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Estimating Target Orientations: A Comparison of
Beamformer Algorithms and their Performances in

Estimating Orientations of Neural Sources
Y. Buschermöhle1,2, T. Erdbrügger1, J.-O. Radecke3,4, A. Sprenger4,5,6, T. R. Schneider7, R. Lencer3,4,

J. Gross1,2,8, C. H. Wolters1,2

Abstract—The efficacy of transcranial electric stimulation
(TES) to modulate neuronal activity depends critically on the
spatial orientation of the targeted neuronal population. There-
fore, precise estimation of the target orientation is of utmost im-
portance. Different beamforming algorithms provide orientation
estimates, however, a systematic analysis of their performance is
still lacking.

For a fixed brain location, EEG and MEG data from sources
with randomized orientations are simulated. The orientation is
then estimated (1) with an EEG and (2) with a combined EEG-
MEG approach. Three commonly used beamformer algorithms
are evaluated: Unit-Gain (UG), Unit-Noise-Gain (UNG), Array-
Gain (AG).
Differences between the beamformers’ abilities to estimate the
correct orientation are shown. Performance depends on the ratio
of radial and tangential components of the orientation and on
noise levels. This study is a first step towards establishing best
practice for source orientation estimation, further investigation
is needed.

Index Terms—beamforming, orientation, electroencephalogra-
phy, magnetoencephalography, personalized TES

I. INTRODUCTION

In order to maximize the effects induced by transcranial
electric stimulation, determining the orientation of the targeted
neuronal population is crucial [3],[5]. Beamformer algorithms
provide the possibility to estimate these orientations from
recorded MEG and EEG data as directions with maximum
power [6]. However, a systematic evaluation of their perfor-
mance is still lacking, leaving researchers with a difficult
choice of which algorithm to apply. This study attempts to
fill this gap by testing the performance of three commonly
used beamformer algorithms. A simulation study is performed,
where known orientations are estimated. Performances of the
algorithms and different modalities (EEG and combined EEG
and MEG) are analyzed.
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II. METHODS

This study compares the Unit-Gain (UG), the Unit-Noise-
Gain (UNG) and the Array-Gain (AG) Beamformers, which
are described in [6] and implemented in fieldtrip [4]. All
three beamformers offer algorithms to optimize the source
orientation, which depend on the target leadfield, the covari-
ance matrix of the EEG- or MEG-data and regularization
parameters.
For one exemplary subject, a realistic stimulation target loca-
tion in area V5 was identified based on fMRI activity during an
occulomotor task. Leadfields were computed based on realistic
Finite Element headmodels as described in [1]. EEG and MEG
signals of a sinusoidal source at V5 (60 seconds, 600 Hz
sampling frequency) were simulated and Gaussian noise of
different levels was added before computing the covariance
matrices.
For EEG, the orientation in all three spatial directions is
estimated. For the combined EMEG estimations, it is assumed
that the EEG is superior in estimating the component, which is
radially oriented to the skull [2]. In contrast, MEG is assumed
to be more precise in estimating the tangential components.
To combine these estimates, the target leadfield of the MEG
is decomposed with a Singular Value Decomposition. The
singular vector corresponding to the lowest singular value
is interpreted as the radial direction, while the other two
vectors are considered the tangential components. The com-
bined estimate results from the superposition of the tangential
component as obtained by MEG and the radial component as
obtained by EEG. Regularization parameters were kept at 0.05
for both modalities.
In the first part of the study, datasets of 1000 randomly
generated orientations were simulated. The angle between the
real and the estimated orientation serves as a measure of
performance.
In the next part of the study, orientations were created sys-
tematically to sample the entire sphere of possible orienta-
tions. Using bootstrapping, each orientation was estimated
200 times, computing covariance matrices from random time
bins of the simulated data. The median angle was extracted
across the bootstrapped estimates for each of the simulated
orientations.
To determine, which estimation is closer to the original orien-
tation, EEG or combined EMEG, the difference between the
estimates of the two modalities is computed.
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Performance of Beamformers in V5
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Fig. 1: Angle between original and estimate for 1000 randomly
generated orientations for different algorithms, noise levels and
modalities.

III. RESULTS

We found that the tested beamformer algorithms lead to
different estimations of the same orientation. Therefore, the
range of deviation from the original orientation varies strongly.
As can be seen in Fig. 1, the performance of UNG and AG is
similar in MEG, but the UNG algorithm outperforms the other
two in EEG and EMEG in all noise levels. The performance
of the combined EMEG approach is slightly better than the
one of the pure EEG, which confirms our expectations.
Figure 2 displays the angle between estimated and original
orientation for fixed orientations. For the UG beamformer,
a directionality was found, meaning that its performance
depends strongly on the orientations to be estimated. For the
UNG and AG no such dependence was found. It is furthermore
visible, that for UNG and AG, most estimates are improved by
using the combined analysis. For the UG however, using the
combined EMEG analysis, strongly improves or deteriorates
the estimate depending on the orientation. Coherent with this
finding it was evaluated that from a certain noise level, the UG
maps all orientations to the singular vector corresponding to
the lowest singular value of the leadfield (not visualized here).
Similar results were found for different subjects, targets and
source waveforms.

IV. CONCLUSION

This study shows, that estimating target orientations from
beamformer algorithms should be done with great care. The
performance of the algorithm depends on the noise level of
the data and on the orientations of the underlying source.
Overall, the study implies, that UNG is the best beamformer to
estimate orientations. The second part of the study shows, that
for UNG and AG, most estimates are improved when using
the combined analysis. Although some estimates deteriorate,
combining EEG and MEG should still be considered. The
most obvious reason is the noise level, which has not been
varied independently between EEG and MEG. In real data,

 Median Deviation Angle MEG (tang.) in V5

- /4 0 /4
Elevation

0

 N
oi

se
 4

 A
zi

m
ut

h

UG

- /4 0 /4
Elevation

0

UNG

- /4 0 /4
Elevation

0

AG

0

45

90

An
gl

e 
[D

eg
]

 Median Deviation Angle EEG in V5

- /4 0 /4
Elevation

0

 N
oi

se
 4

 A
zi

m
ut

h

UG

- /4 0 /4
Elevation

0

UNG

- /4 0 /4
Elevation

0

AG

0

45

90

An
gl

e 
[D

eg
]

Performance for fixed orientations

M
EG

 (t
an
g.
)

EE
G

EM
EG

-E
EG

 Difference EMEG-EEG-Performance in V5

- /4 0 /4
Elevation

0

 N
oi

se
 4

 A
zi

m
ut

h

UG

- /4 0 /4
Elevation

0

UNG

- /4 0 /4
Elevation

0

AG

-90
-45
0
45
90

C
ha

ng
e 

[D
eg

]

Fig. 2: Beamformer performance for MEG (upper) and EEG
(middle) for fixed orientations at noise level 4. Difference
between EMEG- and EEG-estimation (lower). All orientations
are displayed in spherical coordinates.

the noise levels between EEG and MEG can differ strongly
and including MEG estimates will be especially advantageous,
when noise in MEG is less strong than in EEG. Further
limitations comprise the noise approximation with Gaussian
noise and the single target location, which holds only limited
information about the estimation of target orientations in other
brain regions.
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