerical methods adopted to

solve the EEG/MEG forward problems include the finite difference method (FDM) (Cuar-

tas Morales et al., 2019; Montes-Restrepo et al., 2014; Vatta et al., 2009) and the finite

volume method (FVM) (Cook and Koles, 2006). Both of these methods potentially allow

for anisotropy by including a larger computational stencil that takes more neighboring de-

grees of freedom into account.

In the following, we will focus on the finite element method (FEM), which is able to

cope with anisotropic tissue as well as complex geometries and has been widely used in

EEG/MEG analysis (Azizollahi et al., 2018; Gençer and Acar, 2004; Piastra et al., 2021;

Vorwerk et al., 2014). A weak formulation of the EEG forward problem is introduced in

Section 3.3.1, and a discretization of the EEG and MEG forward problems using a con-

forming FEM approach is presented in Section 3.3.2. Subsequently, different approaches to

model the dipolar source are introduced in Section 3.3.3.

3.3.1. Weak formulation

The strong formulation of the EEG forward problem presented in (3.4) implies restrictive

regularity conditions which are typically not satisfied. In this section, we will therefore

derive a weak formulation of the above-mentioned problem. The content of this section is

mainly based on Braess (2007) and Evans (1998) which contain further details on Sobolev

space theory.

We assume that the head domain Ω⊂R3 is open with a piecewise smooth boundary. The

space L2(Ω) refers to measurable functions for which u2 is Lebesgue-integrable, its scalar

product associated with the norm ‖·‖L2 is defined as 〈u,v〉L2 =
∫

Ω
u vdx. Before introducing

Sobolev spaces, we define weak derivatives (Braess, 2007; Ciarlet, 2002).
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3. Mathematical background to the EEG and MEG forward problems

Definition 3.7: Weak derivative. Let ααα = (α1, . . . ,αd) ∈ Nd denote a multi-index with the

norm |ααα| := ∑
d
i=1 αi. Then, u ∈ L2(Ω) has a weak derivative v defined as

v = ∂
αααu :=

∂ |ααα|u
∂

α1
x1 . . .∂ αd

xd

,

if v ∈ L2(Ω) and for all ϕ ∈C∞
0 (Ω)

〈ϕ,v〉L2 = (−1)|ααα|〈∂ ααα
ϕ,u〉L2 .

Definition 3.8: Sobolev space. The Sobolev space Hk(Ω) for k ∈ N0 is defined as

Hk(Ω) =
{

u ∈ L2(Ω) : ∂
αααu ∈ L2(Ω), |ααα| ≤ k

}
,

with the associated norm

‖u‖Hk =
√
〈u,u〉k =

√
∑
|ααα|≤k
‖∂ αααu‖2

L2 .

In combination with the norm ‖ · ‖Hk , the space Hk(Ω) is a Hilbert space Braess (2007).

In particular, H1(Ω) denotes the space of scalar functions in L2(Ω) with weak derivatives

also in L2(Ω). We introduce the following subspaces which will be used to admit a unique

solution of the weak formulation despite pure homogeneous Neumann boundary conditions.

Definition 3.9: Sobolev space with zero mean. The Sobolev space with zero mean Hk
∗(Ω)

for k ∈ N0 is defined as

Hk
∗(Ω) =

{
u ∈ Hk(Ω) :

∫
Ω

udx = 0
}
.

In order to derive the weak formulation of the EEG forward problem, we start with Pois-

son’s equation (3.4) with the source term f := ∇ · jp. Assuming a sufficiently regular right-

hand side function f ∈ L2(Ω), we multiply with a test function v ∈V which will be defined

later. Integrating over the domain Ω and applying integration by parts yields∫
Ω

σσσ∇u ·∇vdx =−
∫

Ω

f vdx,

as the boundary integral vanishes due to the zero Neumann boundary conditions. This leads

to the following definition of the weak formulation of the EEG forward problem.
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3.3. Numerical solutions using the finite element method

Definition 3.10: Weak EEG forward problem formulation. In its weak formulation, the

EEG forward problem is to find u ∈V , such that

a(u,v) = l(v) ∀v ∈V, (3.10)

where the bilinear form a(u,v) and the linear form l(v) are defined as

a(u,v) =
∫

Ω

σσσ∇u ·∇vdx (3.11)

l(v) =−
∫

Ω

f vdx. (3.12)

An important finding to prove existence and uniqueness of solutions of partial differential

equations is given by the Lax-Milgram theorem (Evans, 1998).

Theorem 3.1: Lax-Milgram. Let X denote a Hilbert space with norm ‖.‖ and a : X×X→R
be a bilinear form which is

(i) continuous : ∃c1 ∈ R, c1 > 0 : |a(u,v)| ≤ c1‖u‖‖v‖, and

(ii) coercive : ∃c2 ∈ R, c2 > 0 : a(u,u)≥ c2‖u‖2

for all u,v ∈ X. Then, for a bounded linear functional l : X → R, there exists a unique

element u ∈ X such that for all v ∈ X

a(u,v) = l(v).

Note that for the bilinear form defined in (3.11), a(1,v) = 0 for any v ∈ H1(Ω). There-

fore, a solution u ∈ H1(Ω) is not unique, as any constant can be added. However, for a suf-

ficiently regular right-hand side, assuming that l is an element of the dual space (H1
∗ (Ω))′,

existence and uniqueness of a solution of the weak formulation can be shown for the sub-

space H1
∗ (Ω) defined in Def. 3.9 (Wolters et al., 2007c), as shown in the following.

Theorem 3.2: Existence and uniqueness of weak solution. Let l ∈ (H1
∗ (Ω))′ and the con-

ductivity tensors σσσ : Ω → R3×3 be piecewise constant and symmetric positive definite.

Then, there exists a unique solution u of the weak formulation in Def. 3.10 in the space

V := H1
∗ (Ω).

Proof: It is shown that the prerequisites of the Lax-Milgram theorem are met for the bilinear

form defined in (3.11). First, the continuity requirement can be shown for any u,v∈H1(Ω).

As the conductivity is piecewise constant, the domain Ω can be divided into pairwise dis-

joint subdomains Ω =
⋃

k Ω̄k with constant conductivity tensors σσσ(x) = σσσ k for x ∈Ωk. Due
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3. Mathematical background to the EEG and MEG forward problems

to the symmetry and positive definiteness of σσσ k, there exists an orthogonal matrix Sk such

that ΛΛΛk = ST
k σσσ kSk, where ΛΛΛk is a diagonal matrix with real positive eigenvalues (λk)i of

σσσ k, 1 ≤ i ≤ 3. Therefore, each subintegral over Ωk can be transformed so that σσσ k is diag-

onalized by applying the rotation Tk : Ωk→ Ω
′
k, x 7→ ξξξ , with Tk(x) = ST

k x, and vice versa

T−1
k (x) = Skx, with |det(∇Tk)|= 1 due to the orthogonality of Sk. This yields

|a(u,v)|=
∣∣∣∣∫

Ω

σσσ∇u ·∇vdx
∣∣∣∣

=

∣∣∣∣∣∑k

∫
Ω
′
k

ΛΛΛk∇
′u ·∇′vdξξξ k

∣∣∣∣∣
(∗)
≤∑

k

∫
Ω
′
k

∣∣ΛΛΛk∇
′u
∣∣ ∣∣∇′v∣∣ dξξξ k

≤ σmax ∑
k

∫
Ωk

|∇u| |∇v| dx,

using the Cauchy-Schwarz inequality in (∗). Here, σmax := maxk,i(λk)i denotes the largest

eigenvalue of all conductivity tensors in Ω. Summation over the subdomains again yields

σmax

∫
Ω

| ∇u| |∇v| dx
(∗∗)
≤ σmax‖∇u‖L2‖∇v‖L2

≤ c1‖u‖H1‖v‖H1 ,

with c1 = σmax, applying the Hölder inequality in (∗∗).

Second, it can be shown that the bilinear form is coercive for any u ∈ V . Similar to the

proof of continuity, the integral is subdivided into domains on which the conductivity is

constant and rotated to the coordinate system in which this tensor is diagonal

a(u,u) =
∫

Ω

σσσ∇u ·∇udx

= ∑
k

∫
Ω′k

ΛΛΛk∇
′u ·∇′udξξξ k

≥ σmin

∫
Ω

|∇u|2 dx
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3.3. Numerical solutions using the finite element method

where σmin = mink,i(λk)i denotes the smallest eigenvalue of all conductivity tensors in Ω.

It follows that

σmin

∫
Ω

|∇u|2 dx = σmin‖∇u‖2
L2

=
σmin

2
(
‖∇u‖2

L2 +‖∇u‖2
L2

)
(∗∗∗)
≥ σmin

2
‖∇u‖2

L2 +
σmin

2c̃2 ‖u‖
2
L2

≥ c2‖u‖2
H1 ,

where c2 = σmin
2 min{1, 1

c̃2 }. For (∗ ∗ ∗), a variant of the Friedrich-Poincaré inequality is

used, stating that for any u ∈ H1(Ω), there exists a constant c̃ = c̃(Ω), such that ‖u‖L2 ≤
c̃(|ū|+‖∇u‖L2), with ū = 1

|Ω|
∫

Ω
udx (Braess (2007), p. 32). Here, the condition u ∈ V is

used, as in our case ū = 0. Following Theorem 3.1, the variational problem (3.10) is well-

posed and admits a unique solution u ∈ H1
∗ (Ω).

Remark 3.2: Compatibility condition. In the proof of Theorem 3.2, it is shown that there

exists a unique u∈H1
∗ (Ω) that solves the variational problem for all v∈H1

∗ (Ω). This can be

generalized to all ṽ ∈H1(Ω), using the relation ṽ = v+1 ·c, for c ∈R, v ∈H1
∗ (Ω) (Wolters

et al., 2007c). As a(u,1) = 0 for any u ∈H1(Ω), it is required that l(1) = 0 as well for their

equality, which is referred to as the compatibility condition.

In order to apply Theorem 3.2, l(v) needs to be sufficiently regular. In particular, it is

required that f ∈ L2(Ω), which is not fulfilled for the mathematical point dipole. For the

Dirac delta distribution, which is used in the definition of the mathematical point dipole

(Def. 3.3), the following statement about its regularity can be made (Taylor (2011), p.319).

Remark 3.3: Sobolev space of Dirac delta distribution. The δ -distribution centered at a

point x0 ∈ R3 and its partial derivatives are in the following fractional Sobolev spaces

δ ∈ H−3/2−ε(R3),

Dααα
δ ∈ H−3/2−|ααα|−ε(R3),

for ε > 0.

Different approaches to address the singularity of the source term are discussed in Section

3.3.3, after the FEM discretization is introduced.
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3. Mathematical background to the EEG and MEG forward problems

3.3.2. FEM discretization

In this section, the computation of the numerical solution of the weak formulation of the

EEG forward problem will be presented. The notations and definitions are mainly based on

Braess (2007) and Ciarlet (2002).

Instead of searching for a solution in the infinite-dimensional function space in which

the EEG forward problem is posed, a finite-dimensional subspace is constructed in which

the problem is discretized. In this thesis we focus on conforming discretizations, i.e., we

consider a finite-dimensional subspace Vh of V . Besides this standard Continuous Galerkin

(CG-)FEM, there are also non-conforming variants worth mentioning which have been used

to solve the EEG/MEG forward problems, including the Discontinuous Galerkin (DG) and

the Unfitted Discontinuous Galerkin (UDG) finite element methods. Due to a larger number

of degrees of freedom, DG-FEM is computationally more expensive, but can result in higher

accuracies in low-resolution scenarios in which a thin skull layer may produce physically

inaccurate discretizations (Engwer et al., 2017; Piastra et al., 2018). UDG-FEM additionally

relies on an implicit description of the tissue layers via level-sets and does not require a

geometry-adapted volumetric mesh (Nüßing et al., 2016).

In order to discretize the weak formulation of the EEG problem (3.10), we assume that

the domain Ω has a polygonal boundary and can be divided into regular polyhedra. Further-

more, we make the following assumptions on the spatial discretization (Braess, 2007).

Definition 3.11: Admissible tesselation. A tesselation Th = {T1, . . . ,Tm} of Ω is called

admissible, if the following conditions are met:

(i)
⋃m

i=1 Ti = Ω̄,

(ii) if Ti∩Tj for i 6= j consists of exactly one point, it is a shared node of both elements,

(iii) if Ti ∩Tj for i 6= j consists of more than one point, it is a shared edge (2D) or face

(3D) of both elements.

This definition implies, for instance, that the tesselation does not contain any hanging

nodes. Based on a suitable spatial decomposition, finite elements can be formally defined

(Braess, 2007; Ciarlet, 2002; Ohlberger, 2012).

Definition 3.12: Finite Element. A finite element is defined as the triple (T , Π, Σ) with the

following properties:

(i) T ⊂ Ω̄ is a polyhedron,
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3.3. Numerical solutions using the finite element method

(ii) Π is a k-dimensional space spanned by real-valued functions referred to as shape

functions defined over the set T,

(iii) Σ consists of k linearly independent linear forms over Π which form a basis of the

dual space Π′ and are called degrees of freedom.

A particular form of finite element is the Lagrange or nodal finite element.

Definition 3.13: Lagrange finite element. Using the notations defined above, a finite ele-

ment (T , Π, Σ) is called a Lagrange finite element, if all degrees of freedom are of the form

p 7→ p(ai) for p ∈Π, where ai ∈ T are called Lagrange nodes.

In practice, it suffices to define a finite element for a reference geometry and use coor-

dinate transformations in order to generalize this concept to any element in the tesselation.

For details on the implementation of FEM, see, e.g., Sander (2020) and Ohlberger (2012).

The definition of finite elements only includes local function spaces defined on an element

T ∈ Th. In order to construct a subspace of H1(Ω), we consider the following space and

construct a global nodal basis.

Definition 3.14: Finite element space. For the space of polynomials Pk of degree k ∈ N,

the space of continuous and piecewise polynomial functions is defined as

V k
h :=

{
vh ∈C0(Ω̄) : vh|T ∈ Pk ∀T ∈Th(Ω)

}
.

According to this definition, the finite element space is conforming as V k
h (Ω) is a subset

of H1(Ω) (Braess (2007), p.59). We will only consider first-order finite element spaces

(k = 1) and choose piecewise linear functions in P1 = P1 for triangular/tetrahedral meshes

and piecewise bi-/trilinear functions in P1 = Q1 for quadrilateral/hexahedral meshes. If

no ambiguities arise, the superscript k will be omitted and the notation Vh := V 1
h is used.

For investigations of higher order FEM to solve the EEG forward problem see, e.g., Grüne

(2014). For a canonical basis of Vh we consider the global set of all element-based Lagrange

nodes and identify mutual nodes of adjacent elements on the interfaces, for the choice of

finite element space this corresponds to the vertices of the tesselation.

Remark 3.4: Nodal basis. Each element uh ∈Vh can be expressed as

uh(x) =
n

∑
i=1

uiϕi(x). (3.13)

Here, ui = uh(xi) denotes the function value at the Lagrange nodes that are associated with

the vertices of the tesselation N = {x1, . . . ,xn}, and the nodal basis functions ϕi ∈ Vh for

27
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1≤ i≤ n are defined as

ϕi(x j) = δi j ∀x j ∈N ,

where δ denotes the Kronecker delta.

This leads to the following definition of the discretized formulation of the EEG forward

problem.

Definition 3.15: Discrete EEG forward problem formulation. The discrete FEM formula-

tion of (3.10) is to find uh ∈Vh such that

a(uh,vh) = l(vh) ∀vh ∈Vh, (3.14)

with a(·, ·) and l(·) defined in (3.11) and (3.12), respectively. This can be formulated alge-

braically as

Au = b, (3.15)

with the coefficient vector u = (u1, . . . ,un)
T , the stiffness matrix A ∈ Rn×n and the right-

hand side or load vector b ∈ Rn with entries defined as

Ai j = a(ϕi,ϕ j) =
∫

Ω

σσσ∇ϕi ·∇ϕ j dx, (3.16)

bi = l(ϕi) =−
∫

Ω

f ϕi dx. (3.17)

By construction, the basis functions (ϕi)
n
i=1 only have a small support, i.e., the adjacent

elements sharing the node associated with it. This choice of basis therefore results in a

sparse stiffness matrix. The number of entries in the right-hand side vector b depends on

the source modeling approach and will be discussed in the following section.

3.3.3. Source modeling approaches

The irregularity of the mathematical point dipole poses problems to the applicability of

the theoretical FEM framework, as indicated in Section 3.3.1. Different source modeling

approaches have emerged that determine how the right-hand side term of the EEG forward

problem f = ∇ · jp, with the mathematical point dipole at location x0 and moment q given

by jp(x) = qδ (x−x0) (Def. 3.3), is treated.

In this section, three different approaches are described which will be applied in this
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thesis. The partial integration and the St. Venant source model are both direct approaches,

as they approximate the dipolar source term by a monopole distribution in the vicinity of the

dipole location, resulting in a sparse right-hand side vector. The subtraction source model

follows an indirect approach by splitting the electric potential into two parts and thereby

effectively dissolving the singularity.

Other source models not discussed in this thesis include, e.g., the Whitney or H(div)

approach, which relies on the discretization of the primary current density jp using a vector-

valued function space such that ∇ · jp ∈ L2 (Pursiainen et al., 2011, 2016; Vorwerk, 2016).

Partial integration approach

The general idea of the partial integration approach is to shift the derivative of the delta

distribution to the test functions (Bauer et al., 2015; Lew et al., 2009b). The right-hand

side integral over 〈∇ · jp,ϕi〉 in the FEM discretization (3.17) is reformulated by applying

integration by parts using the limit formulation of the mathematical point dipole (Bauer

et al., 2015). The resulting right-hand side vector in (3.15) then has entries of the form

bPI
i =

〈q,∇ϕi(x0)〉 if x0 ∈ supp(ϕi),

0 else,

where x0 denotes the dipole location and q its moment as in Def. 3.3. Note that this formu-

lation implies that the derivatives of the test functions ϕi are defined at the dipole position.

This is not necessarily the case for Lagrangian shape functions at the interfaces of elements.

We therefore assume that the dipole location does not exactly lie on the edge of an element.

Due to the small support of the nodal Lagrangian shape functions, the partial integration

approach results in a right-hand side vector which only has as many non-zero entries as the

element containing the dipole has vertices, i.e., 4 (tetrahedra) or 8 (hexahedra).

St. Venant approach

The St. Venant source model relies on the principle of St. Venant originally formulated in

the context of elasticity theory (De Saint-Venant, 1853). Applied to bioelectromagnetism, it

states that a point dipole can be replaced by a distribution of monopoles without significant

impact on the potential observed from a distance, e.g., at surface electrodes. Following this

principle, there are several different possibilities how to choose the source distribution of

this blurred dipole, leading to different variants of the St. Venant approach. The underlying

ideas and mathematical description of the classical St. Venant source model are, for instance,
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provided in Buchner et al. (1997), Wolters et al. (2007b), Medani et al. (2015), Vorwerk

(2016) and Vorwerk et al. (2019b). In CG-FEM, the monopoles are typically located on the

FE nodes, more precisely we use those nodes contained in the subset M ⊂N which share

a common edge (2D) or face (3D) with the vertex closest to the source location. The entries

of the right-hand side vector in (3.15) are then of the form

bVEN
i =

qi if xi ∈M ,

0 else.

The monopole loads qi are chosen as the minimum of a Tikhonov-Phillips regularization

problem in which the difference between the moments of the blurred and the original dipole

is minimized in combination with a regularization of the monopole distribution (Vorwerk

et al., 2019b; Wolters et al., 2007b). Similar to the partial integration approach, this vector

is still sparse but has more non-zero entries that correspond to the number of neighboring

vertices around the node closest to the source location, e.g., 27 in a regular hexahedral mesh.

For a detailed mathematical derivation we refer to Wolters et al. (2007b) and Vorwerk et al.

(2019b).

Subtraction source model

The subtraction source model adopts a different approach and handles the singular source

indirectly (Awada et al., 1997; Bertrand et al., 1991). In Wolters et al. (2007c), the pro-

jected subtraction approach for the EEG forward problem and its theoretical foundation

was presented, which was further improved by the full subtraction approach introduced by

Drechsler et al. (2009). Here, we will review the most important theoretical findings.

In general, the subtraction approach relies on the assumption that there exists a small

area Ω∞ around the source location x0 where the conductivity has a constant value σσσ∞. In

finite element meshes with element-wise constant conductivity values this assumption is

automatically fulfilled by an area at least containing the element with the source. The gray

matter compartment in which the source is located is usually modeled as isotropic (Shimony

et al., 1999), but the derivation of the subtraction approach also holds for locally constant

anisotropic conductivity around the source (Drechsler et al., 2009; Wolters et al., 2007c).

Definition 3.16: Infinity and correction potential. Let the source location x0 ∈ Ω∞ ⊂ Ω

with constant conductivity σσσ(x) = σσσ∞ for x ∈ Ω∞. The potential and the conductivity can
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3.3. Numerical solutions using the finite element method

then be split into two contributions, a singularity contribution and a correction part

u(x) = u∞(x)+uc(x), (3.18)

σσσ(x) = σσσ
∞ +σσσ

c(x). (3.19)

The singularity contribution u∞ is the solution of Poisson’s equation in an unbounded do-

main with conductivity σσσ∞

∇ ·σσσ∞
∇u∞ = ∇ · jp in R3. (3.20)

There exist analytical expressions for u∞ as well as ∇u∞ which contain a singularity at

the dipole location x0, see, e.g., Drechsler et al. (2009). Inserting the above decompositions

(3.18) and (3.19) into the EEG forward problem (3.4) and using (3.20) yields a Poisson

equation for the correction potential.

Definition 3.17: Forward problem for the correction potential. The forward problem for

the correction potential in the subtraction approach is to find uc : Ω→ R that solves

−∇ · (σσσ∇uc) = ∇ · (σσσ c
∇u∞) in Ω,

σσσ∇uc ·n =−σσσ∇u∞ ·n on ∂Ω.

As σσσ c(x) = 0 for all x∈Ω∞ by definition, the singularity of ∇u∞ on the right-hand side is

effectively dissolved by this approach. Similarly to the derivation of the weak formulation

described in Section 3.3.1 we integrate over the domain Ω, multiply with a test function

v ∈ H1(Ω) and apply integration by parts. This results in the following weak formulation

of the forward problem for the correction potential.

Definition 3.18: Weak formulation for the correction potential. The weak formulation of

the subtraction approach can then be formulated as finding uc ∈ H1
∗ (Ω) such that

a(uc,v) = lc(v) ∀v ∈ H1(Ω), (3.21)

with the bilinear form a(·, ·) as defined in (3.11) and the linear form lc(·) defined as

lc(v) =−
∫

Ω

σσσ
c
∇u∞ ·∇vdx−

∫
∂Ω

σσσ
∞

∇u∞ · vndx (3.22)

Remark 3.5: Existence and uniqueness. In Wolters et al. (2007c), it is shown that lc is

well-defined and bounded, in particular lc ∈ (H1
∗ (Ω))′, and that the compatibility condition

(see Remark 3.2) is fulfilled. In combination with Theorem 3.2 which shows the coercivity
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3. Mathematical background to the EEG and MEG forward problems

and continuity of the bilinear form, it follows from the Lax-Milgram theorem that there

exists a unique uc ∈ H1
∗ (Ω) solving the variational problem (3.21) for all v ∈ H1(Ω).

For a detailed convergence analysis providing error estimates for the finite element so-

lution uc
h, we refer to Wolters et al. (2007c). It is worth noting that for the subtraction

approach, numerical errors increase for sources that come closer to the next conductivity

jump (Wolters et al., 2007c).

Analogously to (3.15), the FEM discretization of the subtraction approach using nodal

basis functions can be expressed in the algebraic form

Auc = bc, (3.23)

with right-hand side vector entries bc
i = lc(ϕi) as defined in (3.22) and the vector uc with

the evaluations of the correction potential at the degrees of freedom. Once the correction

potential uc is computed numerically, the complete potential u can be derived via (3.18) by

adding the singularity contribution u∞. The subtraction approach results in a dense right-

hand side vector bc in the FEM discretization, as the support of the singularity potential u∞

covers the entire domain Ω. As a result, the subtraction approach is computationally more

expensive than the direct approaches, as the assembly of the right-hand side as well as the

multiplication of the transfer matrix with this vector (see Section 3.4) is more demanding.

In Nüßing (2018), a more efficient alternative to the classical subtraction approach, the

localized subtraction approach, was introduced for DG-FEM and adapted using the CG-

FEM framework in Lange (2021). It restricts the support of the singularity potential to a

patch around the source location which is significantly smaller than Ω, but large enough to

achieve a comparable accuracy.

3.4. Efficient solution postprocessing and leadfield
computation

In this section, we bridge the gap between the theoretical formulation of the forward prob-

lems and the actual application to experimental data. In a first step, the EEG/MEG forward

solutions are evaluated at the electrodes (EEG) or coils (MEG) and the underlying assump-

tions on sensor modeling are explained. Second, we introduce the concept of transfer ma-

trices which are an efficient way to compute the forward solutions at the sensors for many

dipoles. Subsequently, we present further postprocessing steps of the discrete solutions and

introduce the concept of leadfield matrices.
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Evaluations at sensors

In EEG/MEG source analysis applications, forward solutions are required to be compared to

the experimentally measured signals. In Section 3.3.2, a FEM framework was derived that

approximates the EEG forward solution using the discrete representation uh for the electric

potential. In order to allow a direct comparison to realistic data, the simulated EEG signals

need to be evaluated at each electrode. Regarding MEG, the integral for the magnetic field

needs to be evaluated at the sensors, using the discretized EEG forward solution. For this

step, the sensor characteristics need to be modeled adequately.

Several assumptions are made with respect to the sensor layout for EEG and MEG in

this thesis. Regarding EEG, the point electrode model (PEM) is adopted. In this most

frequently used approach, each electrode is represented by a single point, i.e., the centroid

of the electrode, and the electrode signal is computed by evaluating the electric potential

at this location, in our application on the scalp surface (Hallez et al., 2007; Vorwerk et al.,

2014). Alternatively, the electrodes’ shapes and impedances can be taken into account using

the complete electrode model (CEM) (Pursiainen et al., 2012; Vermaas et al., 2020). For

MEG, each separate coil measures the magnetic flux over the surface area of the coil and

these coil signals are then combined into the channel signal, typically expressed as the flux

density in units of tesla (Cheyne and Papanicolaou, 2017). From a practical point of view,

this implies that the MEG forward solution is first computed for all coils and then mapped to

the channels in order to be comparable with the measured data. One underlying assumption

we use in this work is that the B field in measurement direction does not vary significantly

over the coil surface. As a result, we assume that the coil signal can be approximated by a

point evaluation of the magnetic field at the coil center in the corresponding measurement

orientation perpendicular to the coil surface. Higher-order integration of the magnetic flux

density, especially for sensors above the source, may further improve the accuracy of the

MEG forward solutions but is neglected here due to the limited improvement and increased

computational burden (Dachwitz, 2019).

In the following, the evaluations of the numerically computed components of the

EEG/MEG forward solutions at the physical measurement units are described. For EEG,

this refers to the evaluation of the electric potential at the electrodes, while for MEG this

entails the evaluation of the secondary magnetic flux density measured by a single coil.

The MEG channel (e.g., gradiometer) signals are then composed of linear combinations of

coil signals, which is a further postprocessing step described later in this section. Here, a

general expression for the sensor evaluations is presented, which is then discretized in the

following.
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3. Mathematical background to the EEG and MEG forward problems

Definition 3.19: Sensor evaluations. Let N ∈ {Nelec,Ncoil} denote the number of electrodes

or magnetometer coils, respectively. Each sensor i, 1≤ i≤N, is defined by its center ci ∈R3

and, in case of MEG, its measurement orientation oi ∈ R3. Then, the signal evaluation at

the respective sensor can be expressed as a linear functional s·,i ∈ H−1(Ω), with

sEEG,i(u) := u(ci) for 1≤ i≤ Nelec,

sMEG,i(u) := oi ·Bs(u,ci) for 1≤ i≤ Ncoil

for each modality, where u and Bs are defined in Def. 3.10 and Def. 3.4, respectively.

These functionals for the signal evaluations at the electrodes (EEG) or coils (MEG) can

be approximated using the FEM discretizations derived in Section 3.3.2.

Definition 3.20: Discretized sensor evaluations. Using the notations of Def. 3.19, the dis-

cretized formulation of the sensor evaluations is given by

sEEG,i(uh) = uh(ci) for 1≤ i≤ Nelec,

sMEG,i(uh) = oi ·Bs(uh,ci) for 1≤ i≤ Ncoil,

with uh defined in (3.13). Algebraically, this evaluation at the sensors is equivalent to

si ·u, for 1≤ i≤ N,

where u ∈ Rn is the discrete FEM solution vector defined in (3.15) and si ∈ Rn consists of

the sensor functional evaluations for the nodal basis functions (ϕ j)
n
j=1 with entries of the

form

(si) j = s·,i(ϕ j) for 1≤ i≤ N, 1≤ j ≤ n.

Taking all sensors into account, this results in a linear system of the form

ũ = Su,

for the scalar sensor evaluations ũ ∈ RN , with S = (s1, . . . ,sN)
T ∈ RN×n.

Transfer matrices

In principle, the EEG forward solution can be computed by solving the linear system (3.15)

resulting from the FEM discretization for the solution vector u. As described in the previous
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3.4. Efficient solution postprocessing and leadfield computation

section, this solution vector can be subsequently used to evaluate the signal at the electrodes

(EEG) or coils (MEG) for further postprocessing. Using this direct approach, a linear

system needs to be solved for every source. In many source analysis applications, however,

this can be computationally expensive due to a large number of possible sources, typically

in the range of several thousands (Michel and Brunet, 2019). The number of sensors, on the

other hand, is typically much smaller than the number of potential sources, e.g., in the range

of a few hundred (Gross, 2019; Hari and Puce, 2017). In cases where the considered sources

largely outnumber the electrodes (EEG) or coils (MEG), the transfer matrix approach has

been proposed as a more efficient method to compute EEG and MEG forward solutions

(Wolters et al., 2004).

Definition 3.21: Transfer matrix. Let S ∈ RN×n be the EEG or MEG sensor evaluation

matrix as defined in Def. 3.20 with N ∈ {Nelec,Ncoil}, and let A ∈ Rn×n denote the stiffness

matrix from the FEM discretization of the EEG forward problem defined in (3.16). Then,

the transfer matrix T ∈ RN×n is defined as

T = SA−1

for each modality.

By definition, the EEG and MEG transfer matrices are independent of the source model-

ing approach and, once computed, can be multiplied to different right-hand sides. Thereby,

transfer matrices allow for a more efficient the computation of the forward solutions.

Remark 3.6. Using the transfer matrix T for EEG or MEG, the potential at the electrodes

(EEG) or the secondary magnetic field component at the coils (MEG) from a source with a

right-hand side vector b can be computed by a matrix-vector multiplication using (3.15) as

Tb = SA−1b = Su = ũ.

Using the transfer matrix approach thereby avoids solving a linear system for every

source, its computation instead only requires to solve a linear system for each sensor.

Remark 3.7. The transfer matrix can be computed by solving ATT = ST for each column

of ST , using the symmetry of the stiffness matrix A. Therefore, a linear system needs to be

solved for each sensor, i.e., N times.

Note that for the subtraction source model, the transfer matrix only computes the mag-

netic field associated with the correction potential (Piastra, 2019).
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Further solution postprocessing

In order to be comparable to the experimentally measured data, further postprocessing is

usually necessary, depending on the modality and the transformations applied to the realistic

data. In this section, we focus on three postprocessing steps used in this thesis that map the

previously computed signal at the coils or electrodes ũ to a postprocessed vector p(ũ) ∈RN

with N ∈ {Nelec,Nchan}, that has the same dimensions as the measured data. For MEG, this

entails the mapping from coil-based evaluations to channel (e.g., gradiometer) signals and

the addition of the analytically computed primary magnetic field component.

First, a typical postprocessing step for simulated EEG data is to re-reference the signal in

accordance with the measured data. In this thesis, we will use average-referenced measured

and simulated EEG signals.

Definition 3.22: Average-referencing of EEG signals. The EEG signals at the electrodes

can be re-referenced with respect to the average signal uref =
1

Nelec
∑i ũi using the transfor-

mation p : RNelec → RNelec , whose components are defined as

pi(ũ) = ũi−uref, for 1≤ i≤ Nelec. (3.24)

In general, other references are also possible, e.g., specific electrode signals uref = ũi for

1≤ i≤ Nelec, or combinations of several signals (Hari and Puce, 2017).

The second postprocessing step described here applies to numerically computed MEG

forward solutions. Previously, the computation of the numerical component of the magnetic

field, i.e., the secondary B field, evaluated in the measurement direction of a single coil, was

described. In order to compute the signals at the channel level, in our case gradiometers,

the coil signals are combined using the weights defined by the respective MEG system. For

instance, an axial gradiometer consists of two oppositely wound coils which measure the B
field in opposite directions at a small distance apart. The channel output is then composed

of the sum of both coil signals, possibly in addition to reference channel contributions.

Definition 3.23: MEG channel evaluations. Let the matrix G∈RNchan×Ncoil denote the map-

ping from Ncoil coil signals to the Nchan channel signals as defined by the respective MEG

system. Then, the MEG signal at the channels can be computed using the transformation

p : RNcoil → RNchan which is defined as

p(ũ) = G(bp + ũ), (3.25)

where ũ ∈ RNcoil denotes the secondary magnetic field components measured by single

coils and bp ∈ RNcoil contains the analytical primary magnetic field components which can
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be computed using the analytical formula defined in (3.9). Its elements are of the form

bp
i = oi ·Bp(ci), where ci and oi refer to the coil centers and measurement orientations,

respectively, for sensor 1≤ i≤ Ncoil.

Note that the conventions regarding the assembly and processing of the gradiometer trans-

formation matrix G may vary in different software toolboxes, even for the same raw data.

This may include, for instance, the ordering of reference coils or the convention of reporting

the sign of the coil orientation in combination with the sign of the respective entries in G.

The third postprocessing transformation is a frequently used approach to combine EEG

and MEG data. In general, combining EEG and MEG can prevail over single modality eval-

uations, see, for instance, Chapter 7 regarding epilepsy research. However, the combined

recording and evaluation of both data sets poses several challenges. In addition to prac-

tical obstacles related to the availability of both modalities, such as high acquisition and

maintenance costs of classical MEG systems, several other issues need to be addressed for

their combined analysis. One important aspect is that in order to be comparable with each

other, the measurements need to be transformed to a common space. One frequently used

approach to transform EEG and MEG measurements into a unitless measure, is by perform-

ing an SNR transformation. The general idea is to normalize each sensor signal based on

the noise strength estimated from an ideally signal-free time window (e.g., the prestimulus

interval). Following the SNR definition of Fuchs et al. (1998), this transformation is defined

as follows.

Definition 3.24: Signal-to-noise ratio (SNR) transformation. Let N ∈ {Nelec,Nchan} denote

the number of EEG or MEG channels, and let mi j = mi(t j) ∈R refer to the measured signal

at time point t j, 1 ≤ j ≤ k, within a signal-free time interval at sensor i, 1 ≤ i ≤ N. Then,

the noise amplitude of this sensor is defined as

ni =

√√√√ 1
k−1

k

∑
j=1

(mi j− m̄i)2, with m̄i =
k

∑
j=1

mi j

k
. (3.26)

Any sensor signal vector ũ ∈ RN can then be transformed to its SNR by the transformation

p : RN → RN , whose components are defined as

pi(ũ) =
ũi

ni
, for 1≤ i≤ N. (3.27)

Applying this transformation for the measured and simulated EEG and MEG signals at

the sensors yields unitless measures for both modalities which can be concatenated for a

combined analysis. Naturally, SNR transformations can also be applied to single modality
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data to reduce noise by attaching more importance to those channels which are compara-

tively less influenced by noise as estimated from the prestimulus interval. When using this

transformation for a combined analysis, an important issue is the generation of a suitable

head volume conductor model, as especially the EEG is influenced by head geometries and

conductivities. This is also described in more detail in Chapter 1 and addressed in this

thesis.

Leadfield matrices

For simplicity, we have assumed a single dipolar source so far, which leads to a specific

right-hand side vector. Usually, source reconstruction algorithms rely on precomputed for-

ward solutions for a given set of possible sources. Each dipolar source is defined by its

location and moment vector, typically with unit strength. As source orientations, either all

Cartesian directions are considered or constraints are imposed, e.g., by assuming outward-

pointing normals to the cortical surface (Brette and Destexhe, 2012; Hämäläinen et al.,

1993). As a frequently used concept in the field of EEG/MEG source analysis, we therefore

introduce the notation of leadfield matrices which are concatenations of solution vectors for

a given set of sources.

Definition 3.25: Leadfield matrix. Let nx ∈ N be the number of possible dipolar sources,

each source x j = (x0 j,q j) ∈ R6 for 1 ≤ j ≤ nx defined by its position x0 j and moment q j,

respectively. Let further N ∈ {Nelec,Nchan} denote the number of EEG or MEG channels

and p(ũ) the postprocessed forward solution vector at the channels. Then, the leadfield

matrix L ∈ RN×nx consists of the forward solutions computed at all channels and for all

considered sources, i.e., each element Li j indicates the signal pi(ũ) at channel i for a given

dipolar source x j.

The solution vectors themselves can either be computed using the direct or the transfer

matrix approach, although for a large number of sources the latter is more efficient, as

discussed previously.
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In this chapter, a novel procedure for calibrating head models with respect to skull conduc-

tivity is presented. The mathematical description of the algorithm as well as investigations

in spherical head models are published in Schrader et al. (2020).

This chapter is organized in the following way. First, we introduce the underlying inverse

problem and motivate our calibration pipeline by highlighting its novelty in comparison to

existing calibration approaches in Section 4.1. In Section 4.2, the mathematical description

of the algorithm is presented and each step is described in detail. Finally, two variations of

this algorithm are introduced in Section 4.3 which will later be applied and discussed.

4.1. Motivation and problem description

In the previous chapter, we introduced the mathematical background to the EEG and MEG

forward problems, which can be stated as follows: Given a source distribution and a head

volume conductor model, i.e., a geometrical representation of the head tissues and their con-

ductivities, find the potential or the magnetic field measured by EEG or MEG, respectively.

Forward solutions for different sources are required in order to solve the inverse source re-

construction problem, which is typically the main interest of EEG and MEG analysis. This

inverse problem can be stated as: Given a head volume conductor model and measured

EEG and MEG data, find the underlying source characteristics. The source reconstruction

problem is ill-posed, as different source distributions can lead to the same measured data

and high levels of noise can distort the measurements and lead to unstable solutions (Hari

and Puce, 2017). Both of the above-mentioned problems assume that the conductivity pro-

file of the head volume conductor is known. Typically, literature conductivity values are

assigned to the head tissues in volume conductor models even though reported values may

vary largely, see Section 2.2 for a detailed overview. Another important inverse problem is

therefore related to the conductivity estimation: Given a geometric model of the head and

source characteristics underlying EEG/MEG measurements, reconstruct the tissue conduc-
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tivities. Individually estimating conductivities increases the time and effort of constructing

a feasible head volume conductor model, but has been suggested to improve the accuracy

in EEG and combined EEG/MEG source analysis scenarios, for instance, in the context of

presurgical epilepsy diagnosis (Aydin et al., 2017, 2014). Special attention has been paid to

individually estimate skull conductivity, which has been emphasized as the most influential

parameter (Saturnino et al., 2019; Schmidt et al., 2015; Vorwerk et al., 2019a). Papageor-

gakis (2017) proved that there exists a unique solution of the EEG conductivity estimation

problem of finding the skull conductivity σskull, given a three-compartment spherical head

model with predefined σscalp = σbrain, and a known source as well as boundary EEG data.

A closely related approach to solve the conductivity estimation problem is based on the

modality of EIT, a technique where a small current is passed through the head using pairs of

electrodes on the scalp (Abascal et al., 2008; Fernández-Corazza et al., 2018; Hallez et al.,

2007; Oostendorp et al., 2000). Based on the measured potential and the known current

source and sink, the (skull) conductivity of the volume conductor can be estimated.

Under realistic conditions, both the conductivity profile and the source characteristics are

usually unknown. Therefore, we will use a combined procedure to reconstruct the source

characteristics and the skull conductivity as the most influential conductivity parameter.

The calibration procedure presented here is based on both EEG and MEG modalities and

exploits their respective strengths. There have been efforts to estimate skull conductivity

in combination with the underlying source from single-modality EEG (Akalin Acar et al.,

2016; Lew et al., 2009a). One of the challenges of this approach is the strong observed

correlation between skull conductivity and source depth in source analysis (Vorwerk et al.,

2019a), which could counterbalance each other in a combined EEG-based reconstruction

of the skull conductivity and the dipole characteristics. Thus, it has been suggested that the

additional use of MEG stabilizes the skull conductivity estimation due to its complementar-

ity to EEG and its lower sensitivity to skull and skin conductivity (Antonakakis et al., 2020;

Baysal and Haueisen, 2004; Fuchs et al., 1998; Huang et al., 2007; Wolters et al., 2010).

With regard to the source reconstruction, a priori knowledge of the well-studied early

components of somatosensory evoked potential (SEP) and field (SEF) data is exploited.

More precisely, the underlying source of the P20/N20 peak is used in the reconstruction,

which refers to the component of averaged EEG/MEG data approximately 20 ms after the

somatosensory stimulus is applied. There is strong evidence suggesting that the genera-

tor of the P20/N20 response is a mainly focal, single dipolar source with predominantly

tangential orientation which is located in the contralateral Brodmann area 3b in the post-

central gyrus within the primary somatosensory cortex (Allison et al., 1991; Antonakakis

et al., 2019; Götz et al., 2014; Nakamura et al., 1998). Due to these characteristics and a
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priori knowledge, the P20/N20 topographies of somatosensory data have often been used

for calibration purposes (Antonakakis et al., 2020, 2019; Aydin et al., 2014; Fuchs et al.,

1998; Huang et al., 2007; Vallaghé and Clerc, 2009). Based on these preliminaries, the

combined reconstruction problem for the dipole characteristics and the skull conductivity

can be defined as follows.

Definition 4.1: Dipole and skull conductivity reconstruction problem. Let the SEP and

SEF data of the P20/N20 component (mEEG and mMEG), a geometrical head model Ω in-

cluding a given skull (compacta) compartment Ωskull ⊂ Ω with tissue conductivities σσσ(x)
for x ∈Ω\Ωskull be given. Then, the dipole and best skull conductivity approximation prob-

lem is to find the homogenized isotropic bulk skull conductivity σskull ∈ R+ as well as the

underlying dipole characteristics, i.e., the dipole location x0 ∈ R3, its unit length orienta-

tion o ∈ R3 and magnitude m ∈ R.

By exploiting the complementarities of EEG and MEG, the calibration procedure pre-

sented here builds upon already existing approaches such as Aydin et al. (2014) and Anton-

akakis et al. (2020, 2019). In these methods, a predefined discrete set of skull conductivity

values is compared, thereby limiting the accuracy of the calibration result as the optimum

may lie in between sampled values. In Aydin et al. (2014), for instance, 11 discrete values

irregularly distributed within the interval [0.0016, 0.033] S/m were used based on litera-

ture values. As an extension of this method, Antonakakis et al. (2020, 2019) added the

value of 0.0008 S/m (Altakroury, 2017) to extend the possible range, and two further values

manually chosen in the vicinity of the suspected optimum.

Furthermore, the above-mentioned studies use a time-consuming manual calibration pro-

cedure involving different toolboxes. In particular, SimBio1 is used to compute EEG and

MEG leadfields for the entire source grid. These are imported to the commercial Curry2

toolbox which is used for the inverse methods in combination with tailored MATLAB (The

MathWorks Inc., Natick, Massachusetts) scripts. This amount of manual work poses chal-

lenges to the usability in clinical applications and large group studies.

In this work, a complete mathematical description of the calibration algorithm and differ-

ent variants is provided in order to increase its usability. Additionally, we use an optimiza-

tion method which iteratively updates the skull conductivity parameter in order to find the

best fitting value. While in Aydin et al. (2014) and Antonakakis et al. (2020, 2019), their

calibration algorithm was applied to one, five and 20 realistic cases without an assessment of

its reliability in a controlled scenario, we will use a multi-layer sphere model with (quasi-)

1 https://www.mrt.uni-jena.de/simbio/index.php/Main_Page
2 https://compumedicsneuroscan.com/products/by-name/curry/
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analytical EEG/MEG solutions, in order to systematically investigate the accuracy of our

algorithm without the impact of approximation errors to the realistic scenario as well as

numerical errors, see Chapter 5. We thereby propose an automated and accurate calibration

procedure based on MATLAB which can be integrated into existing EEG/MEG analysis

pipelines. Once the skull conductivity is individually fitted, the calibrated head model can

be further used to evaluate EEG or combined EEG/MEG data sets, for instance, in presurgi-

cal epilepsy diagnosis (Aydin et al., 2017) or to individually optimize sensor configurations

in brain stimulation (Huang et al., 2017; Sadleir et al., 2012; Saturnino et al., 2019; Schmidt

et al., 2015).

4.2. A novel calibration algorithm

The procedure for calibrating head models with respect to skull conductivity presented is

based on the reconstruction of the underlying source of the SEP/SEF P20/N20 compo-

nent. The calibration algorithm exploits the different sensitivity profiles of both EEG and

MEG modalities and uses the strengths of each modality. In spherical head models, where

(quasi-)analytical solutions exist, the MEG signal is independent of the conductivity profile

of the volume conductor (Sarvas, 1987). In the realistic case, the MEG forward solution

was shown to be insensitive to conductivity changes in the skull and scalp compartments

which are not in the immediate vicinity of the source (Haueisen et al., 1997; Lew et al.,

2013). The EEG forward solution, on the other hand, largely depends on volume conduc-

tion effects and has been shown to be most sensitive to skull conductivity due to its high

resistivity in comparison to the other head tissues (Vorwerk et al., 2019a). In addition,

skull conductivity and reconstructed source depth are strongly correlated when performing

source analysis using EEG alone (Akalin Acar and Makeig, 2013; Antonakakis et al., 2019;

Chen et al., 2010; Vorwerk et al., 2019a). Regarding source orientation, the analytical MEG

forward solution is zero for radial sources in sphere model scenarios (Sarvas, 1987), while

the numerical MEG forward solution in realistic head models is insensitive to quasi-radial

orientation components (Antonakakis et al., 2019; Fuchs et al., 1998; Piastra et al., 2021).

The steps for calibrating head models with respect to skull conductivity are summarized

in Algorithm 1. In the following, we explain the required input, the first step consisting

of an MEG single dipole deviation scan, the second step that reconstructs the dipole and

minimizes the residual variance to the measured data, as well as the output of the algorithm

in detail.

First, the input for the algorithm is described. As mentioned above, the algorithm requires
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4.2. A novel calibration algorithm

Algorithm 1: Calibration procedure

Input: mEEG, mMEG, lEEG, lMEG, σmin, σmax, ε

1. Perform an MEG single dipole deviation scan to find the optimal dipole position:

a) xMEG = argmin
x∈S

‖lMEG(x) [lMEG(x)]+ mMEG−mMEG‖2
2

b) LMEG,xMEG = lMEG(xMEG)

2. Find σskull,est = argminσskull∈(σmin,σmax) r(σskull) using Brent’s method, which
proposes σ i

skull iteratively (i = 0,1, ...), with the residual variance defined as

r(σ i
skull) :=

‖LEEG,xMEG,σ
i
skull

qest−mEEG‖2
2

‖mEEG‖2
2

,

where LEEG,xMEG,σ
i
skull

and the dipole moment qest are computed as follows:

a) LEEG,xMEG,σ
i
skull

= lEEG(xMEG,σ
i
skull)

b) qEEG,xMEG = [LEEG,xMEG,σ
i
skull

]+ mEEG

c) oest =
qEEG,xMEG

‖qEEG,xMEG‖2

d) mest = [LMEG,xMEG oest]
+ ·mMEG

e) qest = oestmest

Terminate iteration, when |σ i+1
skull−σ i

skull|< ε .

Output: xMEG, oest, mest, r(σskull,est), σskull,est

reference (measured) EEG and MEG data mEEG ∈ RNEEG , mMEG ∈ RNMEG , where NEEG de-

notes the number of electrodes and NMEG refers to the number of MEG channels, e.g.,

gradiometers. In practice, these are the measured topographies of the P20/N20 component

at the sensors. Additionally, functions lEEG : R3×R+→ RNEEG×3,(x,σskull) 7→ LEEG,x,σskull

and lMEG : R3→ RNMEG×3,x 7→ LMEG,x are required as input. They compute the EEG and

MEG leadfields LEEG,x,σskull and LMEG,x, respectively, i.e., the simulated sensor signals for a

dipolar source at location x with unit-strength moments oriented in the three Cartesian di-

rections. The forward calculations are influenced by the head volume conductor model and

sensor characteristics. The MEG leadfield has a reduced rank, i.e., rank(LMEG,x) = 2 in the

spherical case, as the MEG is not affected by radial sources in this analytical case (Sarvas,
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4. A novel pipeline for calibrated head volume conductor models

1987; Wolters et al., 1999). Note that we omit σskull as a variable in the computation of the

MEG leadfield. This can be justified by the fact that in the spherical case, the MEG for-

ward solution is independent of the conductivity profile. For the realistic volume conductor

model, as the MEG is insensitive to skull conductivity changes (Haueisen et al., 1997; Lew

et al., 2013), we suggest to use a standard skull conductivity for the leadfield computation

in order to minimize the computational cost. In Aydin et al. (2014), MEG single dipole

deviation scans (SDDSs) were performed with varying skull conductivities for one patient.

According to these results, no localization difference (using a 2 mm source grid resolution)

was found in the investigated interval of [0.0016, 0.033] S/m for a six-compartment realistic

head model. In a three-compartment model, no localization differences were observed for

skull conductivities in the range [0.0016, 0.007] S/m that contained the estimated optimal

value of 0.0024 S/m. In case a spherical head model is used, (quasi-)analytical forward

solutions exist, while they need to be computed numerically for realistically shaped head

models. Additionally, a range (σmin,σmax) ⊂ R+ for the skull conductivity parameter esti-

mation and a convergence tolerance ε ∈ R+ are needed.

In the following, Step 1 in Algorithm 1 is described in detail, which determines the source

location. MEG, which is insensitive to skull conductivity, has the capability to localize the

underlying P20/N20 source in the primary somatosensory cortex with high accuracy, even

in the case that skull conductivity is not accurately chosen (Aydin et al., 2014; Fuchs et al.,

1998; Nakamura et al., 1998). Therefore, similar to Antonakakis et al. (2020), Wolters

et al. (2010) and Aydin et al. (2014), an SDDS using the SEF data is performed to find the

optimal source location xMEG within the source space, a set of possible sources within the

gray matter or homogenized brain compartment. General mathematical background and

definitions related to equivalent current dipole scans can be found in A.1. The best fitting

position xMEG is computed in Step 1a) as the source location within the source grid S, that

in combination with the best fitting moment vector q̂MEG(x) produces a leadfield with the

lowest error when compared to the measured reference data mMEG, i.e.,

xMEG = argmin
x∈S

‖lMEG(x)q̂MEG(x)−mMEG‖2
2. (4.1)

Here, the best fitting moment q̂MEG(x) (with respect to mMEG) for each source location x is

the moment vector for which ‖lMEG(x)qMEG(x)−mMEG‖2 is minimal. The solution with

the minimal Euclidean norm to this linear least-squares problem can be computed as follows

(James, 1978; Planitz, 1979)

q̂MEG(x) = [lMEG(x)]+ mMEG for x ∈ S. (4.2)
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4.2. A novel calibration algorithm

Here, the notation [·]+ denotes the Moore-Penrose pseudo-inverse of a matrix (Golub and

Kahan, 1965), see also A.1 for more details. Any real matrix, in our case L ∈ RN×3 with

N ∈ {NEEG,NMEG}, can be factorized by its singular value decomposition (SVD) as L =

UΣΣΣVT with the orthogonal matrices U ∈ RN×N and V ∈ R3×3, as well as the rectangular

diagonal matrix ΣΣΣ ∈ RN×3 containing its non-negative singular values. The pseudo-inverse

[L]+ ∈R3×N of L can then be computed as [L]+ =VΣΣΣ
+UT , where ΣΣΣ

+ is obtained from ΣΣΣ by

replacing its non-zero diagonal entries by their reciprocals and transposing the matrix. Note

that due to the reduced rank of the MEG leadfield for a spherical head volume conductor

there are only two non-zero singular values in this case. Insertion of the expression for

q̂MEG(x) in (4.2) into (4.1) then results in the formula presented in Step 1 of Algorithm

1. For a realistic head model, the computation of the MEG forward solution lMEG(x) for

each node in the source space is more efficient using the transfer matrix approach (Wolters

et al., 2004), see also Section 3.4. Nevertheless, this first step is computationally expensive,

as there are typically several hundred MEG sensors Gross (2019). In Step 1b), the MEG

leadfield of the source location LMEG,xMEG ∈RNMEG×3 is stored and will be used in the second

step to fit the magnitude of the source.

In Step 2 of the algorithm, the aim is to fix the moment of the dipole with location xMEG

determined in Step 1 in a way that exploits the strengths of both EEG and MEG and results

in a forward solution with minimal residual variance to the measured EEG data mEEG.

The residual variance indicates the degree to which both solutions differ and is defined in

A.4. Brent’s method (Brent, 1973), a derivative-free minimization method which iteratively

proposes skull conductivity values σ i
skull (i = 0,1, . . .) within the predefined range, is used

for this purpose. In the following, the substeps that are performed in each iteration for

a given conductivity value σ i
skull are explained in detail, followed by more details on the

minimization method. First, in Step 2a), the EEG leadfield LEEG,xMEG,σ
i
skull
∈ RNEEG×3 is

computed for the source location xMEG and the three orthonormal Cartesian vectors, for the

given skull conductivity value. In the numerical (realistic) case, the linear system resulting

from the FEM discretization can be solved directly for the three right-hand sides and the

transfer matrix approach is not advantageous in this case. Nevertheless, the assembly of the

stiffness matrix and the solution of the linear systems is still dominating the computational

effort within this second step. In the following Step 2b), the best fitting moment qEEG,xMEG ∈
R3 with respect to the EEG reference data is determined using a least-squares fit, similar

to Step 1, using the pseudo-inverse of the leadfield matrix. This moment vector is divided

by its norm to determine the unit strength orientation in Step 2c). Since EEG is sensitive to

both radial and tangential orientation components, this orientation oest ∈R3 is chosen as the

optimal orientation. Subsequently, in step 2d), the magnitude of the source is determined.
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As the source strength is influenced by skull conductivity in an EEG-based reconstruction

(Vorwerk et al., 2019a), the source amplitude mest ∈ R for this fixed source orientation is

determined from the MEG reference data mMEG again by a least-squares fit. This is because

the tangential component of this source orientation must match the measured MEG, which

in turn is insensitive to skull conductivity. The optimal moment vector qest ∈ R3 is then

composed of the orientation oest determined by EEG and the magnitude mest determined

using MEG, see Step 2e). Finally, once these components are computed for a given skull

conductivity σ i
skull, the residual variance is computed between the reference EEG signal and

the forward EEG solution for the current skull conductivity and the reconstructed dipole

with source location xMEG and moment qest. The aim is to find the skull conductivity which

minimizes this term, i.e., which leads to an EEG leadfield for the fitted dipole which best

explains the measured P20/N20 SEP data.

Brent’s method is used for this minimization process which has the advantage that it does

not require the computation of the function’s derivative (Brent, 1973). In our application,

the derivative cannot be computed directly and would need to be approximated numerically,

which would require additional function evaluations. For more details on the optimization

method, see A.2. In general, the algorithm assumes a function f : I→ R for I ⊂ R that is

unimodal (see Def. A.5) on a given search interval [a,b]⊂ I. For a continuous function, this

means that it reaches its minimum exactly once in [a,b] (Brent, 1973). If f is not unimodal

on the search interval, Brent’s method may result in a local instead of the global minimum.

For the spherical case, we will observe convergence to the optimum in a controlled setting

in Chapter 5. Regarding realistic scenarios, similar algorithms resulted in calibration curves

of unimodal shapes as presented in Aydin et al. (2014) and Antonakakis et al. (2020).

Brent’s method combines the benefits of both Golden-section search and successive

parabolic interpolation which are briefly described in the following, mainly based on the

notations and findings presented in Brent (1973) and Press et al. (2007), see also A.2 for

more details. First, the method of Golden-section search is presented (Brent, 1973; Kiefer,

1953). In general, unlike finding a root of a function which is bracketed by two func-

tion evaluations with opposite sign, a minimum requires three evaluations such that for

a < x1 < b it holds that f (x1) < min( f (a), f (b)). Using Golden-section search, this initial

point would be chosen such that the proportion of the larger to the smaller subinterval is

equal to the golden ratio Φ := 1+
√

5
2 ≈ 1.618. In each iteration, the function is evaluated

at an additional point chosen in the larger subinterval such that the interval that brackets

the minimum successively shrinks, i.e., the new interval is 1/Φ≈ 0.618 times the width of

the former one. Therefore, Golden-section search linearly converges (Brent, 1973). This

method thereby resembles the bisection method applied for finding a root which reduces
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each interval by a factor of 0.5 in each iteration. However, as minimization requires three

function evaluations to bracket a minimum, bisection applied in this context would lead to

irregular reductions of the previous interval which makes this method harder to predict with

a possibly worse reduction of the interval.

Second, Brent’s method involves inverse parabolic interpolation which assumes the func-

tion can be approximated by a parabola close to its minimum (Brent, 1973; Jarratt, 1967).

It is thereby the analogue to the secant method for finding a root which assumes a linear

approximation in its vicinity. In each iteration, the function is additionally evaluated at the

minimum of a parabola that is fitted through the three points of a given bracketing interval,

see Def. A.8. Out of these four points, the one with the lowest function evaluation and its

two neighbors constitute the next bracketing interval. This method fails if the three points

are collinear and convergence to the minimum is not guaranteed. However, if the function

is sufficiently regular, convergence is superlinear with an order larger than approximately

1.325 (Brent, 1973).

The motivation of Brent’s method is to benefit from the convergence properties of inverse

parabolic fitting if the function allows, but rely on Golden-section search otherwise to ensure

reliability. A detailed algorithmic description of Brent’s method can be found in Brent

(1973) and Press et al. (2007). In every iteration, it updates six not necessarily distinct

points. Initially, the first step is a Golden-section iteration that finds a third point in a given

interval. Subsequently, inverse parabolic interpolation is attempted, which is accepted if the

constructed minimum lies inside the current bracketing interval and if it entails a movement

from the current optimal value that is less than half of the movement of the second last step

(Press et al., 2007). Otherwise, the iteration step is performed using Golden-section search.

This cycle is repeated until the tolerance criterion is reached, i.e., the suggested value in the

next iteration does not vary significantly any more based on the provided tolerance ε .

As output, the algorithm returns the optimal skull conductivity value σskull,est which re-

sults in a residual variance of r(σskull,est), as well as the estimated dipole characteristics

xMEG, oest and mest.

4.3. Variations of the calibration algorithm

The steps of Algorithm 1 are chosen to best exploit the respective advantages of EEG and

MEG modalities. Two variations of the calibration algorithm are presented here which are

applied and discussed in the following chapters. The first variant determines the (quasi-)

tangential orientation vector using MEG data and only relies on EEG for the (quasi-)radial
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4. A novel pipeline for calibrated head volume conductor models

contribution. In the second one, the residual variance with respect to combined EEG/MEG

data is used.

Fitting the (quasi-)tangential orientation using MEG

The motivation to use EEG in order to determine the source orientation is based on the

observation that MEG is less sensitive (or unaffected in case of a spherical head model) to

(quasi-)radial orientation components (Antonakakis et al., 2019; Fuchs et al., 1998; Piastra

et al., 2021). Instead of fitting the orientation with respect to EEG, it is also possible to

fit this vector in two separate steps, using MEG to fit the (quasi-)tangential component and

EEG only for the (quasi-)radial component. For this purpose, the dipole moment qest ∈ R3

can be split into two components

qest = qrad +qtan

= mradorad +qtan.
(4.3)

with the unit vector in (quasi-)radial direction orad and the corresponding strength mrad.

In spherical head models, the distinction between radial and tangential orientation com-

ponents is clear as they are defined as orthogonal and parallel with respect to the tangent

plane through the surface point closest to the dipole. By contrast, in realistic models, there

are two different approaches to define the quasi-radial and quasi-tangential components of

a dipolar source. One possible option is to use geometric properties such as the local cur-

vature of a segmented tissue surface in the closest point, typically the inner skull boundary

(Haueisen et al., 2012; Piastra et al., 2021). Another approach which is adopted here is

to define the quasi-radial orientation as the source orientation with the weakest contribu-

tion to the MEG leadfield defined by its singular value decomposition (Ahlfors et al., 2010;

Huang et al., 2007; Piastra et al., 2021). The modifications in comparison to Algorithm 1

are summarized in Variant 1. In comparison to Algorithm 1, only the computation of qest is

modified. Step 1 as well as Step 2a) and the minimization procedure remain identical and

are not repeated here.

In Step 2b) of this variant, the (quasi-)tangential component of the moment is fitted using

the MEG reference data, which is accomplished using a truncated singular value decom-

position (TSVD) of the leadfield matrix, see also A.1 for more details. For a given SVD

L = UΣΣΣVT we assume that the diagonal entries in ΣΣΣ are sorted in descending order. In the

spherical case, the lowest singular value Σ3 is 0 as MEG is unaffected by radial sources. In

the realistic case, the smallest singular value is expected to be close to zero such that the

MEG leadfield can be well represented by a matrix of rank 2 as L12 = U12ΣΣΣ12VT
12, where
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Variant 1: Modifications for fitting the (quasi-)tangential orientation using MEG

2. b) qtan = V12 [ΣΣΣ12]
+ UT

12 mMEG,

where U12 ∈ RNMEG×2, ΣΣΣ12 ∈ R2×2 and V12 ∈ R3×2 result from a

TSVD and are associated with the two largest singular values:

LMEG,xMEG = UΣΣΣVT = (U12U3)

(
ΣΣΣ12 000
000 Σ3

)
(V12V3)

T

c) orad = V3

d) mrad = [LEEG,xMEG,σ
i
skull

orad]
+ ·
(

mEEG−LEEG,xMEG,σ
i
skull

qtan

)
e) qest = mradorad +qtan

f) mest = ‖qest‖2

g) oest =
qest

mest

U12 ∈ RNMEG×2 and V12 ∈ R3×2 and the diagonal matrix ΣΣΣ12 ∈ R2×2. These are obtained

from the full-rank SVD by discarding the zero rows as well as the row and column con-

taining the smallest singular value Σ33 in ΣΣΣ, and those rows/columns in U and V that are

multiplied with these. The component of the dipole moment in (quasi-)tangential orienta-

tion is then computed by multiplying the pseudo-inverse of the low-rank approximation of

the MEG leadfield with the reference data mMEG. As the columns in V contain the principal

dipole orientations associated with the singular values, the unit (quasi-)radial orientation

vector orad is given as the third column in V as described in Step 2c). In the following

step, the strength in (quasi-)radial orientation is fitted using EEG by finding the magnitude

mrad ∈ R that minimizes∥∥∥LEEG,xMEG,σ
i
skull

(mradorad +qtan)−mEEG

∥∥∥
2

=
∥∥∥(LEEG,xMEG,σ

i
skull

orad

)
mrad−

(
mEEG−LEEG,xMEG,σ

i
skull

qtan

)∥∥∥
2

using equation (4.3) and the distributivity of the leadfield matrix multiplication. The solu-

tion is again computed using the pseudo-inverse matrix, as summarized in Step 2d). Note

that U and V in the SVD are not uniquely defined and therefore the magnitude mrad may be

negative due to a flipped orientation vector orad. As both are multiplied and added to qtan in

Step 2e) following (4.3), this does not have an effect on the result. The moment vector is
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then decomposed into its strength and unit-length orientation in Steps 2f) and 2g).

Minimization of residual variance with respect to combined EEG/MEG

In many applications, the calibrated head model is constructed in order to allow combined

EEG/MEG analysis. Therefore, a possible modification of Algorithm 1 is to minimize the

residual variance to combined EEG/MEG data, i.e., to use the concatenated reference data

sets and leadfields. These modifications are summarized in Variant 2.

Variant 2: Modifications for computing the residual variance with respect to com-
bined EEG/MEG

2. Find σskull,est = argminσskull∈(σmin,σmax) r(σskull) using Brent’s method, which
proposes σ i

skull iteratively (i = 0,1, ...), with the residual variance defined as

r(σ i
skull) :=

‖LEMEG,xMEG,σ
i
skull

qest−mEMEG‖2
2

‖mEMEG‖2
2

,

where

mEMEG :=
(

mEEG

mMEG

)
, LEMEG,xMEG,σ

i
skull

:=
(

LEEG,xMEG,σ
i
skull

LMEG,xMEG

)
.

In comparison to Algorithm 1, only the computation of the residual variance differs tak-

ing both EEG and MEG into account, while the other steps are identical. As reference

data, mEMEG ∈RNEEG+NMEG is used, while the concatenated leadfield is used for the forward

solutions, i.e., LEMEG,xMEG,σ
i
skull
∈ R(NEEG+NMEG)×3.

In order to combine EEG and MEG data and leadfields, both need to be transformed

to a unit-free space. The choice of this transformation defines how different channels and

modalities are weighted and thereby influences the result. A commonly used approach is

the SNR transformation described in Section 3.4 which will be used within this thesis.

In both spherical and realistic volume conductor models, the optimal moment qest de-

pends on the skull conductivity parameter. In the spherical case, in which the MEG is

unaffected by radial dipole orientation components, this modified algorithm only alters the

result if the least-squares fit for the orientation using EEG yields a different tangential ori-

entation component. In the realistic case, both orientation components influence the MEG,

although quasi-radial components have a smaller effect. Skull conductivity has a negligible

influence on the MEG forward solution (Haueisen et al., 1997; Lew et al., 2013), which is

therefore only computed once in Step 1 due to performance reasons.
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head models

In this chapter, the novel calibration algorithm is evaluated in a controlled spherical head

model scenario in which (quasi-)analytical solutions exist for the EEG/MEG forward prob-

lems. In a preparatory study presented in Section 5.1, the influence of tissue conductivities

on the EEG forward solution in the spherical model is analyzed. In Section 5.2, the cali-

bration method is tested in this well-controlled setup using realistic noise levels as well as

dipoles at different eccentricities with strengths and orientations related to somatosensory

experiments.

5.1. Influence of conductivities on EEG pole distance
and error measures

In this section, the impact of varying conductivities on the EEG forward solution is inves-

tigated in more detail using a four-layer spherical head model. On the one hand, the effect

of different tissue conductivities on the location of the topography peaks (pole distance)

resulting from a dipolar source is analyzed. On the other hand, the influence on different

error measures related to topography and magnitude is examined.

5.1.1. Materials and Methods

In the following, the characteristics of the head model and the investigated measures are ex-

plained. First, the spherical head volume conductor model and the considered conductivity

ranges are described. Second, details on the test dipoles and the computation of the EEG

forward solution are provided. Third, a definition of the pole distance as well as the other

error measures is presented.
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Spherical head volume conductor model

For this study, a four-layer spherical head model with radii and standard conductivities

defined in Table A.1 was used. Each tissue conductivity was varied within the ranges sum-

marized in Table 5.1. These intervals are almost identical to the ones considered in the sen-

sitivity study in Vorwerk et al. (2019a). The lower bound for the skull conductivity range,

however, was extended based on Altakroury (2017) and McCann et al. (2019). Additionally,

the CSF range here is based on the weighted mean of 1.71 S/m ± 0.30 S/m as reported in

McCann et al. (2019), as this review takes into account more studies than Baumann et al.

(1997), which is the sole reference in Vorwerk et al. (2019a). In a corrected version (Mc-

Cann et al., 2021), an exclusion of several studies yielded a slightly higher weighted mean

of 1.74 S/m ± 0.17 S/m, due to the reduced standard deviation this new range is covered in

the interval indicated in Table 5.1. For the homogenized brain compartment used here, the

range for the gray matter compartment considered in Vorwerk et al. (2019a) was adopted,

as both tissues are typically assigned the same conductivity of 0.33 S/m (Gonçalves et al.,

2003b; Vorwerk et al., 2014).

Table 5.1.: Conductivity ranges for the four-compartment spherical head model with radii
and standard conductivity values as defined in A.3.

Tissue Minimum Maximum References
(S/m) (S/m)

Scalp 0.28 0.87 (Vorwerk et al., 2019a)
Skull 0.0008 0.033 (Altakroury, 2017; McCann et al., 2019;

Vorwerk et al., 2019a)
CSF 1.41 2.01 (McCann et al., 2019)
Brain 0.22 0.67 (Vorwerk et al., 2019a)

Computation of the EEG forward solution

As test dipoles, three tangentially oriented dipoles with unit strength at eccentricities 0.2,

0.821 and 0.982 were considered, a subset of the eccentricities considered in the study

presented in Section 5.2. In general, eccentricity indicates the ratio between the distance of

the source location to the sphere center and the inner sphere radius and is defined in A.3. The

eccentricity of the middle dipole corresponds to a typical distance to the inner skull of the

P20/N20 source, and the other values represent more extreme scenarios in order to provide a

better overview of the behavior for dipoles at different eccentricities, see also Section 5.2.1.
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The dipoles and the center of the sphere are collinear, their moment vectors define a plane

that passes through the center point of the sphere. Due to the symmetric properties of the

spherical volume conductor model, the maximal and minimal surface potentials resulting

from the dipoles lie on this circle, i.e., their orthodrome. The spherical head model with the

test dipoles is depicted in Figure 5.1a).

a) b)

Figure 5.1.: Head model and pole distance measure: a) Tangential test dipoles in spherical
four-layer head model. The surface of the plane defined by the dipole locations
and orientations is shown in yellow. b) Exemplary potential distribution on the
spherical surface. The pole distance, i.e., the shortest curve on the spherical
surface connecting the maximal and minimal potential, is shown in yellow.

The (quasi-)analytical EEG solutions were computed following the series expansion for-

mulas in De Munck and Peters (1993) for the test dipoles in the four-layer sphere model.

Each tissue conductivity was varied separately within the ranges described in Table 5.1,

uniformly sampled at 1000 points. Additionally, scalp and skull conductivity were varied

simultaneously, each parameter sampled at 100 points within the indicated ranges. For the

topography peak distance, the (quasi-)analytical EEG solution was computed for 10000

positions on the orthodrome, while 31589 points on the entire surface were used for the

computation of the error measures related to the complete surface potential, as described in

the following section.
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Computation of pole distance and error measures

The pole distance indicates the length of the shortest curve connecting the potential peak and

trough on the surface and is depicted in Figure 5.1b). Let a and b denote the surface points

with the highest and lowest potential with spherical coordinates (r,θa,φa) and (r,θb,φb),

respectively, where r denotes the radius, θi the azimuthal and φi the elevation angles for

i ∈ {a,b}. The pole distance d, i.e., the orthodromic distance between these points, is then

defined as (Bronstein et al., 2008)

d = r · arccos [cos(φa) · cos(φb) · cos(θa−θb)+ sin(φa) · sin(φb)] . (5.1)

Note that due to the outer radius of r = 92 mm (see Table A.1) the maximal pole distance

resulting from a radial dipole is half the circumference, i.e., approximately 289 mm.

In addition to the pole distance, three different error measures were computed between the

forward solution for a specific set of conductivities and the forward solution for the standard

conductivities which was used as a reference solution. These errors include the relative

difference measure (RDM) which indicates deviations in topography, while the magnitude

error (MAG) is reflecting differences in magnitude. Additionally, the residual variance (RV)

was computed, which is a more general measure indicating the degree to which the data sets

vary. Detailed definitions of these error measures can be found in A.4.

5.1.2. Results

In the following, the results of this simulation study are presented. First, the effect of varying

conductivity values on the EEG pole distance is explained. Second, the results regarding the

influence of conductivity variations on the error measures RDM, MAG and RV are outlined.

Topography peak distance

The effects of varying conductivities in the four-layer spherical head model on the pole dis-

tance of the quasi-analytical EEG topography as defined in (5.1) are summarized in Figure

5.2.

In Figure 5.2a), each conductivity is varied separately, while standard values are used for

the other tissues. For the standard values (marked as circles for each conductivity), the pole

distance is approximately 238 mm (dipole 1), 95 mm (dipole 2) and 55 mm (dipole 3).

Overall, skull conductivity has the largest effect on pole distance. The higher the skull

conductivity values within the considered range, the lower the pole distance. Scalp conduc-

tivity has the second largest impact, while the relationship between conductivity and pole
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5.1. Influence of conductivities on EEG pole distance and error measures

a) b)

Figure 5.2.: EEG topography pole distance for varying tissue conductivities in spherical
model and three dipoles with eccentricity 0.2 (top), 0.821 (middle) and 0.982
(bottom): a) Pole distance when varying each tissue conductivity separately
within the predefined range, reported conductivity values are normalized with
respect to each conductivity range, the standard value for each tissue is marked
as a circle. b) Pole distance when varying scalp and skull conductivities simul-
taneously within the predefined range. Isolines are indicated in black.

distance is reversed. Brain and CSF compartments have a comparatively smaller influence

on the pole distance and show a negative and positive correlation between conductivity and

pole distance, respectively. The eccentricities of the test dipoles mainly affect the absolute

distance as deeper sources lead to a larger pole distance, note the different value ranges
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in Figure 5.2a). The relative effects between the different tissue conductivities are similar

between different eccentricities. For the middle dipole which has the most relevant eccen-

tricity when considering sources resembling the generator of the P20/N20 response, the

pole distances observed lie within the ranges [72.96 mm, 145.86 mm] (skull), [86.66 mm,

107.99 mm] (scalp), [89.49 mm, 97.93 mm] (brain) and [92.21 mm, 95.85 mm] (CSF) when

varying the respective conductivity.

In Figure 5.2b), scalp and skull conductivities are varied simultaneously in the predefined

ranges. The isolines have an almost linear slope with slightly higher curvature for the more

eccentric dipoles. Additionally, they have a higher gradient for more eccentric dipoles and

for lower skull conductivity values, i.e., for the same increase in skull conductivity, a larger

increase in scalp conductivity is needed to counterbalance the effect on pole distance.

Effect on error measures

In the following, the effects of varying conductivities on different error measures are pre-

sented. The errors between the EEG solution computed with varying conductivities inside

the defined ranges and the solution with the standard conductivities are summarized in Fig-

ure 5.3.

For the topographic error measured by the RDM in Figure 5.3a), skull conductivity has

the largest effect, followed by scalp conductivity, with only small effects of brain and CSF

conductivity variations. For the most relevant eccentricity when considering the P20/N20

source (dipole 2), the minimal conductivities considered lead to RDM errors of 11.08%

(skull), 2.93% (scalp), 0.81% (brain) and 0.57% (CSF). Conductivities at the upper bound

of the considered intervals lead to RDM errors of 8.4% (skull), 4.04% (scalp), 1.23% (brain)

and 0.3% (CSF). The absolute errors increase for more eccentric sources (note the different

error ranges), while the relative influences in comparison to the other tissue types remain

almost unchanged.

Considering the magnitude error depicted in Figure 5.3b), the largest effect can be ob-

served for skull conductivity as well. For larger skull conductivities, the magnitude of the

EEG forward solution becomes higher compared to the reference solution and the MAG

error is in the positive range, while it is negative for smaller values. Brain followed by scalp

conductivity variations have the second and third highest effects, with only small effects of

CSF conductivity variations. For all three tissue types, the relationship between conduc-

tivity and MAG error is reversed compared to the effect of varying skull conductivity. For

the middle dipole, the MAG errors are −78.47% (skull), 29.58% (brain), 19.22% (scalp)

and 4.96% (CSF) for the minimal conductivities and 37.29% (skull), −41.29% (brain),
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a) b) c)

Figure 5.3.: Error measures computed between the EEG forward solution using separately
varying tissue conductivities compared to the solution using standard values for
three dipoles with eccentricity 0.2 (top), 0.821 (middle) and 0.982 (bottom):
a) RDM, b) MAG and c) RV percentage errors as defined in A.4. Reported
conductivity values are normalized with respect to each conductivity range, the
standard value for each tissue is marked as a circle.

−30.82% (scalp) and −2.65% (CSF) for the highest considered conductivity values.

The errors related to the RV measure are summarized in Figure 5.3c). This error measure

also identifies skull conductivity as the most influential parameter, especially for conduc-

tivity values smaller than the standard value, but also for higher values for more eccentric
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sources. This is followed by brain (especially for lower eccentricities) and scalp conductiv-

ity, while the influence of CSF conductivity variations is negligible. For the middle dipole,

the RV is at 62.63% (skull), 8.78% (brain), 4.1% (scalp) and 0.26% (CSF) for the lower

bound of the conductivity ranges and 17.77% (skull), 17.08% (brain), 9.95% (scalp) and

0.07% (CSF) for the upper conductivity ranges.

5.1.3. Discussion

Overall, the results emphasize the importance of skull (and scalp) conductivity on EEG

forward modeling. Varying skull conductivity within the predefined range based on reported

literature values caused the largest differences in pole distance as well as the largest spans

for RDM, MAG and RV errors. While scalp conductivity was observed as the second most

important parameter with regard to pole distance and RDM, brain conductivity had the

second largest effect on MAG and RV. Variations in CSF conductivity within the considered

interval had the lowest effect on both pole distance and error measures.

These results are predominantly in accordance with other findings presented in literature.

The importance of skull conductivity and scalp conductivity on EEG and TES has been

emphasized by different sensitivity studies (Saturnino et al., 2019; Schmidt et al., 2015;

Vallaghé and Clerc, 2009; Vorwerk et al., 2019a). A low skull conductivity compared to

the other tissues results in a smeared EEG topography (Nunez and Srinivasan, 2006), and

consequently to a larger distance between EEG topography poles resulting from a dipolar

source. Individual differences in pole distance have also been investigated by Antonakakis

et al. (2020) using simulated EEG topographies from a dipolar source reconstructed from

the somatosensory evoked P20/N20 responses in realistic six-compartment head models,

reporting mean distances in 20 participants of approximately 121 mm ± 32 mm.

Our results also fit well to the reported effect of skull conductivity on source depth. Ac-

cording to simulation studies in spheres and realistic models, deeper source reconstructions

are obtained if a higher skull conductivity is assumed for the inverse method compared to

the reference forward solution (Chen et al., 2010; Vorwerk et al., 2019a). Even though

pole distance is only one characteristic of the surface topography which can be used for

inverse analysis, our results show that a smaller pole distance is observed for both higher

skull conductivity values and more eccentric sources, therefore the same pole distance can

be obtained by changing either the eccentricity of the source or the skull conductivity.

Additionally, Vorwerk et al. (2019a) report a reverse effect of skull and scalp conductivity

on source depth. We found a reverse effect of both parameters on pole distance, indicating

that different combinations of both parameters can counterbalance the effect and result in
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the same value, as visualized by the isolines in Figure 5.2b).

Regarding the relatively high influence of brain conductivity variations on the error mea-

sures, especially on MAG and RV (see Figure 5.3), it has to be taken into account that the

volume of the brain compartment is largely overestimated in the spherical head model. Us-

ing a realistic segmentation, CSF would fill the subarachnoid space and ventricles of the

brain. Additionally, white and gray matter have different conductive properties and are not

distinguished here. While the conductivity of 0.33 S/m is often used as a standard value

for gray matter (Vorwerk et al., 2019a), homogenized white matter is often assigned a con-

ductivity value of 0.14 S/m or anisotropic conductivities are considered based on DTI-MRI

measurements, see Section 2.2.

The low uncertainty in CSF conductivity played a negligible role which is in accordance

with the results presented in Vorwerk et al. (2019a), even though a larger range was con-

sidered here. However, the importance of modeling the CSF compartment has been em-

phasized in the context of EEG and MEG analysis (Rice et al., 2013; Vorwerk et al., 2014;

Wolters et al., 2006).

5.2. Application of calibration algorithm

In this section, the algorithm for calibrating head models with respect to skull conductivity,

which was presented in Section 4.2, is validated and evaluated in a well-controlled setup.

The methodology and most of the results presented in this chapter are published in Schrader

et al. (2020).

For this simulation study, a four-layer spherical head model was used. With (quasi-)

analytical EEG and MEG forward solutions available, errors could be systematically quan-

tified without any interplay with numerical errors that are unavoidable in realistic head mod-

eling setups. We investigated the effects of different realistic noise levels as well as dipole

sources with strengths and orientations related to somatosensory experiments. Although the

focus lies on dipole characteristics corresponding to the generator of the P20/N20 compo-

nent of somatosensory evoked responses, dipoles at different eccentricities and orientations

were used in order to investigate the possibility of calibrating by means of other sources. In

general, reported individual values for other tissue conductivities also vary (McCann et al.,

2019), see also Section 2.2. Since scalp conductivity has been shown to be the second

most important conductivity in EEG analysis (Vallaghé and Clerc, 2009; Vorwerk et al.,

2019a), the effects of wrong assumptions about this parameter on the calibration result and

subsequent EEG source analysis were investigated as well. In addition to these scenarios,
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the two variations of the calibration algorithm presented in Section 4.3 were applied and

compared to the standard algorithm. In all of these test scenarios, the (quasi-)analytical

solutions were used for the forward calculations in order to focus on the impact of varying

specific parameters in the setup. Subsequently, the calibration algorithm was applied using

FEM approaches to numerically solve the EEG/MEG forward problems. In one test sce-

nario, different source modeling approaches as presented in Section 3.3 were compared. In

a second case, the calibration results are compared for different tetrahedral and hexahedral

meshes that were used for the FEM computations.

5.2.1. Materials and Methods

In the following, the setup of the test scenario and the analysis pipeline are presented based

on Schrader et al. (2020). First, the characteristics of the spherical head volume conductor

and the sensor arrangement are described, followed by a description of the test dipoles

and the source space which is used for the single dipole deviation scans. Subsequently,

the noise levels used to simulate more realistic reference data are explained. Finally, a

complete overview of the analysis pipeline is presented and the investigated error measures

are defined.

Spherical head model and sensors

For the construction of the spherical model and the sensor layout, one of the five combined

EEG/MEG recordings from Chapter 6 was used, see Section 6.1.1 for more details on eth-

ical clearance and data acquisition. A standard concentric four-layer sphere model (scalp,

skull, CSF, brain) was fitted to the registered 73 electrode positions. The resulting radii

and reference conductivities are summarized in Table A.1. For the MEG sensor positions

and orientations, the realistic sensor setup of this measurement was used consisting of 271

first-order axial gradiometers and 13 reference coils. The spherical head model and the

EEG/MEG sensors are visualized in Figure 5.4a).

For the test scenarios using FEM approaches to solve the forward problems numerically,

different meshes were used for the spatial discretization of the head model. The number of

nodes and elements of the tetrahedral and hexahedral meshes are summarized in Table 5.2.

Geometry-adapted hexahedral meshes were created with the FieldTrip toolbox (Oostenveld

et al., 2011) using a node-shift parameter of 0.3 in order to reduce stair-case effects (Cama-

cho et al., 1997; Wolters et al., 2007a). These meshes, i.e., hex390k and hex3041k, correspond

to an edge length of 2 mm and 1 mm, respectively. The tetrahedral meshes were created us-

ing the Gmsh toolbox (Geuzaine and Remacle, 2009), the edge length was adjusted so that
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a) b)

Figure 5.4.: Four-layer spherical volume conductor model with a) realistic electrodes (yel-
low) and axial gradiometer coils (gray) and b) 500 test dipoles at 8 eccentricities
within the upper hemisphere oriented tangentially (black arrows) or elevated by
25° (green) or 65° (red) towards the radial direction. Modified from Schrader
et al. (2020).

Table 5.2.: Characteristics of the two tetrahedral (tet52k, tet389k) and the two hexahedral
(hex390k, hex3041k) meshes for the FEM computations. The hexahedral meshes
were created with a node-shift parameter of 0.3 and correspond to a resolution
of 2 mm and 1 mm, respectively.

Mesh tet52k tet389k hex390k hex3041k

Nodes 52469 388886 389848 3041456

Elements 290659 2287096 370869 2966035

the resolution close to the thin tissue layers is finer. The number of nodes was chosen to

approximately match the number of nodes of hexahedral meshes with a given edge length.

The mesh tet389k has approximately as many nodes as the 2 mm resolution hexahedral mesh

hex390k and the number of nodes in tet52k approximately corresponds to a 4 mm hexahe-

dral mesh which is not used here due to its inadequacy to model the fine 2 mm CSF layer.

Details of the meshes are presented in Figure 5.5.
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a) tet52k b) tet389k c) hex390k d) hex3041k

Figure 5.5.: Clipped sections of the meshes used for the FEM computations to solve the
EEG/MEG forward problems numerically. For the tetrahedral grids a) tet52k
and b) tet389k the resolution is finer close to the thin tissue layers. The geometry-
adapted hexahedral meshes c) hex390k and d) hex3041k were created with a node-
shift parameter of 0.3 and have a resolution of 2 mm and 1 mm, respectively.

Test dipoles and source grid

The properties of the test dipoles used in the simulations, i.e., their locations, unit orienta-

tions and strengths, were chosen based on source reconstructions of evoked responses. SEP

and SEF data sets were measured in five healthy participants using combined EEG/MEG

and three different types of somatosensory stimulation. First, the median nerve at the wrist

was electrically stimulated invoking a small movement of the thumb, this stimulation type

is referred to as electric-wrist (EW) stimulation in the following. Additionally, a stimulation

of the distal phalanx of the right index finger was applied using either a pneumato-tactile

(PT) stimulus that involved an air-driven membrane or a Braille-tactile (BT) stimulator us-

ing a device with movable plastic pins. For details on the data acquisition and experimental

paradigms for the somatosensory experiments, see Section 6.1.1. In Antonakakis et al.

(2019), the P20/N20 response in these data sets, i.e., the peak of the EEG/MEG signals

approximately 20 ms after stimulus onset, was then reconstructed in a six-compartment

realistic head model. The average strengths of this reconstructed source of the SEP/SEF

responses were 25.1 µAmm ± 6.5 µAmm, (EW), 9.7 µAmm ± 6.0 µAmm (BT) and 4.7

µAmm ± 2.2 µAmm (PT) for the three types of stimulation, respectively (Antonakakis

et al., 2019). In a follow-up study involving 20 participants, mean P20/N20 source depths

of 15.5 mm ± 4.5 mm were observed, which were measured as the minimal distance to

the inner skull surface (Antonakakis et al., 2020). Regarding the orientation, these recon-

structed sources tended to be tangentially oriented with a mean elevation angle towards the

radial direction of 25.5° ± 18.6°, the largest outlier was observed with an angle of 65°.

Based on these observations from realistic experimental setups, the test dipole character-
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istics were defined. As source locations, 500 points at eight different eccentricities ranging

from 0.2 to 0.982 relative to the inner (brain) sphere surface were randomly positioned in

the upper half of the spherical model (Marsaglia, 1972). The investigated eccentricities

contain the value of 0.821 which translates to a distance of approximately 15.5 mm to the

inner skull surface which corresponds to the reconstructed P20/N20 source depth observed

in Antonakakis et al. (2020). Other eccentricities were investigated to account for individ-

ual variations and to analyze the accuracy of the algorithm under more varying conditions.

This might especially be relevant if other sources than the generator of the somatosensory

evoked P20/N20 peak are considered for the calibration procedure which might be closer

to the region of interest in EEG/MEG source analysis or the target in optimized TES. For

each dipole location, a random tangentially oriented unit vector was created and elevated

by 25° and 65° to simulate the average and the extreme experimentally observed P20/N20

source orientations (Antonakakis et al., 2020). The test dipole locations and orientations are

visualized in Figure 5.4b). In one study presented in the following, the dipole strengths cor-

responding to the three different stimulation types (EW, PT, BT) were used and compared

to each other. In all other test scenarios, the dipole strength related to EW stimulation was

used.

In addition to the test dipoles, a regular source grid was created within the upper hemi-

sphere of the brain compartment for the MEG single dipole deviation scans. In order to

avoid an inverse crime which usually leads to overly optimistic source reconstruction results

(Kaipio and Somersalo, 2005), the test dipole locations were not part of the source space.

Moreover, the source space nodes did not correlate with the FEM mesh nodes. A resolution

of 2 mm was used in most test cases with mean distances between each test dipole and its

closest source space node of 0.97 mm± 0.28 mm. When comparing numerical source mod-

eling approaches, a resolution of 4 mm was used for the source space in combination with

a subset of 100 dipoles per eccentricity due to the high computational cost of calculating

the MEG leadfield using the subtraction approach. In this setup, the mean distance between

each test dipole and its closest source grid node is 1.9 mm ± 0.57 mm.

Realistic noise levels

For each test dipole, the (quasi-)analytical solutions were computed using the closed for-

mula by Sarvas (1987) for MEG and the series expansion formulas based on De Munck

and Peters (1993) for EEG, see Section 3.2. To create more realistic conditions, noise was

added to these solutions in most scenarios, either in the form of uncorrelated Gaussian noise

or using actual EEG/MEG baseline signals. In order to determine realistic noise strengths
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for this purpose, the average standard deviation per channel of the baseline signals within

the interval [−100 ms, −5 ms] before stimulus onset was computed for the EW data set

in Antonakakis et al. (2019), which was approximately 0.13 µV for electrodes and 3.2 fT

for gradiometers. In some test scenarios, white Gaussian noise with this average strength

was generated and added to the reference data. In other cases, EEG and MEG signals at

random prestimulus time points of the EW measurement of one test subject were scaled to

correspond to the mean standard deviation of all five subjects and added to the reference

data. Since the noise was added at the sensor level, a better SNR is achieved for more su-

perficial sources than for deep sources with identical strength, as it is the case in realistic

applications.

When combining EEG/MEG data for the computation of the residual variance as done in

Variant 2 of the calibration algorithm, both data sets needed to be transformed to a unit-free

space. For this purpose, the reference data which was distorted using scaled prestimulus

noise and the forward solutions at each channel were divided by the noise estimation ob-

tained from the prestimulus interval of an EW stimulation dataset scaled to the mean of five

participants.

Overview of analysis pipeline

The calibration procedure was tested in this controlled scenario using the spherical head

model and test dipoles described in the previous sections. An overview of the analysis

pipeline is provided in Figure 5.6. As input, reference solutions mEEG and mMEG were

computed using the (quasi-)analytical EEG/MEG forward solutions. For these calculations,

the standard conductivities defined in Table A.1 were used, only in one test scenario σscalp,ref

was varied by ±25% and ±50% when investigating the effect of erroneous assumptions on

other conductivities. In most test scenarios, noise with realistic strength was added, as

described in more detail in the previous section.

Using this reference data, the calibration was performed using Algorithm 1 or one of

its two variations. The possible parameter range for σskull was defined by its lower and

upper bounds σmin = 0.0008 S/m and σmax = 0.033 S/m, respectively. The convergence

tolerance was set to ε = 10−5 S/m. For the leadfield functions lEEG and lMEG, the (quasi-)

analytical EEG and MEG solutions were used in most cases with the skull conductivity of

the respective optimization step for the EEG solution. For the numerical approaches, CG-

FEM solutions were computed for the tetrahedral or hexahedral meshes. Three different

source models were compared, i.e., the partial integration, the St. Venant and the subtraction

approach, as described in Section 3.3. Regarding the St. Venant source model, a reference
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length of aref = 20 mm, a relaxation factor of λ = 10−6, a maximal moment order of n0 = 2

and a weighting exponent of s = 1 using the notations of Wolters et al. (2007a) were used,

which have been often used as standard values (Nüßing, 2018; Vorwerk, 2016; Wolters

et al., 2007a). In addition, monopoles were only placed on vertices belonging to elements

of the dipole compartment, in our case the homogenized brain compartment, in order to

fulfill the St. Venant condition for an improved accuracy for sources close to conductivity

jumps (Medani et al., 2015). In Nüßing (2018), a generalization of the standard formulation

of the St. Venant method was provided and different variations to choose the distribution

of sources were presented and compared. A modification we adopted in the computations

in this thesis is to use mixed moments as opposed to considering only diagonal moments

(Nüßing, 2018). For the subtraction approach, a second order integration scheme was used

for the computation of the volume and the surface integrals (Drechsler et al., 2009).

As output, the calibration algorithm then returned the estimated dipole location xMEG, its

unit orientation oest and magnitude mest as well as the estimated skull conductivity σskull,est

which were then compared to the reference values using the error measures described in the

following.

compute
(quasi-)

analytical
EEG and MEG

forward
solutions

add noise
with

realistic
strength

apply calibration
algorithm:

estimate σskull,est
and reconstruct
the dipole with
location xMEG,
orientation oest
and magnitude

mest

σbrain, ref

σscalp, ref
σskull, ref

σcsf, ref

xref

mref ·oref

Figure 5.6.: Analysis pipeline: (Quasi-)analytical EEG and MEG solutions are computed
for test dipoles with realistic characteristics in the spherical head model with
standard reference conductivities. Noise with realistic strength is added in most
test scenarios. Then, Algorithm 1 is applied which reconstructs the dipolar
source while fitting the skull conductivity parameter as a further degree of free-
dom. Modified from Schrader et al. (2020).
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Error measures

The accuracy of the calibration results was evaluated by different error measures. First, the

relative error between estimated and reference skull conductivity (%) is given as

eskull = 100 ·
σskull,est−σskull,ref

σskull,ref
. (5.2)

As the range for possible skull conductivity values was set to (0.0008, 0.033) S/m, values

for eskull lie within the interval (−92%, 230%). In order to quantify the errors related to the

dipole reconstruction, the localization error eloc (mm), the orientation error eori (degrees)

and the magnitude error emag (%) compared to the reference dipole are defined as

eloc = ||xMEG−xref||2, (5.3)

eori = cos−1 (oest ·oref) , (5.4)

emag = 100 · mest−mref

mref
. (5.5)

In rare cases with extremely low SNR, Algorithm 1 may result in a negative fitted magnitude

parameter mest. For the error measures, we use the convention that mest ∈ R+, which is

achieved by flipping the orientation oest in these cases. In one test scenario, the depth error

edepth (mm) is additionally indicated which is defined as

edepth = ||xMEG− c||2−||xref− c||2, (5.6)

where c ∈ R3 denotes the center of the sphere.

5.2.2. Results

In the following, the results of the analysis pipeline are presented. In a preliminary inves-

tigation, the implementation of the algorithm was verified under ideal conditions. In the

following, three scenarios are presented based on Schrader et al. (2020). First, the dipole

strengths corresponding to three somatosensory experiments were compared using two dif-

ferent realistic noise scenarios. Second, the role of different dipole orientations and third,

the influence of scalp conductivity uncertainty was investigated. In addition to these scenar-

ios, the two variants of the algorithm were applied and compared to the results of the stan-

dard algorithm. After these investigations using exclusively (quasi-)analytical EEG/MEG

forward solutions in order to quantify the errors in a controlled setting, the impact of nu-

merical errors was analyzed. For this purpose, FEM forward solutions were computed using
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different source models and meshes.

Verification in an ideal scenario

In this preliminary investigation, the implementation of the algorithm is verified in a con-

trolled scenario under best possible conditions. In order to be able to reconstruct the dipoles

exactly, the dipole locations were added to the source grid, i.e., an inverse crime was allowed

(Kaipio and Somersalo, 2005). In addition, no noise was added to the (quasi-)analytical ref-

erence solutions in this scenario. The results show that the dipole characteristics and the

skull conductivity can be reliably reconstructed up to the given tolerance. On average, 9.17

function evaluations were required in the minimization process, including 2.17 (plus 1 ini-

tial) Golden-section search and 6 inverse parabolic interpolation steps. Figure 5.7 shows

exemplary calibration curves with the residual variance evaluations in Step 2 of Algorithm

1 for five tangential dipoles at different eccentricities. For comparison, Figure 5.7a) shows

a) b)

Figure 5.7.: Exemplary calibration curves for five tangential dipoles at different eccentrici-
ties ranging from 0.2 to 0.9365. The residual variance as defined in Step 2 of
Algorithm 1 is evaluated for a) the entire interval [σmin,σmax] uniformly sam-
pled every 10−4 S/m and b) using the iteration values for the skull conductivity
in the minimization process when applying Algorithm 1. This value range is
indicated as a black rectangle in subfigure a).

the goal function evaluations for the entire interval [σmin,σmax] uniformly sampled every

10−4 S/m. All curves have a global minimum at the reference skull conductivity of 0.01

S/m and reach their highest values at the lower interval boundary. Additionally, the cal-

ibration curves tend to be steeper for more eccentric sources, especially for higher skull
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conductivities. This is in accordance with the results presented in the previous section, in

particular Figure 5.3c) showing the RV for varying conductivities. Figure 5.7b) only shows

the function evaluations when applying the minimization in Algorithm 1. According to

Brent’s method, the goal function is never evaluated at the interval boundaries and instead

only a small sample of function evaluations is used within the interval.

These findings indicate that the calibration algorithm can accurately reconstruct the refer-

ence skull conductivity with a small number of iterations in an ideal (inverse crime) setting.

In the following, the calibration procedure will be tested under more realistic scenarios in

order to quantify the effects of different factors on the reconstruction errors.

Different dipole strengths of somatosensory experiments

In this scenario, the test dipole strengths mref were varied to correspond to magnitudes ex-

perimentally observed in somatosensory experiments using three stimulation types, these

results are based on (Schrader et al., 2020). Tangential test dipoles were used with mag-

nitudes corresponding to EW, BT and PT stimulation in somatosensory experiments. Two

different noise scenarios were investigated, based on realistic baseline strength as described

in more detail in Section 5.2.1.

First, white Gaussian noise was added to the (quasi-)analytical EEG and MEG reference

solutions. The resulting errors for the reconstructed dipole (eloc, eori and emag) and the

skull conductivity error eskull as defined in (5.2) – (5.5) are shown in Figure 5.8. Overall,

all error measures decrease for higher dipole strengths. The errors in localization (Figure

5.8a)) and magnitude (Figure 5.8c)) which are determined using MEG, are at a low level and

nearly constant for rather eccentric sources. This includes the most relevant eccentricity of

0.821, which approximately corresponds to the P20/N20 source depth. At this eccentricity,

the localization errors are 1.1 mm ± 0.4 mm (EW), 1.2 mm ± 0.5 mm (BT) and 1.7 mm

± 0.8 mm (PT) and the magnitude errors 0.1% ± 2.6% (EW), 0.02% ± 3.1% (BT) and

0.3% ± 4.4% (PT). For deeper sources, the errors strongly increase. The dipole orientation

errors (Figure 5.8b)) are mainly influenced by the noise level related to the stimulation

types, at an eccentricity of 0.821, they are 1.1° ± 0.6° (EW), 2.7° ± 1.5° (BT) and 5.5°

± 3.1° (PT), respectively. The calibration procedure results in errors for the estimated

skull conductivity (Figure 5.8d)) of 0.06% ± 5.4% (EW), 1.0% ± 10.5% (BT) and 3.3%

± 20.8% (PT) at an eccentricity of 0.821. Additionally, the mean over all sensors of the

absolute SNR is indicated for all conditions in Figure 5.8e). It increases with eccentricity

and source strength, i.e., electric wrist stimulation leads to the best SNR. Additionally, it

is higher for MEG than for EEG, with mean values of 12.8 (EW), 5.0 (BT) and 2.6 (PT)
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a)

b)

c)

d)

e)

Figure 5.8.: Calibration results for tangential sources with magnitudes corresponding to
strengths observed in electric wrist (EW), Braille-tactile (BT) or pneumato-
tactile (PT) somatosensory experiments, while white Gaussian noise with a re-
alistic strength was added to the (quasi-)analytical reference solutions. Source
reconstruction errors with regard to a) localization, b) orientation and c) mag-
nitude, d) skull conductivity errors and e) mean absolute SNRs are shown for
test dipoles at different eccentricities plotted on a logarithmic scale. Boxplots
show the 25th and 75th percentiles and the median. Modified from Schrader
et al. (2020).

for MEG and 7.0 (EW), 2.8 (BT) and 1.5 (PT) for EEG at the most relevant eccentricity of

0.821. Note that for the deepest sources under consideration with an eccentricity 0.2, the

MEG least-squares fit in step 2d) to determine the best fitting magnitude in the calibration

Algorithm 1 resulted in a negative value for 23 (PT) dipoles. As a result, the orientation
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a)

b)

c)

d)

e)

Figure 5.9.: Calibration results for tangential sources with magnitudes corresponding to
strengths observed in electric wrist (EW), Braille-tactile (BT) or pneumato-
tactile (PT) somatosensory experiments, while baseline noise was added to the
(quasi-)analytical reference solutions. Source reconstruction errors with regard
to a) localization, b) orientation and c) magnitude, d) skull conductivity errors
and e) mean absolute SNRs are shown for test dipoles at different eccentricities
plotted on a logarithmic scale. Boxplots show the 25th and 75th percentiles and
the median. Modified from Schrader et al. (2020).

which is fitted using the EEG data in step 2c) was flipped, resulting in orientation errors of

almost 180° (not in the displayed range).

In a second scenario, noise from the prestimulus interval was added to the (quasi-)

analytical solutions, as described in Section 5.2.1. The resulting errors for the reconstructed

dipole (eloc, eori and emag), the skull conductivity errors eskull and the resulting absolute
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SNRs for each condition are shown in Figure 5.9. Compared to the previous investigation

using Gaussian noise, the errors show a similar trend, but are at an overall higher level.

All error measures tend to increase for lower dipole strengths and deeper sources, as the

SNR decreases. For the most relevant eccentricity of 0.821, the mean localization errors are

1.3 mm ± 0.5 mm (EW), 2.3 mm ± 1.2 mm (BT) and 4.3 mm ± 2.7 mm (PT), as shown

in Figure 5.9a). The orientation errors (Figure 5.9b)) at this eccentricity are 3.3° ± 1.7°

(EW), 8.6° ± 4.4° (BT) and 18.0° ± 9.6° (PT). The magnitude errors ((Figure 5.9c)) are

at −0.01% ± 3.9% (EW), 0.2% ± 8.2% (BT) and 1.4% ± 18.7% (PT), respectively. The

calibration procedure results in errors for the estimated skull conductivity (Figure 5.9d)) of

0.5% ± 10.9% (EW), 3.5% ± 28.0% (BT) and 16.1% ± 60.0% (PT) at an eccentricity of

0.821. The mean absolute SNRs over all channels for each condition are depicted in Figure

5.9e). The SNR increases with eccentricity and source strength and is higher for MEG than

for EEG, mean values are at 12.9 (EW), 5.0 (BT) and 2.6 (PT) for MEG and 7.2 (EW),

2.9 (BT) and 1.6 (PT) for EEG. As previously, the calibration resulted in a negative mag-

nitude and orientation errors of nearly 180° for 8 (EW), 85 (BT) and 143 (PT) dipoles at

eccentricity 0.2 and 16 (PT) dipoles at eccentricity 0.49.

As we observe overall skull conductivity errors of 0.06%± 5.4% using Gaussian noise in

combination with electric wrist stimulation at our eccentricity of interest at 0.821, which are

in a similarly low range when compared to using prestimulus noise, we will proceed in the

following with only Gaussian noise scenarios. In the discussion, we will address the ques-

tion of how to further optimize our stimulation protocols to minimize spatial correlations in

overlayed noise and to achieve the best SNR.

Different source orientations

In the following investigation based on Schrader et al. (2020), the dipole orientations were

varied to investigate the accuracy of the calibration in case of radial orientation components.

For that purpose, each dipole was either tangentially oriented or rotated by 25° or 65° to-

wards the radial direction, see Section 5.2.1. In this test scenario, white Gaussian noise

with realistic strength was used to distort the reference solutions and the dipole strengths

corresponded to EW stimulation which resulted in the highest SNR in the previous study.

Therefore, the results for tangential dipoles here correspond to the results in the previous

section using Gaussian noise and EW stimulation.

The resulting errors for the reconstructed dipole (eloc, eori and emag), the skull conductivity

errors eskull and the resulting mean absolute SNRs for each condition are shown in Figure

5.10. For the most relevant eccentricity of 0.821 when considering the P20/N20 source, the
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a)

b)

c)

d)

e)

Figure 5.10.: Calibration results for sources with different orientations (tangential or rotated
by 25° or 65°), while white Gaussian noise with realistic strength was added
to the (quasi-)analytical reference solutions. Source reconstruction errors with
regard to a) localization, b) orientation and c) magnitude, d) skull conductiv-
ity errors and e) mean absolute SNRs are shown for test dipoles at different
eccentricities plotted on a logarithmic scale. Boxplots show the 25th and 75th

percentiles and the median. Modified from Schrader et al. (2020).

mean localization errors are 1.1 mm ± 0.4 mm (tangential; 25°) and 1.2 mm ± 0.5 mm

(65°), as shown in Figure 5.10a). The orientation errors (Figure 5.10b)) at this eccentricity

lie at 1.1° ± 0.6° (tangential), 1.1° ± 0.7° (25°) and 1.2° ± 0.8° (65°). The magnitude

errors (Figure 5.10c)) are at 0.1% ± 2.6% (tangential), 0.1% ± 2.9% (25°) and −0.1%

± 6.7% (65°), respectively. The calibration procedure results in errors for the estimated

skull conductivity (Figure 5.10d)) of 0.06% ± 5.4% (tangential), 0.1% ± 6.0% (25°) and
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1.7% ± 14.2% (65°) at an eccentricity of 0.821. The absolute SNR values for MEG are

higher for more tangentially oriented sources with mean ratios of 12.8 (tangential), 11.6

(25°) and 5.5 (65°), see Figure 5.10e). Regarding EEG, the reported SNR values are largely

independent of source orientations with mean values of 7.0 (tangential; 25°) and 7.1 (65°)

at 0.821. For 32 (65°) dipoles at eccentricity 0.2, the calibration procedure resulted in a

negative magnitude, thus flipping the orientation obtained from EEG.

Erroneous scalp conductivity assumptions

In the previous investigations, literature values were adopted for brain, CSF and scalp tissue

conductivities. Inconveniently, these values are also subject to a relatively high uncertainty

scalp

scalp

scalp

scalp

a) b)

c) d)

Figure 5.11.: Calibration results for tangential sources using varying reference scalp con-
ductivities of ±25 and ±50%, compared to the standard value 0.43 S/m (yel-
low). No noise was added to the reference solutions. Source reconstruction
errors with regard to a) localization, b) orientation and c) magnitude and d)
skull conductivity errors are shown for test dipoles at different eccentricities
plotted on a logarithmic scale. Boxplots show the 25th and 75th percentiles
and the median. Modified from Schrader et al. (2020).
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and reported values vary (McCann et al., 2019). Due to the importance of scalp conduc-

tivity which has been emphasized as the second most important conductivity (Vallaghé and

Clerc, 2009; Vorwerk et al., 2019a), we investigated the effect of wrong assumptions about

this value on the proposed calibration algorithm, the results presented here are based on

Schrader et al. (2020). In the following, the results are presented for applying the calibration

algorithm with varying reference scalp conductivities. Afterwards, the impact of different

scalp conductivities in combination with standard and fitted skull conductivity parameters

on EEG source reconstructions is investigated.

For the purpose of testing the algorithm taking scalp conductivity uncertainty into ac-

count, the reference scalp conductivity σscalp, ref, which is unknown in reality, was varied by

25% and 50%, while the standard value of 0.43 S/m was used for the leadfield calculations

in the calibration procedure. No noise was added to the reference solutions in order to focus

on the effect of scalp conductivity uncertainty in this scenario. The resulting errors for the

reconstructed dipole (eloc, eori and emag) and the skull conductivity errors eskull are reported

in Figure 5.11. The dipole reconstruction errors are at a very low level for all eccentricities.

The mean localization errors (Figure 5.11a)) are below 1.4 mm with a standard deviation

smaller than 0.6 mm, and are independent of the conductivity profile. The average orienta-

tion errors (Figure 5.11b)) are smaller than 0.6° with a standard deviation below 0.6°. The

magnitude errors (Figure 5.11c)) have a mean value of maximally 0.3%, with a standard

deviation smaller than 7.4%. At an eccentricity of 0.821, the calibration procedure results

in overall skull conductivity estimation errors (Figure 5.11d)) of 136.4% ± 8.6% (41.9%

± 5.0%) in case the real scalp conductivity is 50% (25%) lower compared to the standard

value, and −38.1% ± 2.2% (−23.4% ± 2.8%) in case it is 50% (25%) higher. For test

dipoles at neighboring eccentricities, the errors are in a similar range.

Our main aim of calibrating head models is to improve EEG or combined EEG/MEG

source analysis and optimize TES montages. In other words, we are not interested in the

actual physical resistivity of the skull, but rather fit this important parameter in our pro-

cedure to best explain realistic data in combination with the other properties of the head

volume conductor model. We thereby exploit a priori information available in data sets of

well-studied somatosensory evoked responses. As a result, the individually fitted skull con-

ductivity is expected to lead to better source analysis results in combination with the head

volume conductor model when compared to the standard value, irrespective of whether it

in fact accurately reports skull conductivity. In order to investigate this aspect, which in

practical applications may even be more important, we performed an EEG single dipole

deviation scan taking the uncertainty of scalp conductivity into account and compared the

fitted to the standard skull conductivity. For the computation of reference solutions mEEG,
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.

.

a) b)

c) d)

Figure 5.12.: EEG single dipole deviation scan results for tangential sources using reference
scalp conductivities deviating −25% (0.32 S/m) or +25% (0.54 S/m). For the
forward solutions, the standard scalp conductivity 0.43 S/m was used and ei-
ther the standard (blue) or fitted (green) skull conductivities (see Figure 5.11).
Source reconstruction errors with regard to a) localization, b) orientation, c)
magnitude and d) depth are shown for test dipoles at different eccentricities
plotted on a logarithmic scale. Boxplots show the 25th and 75th percentiles
and the median. Modified from Schrader et al. (2020).

a scalp conductivity σscalp,ref was used which was either 25% higher (0.54 S/m) or lower

(0.32 S/m) compared to the standard value of 0.43 S/m. This standard value was used for

the leadfield computations within the calibration algorithm, thus, the real value was either

under- (+25%) or overestimated (−25%). Additionally, either the standard or the fitted

skull conductivities (see Figure 5.11) were used in the calibration procedure. In Figure

5.12, the errors of the EEG single dipole deviation scan are shown when using different

scalp and skull conductivities. For a better comparison, the results are also shown for using

the correct values (yellow). The results show that when using the standard scalp conductiv-

ities (over- or underestimating the reference value by 25%), the localization errors (Figure
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5.12a)) are higher for the standard skull conductivity with mean values of 2.8 mm for over-

(light blue) and 2.2 mm for underestimating (dark blue) scalp conductivity for dipoles with

an eccentricity of 0.821. These errors mainly correlate with depth differences, as shown in

Figure 5.12d). While orientation errors are overall at a very low range (Figure 5.12b)), the

errors in magnitude (Figure 5.12c)) at this eccentricity are on average 11.1% (−8.9%) for

over- (underestimating) scalp conductivity. In case the fitted skull conductivities are used,

these errors can be reduced, leading to mean localization errors of maximally 1.3 at the most

relevant eccentricity for over- (dark green) and underestimating (light green) scalp conduc-

tivity. Note that on average, the test dipoles are 0.97 mm away from the closest source space

node, see Section 5.2.1.

In order to illustrate the influence of scalp/skull conductivity changes on the EEG for-

ward solution, Figure 5.13 shows the quasi-analytical EEG solution sampled at the sphere

surface for a tangential dipole at eccentricity 0.821. The topographies are shown for a scalp

conductivity increased by 50% (left), the standard values (middle) and standard scalp con-

ductivity with the fitted skull conductivity (right). The isolines on the topographies indicate

that the EEG solution using fitted skull conductivity in combination with the standard scalp

conductivity (right) closely resembles the one using the reference conductivity (left) when

compared to using standard values for both (middle).

a) b) c)

Figure 5.13.: EEG topography for tangential dipole at eccentricity 0.821 with a) scalp con-
ductivity increased by 50% compared to the standard value, standard skull
conductivity, b) standard scalp and skull conductivities, c) standard scalp con-
ductivity, fitted skull conductivity. The white isolines of a) are also indicated
as a reference for b) and c) in addition to their black isolines, all isolines in-
dicate the same set of values. Minimum and maximum values are marked by
small spheres.
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Variations of the algorithm

In the following investigation, the results of Algorithm 1 are compared to the results of its

two modifications presented in Section 4.3.

In a first comparison, Variant 1 is applied which determines the tangential orientation

component using MEG and only uses EEG for the radial component. For a set of test

dipoles which are either tangentially oriented or radially rotated by 65°, the results of this

comparison to the standard version of the algorithm are presented in Figure 5.14.

The same Gaussian noise vectors were added to the reference solution in both conditions,

therefore the localization errors presented in Figure 5.14a) are identical between both al-

a) b)

c) d)

Figure 5.14.: Calibration results comparing Algorithm 1 with its Variant 1 in which the
tangential orientation component is determined using MEG. Sources with a
strength corresponding to EW stimulation are either tangentially oriented or
rotated by 65° and Gaussian noise with realistic strength was added to the ref-
erence solutions. Source reconstruction errors with regard to a) localization,
b) orientation and c) magnitude and d) skull conductivity errors are shown for
test dipoles at different eccentricities plotted on a logarithmic scale. Boxplots
show the 25th and 75th percentiles and the median.

77



5. Validation and evaluation in spherical head models

gorithms and correspond to the results presented for different dipole orientations in Figure

5.10. Regarding the orientation errors, it can be observed that for the lowest eccentricity,

Variant 1 results in higher errors than Algorithm 1. However, Algorithm 1 results in ori-

entation errors of almost 180° for 27 source at this eccentricity for the more radial dipoles

due to a negative fitted magnitude, while this effect cannot be observed for Variant 1. As

dipole eccentricities increase, this trend reverses and for the most relevant eccentricity of

0.821, the orientation errors are 0.99° ± 0.58° (0.68° ± 0.47°) for Algorithm 1 (Variant 1)

for tangential sources and 1.12° ± 0.68° (0.8° ± 0.45°) using Algorithm 1 (Variant 1) for

sources with an elevation angle of 65°. For tangential sources, almost no difference in mag-

nitude errors as well as skull conductivity errors can be observed between algorithms and

the results are comparable to the ones presented in Figure 5.10. For the more radial dipoles

(65°), however, magnitude errors shown in Figure 5.14c) are at 0.03% ± 6.52% (0.02%

± 3.82%) for Algorithm 1 (Variant 1) at an eccentricity of 0.821. Overall, the calibration

procedure results in errors of 1.23% ± 14% (0.36% ± 8.96%) using Algorithm 1 (Variant

1) for the estimated skull conductivity at this eccentricity for dipoles with an elevation angle

of 65° as presented in Figure 5.14d).

In a second comparison, Variant 2 was applied which minimizes the RV to the combined

EEG/MEG reference data instead of only taking the EEG signal into account for the compu-

tation of the goal function. For a set of test dipoles which are either tangentially oriented or

radially rotated by 65°, the calibration results using Variant 2 are presented in Figure 5.15.

In order to allow this combined analysis of both modalities, the data sets were transformed

to a comparable value range by means of an SNR transformation using the signal noise in

the prestimulus interval as described in more detail in Section 5.2.1. Overall, the dipole

reconstruction and skull conductivity estimation errors are in a comparable range for both

Algorithm 1 and Variant 2. As the same noise vectors were added for both calibration al-

gorithms, no difference in localization errors can be observed. For an eccentricity of 0.821,

orientation errors only slightly differ, with errors of 2.92°± 1.51° (2.9°± 1.55°) for tangen-

tial and 3.36° ± 1.89° (3.13° ± 1.79°) for the more radial dipoles for Algorithm 1 (Variant

2). Magnitude errors are at −0.09% ± 3.54% (−0.07% ± 3.55%) for tangential and 0.86%

± 14.66% (0.94% ± 14.32%) for rotated dipoles using Algorithm 1 (Variant 2). The skull

conductivity estimation errors are at 0.63% ± 10.14% (2.7% ± 20.06%) for tangential and

5.65% ± 32.05% (5.56% ± 36.13%) for dipoles elevated by 65° for Algorithm 1 (Variant

2). A negative magnitude, thus a flipped orientation, results for one dipole (tangential) and

130 dipoles (65°) at an eccentricity of 0.2 and for 2 dipoles (65°) at an eccentricity of 0.49,

for both versions of the calibration algorithm.
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a) b)

c) d)

Figure 5.15.: Calibration results comparing Algorithm 1 with its Variant 2 which minimizes
the RV to the combined EEG/MEG reference data. Sources with a strength
corresponding to EW stimulation are either tangentially oriented or rotated by
65° and prestimulus noise was added to the reference solutions. Data sets were
scaled using noise estimations from realistic prestimulus intervals to combine
both modalities. Source reconstruction errors with regard to a) localization,
b) orientation and c) magnitude and d) skull conductivity errors are shown for
test dipoles at different eccentricities plotted on a logarithmic scale. Boxplots
show the 25th and 75th percentiles and the median.

Numerical forward solutions

Previously, the (quasi-)analytical EEG and MEG forward solutions were used in the cali-

bration procedure. In this scenario, numerical CG-FEM forward solutions were used for the

leadfield computation in the calibration algorithm.

In a first analysis, different source models, i.e., the partial integration, the St. Venant and

the subtraction approach are used within the same tetrahedral mesh (tet52k) for a subset of

100 dipoles at each eccentricity. A source grid with a resolution of 4 mm was used, resulting

in a mean distance of 1.9 mm between each dipole and the closest source space node. The
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results of this comparison are shown in Figure 5.16. Overall, localization and magnitude

errors are at a similarly low range for all source models with small differences only for

the most extreme eccentricities. The partial integration approach tends to result in higher

errors, especially regarding the orientation and skull estimation errors. The errors using the

subtraction and the St. Venant approach are in a comparable range for most eccentricities,

except that the subtraction approach performed best for the deepest sources, while the op-

posite holds for the most eccentric sources investigated. At the most relevant eccentricity

of 0.821 regarding the P20/N20 source depth, localization errors are at 1.99 mm ± 0.74

a) b)

c) d)

Figure 5.16.: Calibration results for different numerical source models: Partial integration,
St. Venant and subtraction approach. The tetrahedral mesh tet52k was used for
the CG-FEM forward computations. The source grid for the single dipole de-
viation scan had a resolution of 4 mm. Sources with a strength corresponding
to EW stimulation were tangentially oriented, no noise was added to the ref-
erence solutions. Source reconstruction errors with regard to a) localization,
b) orientation and c) magnitude and d) skull conductivity errors are shown
for 100 test dipoles at different eccentricities plotted on a logarithmic scale.
Boxplots show the 25th and 75th percentiles and the median.
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mm (subtraction), 1.91 mm ± 0.65 mm (St. Venant) and 2.06 mm ± 0.78 mm (partial inte-

gration). Orientation errors of 0.81° ± 0.43° (subtraction), 0.81° ± 0.46° (St. Venant) and

1.53° ± 0.9° (partial integration) and magnitude errors of 0.71% ± 5.01% (subtraction),

0.36% ± 4.62% (St. Venant) and 0.87% ± 4.98% (partial integration) can be observed at

this eccentricity. The overall reconstructed skull conductivity errors are at −1.8% ± 7.19%

(subtraction), −0.79% ± 6.7% (St. Venant) and −0.23% ± 9.6% (partial integration).

In a second comparison, different tetrahedral and hexahedral meshes with varying degrees

of freedom were used for the FEM forward computations. The St. Venant source model was

a) b)

c) d)

Figure 5.17.: Calibration results using different FEM meshes (tet52k, tet389k, hex390k,
hex3041k) for the numerical computation of the EEG/MEG forward solutions
in combination with the St. Venant source model. Sources with a strength cor-
responding to EW stimulation were tangentially oriented, no noise was added
to the reference solutions. Source reconstruction errors with regard to a) lo-
calization, b) orientation and c) magnitude and d) skull conductivity errors are
shown for 100 test dipoles at different eccentricities plotted on a logarithmic
scale. Boxplots show the 25th and 75th percentiles and the median.
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employed to discretize the source term and for the MEG single dipole deviation scan, a

regular source grid with a 2 mm resolution was used, as described in more details in Section

5.2.1. The results of the calibration are shown in Figure 5.17.

Overall, localization and magnitude errors are at a similarly low range for all meshes

with minor differences especially for the deepest and most eccentric sources. Orientation

errors increase for more eccentric sources and tend to be higher for coarser meshes and

hexahedral meshes when comparing the number of degrees of freedom. At an eccentricity

of 0.821, orientation errors are at 0.3° ± 0.17° (hex3041k), 0.44° ± 0.24° (hex390k), 0.34° ±
0.19° (tet389k) and 0.73° ± 0.38° (tet52k). The skull conductivity errors are centered around

zero for the tetrahedral meshes, while a negative shift can be observed at all eccentricities

for the hexahedral meshes, especially for the coarser mesh hex390k. These errors are at

−7.89% ± 3.37% (hex3041k), −23.82% ± 2.61% (hex390k), −0.06% ± 3.62% (tet389k) and

−0.66% ± 3.62% (tet52k) at the most relevant eccentricity.

5.2.3. Discussion

The aim of this study was to apply the calibration algorithm presented in Chapter 4 in a

simplified spherical head volume conductor model where (quasi-)analytical solutions for

the EEG and MEG forward problems exist. In this well-controlled setup, the algorithm

can be tested without interference from numerical errors which are inevitable when using

realistic head models. The accuracy of the calibration algorithm was tested under different

conditions that simulate realistic scenarios.

In a preparatory study, example calibration curves of the goal function in Step 1 of Algo-

rithm 1 indicated unimodal calibration curves that have a higher gradient for more superfi-

cial sources. In order to converge to the correct skull conductivity value with an accuracy

defined by the given tolerance of ε = 10−5 S/m, the algorithm required only approximately

9 iterations.

In the following, three test cases were presented based on Schrader et al. (2020). In a

first scenario, source strengths related to three types of somatosensory experiments were

compared. Noise with realistic strength was added to the reference solutions, either in the

form of white Gaussian noise or prestimulus signals. The results presented in Figures 5.8

and 5.9 in Section 5.2.2 indicate that overall, the skull conductivity and dipole characteris-

tics can be reliably reconstructed for sources resembling the generator of the somatosensory

P20/N20 response. Based on dipole strengths reconstructed in Antonakakis et al. (2019),

the best results were achieved when using the stimulation type related to the highest SNR

(EW), followed by BT stimulation. When using dipole strengths related to EW stimulation,
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as well as tangential sources at an eccentricity of 0.821 which approximately corresponds

to the P20/N20 source depth, the resulting mean estimated skull conductivity errors were

at 0.06% ± 5.4% (EW) when white Gaussian noise was used. When using prestimulus

noise, these observed errors were slightly higher at 0.5% ± 10.9%, even though the same

mean standard deviation per channel was used. Possible reasons might be related to the

filter settings or could result from the high stimulation rate that could lead to a correlation

of the prestimulus signals at the sensor level as the previous trial could still be processed

in the somatosensory network even after the next trial already started. The time-locked av-

eraged data could therefore contain weak signals in the time period before the trigger that

originate from later components of the somatosensory response of the previous trial. Fur-

ther somatosensory experiments may be required in order to optimize these experimental

parameters. The best tradeoff between a high stimulation rate that increases the number of

trials and results in a clear P20/N20 topography with a high SNR, and a prestimulus interval

with minimal correlated noise from the previous trial has to be found.

In a second scenario presented in Figure 5.10 in Section 5.2.2, the source orientation

was varied to examine the effect of radial components of different strengths. White Gaus-

sian noise with a realistic strength was added to the reference solutions. As the MEG is

unaffected by radial components in the spherical test case, an increased radial orientation

component is equivalent to reducing the strength of the dipole for this modality, as only the

tangential component influences the forward solution. Similar to the previous scenario, the

localization and magnitude errors, which are related to the MEG signal, were nearly con-

stant for more eccentric sources and increase for deeper sources, as well as for more radial

dipoles. This is due to the sensor level noise, as especially deeper sources which produce a

smaller surface signal, are harder to detect. In addition, the 2 mm resolution of the source

space created a lower bound for the localization errors, as the mean distance to the closest

source space node was 0.97 mm to avoid an inverse crime (Kaipio and Somersalo, 2005).

The results show that tangential sources led to the lowest errors, although sources radially

rotated by 25° only produced slightly higher errors for the skull conductivity and dipole

characteristics.

In a third investigation, the influence of wrongly assigned scalp conductivity was ana-

lyzed without adding artificial noise, the results were summarized in Figures 5.11 and 5.12.

The low dipole reconstruction errors are mainly due to the source space resolution and in-

creasing numerical errors for the computation of the pseudo-inverse of the MEG leadfield

matrix for deeper sources. There are no localization error differences between conditions,

as the MEG is unaffected by the conductive profile in the multi-layer sphere model. In

contrast to the dipole reconstruction errors, high skull conductivity errors can be observed.
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However, when performing an EEG single dipole deviation scan while the reference scalp

conductivity is either under- or overestimated, the results show that the dipole localization

errors are largely diminished when using the fitted skull conductivity instead of the standard

value. Thereby, the fitted skull conductivity largely counterbalances the effect of the wrong

assumption on scalp conductivity. The opposite effect of scalp and skull conductivity on

source localization, especially on source depth, has also been emphasized in Vorwerk et al.

(2019a). This scenario illustrates that only one free parameter, namely the most influen-

tial skull conductivity parameter, is fitted in our calibration procedure. However, the other

conductivity values also indirectly affect the procedure. Skull conductivity is not physically

measured, but this parameter is fitted in a way that in combination with the other assumed

conductivities the data is best explained.

Following these investigations, the calibration was performed using the two variants of

the algorithm and the results were compared to the output of the standard algorithm. Us-

ing Variant 1, which fits the tangential orientation component using MEG reference data,

led to similar results for tangential sources and slightly smaller errors for more radial test

dipoles. Note that noise with realistic strength was added in this scenario, which resulted in

a better SNR for MEG than for EEG for most eccentricities, as shown, e.g., in Figure 5.8.

Therefore, the SNR of both modalities could potentially be used as an indicator of which

modality is more reliable with regard to fitting the tangential orientation component. When

Variant 2 was used for the calibration procedure, which minimizes the RV with respect to

the combined EEG/MEG reference data, almost no differences in the dipole reconstruction

and skull conductivity estimation errors could be observed. Notably, the calibration curves

tended to be more flat when using this variant, indicating that the goal function evaluations

showed fewer variations for MEG.

In the subsequent investigation, numerical forward solutions were used in the calibration

procedure instead of the (quasi-)analytical expressions. In one comparison, different source

modeling approaches, i.e., the partial integration, the St. Venant and the subtraction model,

were used to discretize the source and assemble the right-hand side vector in the FEM

computations. Regarding the accuracy of the calibration algorithm, the partial integration

approach resulted in slightly higher errors, while the St. Venant and the subtraction approach

yielded similar errors for dipole eccentricities of interest. An important additional factor are

computation times, which were approximately 80 times higher for the subtraction approach

for the entire calibration process compared to the other two methods. The most expensive

component was the computation of the MEG leadfield for the source grid nodes which needs

to be computed for the MEG single dipole deviation scans and is unrelated to the number

of test dipoles. As a result, the St. Venant approach seems to offer the best compromise be-
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tween accuracy and feasibility, which is in accordance with other investigations (Lew et al.,

2009b; Vorwerk et al., 2014; Wolters et al., 2007b). This source model was therefore also

used in the following chapter for the calibration of realistic head models. The localized vari-

ation of the subtraction approach could significantly reduce the computational burden of this

source model and potentially offer a feasible alternative to the St. Venant approach (Lange,

2021; Nüßing, 2018). In a second comparison, different tetrahedral and hexahedral meshes

were used for the FEM forward solutions. In general, the results indicate that the tetrahedral

meshes were able to accurately reconstruct the dipole characteristics and the skull conduc-

tivity. Only small differences in skull conductivity errors between the coarser and the finer

tetrahedral meshes could be observed, indicating that both grids can accurately model the

spherical surfaces. Skull conductivity was systematically underestimated using hexahedral

meshes, especially for the coarser mesh hex390. In addition to the difficulty of modeling the

curvature of a spherical model using hexahedrons even with a node-shift of vertices on the

boundaries, this is probably due to the difficulty of representing the 2 mm thin CSF layer by

hexahedrons with an edge length of 2 mm. In total, 10128 nodes of the mesh hex390 mesh

belonged to both elements labeled as skull as well as brain. In CG-FEM, the Lagrangian

shape functions span all neighboring elements and thereby allow the current to flow through

a single vertex. These physically unreasonable leakage effects in EEG through these points

have been investigated mainly in the context of skull leakages and could be prevented using

DG-FEM (Engwer et al., 2017; Vorwerk, 2016). In the finer mesh hex4041, this effect of an

underestimated skull conductivity is largely alleviated. Additionally, these results resem-

ble the skull conductivity estimation results using wrong assumptions of scalp conductivity,

therefore it might be interesting to investigate if the calibrated skull conductivities result in

lower source reconstruction errors when compared to standard values as well.

This study was intended to apply the presented calibration algorithm in a controlled

spherical head volume conductor model and quantify the errors for different realistic source

and noise scenarios. In the following chapter, the algorithm will be applied to experimen-

tally measured SEP/SEF data sets and realistic head volume conductor models.
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In this chapter, the algorithm is applied to calibrate realistic head volume conductor models

using experimentally measured P20/N20 topographies of SEP/SEF data sets. The aim is to

bring the calibration pipeline closer to realistic applications and investigate the impact of

specific processing steps and parameter choices in this setting.

Compared to the previous investigations in controlled spherical head volume conductor

models, several changes apply. One important aspect is the utilization of experimentally

measured SEP/SEF data sets. These signals need to be preprocessed to reduce artifacts

and yield clear P20/N20 topographies with a high SNR. Additionally, the sensors of the

SEP/SEF data acquisition need to be registered to the discretized head model.

Another major difference is the application to individually segmented, realistically

shaped head volume conductor models. They distinguish up to six different tissue types,

including skull spongiosa for an accurate modeling of the inhomogeneous skull tissue, and

account for white matter anisotropy. These complex head models have been suggested

in order to accurately model the head characteristics for an improved accuracy in source

analysis (McCann and Beltrachini, 2021; Ollikainen et al., 1999; Ramon et al., 2004; Vor-

werk et al., 2014). Using realistically shaped head models as opposed to spherical models

has two major implications. First, there are no (quasi-)analytical EEG and MEG solutions

available for realistically shaped volume conductor models and therefore, the forward solu-

tions need to be computed numerically. Various methods have been proposed to accurately

solve the EEG and MEG forward problems and model the source term (Azizollahi et al.,

2018; Beltrachini, 2019; Cuartas Morales et al., 2019; Montes-Restrepo et al., 2014; Pi-

astra et al., 2018), see Chapter 3 for an overview of the FEM discretization and different

source modeling approaches that are used in this work. Second, an important difference

compared to spherical models is that the MEG solution is not independent of the head

tissue conductivities in realistically shaped head models. However, their influence on MEG

forward solutions is mainly restricted to the conductivity profile in the vicinity of the source

(Haueisen et al., 1997). Skull (and scalp) conductivities, however, which are the most

influential parameters for the EEG forward solutions (Vorwerk et al., 2019a), only have a

small impact on the MEG solution in a realistic head model (Brette and Destexhe, 2012;
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Haueisen et al., 1997; Lew et al., 2013). However, it has been suggested to model skull

defects such as post-surgical burr holes for an improved MEG forward and inverse analysis

(Lau et al., 2016).

For layered spherical models of the head, the importance of skull conductivity on EEG

forward solutions was emphasized in Section 5.1. Regarding realistic head models, this

effect is visualized in Figure 6.1 using an exemplary data set. Simulated EEG and MEG

topographies for an approximately tangentially oriented dipole in a six-compartment real-

istic head model are shown for different skull conductivities. The MEG topographies (top)

are nearly identical when using skull conductivities of 0.02 S/m as shown in Figure 6.1a),

and 0.002 S/m, see Figure 6.1b). The EEG (bottom) topographies for the same volume con-

ductor models, however, are largely influenced by different skull conductivities. The scalp

potential is overall higher and the peak and trough are closer to each other when using a

skull conductivity of 0.02 S/m, see Figure 6.1c), compared to the EEG signal when using

a skull conductivity of 0.002 S/m as shown in Figure 6.1d). This insensitivity of MEG to

skull conductivity justifies the use of a single dipole deviation scan with standard conductiv-

ities to determine the P20/N20 source location as opposed to repeating this computationally

expensive step for every iterative skull conductivity value in the calibration procedure.

This chapter is organized as follows. First, the methodology is described in Section

6.1. This includes information about data acquisition and processing as well as details on

the calibration procedure. In Section 6.2, the results of the calibration procedure using

realistic data sets are presented. Various scenarios, such as different forward modeling

approaches and reference data choices, are investigated and compared. Third, these findings

are discussed in Section 6.3.

6.1. Materials and Methods
In this section, the real data sets and analysis steps which were performed to apply the

calibration procedure are presented. In Section 6.1.1, details on the experimental setup and

measurements are presented. Subsequently, Section 6.1.2 contains information about the

preprocessing steps for the SEP/SEF data, the characteristics of the realistic head volume

conductor models and provides further details on the calibration steps.

6.1.1. Data acquisition

This analysis is based on simultaneous EEG/MEG data as well as MRI measurements that

were recorded of five (including three male) right-handed healthy participants aged 32.4±
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σskull = 0.02 S/m σskull = 0.002 S/m

a) b)

c) d)

Figure 6.1.: Simulated MEG (top) and EEG (bottom) topographies for skull conductivi-
ties of 0.02 S/m (left) and 0.002 S/m (right) resulting from an approximately
tangentially oriented source with 20 nAm strength in a six-compartment real-
istic isotropic head volume conductor model, using standard conductivities for
the other tissues. The MEG topographies were interpolated from 777 quasi-
radially measuring magnetometer signals, the electric potential was computed
on a node-shifted hexahedral mesh with 1 mm edge length. FEM forward so-
lutions were computed with the DUNEuro toolbox using the St. Venant source
model. Subfigures c) and d) are published in a similar form in Gross et al.
(2021).

9.5 years. All volunteers had given written informed consent prior to the experiment and

the measurements had been approved by the ethics committee of the University of Erlangen,

Faculty of Medicine on 10.05.2011 (Ref. No. 4453).

Somatosensory evoked responses were recorded using simultaneous EEG/MEG. The

EEG signals were measured using a 10–10 system (EASYCAP GmbH, Herrsching, Ger-
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many) and the electrode positions on the head were digitized using a Polhemus device

(FASTRAK, Polhemus Incorporated, Colchester, Vermont, USA). MEG was recorded us-

ing a whole-head system with 275 axial gradiometers and 29 reference coils (CTF, VSM

MedTech Ltd., Vancouver, Canada).

Three types of somatosensory experiments were conducted using different stimuli. First,

the median nerve was electrically stimulated at the right wrist using a square pulse stim-

ulator (Astro-Med, Inc., Grass Instrument Division, West Warwick, USA), referred to as

electric-wrist (EW) stimulation. This type of stimulus activates a mixture of afferent and

efferent fibers and is often used due to its high SNR (Buchner et al., 1994; Nevalainen et al.,

2014; Okada et al., 1996; Theuvenet et al., 2005). Experimentally, this stimulation was per-

formed with monophasic square-wave electrical pulses with 5 ms duration. The strength of

the stimuli was manually adjusted to have the minimal amplitude still evoking a movement

of the thumb.

In the other two somatosensory experiments tactile stimuli were applied to the distal

phalanx of the right index finger using two different devices. In general, these more natu-

ral stimuli primarily activate slowly responding mechanoreceptors in the skin and lead to

lower signal strengths and longer latencies when compared to EW stimulation (Mertens and

Lütkenhöner, 2000; Nevalainen et al., 2014; Rossini et al., 1996). One tactile stimulus was

a balloon membrane (Custom production: Elektro- und Feinmechanische Werkstätten der

Medizinischen Fakultät, University of Münster, Münster, Germany), which was fixed to the

index finger using a plastic clip and expanded using air blasts (Mertens and Lütkenhöner,

2000; Rossini et al., 1996). This stimulation type is abbreviated as pneumato-tactile (PT)

stimulation. The other tactile stimulus was a Braille stimulator (metec AG, Stuttgart, Ger-

many), of which four of the eight small plastic pins were elevated and pressed against the

index finger (Onishi et al., 2010; Schubert et al., 2008). This stimulus type is referred to as

Braille-tactile (BT) stimulation. In both of these two tactile experimental setups, pink noise

was presented to the participants in order to avoid time-correlated artifacts in the auditory

cortices due to the operating sounds of the stimulation devices.

The stimulus onset asynchrony (SOA) was randomly varied between 400–500 ms (EW;

PT) and 600–700 ms (BT) which resulted in circa 1200 trials (EW; PT) and 880 trials (BT)

during an approximately 9 min. long measurement interval for every condition. The signals

were sampled at 1200 Hz and an online low-pass filter of 300 Hz was used.

In addition to these functional data sets, imaging data was recorded using a MAGNETOM

Prisma 3 T device (Release D13, Siemens Medical Solutions, Erlangen, Germany). T1- and

T2-weighted MRI as well as DTI-MRI for the estimation of white matter tissue anisotropy

information were recorded. For details on the respective measurement sequences, see An-
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tonakakis et al. (2019). During both functional and imaging data acquisition, markers were

positioned on three head landmarks, i.e., left and right preauricular points and nasion, for

registration purposes. Additionally, both measurement sessions were performed in supine

position to reduce head movements. A consistent positioning of the head is also important

to avoid possible brain shifts between supine and prone position, which can lead to large

thickness differences of the CSF compartment as well as large resulting differences in EEG

topography (Rice et al., 2013).

6.1.2. Analysis pipeline

In the following, the analysis steps for calibrating realistic head volume conductors using

SEP/SEF data are described in more detail. This includes information about the prepro-

cessing of the functional data sets, the realistic head volume conductor models and the

application of the calibration algorithm.

Preprocessing of SEP/SEF data

The raw data were cut into epochs of [−100 ms, 200 ms] around the trigger time point

(t = 0 ms) identifying the stimulus onset. Additionally, the signals were filtered around

the frequency spectrum of interest using a bandpass filter of 20–250 Hz (Buchner et al.,

1994). A notch filter of 50 Hz and harmonics was used to eliminate power line noise. A

semi-automatic artifact rejection was applied in order to clean the data. On average, 0.1

(MEG) and 3.7 (EEG) channels as well as 5.1 trials were rejected within each experimental

condition. Afterwards, the averages of the signals over all trials were computed for each

sensor in order to remove uncorrelated noise and see the event-related responses. The EEG

data were re-referenced using the mean signal at the electrodes at each time point as a ref-

erence. For the computation of the SNR, prestimulus intervals of [−100 ms, −5 ms] for

EW and PT and [−100 ms, −15 ms] for BT stimulation were used for the noise estimation.

The time period directly before the stimulus onset was avoided due to potential interference

of the stimulation artifact. As a measure of signal amplitude, the global mean field power

(GMFP), i.e., the standard deviation of the sensor signals, was computed for each sampled

time point (Esser et al., 2006; Lehmann and Skrandies, 1980). For the determination of

the P20/N20 peak time point, t = tp, the maximum of the GMFP of the SNR-transformed

combined EEG/MEG data was determined for this component. The exact peak time point

depends on many factors, ranging from subject-specific characteristics such as age or arm

length to data processing parameters such as different filtering settings (Nevalainen et al.,

2014; Stöhr et al., 2005). Different considerations need to be taken into account when
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choosing the time sample(s) of the reference data. On the one hand, the signal has the

best SNR at the peak of the P20/N20 component, where the amplitude is the highest. On

the other hand, it is important to define the best moment that captures the underlying source

which is assumed to be of single dipolar nature (Allison et al., 1991; Nakamura et al., 1998).

The signal should not contain weak contributions from earlier activated regions, e.g., con-

tributions from thalamic activity (Götz et al., 2014; Rezaei et al., 2020; Stöhr et al., 2005).

Similarly, the activation should not have propagated yet to cortical areas involved in the later

somatosensory responses, in particular, Brodmann area 1 at the top of the postcentral gyrus,

which is linked to the somatosensory activity following the P20/N20 component (Allison

et al., 1991; Peterson et al., 1995; Stöhr et al., 2005). Therefore, different time points and

time intervals were used for the computation of the reference data. Besides the peak time

point t = tp, its preceding time point t = tp−1, and averages over two or three sampled time

points including the peak time point were used. Note that due to the sampling rate of 1200

Hz, the span between two successive recorded time points is 4t ≈ 0.83 ms. All prepro-

cessing steps were carried out in FieldTrip (Oostenveld et al., 2011), see also Chapter 8 for

more details on software-related aspects.

Head volume conductor models

From MRI data, individually segmented realistic six-compartment volume conductor mod-

els with white matter anisotropy tensors were constructed. The tissue types of scalp, skull

compacta, skull spongiosa, CSF, gray matter and white matter were distinguished. This

segmentation and meshing process was not performed as part of this work, the head models

in combination with the registered sensor positions, the anisotropic tensors and the source

space grid within the gray matter compartment was obtained from Antonakakis et al. (2019),

which contains further details on their construction. Geometry-adapted hexahedral FEM

meshes were used with a resolution of 1 mm and a node-shift parameter of 0.3 in order

to reduce staircase effects (Camacho et al., 1997; Wolters et al., 2007a). On average, they

consisted of 3487282 nodes and 3396950 elements (Antonakakis et al., 2019). The source

grids with a resolution of 2 mm contained on average 16757 possible dipole locations in the

gray matter.

The following standard conductivity values were used for the MEG forward solutions

in the single dipole deviation scan and for the tissues other than skull (compacta) for the

EEG forward solutions within the optimization process. For the six-compartment models,

values of 0.0042 (skull compacta) and 0.01512 S/m (skull spongiosa) were used for the

skull compartment (Antonakakis et al., 2019; Aydin et al., 2014; Buchner et al., 1997; Fuchs
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et al., 1998), which corresponds to a ratio of 3.6 (Akhtari et al., 2002). For the other tissue

types, standard values of 0.43 (scalp), 1.79 S/m (CSF) and 0.33 S/m (gray matter) were

used (Aydin et al., 2014; Baumann et al., 1997; Vorwerk et al., 2014). Regarding white

matter conductivity, either an isotropic standard value of 0.14 S/m was used (Antonakakis

et al., 2019; Ramon et al., 2004; Vorwerk et al., 2014), or anisotropic voxel-based values

inferred from DTI measurements were used which were scaled to match the isotropic values

using the effective medium approach (Rullmann et al., 2009; Tuch et al., 2001). For the

three-compartment models used in one of the comparisons, in addition to the scalp tissue,

skull spongiosa and compacta were homogenized to a single skull compartment with a

standard conductivity of 0.01 S/m and the inner tissues were simplified to a homogenized

brain compartment with standard conductivity of 0.33 S/m (Aydin et al., 2014; Vorwerk

et al., 2014).

Calibration procedure

After these preprocessing steps, the realistic head models were calibrated using the proce-

dure and the same range for possible skull conductivity values as described in Chapter 4.

In the six-compartment models, the skull compacta conductivity was fitted, while the ratio

to skull spongiosa conductivity remained unchanged. As reference data mMEG and mEEG,

the measured MEG and EEG P20/N20 peak signals were used, which were preprocessed

as described in the beginning of this section to clean the data of artifacts and produce the

best possible SNR. In most scenarios, the EW stimulation data sets were used due to their

high SNR. In Antonakakis et al. (2019), EW stimulation data sets were used to calibrate

head models, which were then used for source analysis using the BT and PT data sets. In

one comparison study in this work, BT and PT data sets were used directly for the calibra-

tion procedure. For the leadfield computations lMEG and lEEG, a CG-FEM discretization as

described in Chapter 3 was used. As source modeling approaches, the St. Venant source

model was typically chosen based on the comparison of accuracy and computational cost

using spherical models (Chapter 5), except for one comparison in which the partial inte-

gration approach was also applied. Due to the high computational costs of the subtraction

approach and because the results were not substantially improved, this source model was

not taken into account here.

As already discussed in detail in Chapter 4, MEG is insensitive to skull conductivity in

the realistic case, therefore Step 1 in Algorithm 1 was only computed once for the stan-

dard conductivities and not within the loop in Step 2 in order to minimize computational

costs. For the computation of the MEG leadfield for the entire source grid nodes in all
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Cartesian directions, the more efficient transfer matrix approach (see Section 3.4) was used

(Wolters et al., 2004). Once the source location was fixed in Step 1 of Algorithm 1, the

EEG leadfield was only computed for this specific location. Therefore, the potential could

be computed faster by directly solving the linear system of the FEM discretization instead

of using the transfer matrix approach. For the parameters regarding the source models and

the calibration algorithm, the same values were chosen as in the numerical study in Chapter

5.

All computations were performed in MATLAB (The MathWorks Inc., Natick, Mas-

sachusetts, USA), using the FieldTrip toolbox for the realistic data processing and the MAT-

LAB interface of DUNEuro for the EEG and MEG forward computations, see Chapter 8

for more details.

6.2. Results

In the following, the results of the calibration procedure using realistic head volume con-

ductor models and SEP/SEF data sets are summarized and the effects of several parameters

on the calibration are investigated. In Section 6.2.1, the choice of reference data for the

calibration procedure is investigated, including the impact of SNR transformations. Next,

Section 6.2.2 presents the calibration results in case different somatosensory experiments

are used for the acquisition of P20/N20 data sets. Section 6.2.3 then summarizes the cal-

ibration results for different head volume conductor models and in Section 6.2.4 different

source modeling approaches are used. Finally, the two variants of the algorithm as presented

in Chapter 4 are compared in Section 6.2.5.

6.2.1. Choice of reference data

An important aspect of the calibration pipeline is the preprocessing of the functional

SEP/SEF data, e.g., the choice of filtering, the channel selection and the trial rejection due

to artifacts. This section focuses on two particular aspects of data processing and their ef-

fects on the calibration result. First, the influence of applying SNR transformations for the

EEG and MEG data is investigated. Second, the choice of the time point or interval, which

is chosen as the optimal representation of the activity underlying the P20/N20 component,

is analyzed.
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Influence of SNR transformation

In general, SNR transformations emphasize the relative importance of signals measured

by those sensors which are least affected by noise and are commonly used to combine

modalities, see Section 3.4. For an exemplary data set, the effect on an SNR transformation

a)

b)

Figure 6.2.: Global mean field power (GMFP) of a) preprocessed averaged EEG and MEG
data without SNR transformation and b) SNR-transformed EEG, MEG and
combined data for an exemplary data set shown for the time window [−20
ms, 70 ms] around the stimulus onset (t = 0 ms).

is visualized in Figure 6.2. At the top, Figure 6.2a) shows the GMFP of single modality

EEG and MEG for the time window [−20 ms, 70 ms]. This includes the stimulation onset

which is followed by a stimulation artifact and the early somatosensory evoked responses.

In Figure 6.2b), the GMFP computed for the SNR-transformed data of both modalities is

shown. Additionally, the GMFP of the combined data is depicted which is used for the

determination of the peak time point of the P20/N20 response.
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Except for using Variant 2 which requires the combination of EEG and MEG data, an

SNR transformation is not necessary for the calibration pipeline, as every individual step

of Algorithm 1 is performed using single modality data. In order to investigate the effect

of SNR transformations, the calibration pipeline was applied to five realistic data sets with

EW stimulation using reference data and leadfields that were either transformed using the

noise estimation of the prestimulus interval as described in Section 6.1.2 or the original data

associated with physical units were used. The resulting calibration curves and the estimated

skull conductivity values are shown in Figure 6.3. Using SNR-transformed data yielded

Figure 6.3.: Influence of SNR transformations on calibration results using EW stimulation
data sets of five subjects. Reference EEG/MEG data of the P20/N20 peak and
leadfields are either transformed to SNR (dashed lines) or not (solid lines). The
results are plotted on a logarithmic scale, minimum values are highlighted in
black. An anisotropic realistic six-compartment head model was used in com-
bination with the St. Venant source model for the FEM forward computations.

fitted skull conductivity values of 3.05 mS/m ± 1.08 mS/m with mean minimal RV values

of 5.57% ± 2.2%. Compared to these results, the minimal RV was higher for four of the

five subjects in case the data was not SNR-transformed, with mean differences of −0.19

mS/m ± 0.16 mS/m for the fitted skull conductivity and 1.77% ± 2.85% for the RV.

In the remainder of this chapter, SNR transformations will be used for the measured data

sets and numerically computed leadfields. The calibration results of the SNR-transformed

data sets presented here will be used as a reference to report the effects of differing various

parameters in the calibration pipeline.

96



6.2. Results

a) b)

Figure 6.4.: SNR-transformed a) MEG and b) EEG butterfly plots of the P20/N20 compo-
nent of an exemplary EW stimulation data set. The peak, i.e., t = tp (solid
line) and the two preceding sampled time points t = tp−1 (dashed) and t = tp−2
(dotted) are marked.

Timing of reference data

In order to investigate the impact of varying latencies and time intervals for the reference

data, these parameters were varied in the calibration procedure using the EW stimulation

data sets. Initially, the peak time point of the P20/N20 component was determined using

the GMFP of combined EEG/MEG for each data set. Figure 6.4 shows this time point

for an exemplary data set in combination with the two preceding sampled time points. The

topographies for these time points only show minor differences, mainly related to the de-

creasing magnitude for earlier time points, while the signal distribution seems nearly iden-

tical across these three time points and their averages. In order to analyze how the choice

of the time point or period considered for the reference data influences the calibration, the

pipeline was performed for reference data at the peak time point t = tp, its preceding sam-

pled time point t = tp−1, and averaged over the intervals containing two or three time points,

i.e., [tp−1, tp] or [tp−2, tp], respectively. The results of this comparison are shown in Figure

6.5 for all five subjects. The impact of using different time points or intervals varies across

subjects, although for most subjects only a small influence could be observed. Compared to

the results using the peak time point, differences in skull conductivity estimation of −0.26

mS/m ± 0.39 mS/m (tp−1), −0.066 mS/m ± 0.32 mS/m ([tp−1, tp]) and −0.22 mS/m ±
0.38 mS/m ([tp−2, tp]) were observed for the three alternatives. Regarding the RV, the dif-

ferences were −0.012% ± 1.57% (tp−1), −0.4% ± 1.03% ([tp−1, tp]) and 0.026% ± 1.45%

([tp−2, tp]) compared to the results using the peak time point.

In the following investigations presented in this chapter, the peak time point of the
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a) b) c)

d) e)

Figure 6.5.: Influence of reference data timing on calibration results using EW stimulation
for five subjects plotted on a logarithmic scale. The P20/N20 peak t = tp (solid,
colored), its preceding time sample t = tp−1 (dashed; colored) or averages over
[tp−1, tp] (gray) or [tp−2, tp] (black) were used. Minimum values are highlighted
in black. An anisotropic realistic six-compartment head model was used for the
FEM forward computations with the St. Venant source model.

P20/N20 component is used for the reference data in the calibration pipeline.

6.2.2. Differences between somatosensory experiments

So far in these investigations, the EW stimulation data sets were used for the calibration

procedure. A complete exemplary data set comprising all three stimulation types is shown

in Figure 6.6. On the left, butterfly plots of SNR-transformed EEG and MEG data sets for

all stimulation types are shown and the peak of the P20/N20 component is marked. Note

that the time delays for the P20/N20 peak have technical reasons and do not reflect patho-

logical processing of somatosensory signals in the healthy participants. Instead, they are

due to the offset between the trigger onset and the time the device mechanically applies the

stimulus (e.g., the air membrane is fully inflated for PT stimulation) and the larger process-

ing times of the tactile stimuli applied at the index finger (Antonakakis et al., 2019; Mertens
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a)

b)

c)

Figure 6.6.: Exemplary SEP/SEF data set of three experimental setups involving a) EW,
b) BT and c) PT stimulation. In the butterfly plots (left) of SNR-transformed
EEG and MEG data the peak of the P20/N20 component is marked in black.
The topography plots for MEG (middle) and EEG (right) are visualized for this
time point. Note the varying data range for the topography plots.

and Lütkenhöner, 2000; Nevalainen et al., 2014). For the P20/N20 peak time point, the

MEG (middle) and EEG (right) topography plots are shown for all somatosensory experi-
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ments. The topographies of the three stimulation types are similar for each subject, while

differences can be mainly observed in their magnitudes, with smaller signal strengths for

PT and especially BT stimulation.

The calibration results for using the three somatosensory stimulation types are summa-

rized in Figure 6.7. For all subjects, EW stimulation yielded the lowest RV values for the

optimal skull conductivity. Compared to EW stimulation data sets, PT stimulation yielded

differences in fitted skull conductivity of 1.23 mS/m ± 3.07 mS/m, while BT stimulation

resulted in overall larger differences of 3.37 mS/m ± 4.42 mS/m. Regarding the RV, both

alternatives led to higher values with differences of 7.4% ± 7.2% for PT and 13.6% ±
4.97% for BT stimulation compared to the results using EW stimulation data sets. For the

remaining calibration results presented in this chapter, the EW data sets were used.

a) b) c)

d) e)

Figure 6.7.: Calibration results using the three different somatosensory stimulation types
of EW (solid lines), PT (dark; dashed) and BT (light; dashed) of five subjects
plotted on a logarithmic scale. Minimum values are highlighted in black. An
anisotropic realistic six-compartment head model was used in combination with
the St. Venant source model for the FEM forward computations.
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6.2.3. Comparison of head volume conductor models

In this section, the effect of different head volume conductor models on the fitted skull

conductivity is investigated. For this purpose, head models with varying degrees of ho-

mogenization of tissue compartments were calibrated with respect to skull conductivity. An

anisotropic six-compartment head volume conductor, which has been previously used, was

compared to a six-compartment model with isotropic white matter conductivity and a sim-

plified three-compartment model consisting of brain, skull and scalp tissue compartments.

The calibration results using these different volume conductor models are shown in Figure

6.8 for all five subjects.

a) b) c)

d) e)

Figure 6.8.: Calibration results using EW stimulation data sets for head volume conduc-
tor models with homogenized tissue compartments for five subjects: six-
compartment models with anisotropic (solid lines) or isotropic white matter
compartment (dark; dashed) and three-compartment models (light; dashed).
The results are plotted on a logarithmic scale, the minimum values are high-
lighted in black. The St. Venant source model was used for the FEM forward
computations.

Overall, only small differences can be observed between the calibration results of

isotropic and anisotropic six-compartment models, while the fitted skull conductivity of

the three-compartment models tended to be slightly higher compared to the most detailed
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model. Compared to the realistic six-compartment anisotropic (6Ca) head model, the

skull conductivity estimations differ by 0.15 mS/m ± 0.27 mS/m for the isotropic six-

compartment model (6Ci) and by 0.75 mS/m± 0.2 mS/m for the three-compartment model

(3C). Differences of −0.49% ± 0.79% (6Ci) and −0.58% ± 1.55% (3C) resulted for the

minimal RV using the homogenized meshes.

6.2.4. Numerical source models

For the comparison of different source modeling approaches, the calibration pipeline was

applied using either the St. Venant source model, as done in the previous investigations, or

the partial integration approach for the FEM forward computations.

The results of this comparison are presented in Figure 6.9. Overall, only small differences

can be observed when comparing the calibration curves for both conditions of all subjects.

When using the partial integration approach, the skull conductivity estimation differed by

−0.05 mS/m ± 0.053 mS/m and the minimal RV by −0.21% ± 0.52% compared to using

the St. Venant approach.

Figure 6.9.: Influence of source modeling approaches on the calibration results using EW
stimulation for five subjects, the St. Venant approach (solid lines) is compared
to the partial integration (PI) source model (dashed lines). The results are plot-
ted on a logarithmic scale, the minimum values are highlighted in black. An
anisotropic realistic six-compartment head model was used for the FEM for-
ward computations.
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6.2.5. Variations of the calibration algorithm

In order to compare the variants of the calibration algorithm, the pipeline was applied to the

five EW data sets using either the standard Algorithm 1 as done in the previous comparisons,

or one of its two alternatives. Variant 1 determines the tangential orientation component

using MEG, whereas Variant 2 minimizes the RV with respect to combined EEG/MEG

reference data.

The calibration results of this comparison are presented in Figure 6.10. The calibration

curves for Variant 1 have a similar shape and minimal values, with mean differences in skull

conductivity estimations of −0.11 mS/m ± 0.12 mS/m compared to applying Algorithm 1.

Overall, calibration curves are flatter when using Variant 2, especially notable for Subject

2 shown in Figure 6.10b). Skull conductivity estimations differ by −0.11 mS/m ± 0.4

a) b) c)

d) e)

Figure 6.10.: Calibration results for EW stimulation data sets using either Algorithm 1 (solid
lines), Variant 1 (light; dashed) or Variant 2 (dark; dashed) for five subjects.
The results are plotted on a logarithmic scale, minimum values are high-
lighted in black. An anisotropic realistic six-compartment head model was
used in combination with the St. Venant source model for the FEM forward
computations.
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mS/m when using Variant 2 compared to Algorithm 1. Regarding the resulting minimal

RV, differences of 0.57% ± 1.01% (Variant 1) and 2.14% ± 6.86% (Variant 2) could be

observed.

6.3. Discussion

In this chapter, the calibration algorithm was applied to realistic head volume conductor

models using experimentally measured SEP/SEF data sets. In contrast to the scenarios in

controlled spherical head models with simulated reference data, the actual generator of the

P20/N20 activity and the conductivity profile of the volume conductor models are unknown.

Consequently, only relative differences of the calibration results between conditions can be

indicated.

In a first investigation, the effects of different processing steps of the reference data were

analyzed. When SNR-transformed EEG and MEG data were used for the calibration, mean

skull compacta conductivity values of 3.05 mS/m ± 1.08 mS/m were fitted. Compared to

the calibration results without SNR transformations, only small changes in optimized skull

conductivity could be observed. However, smaller RV values resulted from the minimiza-

tion, indicating that the EEG reference data could be better explained by the fitted dipole.

When different time samples and intervals of the P20/N20 component were used for the

EEG and MEG reference data, the results regarding the skull conductivity estimation and

the minimal resulting RV varied across subjects, while for most of them only minor differ-

ences could be observed. Overall, minimal RV differences of less than 0.4% on average

could be observed between the results using the time sample before the P20/N20 peak and

averages over two and three time samples compared to the results using the peak of the

component.

In a second comparison, the calibration results were compared using P20/N20 topogra-

phies of three different somatosensory experiments. As a result, both alternatives to EW

stimulation resulted in large differences in skull conductivity and higher RV values. The re-

sults of the calibration when PT stimulation was used were closer to the results of EW stim-

ulation with mean differences of 1.23 mS/m, while BT stimulation data resulted in mean

differences of 3.37 mS/m. On average, differences between minimal RV values were as high

as 7.4% (PT) and 13.6% (BT) compared to EW stimulation, indicating that EW stimulation

is better suited for the calibration pipeline due to its high SNR. However, while on average

1200 trials were measured for EW and PT stimulation, only 880 trials were recorded using

the BT experimental setup due to the larger SOA. It can be assumed that larger measure-
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ment times involving more stimuli would lead to a higher SNR of the P20/N20 component.

Additionally, the experimentally used SOA could be further optimized for a better tradeoff

between a large number of trials improving the SNR and a noise-free prestimulus inter-

val. While the results with PT stimulation, compared to BT stimulation, were closer to EW

stimulation in most cases in this realistic scenario, the opposite was the case in the sim-

ulated spherical head model scenarios as presented in Chapter 5. In those investigations,

the stimulation types were characterized by different dipole strengths, based on source re-

constructions in realistic models that were calibrated using the EW stimulation data sets in

Antonakakis et al. (2019). In realistic cases, the SNR of the averaged signal may be used as

an indication to determine how well a stimulation data set is suited for calibration purposes.

In the third section, different volume conductor models were calibrated with respect to

skull conductivity. Homogenization of the white matter tissue in the six-compartment head

models only had minor effects on the calibration results. This is most probably due to the

scaling of the anisotropic tensors that resulted in mean eigenvalues matching the isotropic

value using the effective medium approach (Rullmann et al., 2009; Tuch et al., 2001), and

the rather superficial location of the cortical source underlying the P20/N20 component

(Wolters et al., 2006). Regarding the homogenized three-compartment model, skull con-

ductivity estimations differed by on average 0.75 mS/m, thereby emphasizing the role of

the volume conductor model for the calibration pipeline. During the calibration, skull con-

ductivity is fitted for a specific volume conductor model and assumptions on other con-

ductivities are taken into account, thereby different volume conductor models can yield

different fitted values, even though the actual physical properties of the skull are identical.

In the following two investigations, similar findings were observed as in the controlled

spherical scenarios. This includes only minor differences between source modeling ap-

proaches (St. Venant and partial integration) which were observed in the calibration

pipeline. Additionally, the results obtained using the two variants of the calibration al-

gorithm were similar to the results of the standard algorithm with mean differences of

fitted skull conductivities of only −0.11 mS/m for both variants. The second variation that

minimizes the RV with respect to combined EEG/MEG data had overall flatter calibration

curves and larger variations regarding the minimal RV with mean differences compared to

Algorithm 1 of 2.14% ± 6.86%.

Overall, the results indicate inter-individual differences in fitted skull conductivity values

that motivate an individual approach to estimate this important parameter in EEG and com-

bined EEG/MEG source analysis as suggested in this thesis. The fitted skull conductivity

values differ from the results presented in Antonakakis et al. (2019), even though the same

underlying data sets were used. The reasons for this can probably be attributed to several
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methodological differences in both studies. One important difference is that in contrast to

(Antonakakis et al., 2019), we did not use gray matter anisotropy for the following reasons.

On the one hand, only low degrees of radial cortical anisotropy could be observed for gray

matter tissue (Heidemann et al., 2010; Shimony et al., 1999; Vorwerk et al., 2014) and on

the other hand, partial volume effects due to a limited resolution of the DTI measurements

can manipulate the conductivity characteristics of this compartment (Koo et al., 2009; Vor-

werk et al., 2014). Further differences include the independent preprocessing pipeline (e.g.,

filtering parameters, trial and channel rejection due to artifacts) using different toolboxes

and varying reference time points for the P20/N20 component. Additionally, while a skull

conductivity of 0.0016 S/m was used for the MEG single dipole deviation scans in Anton-

akakis et al. (2019), standard values of 0.01 S/m (three-compartment models) or 0.0042 S/m

(six-compartment models) were used here.

In this investigation, the calibration algorithm was applied to realistic data sets and the

effects of different parameters on the calibration were studied. In the future, larger group

studies are required to generalize the findings presented here and draw statistically valid

conclusions.
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diagnosis

The aim of individually calibrated head volume conductor models is to improve the accuracy

of EEG source reconstructions and allow a combined analysis of EEG/MEG data. Due to

their complementarity, is has been suggested that an improved spatial resolution can be

achieved when both modalities are combined in comparison to single modality analysis

results (Cohen and Cuffin, 1983; Fuchs et al., 1998; Sharon et al., 2007). This chapter

focuses on presurgical epilepsy diagnosis as a specific field of application of EEG/MEG

source analysis.

Epilepsy is a chronic disease which is characterized by recurring unprovoked seizures

caused by abnormal neuronal activity (Ghosh et al., 2021; Josephson et al., 2011). It is

estimated that around 50 million people worldwide suffer from epilepsy, rendering it one of

the most common neurological disorders (Ghosh et al., 2021; Lüders et al., 2006). Despite

improvements over the past decades in anti-epileptic drug (AED) therapy, sustained seizure

freedom cannot be achieved for approximately 20–30% of patients (Eadie, 2012; Ghosh

et al., 2021). For these drug-resistant or refractory epilepsy cases, surgery is a potential

alternative treatment option (Kwan and Brodie, 2000; Mitchell et al., 2012). If applicable,

the aim is to surgically remove the epileptogenic zone, i.e., the minimal amount of corti-

cal tissue that needs to be removed for the patient to become seizure-free (Lüders et al.,

2006). Several diagnostic techniques are typically employed in presurgical diagnostics to

help identify this theoretically defined area. One of them is the localization of the irrita-

tive zone, which is defined as the cortical tissue generating interictal spikes, i.e., abnormal

discharges between epileptic seizures (Lüders et al., 2006). The relationship between these

two regions is complex, but it has been suggested that the irritative zone is usually more

widespread than the epileptogenic zone (Hasegawa, 2016; Lüders et al., 2006). Due to their

high temporal resolution, the irritative zone can be localized using (non-invasive or inva-

sive) EEG and/or MEG, which can be complemented by EEG-triggered fMRI to estimate

the volume of this area (Hasegawa, 2016; Lüders et al., 2006).

The complementary nature of both EEG and MEG modalities has been emphasized in the
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context of presurgical epilepsy diagnosis by several investigations (Barkley and Baumgart-

ner, 2003; Ebersole and Ebersole, 2010). A study by Knake et al. (2006) found that interictal

epileptiform discharges could be detected by both modalities in approximately 58% of 67

patients investigated (3 were excluded due to MEG artifacts), while they were only visible

in EEG in 3% and only in MEG in 13% of the patients. Similarly, Iwasaki et al. (2005)

found that overall, interictal activity was detectable in approximately 72% of 43 epilepsy

patients in both modalities with a median of nearly 26% of total spikes visible in both EEG

and MEG modalities. Additionally, interictal spikes were only visible in a single modality

in about 2% (EEG) and 19% (MEG) of patients. In a simulation study using a realistically

shaped head model and realistic background noise, MEG was more sensitive for sources

less than 30° rotated away from the tangential plane, while for sources with more than 45°

deviation, EEG was more sensitive (Haueisen et al., 2012). The contribution of MEG to

surgery planning and long-term seizure freedom by providing non-redundant information

has also been highlighted in a retrospective analysis of 1000 patients in Rampp et al. (2019).

Due to these complementarities, a simultaneous acquisition of both modalities in combi-

nation with an individual or combined analysis has been suggested (Barkley and Baumgart-

ner, 2003; Ebersole and Ebersole, 2010; Haueisen et al., 2012). The benefits of combined

EEG/MEG analysis have been shown in the context of localizing interictal spikes in order to

define the irritative zone, for instance, in cases of weak signal such as the spike onset (Aydin

et al., 2017, 2015). When combining modalities, the importance of an accurate head mod-

eling and conductivity estimation has been emphasized for a high accuracy (Aydin et al.,

2015; Rampp and Stefan, 2007).

In the following, EEG/MEG recordings of interictal epileptiform activity of an epilepsy

patient are analyzed using a calibrated head volume conductor model.

7.1. Materials and Methods

The data set, which was retrospectively investigated, is from a female patient who suffered

from pharmaco-resistant epilepsy. With regard to her seizure semiology, she reported a

somatosensory aura of the left arm followed by tonic-clonic movements of the left arm and

hand. High-resolution MRI measurements indicated an FCD type IIb in the superior parietal

lobe. The lesion with an extend of approximately 1.2 cm3 and the surrounding tissue were

surgically removed in 2018. After the resection, the patient was seizure-free for one year,

without further follow-up examinations. The patient was between 27 and 34 years old at the

time of the measurements, which took place pre- and postoperative. She had given written
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informed consent before the measurements and all procedures have been approved by the

ethics committee of the University of Erlangen, Faculty of Medicine on 10.05.2011 (Ref.

No. 4453). This epilepsy case was also analyzed in the context of beamformer approaches

for the inverse problem in Neugebauer et al. (2022).

In a first block of combined EEG/MEG data acquisition, SEP/SEF measurements were

recorded using EW stimulation of the median nerve on both the right and the left wrist in a

random order with a varying SOA of 350–450 ms between the trials. These measurements

of approximately 13 min. yielded 973 (972) trials for right (left) wrist stimulation. Addition-

ally, (DTI-)MRI data were acquired for the generation of a realistic head volume conductor

model, for details on the experimental setup for the functional SEP/SEF and imaging data

acquisition, see Section 6.1.1. For the recording of interictal epileptiform activity, five mea-

surement blocks each with a duration of eight minutes were recorded in supine position and

the data was sampled at 2400 Hz and later downsampled to 300 Hz. In these measurements,

a board-certified epileptologist marked 248 epileptic spikes.

The analysis pipeline for the SEP/SEF data and the head modeling pipeline for the

creation of an individual anisotropic six-compartment head model were identical to the

methodology described in Section 6.1.2. Regarding the preprocessing of the interictal spike

recordings, the signals were filtered around the frequency spectrum of interest using a band-

pass filter of 1–100 Hz (Birot et al., 2014; Rampp et al., 2019; Stefan et al., 2003), in ad-

dition to a notch filter of 50 Hz and harmonics to account for power line noise. The data

were cut into epochs of [−500 ms, 300 ms] around the spike peak (t = 0 ms) and averaged.

The EEG data were re-referenced using the common average reference (CAR). A semi-

automatic artifact and noisy channel rejection was applied, overall 70 EEG electrodes and

271 MEG channels were used for further analysis. For each sensor, an SNR transformation

was applied based on the noise strength in the time interval [−500 ms,−150 ms] before the

spike peak. For the localization of the epileptic spikes, the middle of the rising flank was

chosen in order to account for possibly propagated activity at the spike peak (Aydin et al.,

2014; Lantz et al., 2003).

The calibration of the six-compartment head model was performed with the SNR-

transformed data using the St. Venant source model and the peak of the P20/N20 compo-

nent, using the same methodology as for the other realistic data sets as described in Section

6.1.2. In the calibrated six-compartment head model, the interictal activity of either single

modality EEG, MEG, or combined data was localized using equivalent current dipole scans

as described in Def. A.4. For this purpose, a source grid of 2 mm resolution in the gray

matter compartment was used.
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7.2. Results

For right wrist stimulation, the calibration procedure resulted in a fitted skull conductivity

of 0.0047 S/m, while left wrist stimulation resulted in a calibrated value of 0.0036 S/m.

However, due to the somatosensory aura and the vicinity of the somatosensory network to

the suspected epileptogenic zone in the superior parietal lobe, the following source recon-

structions are based on the fitted value for the right wrist stimulation.

For the reconstruction of interictal epileptiform activity, the time point t =−3.3 ms before

the spike peak was chosen, which is approximately located on the middle of the rising flank.

The butterfly plots of the averaged EEG and MEG data and topographies of this time point

a) b)

c) d)

Figure 7.1.: MEG (top) and EEG (bottom) recordings of interictal epileptiform activity. a)
Butterfly plots of SNR-transformed signals in the time interval [−150 ms, 200
ms] around the spike peak (0 ms), the time point −3.3 ms is marked in black,
and b) topographies of this time point, note the varying signal range for the
topography plots.
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are shown in Figure 7.1. Both EEG and MEG topographies show peaks over the right

parietal lobe. Absolute SNR values of 2.58±1.85 with a maximum strength of 9.35 can be

observed for MEG. The absolute SNR values of the EEG channels are overall higher with

6.19±4.04, the maximum strength is measured at electrode P4 with an SNR of −18.36.

Single dipole deviation scans were performed using EEG, MEG, or combined modalities.

The resulting source localizations are shown in Figure 7.2. The dipole locations and ori-

a) b) c)

Figure 7.2.: Single dipole deviation scan results for EEG (green), MEG (yellow) or com-
bined EEG/MEG (red) superimposed on the post-surgical T1-MRI (not in ra-
diological convention): a) saggital, b) coronal and c) axial planes through the
resected area, the slices used for the visualization are marked by gray lines.

entations are superimposed on slices of the post-operative T1-MRI which are chosen to cut

through the resected area. The planes used for the visualization are marked by gray lines,

the resected area is located around their intersections. The best fitting dipole according to

a single modality EEG dipole scan is located inside the resected area with a GOF of ap-

proximately 0.97. The MEG data can be best explained by a more medially located dipole

outside the resected area with a GOF of 0.9. Regarding combined EEG/MEG analysis, the

single dipole deviation scan results in a best fitting dipole location on the medial side of

the resected area as well, but closer to the resected area as the single modality MEG result.

The maximum GOF of this dipole is 0.89. In all three conditions, the reconstructed dipole

orientation is rather radially oriented.
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7.3. Discussion
In the investigated epilepsy case, the fitted skull conductivity was close to the standard

value of 0.0042 S/m and therefore only minor differences in the source reconstruction are

expected. The analysis of the right wrist stimulation was chosen to avoid interplay with the

epileptiform activity and due to its high SNR. In other patients, right or left hand stimulation

or a combination of both may be used for the calibration, depending on the region of interest

and an assumed independence from the epileptogenic network. In general, it has been

suggested that equivalent sources of early somatosensory evoked responses are generally

stronger in the left hemisphere, i.e., following right arm stimulation (Jung et al., 2003;

Rossini et al., 1996). However, the small proportion of left-handed subjects in both studies

does not allow any final conclusions with regard to the influence of handedness on this

observation. Possibly, the SNR of the P20/N20 peaks of right and left wrist stimulation

could be used as an indicator which data set should be used for the calibration.

The positive surgery outcome one year after the resection suggests that the epileptogenic

zone was inside the resected area, although further follow-up examinations might be nec-

essary to confirm this result. In this retrospective analysis, we used single dipole deviation

scans to localize interictal epileptiform activity recorded by EEG, MEG or combined modal-

ities in a calibrated six-compartment head model. The maximum GOF value and therefore

the best fitting dipole was located directly inside the resected volume for EEG. The MEG

and combined EEG/MEG dipole scans resulted in more medial source localizations out-

side the resected area, with the combined dipole scan result closer to the EEG result and

the resected area. The topography plots at the time point of the rising flank of the marked

interictal spikes indicate a rather radial orientation, which is also observed in the source re-

constructions. This is also reflected in the higher SNR of EEG compared to MEG data and

could explain the superiority of EEG in this case. However, combined EEG/MEG resulted

in a fitted dipole closer to the resected area than single modality MEG.

While only the dipole scan result is shown in Figure 7.2, the distribution of the GOF in

the source space shows overall high values inside and close to the resected area with only

small variations among the best fitting dipoles. More sophisticated source analysis methods

could be applied for more reliable reconstructions, e.g., using beamforming approaches as

done in Neugebauer et al. (2022).
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In this chapter, software-related aspects are addressed in more detail. The organization of

the code that implements the calibration procedure and the respective tools that were used

are outlined in Section 8.1. In Section 8.2, more details are provided about the software

toolbox DUNEuro which was used for the EEG and MEG forward solutions in this thesis.

8.1. Calibration procedure

The code implementing the calibration pipeline for the computations in this thesis was writ-

ten in MATLAB (The MathWorks Inc., Natick, Massachusetts). Some external tools were

used for specific tasks, most importantly DUNEuro (Schrader et al., 2021) for the computa-

tion of the EEG/MEG forward solutions and FieldTrip1 (Oostenveld et al., 2011) for most

of the preprocessing steps for the realistic SEP/SEF data sets. Figure 8.1 summarizes the

stages of the calibration procedure. In the following, each step is described in more detail.

The input for the calibration is provided as an INI file that defines data paths and parame-

ter settings as key-value pairs. This includes general information (e.g., the output path) and

details about the head model (e.g., standard conductivity values), the sensors (e.g., coil posi-

tions and orientations), the source modeling approach, the source grid and the optimization

procedure (e.g., the interval for the skull conductivity parameter). Additional configura-

tions for using realistic data include information on the SEP/SEF data set, preprocessing

parameters (e.g., filter bandwidth) and specifications for the dipole scan (e.g., the timing

of the P20/N20 component). For the spherical scenarios, the test dipole characteristics, de-

tails about the reference data computation (e.g., noise characteristics) and parallelization

settings to compute substeps (e.g., the dipole deviation scan) for several dipoles in parallel

are provided.

After the input data is processed, the EEG/MEG reference data is prepared. In case re-

alistic P20/N20 topographies of SEP/SEF data sets are used, the signals are preprocessed

using FieldTrip. In a first step, the function ft_definetrial is used to specify the data

1https://www.fieldtriptoolbox.org/
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Reference data

input file containing data paths and parameter settings

Input

trial definitions, epochs,
filtering, averaging,
artifact reduction

Preprocessing of SEP/SEP data

computation of (quasi-)
analytical EEG/MEG

solutions, additional noise

(Quasi-)analytical solutions

characteristics of mesh or analytical sphere model and sensor setup

Head model and sensors

MEG transfer matrix and leadfield computation for source grid,
single dipole deviation scan

MEG single dipole deviation scan

minimization of the residual variance of the EEG solution
for dipole with iteratively fitted moment vector

Optimization loop

intermediate results, visualizations, calibration result and log file

Output

Figure 8.1.: Calibration pipeline: Diagram outlines input, most important subsequent steps
and output of the calibration code.
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segments of interest. Secondly, a bandwidth filter and a notch filter are applied to re-

move power line noise using ft_preprocessing. The function ft_rejectvisual is then

used to visually identify and remove bad channels and trials from the data. Afterwards,

ft_timelockanalysis creates a time-locked average over all trials for each sensor. For

the computation of the GMFP, the function ft_globalmeanfield was applied. As SNR

transformations are currently not supported in FieldTrip, the noise estimation from the pres-

timulus interval and the transformation of the signals were computed using custom MAT-

LAB functions.

In case (quasi-)analytical reference solutions are used in combination with a spherical

head model, the analytical MEG solution is computed using the closed formula by Sarvas

(1987). The quasi-analytical EEG forward solutions are obtained using the series expan-

sion formulas following De Munck and Peters (1993) based on the implementations of the

SimBio library2. In some cases, noise with specified characteristics is computed and added

to these forward solutions.

Independently from the functional data, the anatomical data in form of the head model

and the registered sensors need to be processed. In principle, FieldTrip offers function-

ality regarding imaging data segmentation and meshing of head models as well as sensor

registration algorithms (Oostenveld et al., 2011; Vorwerk et al., 2018). However, the head

models were obtained from Antonakakis et al. (2019) and the sensors were already regis-

tered using Curry3. Therefore, the head model and sensor characteristics were transformed

to the standard formats used in FieldTrip. During this step the different conventions of MEG

sensor formats in Curry and FieldTrip are taken into account. The coil positions and mea-

surement orientations obtained from Curry are not directly compatible with the gradiometer

transformation matrix extracted from the functional data via FieldTrip, as the ordering of

(reference) coils differs, and the measurement direction of the outer coil layer for the axial

gradiometers is flipped.

Once these components are prepared, the MEG single dipole deviation scan of Step 1 of

Algorithm 1 is performed. For this purpose, the MEG leadfield for the indicated source grid

is computed using the transfer matrix approach. The computation of the transfer matrix can

be done in separate blocks if specified in the input file to reduce memory requirements. This

step is done using the MATLAB interface of the DUNEuro toolbox which was integrated in

FieldTrip, as presented in more detail in the following section. For the solution of the linear

system, an algebraic multigrid (AMG) preconditioned conjugate gradient (CG) solver is

used following Lew et al. (2009b) and Wolters et al. (2002). The Intel© Threading Building

2https://www.mrt.uni-jena.de/simbio/index.php?title=Main_Page
3https://compumedicsneuroscan.com/products/by-name/curry/
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Blocks (TBB) library4 allows multi-threading for the computation of the transfer matrix and

its multiplication with the right-hand side vector for the leadfield computation.

In the subsequent step, the residual variance of the EEG solution for the iteratively fitted

dipole moment is optimized. The MATLAB routine fminbnd is used which implements

Brent’s method. In each iteration, the direct EEG solution of the dipole location deter-

mined in the previous step is computed for the given skull conductivity parameter using the

DUNEuro software toolbox. The dipole orientation and magnitude are computed and the

residual variance for this iterative step is returned. Once the tolerance criterion is met, the

optimization is terminated.

In addition to the calibration results, several intermediate results are produced as output.

These include the MEG transfer matrix and leadfield, sensors and head model in FieldTrip

format and the dipole scan results. Additionally, several figures are produced in this pro-

cess. For instance, butterfly plots of the SEP/SEF data with marked time point or interval

of interest are plotted, and topography plots visualize the P20/N20 component using the

FieldTrip function ft_topoplotER. Moreover, the head model with the sensor setup and

the final reconstructed dipole as well as the mesh are visualized.

8.2. DUNEuro software toolbox

This section focuses on the DUNEuro toolbox which was used for the FEM computations

in this thesis to solve the EEG/MEG forward problems numerically. DUNEuro is a free

and open source C++ software tool offering sophisticated modern FEM discretizations for

these mathematical problems using a variety of different source models (Schrader et al.,

2021). DUNEuro builds upon the Distributed and Unified Numerics Environment (DUNE)

framework5, an open source C++ library that provides broad functionality related to the

numerical solution of partial differential equations (Bastian et al., 2008a,b; Sander, 2020).

The core functions are implemented in the module duneuro, while duneuro-matlab and

duneuro-py offer bindings to MATLAB and Python scripting languages, respectively. The

software is available under the open-source GPL and is managed in a GitLab repository6.

In the following, the focus lies on two developments of DUNEuro supported by this thesis.

One major advancement is the increase in accessibility and usability by providing a com-

prehensive documentation of the features and user interfaces of DUNEuro. Schrader et al.

(2021) contains detailed installation instructions and example scripts with in-depth expla-

4github.com/intel/tbb
5http://www.dune-project.org
6https://gitlab.dune-project.org/duneuro
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nations of the DUNEuro forward computation workflow, parameters and input/output inter-

faces. For this purpose, example data sets were made available that include discretizations

of a spherical four-compartment and two realistic six-compartment head models (Piastra

et al., 2020; Schrader et al., 2021), as visualized in Figure 8.2. Using these head models,

a) b) c)

Figure 8.2.: Example head models include a) a tetrahedral spherical four-compartment
model, and two realistic six-compartment models: b) a tetrahedral and c) an
unfitted model (cropped) for which the tissue boundaries are given as level sets.
The conductivity is shown on a logarithmic scale. For the unfitted model in
c), the values on the internal boundaries indicate the mean between the two
adjacent tissue conductivities. Modified from Schrader et al. (2021).

example scripts in Python (and MATLAB) for the computation of the EEG forward solution

are provided and explained using different settings. For instance, different FEM approaches

besides the standard Lagrangian (CG) method are applied, i.e., the DG and UDG-FEM.

Moreover, an overview of currently supported source models for the different FEM ap-

proaches is provided, some of which are used in the example scripts (i.e., the partial inte-

gration, St. Venant, Whitney and subtraction source models). The transfer matrix approach

and the direct solution approach are both employed and example solutions are visualized us-

ing ParaView (Ahrens et al., 2005). Two exemplary DUNEuro forward computations for the

tetrahedral spherical and realistic models are visualized in Figure 8.3a) and b), respectively.

Additionally, an example is provided of how the forward solutions of DUNEuro can be

embedded in a complete source analysis pipeline. For this application, the source underly-

ing the P20/N20 component of an SEP data set was localized in the primary somatosensory

cortex with a single dipole deviation scan using UDG-FEM forward solutions of DUNEuro.

The GOF computed in this procedure for the normally constrained source space is visual-

ized in Figure 8.3c). In the context of providing easier access to the DUNEuro toolbox,

the management of experimental features was improved by implementing dynamic options
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a) b) c)

Figure 8.3.: Example EEG forward computations using DUNEuro: EEG forward solutions
for an exemplary dipole using a) CG-FEM and the transfer matrix approach
in the spherical head model, b) DG-FEM using the direct solution approach
in the tetrahedral realistic model. c) Realistic application: UDG-FEM forward
solutions for the unfitted model were used for a single dipole deviation scan
to localize the P20/N20 component of an SEP data set. GOF is shown on an
inflated model of the source space. Modified from Schrader et al. (2021).

and runtime verifications to enable or disable experimental features. This way, the con-

tinuous integration of new features is facilitated from the developer perspective, while the

user can not unknowingly access features which are not thoroughly tested yet. Additionally,

a list of used features (e.g., source models and FEM approaches) is internally maintained

and the user is able to print a list of related publications for more details using the func-

tion print_citations. For further details related to the DUNEuro software toolbox, e.g.,

about the software structure, dependencies and parameter explanations we refer to Schrader

et al. (2021) and the documentation provided in GitLab7.

The second development related to DUNEuro addressed here is the integration into the

high-level toolbox FieldTrip (Oostenveld et al., 2011). In general, FEM approaches for solv-

ing the EEG/MEG forward problems can take into account complex realistic geometries and

anisotropic tissue conductivities and achieve high numerical accuracies (Lew et al., 2009b;

Vorwerk et al., 2012; Wolters et al., 2007c). However, the workload associated with the

generation of realistic FEM head models and limited accessibility to FEM software have

created practical obstacles to the broad usage of these approaches for neuroscientific appli-

cations (Vorwerk et al., 2018). One major advancement in reducing these barriers was the

integration of FEM solutions as implemented by the SimBio toolbox into FieldTrip (Vorw-

erk et al., 2018). More precisely, EEG forward solutions using the St. Venant source model

were made accessible by this high-level toolbox. This embedding allows an easy integration

7https://gitlab.dune-project.org/duneuro/duneuro/-/wikis/
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of FEM forward solutions into complete EEG and multimodal analysis pipelines, includ-

ing head model generation, data preprocessing, source analysis and visualization. In order

to profit from this functionality and automatize the calibration pipeline presented here, the

FEM approaches to solve the EEG and MEG forward problems using the DUNEuro tool-

box were made accessible in a similar way via the FieldTrip toolbox. The main access

to the C++ DUNEuro toolbox is provided by the duneuro-matlab module that compiles a

MATLAB executable (MEX) file and thereby enables the usage of DUNEuro functionality

from MATLAB. An overview of the main high-level FieldTrip functions related to the com-

putation of EEG/MEG forward solutions and the respective DUNEuro functions which are

called therein is presented in Table 8.1.

Table 8.1.: Main high-level FieldTrip functions related to solving the EEG/MEG forward
problems and the corresponding DUNEuro functions called therein

High-level FieldTrip interface DUNEuro function calls

ft_prepare_headmodel duneuro_meeg

volume conductor model construction driver creation

ft_prepare_vol_sens set_electrodes (EEG)
connection of head model and sensors set_coils_and_projections (MEG)

transfer of sensor information
compute_eeg_transfer_matrix (EEG)
compute_meg_transfer_matrix (MEG)

computation of transfer matrix

ft_prepare_leadfield apply_eeg_transfer (EEG)
computation of leadfield apply_meg_transfer (MEG)

leadfield computation with transfer matrix

After the preparation of the anatomical data, the forward computation pipeline typi-

cally starts with the high-level FieldTrip function ft_prepare_headmodel. This func-

tion takes information about the mesh and conductivities as input, typically created using

the FieldTrip function ft_prepare_mesh and sets up initial steps for the forward com-

putations. If 'duneuro' is selected in the input configuration as the forward method, the

driver as the main interface of the DUNEuro code is created internally. In this step, the

mesh information is passed to DUNEuro and the FEM stiffness matrix is assembled. Sub-

sequently, the FieldTrip function ft_prepare_vol_sens can be called, which combines

the head model created previously and the sensor information, typically obtained from the
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functional data header. In this step, the sensor information, i.e., the characteristics of the

electrodes (EEG) or magnetometers (MEG), are passed to DUNEuro using the functions

set_electrodes or set_coil_and_projections, respectively. Afterwards, the compu-

tationally expensive transfer matrix computation is performed using the DUNEuro func-

tion calls compute_eeg_transfer_matrix (EEG) or compute_meg_transfer_matrix

(MEG). Once the source grid is prepared, for instance, by using the FieldTrip routine

ft_prepare_sourcemodel, the leadfield can be computed. This is done by the FieldTrip

function ft_prepare_leadfield, which internally calls the respective DUNEuro func-

tions apply_eeg_transfer in case of EEG or apply_meg_transfer for MEG forward

computations. Here, the source model needs to be specified for the assembly of the right-

hand side vector, which is multiplied to the transfer matrix computed previously. Regarding

MEG, two postprocessing steps are performed at this stage. First, the analytical primary

magnetic field is computed using an external MATLAB script and added to the numerically

computed secondary magnetic field component. Second, the gradiometer transformation

matrix is multiplied to the leadfield matrix in order to compute the forward solutions on the

channel level. Once the forward EEG/MEG solutions are computed, they can be further

used in source analysis applications in combination with the preprocessed functional data.

In general, parameters for the DUNEuro functions can either be directly passed to the

high-level functions via configuration structures in accordance with the software design of

FieldTrip, or default values are internally set. For instance, the St. Venant model is chosen as

the default source modeling approach with standard parameters if not specified otherwise.

Currently, CG-FEM, in combination with the St. Venant, partial integration or subtraction

(EEG) source model, is integrated in the FieldTrip-DUNEuro pipeline. However, due to

the modular design of the MATLAB-interface of DUNEuro, an inclusion of other FEM or

source modeling approaches is easily possible by only changing a few parameter options in

the low-level FieldTrip functions in most cases.

For a summary of ongoing projects and future developments regarding the DUNEuro

software toolbox, see Section 9.3.
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In this thesis, we presented a novel algorithm to calibrate FEM head models with respect

to skull conductivity using EEG/MEG data of somatosensory experiments. This algorithm

was tested in a controlled spherical head model scenario and the impact of varying spe-

cific parameters such as noise levels, source orientations or numerical discretizations were

investigated. Subsequently, the algorithm was applied to calibrate realistic head models

with respect to skull conductivity, providing further insights, e.g., into the effect of SNR

transformations or the latency of the reference data. Additionally, an epilepsy data set was

analyzed using combined EEG/MEG analysis as an example of a clinical application of

the calibration procedure. A summary and interpretation of these results can be found in

the discussion sections within Chapters 5–7, respectively. We now discuss three aspects in

more detail and give an outlook regarding the development of the calibration algorithm and

its software. First, current limitations and possible improvements of the calibration pipeline

are presented in Section 9.1. Second, options to exploit the new generation of OPM sensors

for a calibration using MEG are discussed in section 9.2. Third, an outlook on software-

related aspects such as the integration of DUNEuro into high-level toolboxes is presented

in Section 9.3.

9.1. Applications and further development of the
calibration algorithm

In this section, several limitations and assumptions of the calibration procedure are dis-

cussed and possible improvements are presented.

In general, the calibration algorithm requires both EEG and MEG modalities to be ex-

perimentally available which may limit its applicability, as especially conventional MEG

systems are expensive in their acquisition and maintenance (Gross, 2019). However, MEG

is required for the stabilization of the calibration procedure by fixing the source location, as

attempts to calibrate head models using EEG alone (Lew et al., 2009a) have turned out to

be too unstable due to the strong correlation between source depth and skull conductivity
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(Vorwerk et al., 2019a).

Moreover, an important assumption in our calibration procedure is the concept of a sin-

gular point dipole underlying the P20/N20 component of somatosensory evoked responses.

Former studies indicate that the assumption of a single dipolar source in Brodmann area 3b

is justified (Allison et al., 1991; Antonakakis et al., 2020; Nakamura et al., 1998). However,

the contribution from thalamic pathways as well as the degree of simultaneous activity in

the primary and secondary somatosensory cortices are not resolved conclusively (Hari and

Forss, 1999; Haueisen et al., 2007; Rezaei et al., 2020). Additionally, the limitations of the

equivalent current dipole model have been emphasized by experimental evidence suggest-

ing extended cortical generators of sensory-evoked components in the range of up to several

cm2 (Lü and Williamson, 1991; Riera et al., 2012). Therefore, numerical approaches using

multipolar source models have been proposed in order to better describe extended sources

(Barkhau, 2021; Beltrachini, 2018; Jerbi et al., 2004; Vorwerk et al., 2019b).

For the determination of the source location, an unconstrained MEG single dipole devi-

ation scan is used in the calibration algorithm. Figure 9.1 shows the goodness of fit which

is minimized in this step for each source space node located in the gray matter. On the left,

in Figure 9.1a), this measure is depicted using the P20/N20 component of an SEF data set.

The maximal GOF for the reconstructed dipole (black) is 0.98, with similarly high values in

the neighboring areas. For comparison, Figure 9.1b) on the right shows the same measure

for EEG, indicating overall higher values and a more extended distribution. As the actual

source distribution is unknown in the realistic model, it is hard to determine the localization

error in this step. However, more sophisticated source localization approaches could be ap-

plied. For instance, regularization could be used to stabilize the MEG source localization

(Wolters et al., 1999) or more sophisticated source localization methods such as the multi-

ple signal classification (MUSIC) technique could be applied (Brette and Destexhe, 2012;

Mosher et al., 1992; Mosher and Leahy, 1999).

As the GOF is similarly high for dipole locations on adjacent gyral walls, the initial MEG

single dipole deviation scan is sensitive to possible error sources, such as the co-registration

process between the structural imaging data of the head and functional EEG/MEG data.

In the EEG/MEG measurements, the electrode positions as well as the location of three

anatomical landmarks are recorded on the head surface, while the characteristics of the

MEG sensors are recorded in a coordinate system based on these landmarks. Small head

movements in the MEG can not be entirely avoided even though the measurements were

already performed in supine position. The functional data was then registered to the head

models based on these three landmarks which were marked and recorded as well in the

MRI measurements. This co-registration process could be improved in several ways. One
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a) MEG b) EEG

Figure 9.1.: Goodness of fit (GOF) as defined in A.4 for each source space node as com-
puted for an a) MEG and b) EEG single dipole deviation scan using the
P20/N20 component of an SEF and SEP example data set. Standard conduc-
tivities as well as CG-FEM and the St. Venant source model were used for the
MEG and EEG leadfield computations. The source grid is visualized on top
of the white matter compartment. On the left, the dipole reconstructed in the
calibration procedure is depicted in black.

alternative could be to complement the landmark-based registration approach with a more

advanced surface-based fitting that uses a large sample of points on the scalp surface and

aligns them to the head model surface (Theiß et al., 2016; Whalen et al., 2008). Theiß et al.

(2016) compared these registration approaches and found average MEG source localization

differences of 8.76 mm with a maximum value of 14.99 mm across 5 subjects. In this study,

a realistic single shell model was used for the analysis. It is possible that a source space

restricted to the gray matter compartment in a more distinctive model might affect these

results. Due to registration errors, the optimal position might lie within a sulcus which is

not included in the source grid, which might lead to sources with a similarly high fit on

different sides of a gyrus or sulcus. Moreover, the new generation of OPM sensors, which

can be placed adjacent to the scalp surface using a helmet, could contribute to reduce the co-

registration errors in conventional cryogenic MEG systems due to small head movements

in the dewar during the measurement period (Boto et al., 2018, 2017; Tierney et al., 2019).

In addition, several other advanced methods have been suggested to reduce co-registration

errors, such as fast camera-based measurement techniques for the digitization of sensor

positions (Clausner et al., 2017) or 3D-printed subject-specific foam head-casts (Troebinger

et al., 2014).
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Overall, there are several factors that can influence the accuracy of the calibration result,

especially in realistic scenarios, and some of them were investigated in the previous chap-

ters. These influences can range from experimental parameters such as the size of the sensor

array, the number of trials or noise levels to individual factors, e.g., source orientation or

depth. Therefore, a useful tool to assess the reliability of the result could be to compute a

certainty measure or confidence interval for the calibration result based on some of these

factors and their influence on the skull conductivity estimation. Additionally, the quality

of EEG and MEG measurements could be assessed based on factors such as their respec-

tive SNR. This measure could be used to estimate the reliability of both modalities in order

to decide, e.g., if the tangential orientation component should be determined using EEG

(Algorithm 1) or MEG (Variant 1).

Moreover, other SEP/SEF data (e.g., tibialis nerve stimulation or stimuli applied both

at the left and right wrist) or auditory evoked responses could be used alternatively or in

conjunction for a further stabilization of the proposed calibration approach (Schrader et al.,

2020).

From a computational point of view, clinical applications and larger group studies require

an efficient application of the algorithm. For the St. Venant and partial integration source

models, the computationally expensive part is the assembly of the MEG transfer matrix.

Using the multi-threading implemented in DUNEuro for the computation and multiplica-

tion with the MEG transfer matrix, the calibration procedure can easily be performed on a

standard computer over night for a 1 mm resolution hexahedral mesh as done in Chapter

6. Possibly, modern approaches for the estimation of the conductivity-dependent leadfield

matrices using model order reduction or hierarchical tensor formats together with leadfield

interpolation might further reduce the computation times of the calibration pipeline (Beltra-

chini, 2017; Schrader et al., 2020; Werthmann et al., 2020).

Additionally, modern unfitted FEM approaches to solve the EEG/MEG forward prob-

lems, e.g., UDG or CutFEM (Nüßing, 2018; Nüßing et al., 2016), might be used for the

leadfield computations in the calibration algorithm. These methods have the advantage that

they do not require a geometry-conforming triangulation and might therefore reduce the

complexity of the head volume conductor model generation. Similarly, new source mod-

eling approaches, such as the localized subtraction approach (Lange, 2021; Nüßing, 2018),

might be accurate and efficient alternatives to the source modeling approaches investigated

in this thesis.

Future studies may also investigate the effects of applying the calibration algorithm with

regard to the computation of optimized TES montages (Guler et al., 2016; Huang et al.,

2017).
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9.2. MEG sensitivity to head tissue conductivities

In our calibration procedure, we exploit the insensitivity of MEG in combination with the

sensitivity of EEG to skull conductivity to fit this important parameter for an improved EEG

and combined EEG/MEG analysis. A question we address here is whether the sensitivity of

MEG to other head tissue conductivities in realistic head models could be used to estimate

these (e.g., gray matter) conductivity parameters.

For a spherical head geometry, the analytical MEG forward solution is independent of

tissue resistivities and radial sources do not produce a magnetic field outside the volume

conductor (Sarvas, 1987). When comparing point magnetometers that measure the mag-

netic field components in radial and tangential orientation for tangentially oriented sources,

however, two observations can be made (Piastra et al., 2018; Sarvas, 1987). First, for sen-

sors measuring the radial field component, the contribution from the secondary magnetic

field Bs is zero. Second, regarding the tangential field component, contributions from the

primary and secondary magnetic fields almost cancel each other out.

For a realistically shaped head model, MEG was shown to be sensitive to tissue con-

ductivities close to the source (Haueisen et al., 1997). This impact only exists through the

contribution of the secondary magnetic field Bs that involves the integration of σσσ∇u, as

the primary magnetic field Bp does not depend on the conductivity profile. Based on the

observation that the contribution of this secondary component is zero for radially measur-

ing magnetometers in a spherical model, a hypothesis would be that this effect is more

pronounced for (quasi-)tangentially measuring magnetometers.

Based on these considerations, it would be interesting to investigate if the predominantly

tangentially oriented P20/N20 source of somatosensory evoked responses would have an

impact on magnetometers measuring in (quasi-)tangential orientation that is large enough

for a possible calibration of tissue conductivities close to the source in realistic models.

Practically, this could be realized using the new generation of OPM sensors which could be

placed directly on the scalp and (simultaneously) measure (quasi-)tangential and (quasi-)

radial magnetic field components (Boto et al., 2018; Tierney et al., 2020). A sensitivity

analysis similar to Vorwerk et al. (2019a) could provide further insights into the effects of

varying tissue conductivities on the MEG forward solution, more precisely, on the mag-

netic field components evaluated close to the scalp in (quasi-)tangential and (quasi-)radial

direction.
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9.3. DUNEuro: Current projects and objectives

In this thesis, the DUNEuro toolbox was used to compute FEM solutions of the EEG/MEG

forward problems. As an open-source software toolbox with bindings to MATLAB and

Python, DUNEuro provides modern FEM discretizations and a variety of source modeling

approaches. An overview of currently implemented features as well as installation instruc-

tions, documented test data and scripts are provided in Schrader et al. (2021), see also

Section 8.2 for more details. In the following, we will address several ongoing projects and

goals with regard to the development of this toolbox.

One important aspect with respect to the long-term maintainability and reliability of the

code is related to a modern development workflow that includes a reliable testing infras-

tructure. The DUNEuro modules are hosted in a central GitLab repository1 that offers a

broad range of project management tools, including version control, code review and issue

tracking. Besides the modules duneuro, duneuro-py and duneuro-matlab, this includes

duneuro-tests which already provides system tests comparing the transfer matrix ap-

proach with the direct approach and EEG forward solutions with a reference solution for

different mesh geometries, FEM and source modeling approaches. As DUNEuro is em-

bedded in the DUNE framework, large parts of the code base on which DUNEuro relies,

e.g., related to solvers or function spaces, are already part of an automated testing pipeline.

However, further efforts are necessary to implement a complete continuous integration and

delivery pipeline for DUNEuro. This could also include the provision of precompiled bi-

naries for MATLAB and Python for different platforms which would also facilitate the

integration into external toolboxes. Currently, the software is developed and used on Linux

operating systems. As this limits its accessibility for many users, a more flexible usabil-

ity from other operating systems is aspired. Technical problems, mainly associated with

the Windows integration, have been partly solved in a manual compilation pipeline and are

planned to be automated in the future.

Several FEM and source modeling approaches are already supported by DUNEuro, and

users can easily switch between different methods by modifying parameters in the input

configurations (Schrader et al., 2021). There are ongoing efforts to integrate further fea-

tures, some of which already have a prototype implementation but need further testing and

documentation. For instance, the mathematical formulations for electric and magnetic brain

stimulation are closely related to the EEG and MEG forward problems based on Helmholtz

reciprocity (Nolte, 2003; Vallaghé et al., 2008; Wagner et al., 2016). A first prototype im-

plementation of transcranial electric stimulation is already integrated but requires further

1https://gitlab.dune-project.org/duneuro
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testing. Moreover, additional FEM variants, e.g., CutFEM (Erdbrügger, 2021; Nüßing,

2018) or MixedFEM (Stubbemann, 2021; Vorwerk, 2016), and source models such as vari-

ants of the St. Venant approach (Barkhau, 2021; Nüßing, 2018) have been developed but are

not fully supported yet.

In order to make the sophisticated numerical approaches in DUNEuro available for a

broad range of applications, an integration into high-level toolboxes with a large number of

users in the neuroscientific community is currently pursued. Popular non-commercial and

multi-platform software tools which offer a complete analysis pipeline including EEG/MEG

data preprocessing, source analysis and visualization are the MATLAB-based toolboxes

BrainStorm (Tadel et al., 2011) and FieldTrip (Oostenveld et al., 2011) and the Python-based

MNE-Python (Gramfort et al., 2013). While BrainStorm offers a graphical user interface,

FieldTrip and MNE-Python functions can be called from scripts provided by the user. An

integration into these tools will increase the usability of DUNEuro, allow an embedding

in already existing analysis pipelines and facilitate comparisons to other methods, such as

BEM approaches. In Section 8.2, details on the integration of EEG and MEG forward

solutions using FEM approaches implemented in DUNEuro into the FieldTrip toolbox are

provided. Additionally, parts of the functionality that DUNEuro offers have already been

integrated in Brainstorm (Medani et al., 2021). In the future, this integration could be further

improved and automated, e.g., by providing precompiled MATLAB bindings.

In addition to these ongoing efforts, a more detailed documentation would further facili-

tate the usability of the toolbox. Therefore, a declared aim is to extend the documentation

of parameters and test scripts and include additional tutorials that cover further aspects and

new features.
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The conductive profile of the head volume conductor model, in particular skull conductiv-

ity, has a large impact on EEG-based source reconstructions (Montes-Restrepo et al., 2014;

Vorwerk et al., 2019a) and on TES (Saturnino et al., 2019; Schmidt et al., 2015). Conduc-

tivities are most commonly assigned to homogenized tissue compartments based on liter-

ature values, although reported measured data is often inconsistent (McCann et al., 2019).

This approach disregards variations in conductivity across and within subjects, e.g., based

on age or pathology, which have been indicated for several tissue compartments including

skull conductivity (Antonakakis et al., 2020; Hoekema et al., 2003; McCann et al., 2019;

Wendel et al., 2010).

In this thesis, we presented a novel approach to calibrate head volume conductor models

with respect to skull conductivity, whose importance in comparison to other head tissue

conductivities has been emphasized in EEG and TES sensitivity analyses (Saturnino et al.,

2019; Schmidt et al., 2015; Vallaghé and Clerc, 2009; Vorwerk et al., 2019a).

The calibration procedure utilizes the complementary properties of the non-invasive

modalities of EEG and MEG, for which ethical approval is commonly obtained without

difficulties. It thereby relies on measurements performed under in vivo conditions and in

the relevant frequency range, as resistivity measurements of head tissues vary for different

frequencies (Akhtari et al., 2002; Stinstra and Peters, 1998; Tang et al., 2009). The cal-

ibration procedure requires a short block of SEP/SEF data acquisition which can then be

used to simultaneously reconstruct the generator of the early P20/N20 component and to fit

the skull conductivity parameter that best explains the data in combination with the volume

conductor model. Within the calibration algorithm, Brent’s method (Brent, 1973) is used

to find the best fitting skull conductivity in a continuous parameter space, which results in

more accurate results using a comparable number of iterations compared to similar discrete

manual approaches (Antonakakis et al., 2020, 2019; Aydin et al., 2014). By providing a

comprehensive mathematical description and by using an optimization method to iteratively

update the skull conductivity parameter, an automated calibration procedure is suggested

that can be easily integrated into existing analysis pipelines. For the numerical computation

of EEG/MEG forward solutions, the DUNEuro toolbox is used that offers a variety of
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source model discretizations for FEM approaches.

The accuracy of the calibration procedure was evaluated in spherical head volume con-

ductor models, for which (quasi-)analytical solutions of the EEG and MEG forward prob-

lems exist, using realistic noise levels and test dipole characteristics. Subsequently, realistic

head models of healthy participants were calibrated using different settings and somatosen-

sory experiments. The results indicate that for sources resembling the neuronal generator of

the early somatosensory evoked P20/N20 component, calibrated skull conductivity can be

estimated under realistic noise conditions. Additionally, source reconstruction errors result-

ing from incorrectly assigned scalp conductivity values could be mitigated when using the

fitted value as opposed to the standard skull conductivity. Regarding different somatosen-

sory experiments, electric stimulation of the median nerve at the wrist resulted in the best

SNR and therefore the most accurate results among the investigated experimental designs.

The individualized head models that are created by applying the calibration procedure

can be used for EEG or combined EEG/MEG source analysis, e.g., for the localization of

interictal activity in presurgical epilepsy diagnosis (Aydin et al., 2017), or for optimized

individual multi-channel TES setups (Guler et al., 2016; Huang et al., 2017; Wagner et al.,

2016). Thus, a feasible automatic calibration pipeline is presented in this thesis which

is a promising new method to replace commonly used standard models by individually

calibrated volume conductor models that could lead to more reliable EEG or combined

EEG/MEG source analysis results and improved targeting in individually optimized TES in

the future.
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A.1. Background to single dipole deviation scans
In the following, general background to solving the inverse EEG/MEG problem using a sin-

gle dipole deviation scan (SDDS) is provided. We start by introducing (truncated) singular

value decompositions based on (Golub and Kahan, 1965).

Definition A.1: Singular value decomposition (SVD). For any matrix A ∈ Rm×n there

exists a decomposition of the form

A = UΣΣΣVT ,

with orthogonal matrices U ∈ Rm×m and V ∈ Rn×n, and a rectangular diagonal matrix

ΣΣΣ ∈ Rm×n that contains its non-negative singular values.

A matrix can be approximated by a matrix of lower rank using a truncated SVD, as

described in the following (Golub and Kahan, 1965).

Definition A.2: Truncated singular value decomposition (TSVD). A matrix A ∈ Rm×n of

rank r ∈ N, r ≤ min{m,n} can be approximated using a truncated singular value decom-

position by a matrix Â ∈ Rm×n with rank p ∈ N, p < r defined as

Â = UΣ̂ΣΣVT ,

with U and V as defined in Def. A.1, and with Σ̂ΣΣ obtained from ΣΣΣ in Def. A.1 by replacing

all except the p highest singular values by 0.

For practical reasons related to the computation and storage, a (T)SVD can be expressed

in a more compact form in case m 6= n or not all singular values are non-zero.

Remark A.1: Compact representation. A (T)SVD related to the p-rank approximation of a

matrix A ∈ Rm×n with p≤ rank(A) can be expressed in a more compact form Â = ŨΣ̃ΣΣṼT ,

where Ũ ∈ Rm×p, Ṽ ∈ Rn×p and Σ̃ΣΣ ∈ Rp×p are obtained from the corresponding matrices

in Def. A.1 or Def. A.2 with removed columns and rows which are multiplied with 0.
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In the following, a generalization of the concept of inverse matrices for non-square or

singular matrices is introduced. The following definition of the Moore-Penrose or pseudo-

inverse of a matrix is based on Planitz (1979).

Definition A.3: Moore-Penrose inverse. The Moore-Penrose inverse [A]+ ∈Rn×m of a ma-

trix A ∈ Rm×n satisfies the following criteria

i) A[A]+A = A iii) (A[A]+)T = A[A]+

ii) [A]+A[A]+ = [A]+ iv) ([A]+A)T = [A]+A.

A generalized inverse that satisfies the conditions above exists for any matrix and is

unique (James, 1978). The Moore-Penrose inverse can be computed using the SVD of a

matrix, as defined in Def. A.1 (Golub and Kahan, 1965).

Remark A.2: Computation of the Moore-Penrose inverse. The pseudo-inverse of a matrix

A ∈ Rm×n with SVD A = UΣΣΣVT (see Def. A.1) can be computed by

[A]+ = V[ΣΣΣ]+UT ,

where [ΣΣΣ]+ is obtained from ΣΣΣ by replacing the non-zero singular values by their recipro-

cals.

The main value of the pseudo-inverse is related to solving linear least-squares problems,

as summarized in the following finding from Planitz (1979) which also contains the respec-

tive proof.

Corollary A.1. For A ∈ Rm×n and b ∈ Rm, the unique vector x ∈ Rn with the smallest

Euclidean norm that minimizes ‖Ax−b‖2 is given by x = [A]+b.

In the following, the concept of a single dipole deviation scan is introduced, which is a

simple inverse method assuming that measured activity originates from one dipolar source

(Brette and Destexhe, 2012; Fuchs et al., 2000; Hämäläinen et al., 1993; Sarvas, 1987).

Definition A.4: Singe dipole deviation scan (SDDS). Let m ∈ RN denote a given mea-

surement at N ∈ N sensors, S = {x1, . . . ,xn}, n ∈ N a set of possible source locations and

L(x) ∈ RN×3 the leadfield for a dipole at position x ∈ S in all Cartesian directions. Then,

the dipole which best explains the data is located at x̂ ∈ S with

x̂ = argmin
x∈S

‖L(x)q̂(x)−m‖2
2, where q̂(x) = argmin

q∈R3
‖L(x)q−m‖2 for any x ∈ S,
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with the optimal moment vector q̂(x) ∈ R3.

Remark A.3. Following Corollary A.1, the solution with minimal Euclidean norm of the

least-squares problem of finding the best fitting moment q̂ can be computed using the

pseudo-inverse of the leadfield matrix as q̂(x) = [L(x)]+m.

Thereby, an SDDS scans a grid of possible dipole locations and finds the location, which

in combination with the optimal dipole moment, best explains the measured data, i.e., the

goodness of fit measure defined in Section A.4 is maximized.

A.2. Background to the optimization method

In this section, basic concepts and findings related to the optimization method for the cali-

bration procedure are presented. As an important preliminary, we first introduce the concept

of unimodality following Brent (1973).

Definition A.5: Unimodal function. A function f : Ω→ R, Ω ⊂ R is called unimodal on

the interval [a,b] ⊂ Ω, if there exists a unique inside value µ ∈ [a,b] such that f is strictly

monotonic decreasing and strictly monotonic increasing either on the intervals [a,µ] and

(µ,b], respectively, or on [a,µ) and [µ,b].

This definition does not require the function to be continuous, but if it is, the following

statement can be made (Brent, 1973).

Corollary A.2. If a function f : Ω→R is unimodal and continuous on [a,b]⊂Ω⊂R, then

f reaches its minimum exactly once on [a,b], at the point µ of Def. A.5.

Due to rounding in floating point arithmetic computations, it is important to note that

the computed approximation of a unimodal function f is not unimodal, as it is constant for

small intervals of points with the same floating point approximation. In Brent (1973), the

theory related to unimodality is therefore generalized to δ -unimodality, considering only

function evaluations at points whose distance is at least δ .

In the following, we introduce two minimization methods for unimodal functions,

Golden-section search and inverse parabolic interpolation. We start by describing how

a function minimum can be bracketed. While the root of a function exists in an interval

defined by two points whose function evaluations have different signs, the existence of a

minimum requires to know function evaluations at three points as described in the following

definition based on Press et al. (2007).
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Definition A.6: Bracketing of minimum. The minimum of a function f : Ω→ R is brack-

eted by a triplet of points {a,x1,b} ⊂Ω with a < x1 < b, if f (x1)< min{ f (a), f (b)}.

A simple method for finding the minimum of a unimodal function is the Golden-section

search, which is described in the following based on Press et al. (2007) and Brent (1973).

It can be understood as the equivalent of the bisection method for finding the root of a

function, as it consists of successively narrowing the search interval by a constant factor.

Definition A.7: Golden-section search. Given an initial bracketing of the minimum of a

unimodal function by the triplet {a,x1,b}, let s denote the larger subinterval, i.e., [a,x1] or

[x1,b]. The next point is then constructed from the middle point x1 by moving a distance
1

φ 2 |s| into s. Hereby, φ := 1+
√

5
2 denotes the golden ratio. A new bracketing interval is then

constructed based on the minimal function evaluation of all previously considered points

and its neighbors, and this iteration is repeated until a tolerance criterion is met.

Remark A.4. By consistently applying Golden-section search iterations, the ratio between

the larger and smaller subinterval within the bracketing interval is equal to φ . Additionally,

the iteratively constructed new interval is 1/φ times the size of the previous one, thereby

assuring linear convergence (Press et al., 2007).

In the following, inverse parabolic interpolation is described as an additional minimiza-

tion method for unimodal functions following Press et al. (2007) and Brent (1973), which

can be understood as the counterpart of inverse linear interpolation for root-finding prob-

lems.

Definition A.8: Inverse parabolic interpolation. Given an initial bracketing of the mini-

mum of a unimodal function f by the triplet {a,x1,b}, a parabola is fitted through these

points and the abscissa of the minimum is computed as

x2 = b− 1
2
(b−a)2( f (b)− f (x1))− (b− x1)

2( f (b)− f (a))
(b−a)( f (b)− f (x1))− (b− x1)( f (b)− f (a))

. (A.1)

A new bracketing interval is then constructed based on the point with minimal function eval-

uation of all previously considered points and its neighbors, and this iteration is repeated

until a tolerance criterion is met.

Remark A.5. The term in (A.1) is not defined if the three points through which the parabola

is fitted are collinear, as the denominator is zero in that case. In general, convergence of

successive parabolic interpolation is not guaranteed. However, if the function is sufficiently

regular, convergence is superlinear with an order of approximately 1.325 (Brent, 1973).
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Based on these two minimization techniques, Brent’s method is described in the follow-

ing. The motivation of Brent’s method is to benefit from the convergence properties of

inverse parabolic fitting if the function allows, but rely on Golden-section search otherwise

to ensure reliability. One of its main advantages is that it does not require the computa-

tion of derivatives. We provide a short description in the following, a detailed algorithmic

description of Brent’s method can be found in Brent (1973) and Press et al. (2007).

Definition A.9: Brent’s method. Given a function f : Ω→ R, Ω ⊂ R which is unimodal

on an interval [a,b] ⊂ Ω, an initial inside point is determined using a Golden-section iter-

ation (Def. A.7). Subsequently, inverse parabolic interpolation (Def. A.8) is attempted. The

function is evaluated at the minimum of the parabola if this point lies inside the current

bracketing interval and if it entails a movement from the current point with the lowest func-

tion evaluation that is less than half of the movement of the second last step. Otherwise, the

function is evaluated at the point proposed by Golden-section search. In every iteration, the

method updates six not necessarily distinct points: the interval boundaries that contain the

minimum, values with the least and second least function evaluations, the former value of

the latter and the last evaluated point. This cycle is repeated until the tolerance criterion is

reached, i.e., the suggested value in the next iteration does not vary significantly any more

with respect to a predefined tolerance.

A.3. Spherical head models

The spherical head model used for validation purposes consists of four concentric spheres

which correspond to the tissue types of brain, CSF, skull and scalp. A least-squares fit was

used to fit a standard sphere model to the electrode positions of a subject who participated

in a somatosensory experiment, keeping the ratios between the respective radii unchanged.

The analytical characteristics, i.e., the standard conductivity values and the radii of both the

standard and the fitted sphere model are summarized in Table A.1.

In many test scenarios, dipoles at different eccentricities relative to the inner sphere sur-

face representing the brain tissue boundary are considered. For a given inner radius r1 ∈ R
and sphere center c ∈ R3 this measure is defined as

ECC(x) :=
‖x− c‖2

r1
,

for any dipole position x ∈ R3.
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Table A.1.: Analytical properties of four-layer spherical head model (Baumann et al., 1997;
Dannhauer et al., 2011; Haueisen et al., 1997; Ramon et al., 2004).

Tissue Standard model: Fitted model: Conductivity (S/m)
radii (mm) radii (mm)

Scalp 92 89.1 0.43
Skull 86 83.3 0.01
CSF 80 77.5 1.79
Brain 78 75.6 0.33

A.4. Common error measures

In the following, different error measures that are used within this thesis are defined. The

relative difference measure (RDM) and the magnitude error (MAG) are indicators to com-

pare two discrete EEG/MEG solutions unum, uref ∈ RN , where N denotes the number of

sensors (Brette and Destexhe, 2012; Meijs et al., 1989). A solution of interest unum is

compared to a reference solution uref, e.g., the (quasi-)analytical expressions in spherical

models or experimentally measured data. Both errors are often used in combination, as the

RDM measures the error related to the topography, while the MAG errors are related to the

magnitude of the solution. The RDM (%) and MAG (%) errors are given as

RDM(unum,uref) := 50 ·
∥∥∥∥ unum

‖unum‖2
− uref

‖uref‖2

∥∥∥∥
2

%,

MAG(unum,uref) := 100 ·
(
‖unum‖2

‖uref‖2
−1
)

%.

The RDM has a lower bound and optimum (unum = uref) of 0% and an upper bound of

100%, while the MAG error has an optimum of 0%, with a lower bound of −100% and no

upper limit.

In addition to these error measures, the residual variance (RV) or goodness of fit (GOF)

measures are frequently used, e.g., in the context of single dipole deviation scans (Brette

and Destexhe, 2012; Hämäläinen et al., 1993). The relative residual variance indicates the

degree to which the computed solution differs from the reference solution and is defined as

RV(unum,uref) :=
||unum−uref||22
||uref||22

with a minimal and optimal value of 0 indicating that both solutions are identical. Often,
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the residual variance is indicated in percentage as RV = 100 ·RV %. The goodness of fit

(GOF) is closely related to the RV and is computed as

GOF(unum,uref) := 1−RV(unum,uref).

It indicates the degree to which the reference data can be explained and is often indicated in

percentage as GOF = 100 ·GOF %, similar to the RV.

A.5. Software tools
Numerous open-source tools were essential for the completion of this work, the most im-

portant ones are listed here in alphabetical order:

DUNE: functionality related to solving partial differential equations using FEM approaches,

e.g., grid managers, linear solvers (Bastian et al., 2008a,b; Sander, 2020), see

https://www.dune-project.org

DUNEuro: EEG and MEG forward solutions using FEM approaches and the subtraction,

partial integration and St. Venant source models (Schrader et al., 2021), see

http://duneuro.org

FieldTrip: EEG and MEG data preprocessing and analysis, e.g., filtering, artifact rejection,

trial selection, averaging, GMFP computation, visualization of 2D topographies and gener-

ation of hexahedral spherical meshes (Oostenveld et al., 2011), see

https://www.fieldtriptoolbox.org/

Gmsh: creation of tetrahedral spherical meshes (Geuzaine and Remacle, 2009), see

https://gmsh.info

Inkscape: drawing of schematics and figures, see https://inkscape.org/

LATEX: typesetting this thesis, see https://www.latex-project.org

ParaView: visualization of meshes and related data, e.g., tissue conductivities or surface

potentials (Ahrens et al., 2005), see https://www.paraview.org

simbiosphere: computation of quasi-analytical EEG forward solutions in concentric sphere

models based on implementations of the SimBio library

(https://www.mrt.uni-jena.de/simbio/index.php?title=Main_Page), see

https://gitlab.dune-project.org/duneuro/simbiosphere
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List of Symbols

A Stiffness matrix

Â Magnetic vector potential

B Magnetic field

Bp Primary magnetic field

Bs Secondary magnetic field

D Electric displacement field

δ Dirac delta distribution

E Electric field

ε0 Permittivity of free space

εr Relative permittivity

H Magnetizing field

Hk(Ω) Sobolev space of L2(Ω) functions with derivatives up to order k ∈ N in L2(Ω)

Hk
∗(Ω) Sobolev space of functions in Hk(Ω) with zero mean

j Current density

jp Primary current density

js Secondary current density

L Leadfield matrix

µ0 Permeability of free space

µr Relative permeability

q Dipole moment

ρ Electric charge density

σσσ ,σ Electrical conductivity

T Transfer matrix

u Electrical potential

[·]+ Moore-Penrose pseudo-inverse of a matrix
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Acronyms

BT Braille-tactile stimulation

CAR Common average reference

CG Continuous Galerkin

CSF Cerebrospinal fluid

DAC Directly applied current

DG Discontinuous Galerkin

DTI Diffusion tensor imaging

EEG Electroencephalography

EIT Electrical impedance tomography

EW Electric-wrist stimulation

FCD Focal cortical dysplasia

FEM Finite element method

fMRI Functional magnetic resonance imaging

GMFP Global mean field power

GOF Goodness of fit

MAG Magnitude error

MEG Magnetoencephalography

MRI Magnetic resonance imaging

OPM Optically pumped magnetometer

PT Pneumato-tactile stimulation

RDM Relative difference measure

RV Residual variance

SDDS Single dipole deviation scan

SEF Somatosensory evoked field

SEP Somatosensory evoked potential

SNR Signal-to-noise ratio
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Acronyms

SOA Stimulus onset asynchrony

SQUID Superconducting quantum interference device

SVD Singular value decomposition

TES Transcranial electric stimulation

TSVD Truncated singular value decomposition

UDG Unfitted discontinuous Galerkin
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