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The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the
head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery
of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging
task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged as a unifying frame-
work for current density reconstruction (CDR) approaches comprising most established methods as well as
offering promising new methods. Our work examines the performance of fully-Bayesian inference methods
for HBM for source configurations consisting of few, focal sources when used with realistic, high-resolution
finite element (FE) head models. The main foci of interest are the correct depth localization, a well-known
source of systematic error of many CDR methods, and the separation of single sources in multiple-source sce-
narios. Both aspects are very important in the analysis of neurophysiological data and in clinical applications.
For these tasks, HBM provides a promising framework and is able to improve upon established CDRmethods such
asminimumnormestimation (MNE) or sLORETA inmany aspects. For challengingmultiple-source scenarioswhere
the establishedmethods show crucial errors, promising results are attained. Additionally, we introduceWasserstein
distances as performance measures for the validation of inverse methods in complex source scenarios.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Electroencephalography (EEG) andmagnetoencephalography (MEG)
recordings are used in a wide range of applications today and range
from clinical testing to cognitive science (Niedermeyer and Lopez da
Silva, 2004). One aim in using EEG and MEG is to reconstruct brain
activity by means of non-invasive measurements of the associated
bioelectromagnetic fields. This task involves challenging mathematical
problems. Simulating thefielddistributionon thehead surface for a given
current source in the brain is called the EEG/MEG forward problem (e.g.,
Hämäläinen et al., 1993; Sarvas, 1987). The reconstruction of the so-
called primary or impressed currents (a simplified source model, see de
Munck et al., 1988; Hämäläinen et al., 1993; Sarvas, 1987) is called the
EEG/MEG inverse problem. In its generic formulation, the inverse problem
lacks a unique solution, and infinitely many source configurations, often
with extremely different properties, can explain the measured fields. All
inversemethods rely on the use of a priori information on the source ac-
tivity to choose a particular solution from the set of likely solutions. This
a priori information can reflect computational constraints as well as
neurological considerations. Nevertheless, because the problem is
heavily under-determined, the results from different methods for the
etism and Biosignalanalysis,
ster, Germany.
ka).
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same measurement data can still differ considerably. Consequently,
most methods work well for certain source configurations while failing
to recover other configurations. Therefore, a careful examination of the
performance of the methods for different source scenarios is mandato-
ry. This article focuses on the results of estimation methods based on a
certain class of inference strategies called hierarchical Bayesian modeling
(HBM). While we investigate source scenarios including multiple focal
primary currents that occur, e.g., in the analysis of evoked potentials
(Scherg and Buchner, 1993; Parkkonen et al., 2009) and specific scenarios
encountered in presurgical epilepsy diagnosis (Rampp and Stefan, 2007;
Rullmann et al., 2009; Stefan et al., 2003), the framework easily extends
to recover spatially more distributed sources encountered, e.g., in cogni-
tive neuroscience (Hämäläinen et al., 1993) or in other presurgical epi-
lepsy diagnosis scenarios (Ebersole and Ebersole, 2010; Rampp and
Stefan, 2007; Stefan et al., 2003; Tao et al., 2005). This work comprises
the results from a diploma thesis, Lucka (2011). In the following sections,
we will outline the development of HBM for EEG/MEG current density
reconstruction (CDR) and motivate our interest in scenarios where the
source activity results from networks of few and focal sources.

Inverse methods for EEG/MEG

From a mathematical point of view, the EEG/MEG inverse problem is
severely-ill-posed (Engl et al., 1996; Hämäläinen et al., 1993; Lucka,
2011). As a practical consequence, a variety of different approaches
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exist that aim to reconstruct solutions that reflect certain a priori informa-
tion. First, a classification can be made in focal current modeling, spatial
scanning/beamforming and distributed current modeling. Focal current
modeling attempts to reconstruct the real current using a small number
of equivalent current dipoles with arbitrary locations and orientations
(Jun et al., 2008; Mosher et al., 1992; Scherg and Cramon, 1985). When
the number of sources is unknown or the current distribution might
have a larger spatial extent, focal current models are not suitable. Spatial
scanning methods/beamforming repeatedly optimize the estimate at a
single location or a small region while suppressing crosstalk from other
areas (Dalal et al., 2008; Sekihara and Nagarajan, 2008). In distributed
currentmodels, the current is discretized using a large number of focal el-
ementary sources with fixed locations and orientations, which is called
current density reconstruction (CDR). Then, a priori information on the
global properties of the solution is incorporated (e.g.,minimum norm esti-
mation, Hämäläinen and Ilmoniemi, 1994).

Concerning the CDR methods, two main concepts dominate the for-
mulation of how the a priori information is introduced: Regularization
(see Sarvas, 1987 for the introduction to EEG/MEG and Engl et al., 1996
for a general reference) and Bayesian inference (see Hämäläinen et al.,
1987 for the introduction to EEG/MEG and Kaipio and Somersalo, 2005
for a general reference).

The focus of our work is on the most recent branch of Bayesian
inference for CDR called hierarchical Bayesian modeling, for which
we will examine fully-Bayesian inference methods (in contrast to,
e.g., variational or semi-Bayesian inference methods, see Wipf and
Nagarajan, 2009).

Brain networks involving deep-lying sources

The location of the source space nodes is a crucial choice for CDRs.
First, high-resolution structural MRI scans have to be taken of the cor-
tex where the neural generators of the EEG/MEG signal are located
(Nunez and Srinivasan, 2005). Due to the deep but thin sulci and
strong folding of the cortex, sophisticated segmentation algorithms
are required to process these data. Instead, often, only a flattened
and smoothed representation of the cortical surface is used, which
does not include the deep-lying gray matter areas or areas encased
by white matter, e.g., the insular, the cingulate cortex, the hippo-
campus or the thalamus. Working with such surface representations
is reasonable and advantageous for a wide range of experimental de-
signs. Nevertheless, active brain networks often involve deep-lying
sources as well (Dalal et al., 2010; Parkkonen et al., 2009; Sander et al.,
2010; Santiuste et al., 2008; Scherg and Buchner, 1993). One example is
the different components active in the response to somatosensory stimuli
(Scherg and Buchner, 1993). Another example is given by the potentials
and fields generated by the auditory pathway (Parkkonen et al.,
2009; Sander et al., 2010). The analysis of both networks is a com-
mon clinical application of EEG/MEG. To recover such networks, a
complete representation of the gray matter compartment by source
space nodes is mandatory.

By accounting for the complete graymatter,manymoredeep-lying lo-
cations form the source space and a phenomenon called depth bias is of
fundamental importance: Many inverse methods fail to reconstruct
deep-lying sources at the correct depth; rather, the sources are recon-
structed too close to the skull. This is a well-known systematic error
(e.g., Ahlfors et al., 1992; Gencer and Williamson, 1998; Wang et al.,
1992) and was subject of many studies (e.g., Fuchs et al., 1999; Grave
de Peralta et al., 2009; Greenblatt et al., 2005; Ioannides et al., 1990; Lin
et al., 2006; Pascual-Marqui, 1999, 2002; Sekihara et al., 2005; Wagner
et al., 2004). The depth bias can be a crucial error, e.g., in the pre-
surgical functional mapping of the eloquent cortex (Schiffbauer et al.,
2002). Another effect related to the depth bias is the masking of deep-
lying sources by superficial sources. If the true source configuration
consists of multiple and spatially separated sources with different
depths, many inverse methods only recover the sources close to the
skull (see, e.g., Wagner et al., 2004). This effect complicates the analysis
of networks of interacting brain areas which is a recent topic of interest
in brain imaging (Kiebel et al., 2009). Furthermore, several clinical appli-
cations require a correct detection and separation of multiple sources,
e.g., the reconstruction of the auditory pathway (Parkkonen et al.,
2009) or specific cases of epileptiform discharges (Hufnagel et al.,
1994; Janszky et al., 2000).

Contributions and structure of this study

This article examines, in a systematic way, fully-Bayesian infer-
ence for HBM for a single-time-point analysis of the source scenarios
described above (the reasons for not using temporal information will
be explained later). In Bayesian formulation of the static inverse
problem section, we will outline CDR approaches from the perspec-
tive of Bayesian inference. This will then lead us to the hierarchical
Bayesian modeling in Hierarchical modeling in EEG/MEG section, in
which we will describe the fully-Bayesian inference methods (which
we will call CM and MAP1) and propose improved full-MAP estima-
tion methods in Inference for Hierarchical models and Algorithms
for fully-Bayesian inversion sections, which we will call MAP2 and
MAP3. In Validation means and inverse crimes section, a new per-
formance measure called the earth mover's distance (EMD) will be intro-
duced, which is required for an appropriate validation of the inverse
methods in complex source scenarios. Results section describes the set-
ting and results of the simulation studies. For the forward computation,
we will use a realistic, high-resolution finite element (FE) head model.
In Discussion section, the results, limitations and future directions of
our research are discussed, and Conclusions section contains the final
conclusions.

Methods

Bayesian formulation of the static inverse problem

We will briefly introduce the Bayesian formulation of the static
inverse problem, revisit some commonly known inversemethods and in-
troduce the hierarchical model that we will study here. More details on
the concepts of Bayesian modeling can be found in Kaipio and
Somersalo (2005) and Lucka (2011), Chapter 2. Subsequently, all
random variables are denoted by upper case letters (e.g., X), their corre-
sponding concrete realizations by lower case letters (e.g., X=x) and
their probability density functions by p(x). Assume that we have k loca-
tions ri, i=1,…,k within the brain and place d focal elementary sources
with different orientations at each of these locations. A current distribu-
tion can be described as a linear combination of the elementary sources
and the corresponding coefficients s∈Rn (where n:=d⋅k) will become
the main parameters of interest in the following (also called sources).
The measurements b∈Rm at them sensors caused by s can be calculated
via:

b ¼ L s; ð1Þ

where L∈Rm�n denotes the lead-field or gainmatrix (see Hämäläinen and
Ilmoniemi, 1984; Hämäläinen et al., 1993; Sarvas, 1987). For calculating
the entries of the lead-field matrix, one needs to solve the forward prob-
lem, which includes head and source modeling and an appropriate (nu-
merical) solution scheme (see Head model and source space section).
The ill-posed nature of the inverse problem is reflected in L. Because
m≪n, Eq. (1) is under-determined, and furthermore, L is ill-conditioned.

Central to the Bayesian approach is to account for every uncer-
tainty concerning the value of a variable explicitly. The variable is
modeled as a random variable, but this randomness is not a property
of the objects itself; rather, it reflects our lack of information about
its concrete value. In our situation, we first model the (additive) mea-
surement noise using a Gaussian random variable ε∼N(0,Σε). For
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simplicity, we assume Σε=σ2Im here, where σ>0 is the standard
deviation of the single-channel Gaussian noise and Im is the m-dim
identity matrix. This leads to the following likelihood model:

B ¼ LSþ ε ð2Þ

Note that we changed b and s to the random variables B and S,
respectively, as well. The conditional probability density of B given S
is determined by Eq. (2) and is, thus, called the likelihood density:

pliðb sj Þ ¼ 1
2πσ2

� �m
2

exp − 1
2 σ2 ‖b−L s‖22

� �
ð3Þ

Due to the ill-posed nature of Eq. (1), inference about S given B is
not feasible by Eq. (3). We need to encode a priori information about
S in its density ppr(s) which is hence called the prior. Then, the model
can be inverted via Bayes' rule:

ppost sjbð Þ ¼ pli bjsð Þppr sð Þ
p bð Þ : ð4Þ

The conditional density of S given B is called the posterior. In
Bayesian inference, this density is the complete solution to the in-
verse problem. The term p(b) is called the model evidence and has
its own importance, as it can be used to perform model averaging or
model selection. For interesting applications in EEG/MEG see Sato et
al. (2004), Trujillo-Barreto et al. (2004), and Henson et al. (2009b,a,
2010). For our investigations, p(b) is just a normalizing constant
that is not important for the inference strategies presented in this
study. A common way of exploiting the information contained in
the posterior is to infer a point estimate for the value of S. There are
two popular choices. The first method, called the maximum a poster-
iori estimate (MAP), is the highest mode of the posterior, whereas
the second method, called the conditional mean estimate (CM), is
the mean or expected value of the posterior:

ŝMAP :¼ argmax
s∈Rn

ppost s bj Þð ð5Þ

ŝCM :¼ E½s bj � ¼ ∫s ppost s bj Þds:ð ð6Þ

Practically, computing the MAP estimate is a high-dimensional
optimization problem, whereas the CM estimate is a high-dimensional
integration problem.

To revisit some commonly known inverse methods, we consider
Gibbs distributions as priors:

ppr sð Þ∝ exp − λ
2σ2 P sð Þ

� �
ð7Þ

Here, P sð Þ is an energy functional that penalizes unwanted
features of s, and λ>0 is a scaling parameter that is called the regular-
ization parameter. Now, after suppressing terms not dependent on s,
the MAP estimate is given by

ŝMAP :¼ argmax
s∈Rn

exp − 1
2σ2 ‖b−Ls‖22 þ

λ
2σ2 P sð Þ

� �� �
ð8Þ

¼ argmin
s∈Rn

‖b−Ls‖22 þ λP sð Þ
n o

ð9Þ

This is a Tikhonov-type regularization of Eq. (1) (Engl et al., 1996). For
EEG/MEG, the choice of P sð Þ ¼ jjsjj2

2
, which corresponds to a white noise

Gaussian prior, yields theminimumnorm estimate (MNE, Hämäläinen and
Ilmoniemi, 1994). P sð Þ ¼ jjΣ−1=2

s sjj22 corresponds to a general Gaussian
prior with covariance Σs and yields theweighted minimum norm estimate
(WMNE, Dale and Sereno, 1993). Multiple depth-weightingmatrices have
been introduced and chosen to reduce the depth bias of the MNE (Fuchs
et al., 1999; Ioannides et al., 1990). We will examine l2 weighting (Fuchs
et al., 1999) and regularized l∞ weighting (Fuchs et al., 1999):

Σl2
s ¼ diag

i¼1;…;n
‖L ⋅;ið Þ‖

2
2

� �−1
� �

;

Σ
l∞;reg
s ¼ diag

i¼1;…;n

χ2
i

χ2
i þ β2

� 	2
 !

;

withχi ¼ ‖L ⋅;ið Þ‖∞; β ¼ max χð Þ·mσ2

‖b‖22
:

The well known sLORETA method (Pascual-Marqui, 2002) relies
on the same prior model as the MNE: The MAP estimate (which is
the MNE) is standardized by the posterior covariance, which yields
a pseudo statistic of F-type for the source amplitude at a source
space node (Pascual-Marqui, 2002). More methods relying on the
formulation of Eq. (9) are listed on page 9 in Lucka (2011).

Hierarchical modeling in EEG/MEG

Brain activity is a complex process comprising many different spatial
patterns. No fixed prior can model all of these phenomena without be-
coming uninformative, i.e., not able to deliver the required additional a
priori information. This problem can be solved by introducing an adap-
tive, data-driven element into the estimation process. The idea of hierar-
chical Bayesian models (HBM) is to let the same data determine the
appropriate model for the inversion of these data. By extending the
model by anew level of inference, theprior on S is notfixedbut is random
and is determined by the values of additional parameters γ∈Rh, called
hyperparameters. These parameters follow an a priori assumed distribu-
tion (the hyperprior) and are subject to estimation schemes as well. As
this whole construction follows a top-down scheme, it is called hierarchi-
calmodeling:

p s;γð Þ ¼ ppr sjγð Þ phpr γð Þ ð10Þ

⇒ppr sð Þ ¼ ∫ppr sjγð Þphpr γð Þdγ ð11Þ

⇒ppost s;γjbð Þ∝pli bjsð Þppr sjγð Þphpr γð Þ: ð12Þ

We refer toMacKay (2003) andGelman et al. (2003) for a general ref-
erence on hierarchical Bayesianmodeling. The hierarchicalmodel used in
most methods for EEG/MEG relies on a special construction of the prior,
and this construction is called a Gaussian scale mixture, or a conditionally
Gaussian hypermodel (Calvetti et al., 2009; Wipf and Nagarajan, 2009).
ppr(s|γ) is a Gaussian density with amean of zero and a covariance deter-
mined by γ:

S γ∼N 0;Σs γð Þð Þj ð13Þ

The total source covariance Σs is a weighted sum of the covariance
components Ci belonging to a predefined set C⊂Rn�n of symmetric, posi-
tive, semi-definite matrices. The weighting between them is controlled
by a (positive) hyperparameter γ∈Rh:

Σs γð Þ ¼
Xh
i¼1

γiCi where Ci∈C

⇒pprðs γj Þ ¼ 2πð Þ−n=2 Σsj j−1=2 exp −1
2

sΣ−1
s st

� �� �
:

ð14Þ

The first important choice is in choosing an appropriate set C. A
variety of approaches that encode different a priori information on
the spatial source covariance pattern have been proposed, e.g., spatial
smoothness components (Mattout et al., 2006; Phillips et al., 2005) or
multiple sparse priors (Friston et al., 2008). A recent overview is given
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in Lucka (2011), page 19. In this study, we will rely on single-location
priors (Id denotes the identity matrix in d dimensions):

C ¼ eie
t
i⊗Id; i ¼ 1;…; k

n o
;

Therefore the number of hyperparameters equals the number of
source locations: h=k. For instance, if d=3, Ci is a matrix where
only the entries (i, i), (k+ i, k+ i) and (2 k+ i, 2 k+ i) have the
value 1 whereas all others are 0. As compared with the minimum
norm estimate (which corresponds to C ¼ Inf g), each source location
is given an individual variance in this approach.

The second crucial point is the choice of the hyperprior. For a gen-
eral discussion, see Lucka (2011), page 20. For our studies, we only
consider hyperpriors that factorize over the single hyperparameters
γi. Furthermore, because we do not want to bias our model to certain
source locations a priori, all single hyperparameters should be identi-
cally distributed. Finally, because we are searching for focal solutions,
hyperpriors leading to sparse estimates of γ will be used, i.e., hyper-
priors forcing most hyperparameters to be (nearly) zero, while few
hyperparameters are allowed to have a large amplitude. Our particu-
lar choice for this purpose is the inverse-gamma distribution:

phpr γð Þ ¼ ∏
k

i¼1
pihpr γið Þ ¼ ∏

k

i¼1

βα

Γ αð Þγ
−α−1
i exp − β

γi

� �
: ð15Þ

The parameters α>0 and β>0 determine the shape and the scale
of the distribution, whereas Γ(x) denotes the Gamma function.

This choice of prior and hyperprior was also used in Sato et al.
(2004), Nummenmaa et al. (2007a,b), Calvetti et al. (2009) and
Wipf and Nagarajan (2009). Due to the diagonal shape of Σs, the full
posterior for this model becomes (cf., Eqs. (3), (14) and (15)):

ppost s;γjbð Þ∝ exp

 
−1

2

 
1
σ2 ‖b−Ls‖22 þ

Xk
i¼1

‖si�‖
2

γi
þ 2
Xk
i¼1

β
γi

� �

þ 2 α þ 5
2

� �Xk
i¼1

lnγi

!!
; ð16Þ

where we abbreviated the sum of the l2-norms of the d sources at
location i with ‖si *‖

2. For a more detailed derivation of this formula,
we refer to Lucka (2011), page 41. The analytical advantage of such a
model over other possible approaches is that the expression within
the brackets in Eq. (16) is quadratic with respect to s and the γi's
are mutually independent. This advantage simplifies and speeds up
many practical computations with this model.

Inference for hierarchical models

Note that the posterior (Eq. (16)) depends on two types of parame-
ters: the parameters of main interest, s, and the hyperparameters, γ.
This situation offers more methods of inference than the simple CMand
MAP estimation scheme introduced in Bayesian formulation of the
static inverse problem section. Five main approaches are established:

• Full-MAP: Maximize ppost(s,γ|b) w.r.t. s and γ;
• Full-CM: Compute the expectation of ppost(s,γ|b) w.r.t. s and γ;
• S-MAP: Compute the expectation of ppost(s,γ|b) w.r.t. γ, and maxi-
mize over s (Type I approach);

• γ-MAP: Compute the expectation of ppost(s,γ|b) w.r.t. s, and maxi-
mize over γ, first; then, useppost s; γ̂ bð Þ bj Þð to infer s (Type II approach,
Hyperparameter MAP, Empirical Bayes);

• VB: Assume an approximative factorization of ppost s;γjbð Þ≈p̂post s bj Þð
p̂post γ bj Þð ; approximate both with distributions that are analytically
tractable (VB=Variational Bayes);

In the traditional Bayesian framework, all parameter types should
be treated equally, which is why the first two schemes are also
referred to as fully-Bayesianmethods. However, in practical applications,
hyperparameters are introduced with the explicit intention that they
have a different meaning than the normal parameters; hence, a different
treatment can be justified from the methodical point of view. The corre-
sponding schemes, S-MAP and γ-MAP, are usually classified as semi-
Bayesian methods (see Wipf and Nagarajan, 2009 for a comprehensive
discussion). Variational Bayesian techniques (often referred to as approx-
imate-Bayesianmethods) actually rely on more advanced considerations
than a simple approximation, but this cannot be pursued in detail here
(Friston et al., 2007; Nummenmaa et al., 2007a; Wipf and Nagarajan,
2009). The focus of our work lies on the fully-Bayesian methods.

Algorithms for fully-Bayesian inversion

None of the estimatesmentioned in the last section can be computed
explicitly. In this section, we outline the ideas behind the algorithms we
utilize for numerically computing the full-MAP and full-CM estimates.
Details, especially concerning a fast and stable implementation, are
presented in the appendix.

CM estimation
Due to the high dimension of the source space, the integration (cf.,

Bayesian formulation of the static inverse problem) is intractable by
means of traditional quadratures. Integration usingMonte Carlomethods
can circumvent these difficulties. A sequence of points (si,γi), i=1,…,M is
constructed that is distributed like the posterior. Optimally, these points
should be drawn independently because in this case, the law of large
numbers would guarantee that

1
M

XM
i¼1

si;γið Þ →
M→∞

s;γð ÞCM ¼ ∫
Rn�Rk

s;γð Þppost s;γ bj Þds dγð

almost surely and in l1 with rateO(M−1/2), i.e., the empirical mean of the
sequence converges to the expected value of the posterior (Klenke, 2008).
A difficulty in our setting is that the posterior is not given in a form that
allows for drawing independent samples because the posterior is only
known up to a normalizing constant (the model evidence) and does not
belong to a class of distributions for which such sampling schemes are
known.However, by to the strong ergodic theorem, the above convergence
and its rate still hold if the sequence is dependent but originates from an
ergodic Markov chain that has ppost(s,γ|b) as its equilibrium distribution
(Klenke, 2008). Techniques to construct such chains are called Markov
chain Monte Carlo (MCMC) methods. For our application, we rely on a
MCMC scheme that is called blocked Gibbs sampling (Gelman et al.,
2003; MacKay, 2003) with the concrete form proposed in Nummenmaa
et al. (2007a); Calvetti et al. (2009). This scheme exploits the special
structure of Eq. (16) by drawing from the posterior either conditioned
on s or on γ at a time:

Algorithm 1. Blocked-Gibbs-sampling algorithm
Initialize γ by γi

[0]=β/α for all i and set j=1. Define the desired sam-
ple size M and burn-in size Q;
For j=1,…, M+Q do:

1. Draw s[j] from ppost(s|γ[j−1],b)∝ppost(s,γ[j−1]|b) using the con-
ditional normality of ppost;

2. Draw γ[j] component-wise from ppost(γ|s[j],b)∝ppost(γ,s[j]|b)
using the factorization over γi;

Approximate ŝ; γ̂ð ÞCM by the empirical mean of the samples j=Q+1,…,
Q+M.

This sampling technique is very simple, but also very powerful. A main
advantage over otherMCMCschemes is that it does not require anyman-
ual tuning of sampling parameters. The sampling problem in step 1 is
solved by a reformulation into a least-squares problem, and the sampling
problem in step 2 can be solved efficiently utilizing the conjugacy of the
inverse gamma hyperprior and the factorization. For readers interested
in the technical details, references are given in Appendix A.
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MAP estimation
Ourmain tool for theMAP estimation is a cyclic algorithm that takes

advantage of the special form of the posterior and is called the Iterative
Alternating Sequential (IAS). The formwe usewas introduced by Calvetti
and Somersalo (Calvetti and Somersalo, 2007a, 2008a; Calvetti et al.,
2009) and is inspired by a similar, more general, algorithm called half
quadratic minimization (Aubert and Kornprobst, 2006):

Algorithm 2. Iterative alternating sequential
Initialize γ by γ0 and set j=1. Define the desired iteration number T;
For j=1,…, T do:

1. Update s by s[j]=arg max{ppost(s|γ[j−1],b)}=arg max{ppost
(s,γ[j−1]|b)};

2. Update γ by γ[j]=arg max{ppost(γ|s[j],b)}=arg max{ppost(γ,s[j]|
b)};

Approximate ŝ; γ̂ð ÞMAP by the last sample (s[T],γ[T]).
(Note that the conditional densities are always proportional to the

corresponding joint density by a factor only dependent on the condi-
tioned parameter).

As for the CM estimation, step 1 is solved using a reformulation
into a least-squares problem, and step 2 can be solved explicitly by
utilizing the conjugacy of the inverse gamma hyperprior and the
factorization. Further details are given in Appendix A.

Note that we did not yet specify an initialization rule for γ. This
choice will turn out to be the crucial point due to the following difficul-
ty. The IAS algorithm as a component-wise gradient-based optimization
method is only locally convergent, i.e., it will terminate in one of the
local minima around the initialization point. This is not a problem as
long as the posterior energy (i.e., the negative natural logarithm of its
density function) is convex, and thus, a uniqueminimum exists. Howev-
er, a potential problem in our setting is themultimodality of the posterior
Eq. (16). This problem results from the non-convexity of the energy of the
inverse gammahyperprior, which is the negative natural logarithmof the
density function. Details and illustration of this phenomenon are given in
Nummenmaa et al. (2007a) and Lucka (2011), Section 4.4.2. The multi-
modality is always present to some extent; however, the concrete
choice of the parameters α and β and the interplay with the under-
determinedness of the likelihood Eq. (2) determine to what extent
the multimodality practically affects the estimation process.

For these reasons, we examine three different initialization schemes:

• MAP1: A uniform initialization by γi
[0]=β/α for all i. This corresponds

to themethod used in Calvetti et al. (2009) and yields a very fast MAP
estimation method;

• MAP2: A CM estimate is computed first, and γ[0]=γCM;
• MAP3: U very rough approximations to the CM estimate ŝ; γ̂ð ÞiCM ,
i=1,…,U are first computed using very small sample sizes M.
Then they are used as seeds for the IAS algorithm: γ[0], i=γCM

i ,
i=1,…,U. The results ŝ; γ̂ð ÞiMAP , i=1,…,U are compared with re-
spect to their posterior probability, and the result with the highest
probability is chosen as the final MAP estimate.

Choosing CM estimates as initializations for MAP estimation seems
unmotivated at this point; however, the MAP2 and MAP3 methods
will yield good performances in all the simulation studies. Specifically,
these methods are often able to improve upon the performance of the
CM estimate on which they rely. We will outline the reasons for this
phenomenon in the Discussion section.

Validation means and inverse crimes

While subsequent work will focus on performing a validation of
the fully-Bayesian methods with real data, this paper focuses on ex-
tensive simulation studies to develop the basic properties these
methods. When using synthetic data produced using an invented
source configuration, it is crucial to avoid an inverse crime, i.e., the
model and reality are identified (Kaipio and Somersalo, 2005), as
this usually leads to overly optimistic results. In our case, one should
not produce synthetic data with the same lead-field matrix used for
the inversion, which would correspond to the assumption that the
real current sources are also restricted to the locations of the chosen
source space nodes; they should instead be placed independent of
these locations. As a number of commonly used measures do rely
on an inverse crime, as they assume that the reference and the esti-
mated source come from the same space (Rn in our case), we will,
rather, use the following measures to evaluate our results. For single
sources, the well-known dipole localization error (DLE) is the distance
from the location of the reference dipole source to the source space
node with the largest estimated current amplitude. We further intro-
duce the spatial dispersion (SD) as an illustrative measure of the spa-
tial extent of the estimated current (see Appendix B for the details of
our definition, which differs from the one used in Molins et al., 2008).

While the DLE can only be used for single sources (the extension to
multiple sources is not trivial) and is only sensitive to localization, the
SD does not account for localization at all. Many other measures in EEG/
MEG also only work for specific source scenarios, specific source forms
ormeasure only specific aspects. To overcome these limitations, we intro-
duced and examined a novel validationmeasure in Lucka (2011), Section
1.3.3 that is sensitive to localization, relative amplitude and spatial extent
andworkswith arbitrary complex source scenarios andwith arbitrary es-
timation formats (sLORETA, Pascual-Marqui, 2002, e.g., yields standard-
ized activity estimates rather than real current amplitudes). The earth
mover's distance (EMD) is a distance measure between probability densi-
ties. Strictly speaking, it is a typeofWassersteinmetricoriginating from the
theory of optimal transport (Ambrosio et al., 2008). The EMDmeasures the
minimal amount of (physical) work required to transfer the mass of one
density into the other density. Illustratively, one can visualize one density
as a pile of sand and the other density as a bunch of holes. Then, the EMD
is the minimal amount of work one needs to perform to fill up the holes
with the sand. While the EMD can be computed for arbitrary complex
real and estimated source scenarios, it reduces to intuitive measures in
simple situations (e.g., for two dipoles, one reference and one estimated,
it yields the spatial distance between the sources, i.e., it reduces to the
DLE). Mathematical details and a closer examination of the EMD's fea-
tures are given in Appendix B and in Lucka (2011), Section 4.7.

Finally, to examine the phenomena of depth bias in more detail (see
Brain networks involving deep-lying sources section), we define the
depth of a location in the head model as the minimal distance to one of
the sensors.

Static and dynamic inverse problems

In all major inverse approaches to EEG/MEG introduced in Inverse
methods for EEG/MEG section, the temporal dimension of the (already
preprocessed) data can be incorporated to supplement the information
given by the data at a single timepoint and the spatial a priori information
reflected by the specific inverse method. Single-pass strategies extract
information from one domain (time or space) to enhance the reconstruc-
tion in the other domain (see e.g., Durka et al., 2005). State-space ap-
proaches, such as Kalman filtering, iterate between space and time to
balance both sources of information (Galka et al., 2004). Conversely,
multi-pass strategies incorporate information fromboth domains simulta-
neously (spatio-temporal inversion, see, e.g., Baillet and Garnero, 1997;
Gramfort et al., 2011; Trujillo-Barreto et al., 2008). This often requires so-
phisticated algorithms to reduce the computational load originating from
the increased complexity of the problem (Schmitt et al., 2002).

For a number of reasons, we decided to not use the temporal infor-
mation for our studies to examine the performance of CDR methods
for source scenarios where depth bias and masking are the main chal-
lenges. First, depth bias and masking are phenomena that result from
the interplay of the static likelihood (the lead-field matrix L is static)
with the spatial prior information. Therefore, they are static, spatial



Fig. 1. Model generation pipeline.

1 FLIRT — FMRIB's Linear Image Registration Tool, http://www.fmrib.ox.ac.uk/fsl/
flirt/index.html.

2 CURrent Reconstruction and Imaging (CURRY), http://www.neuroscan.com/.
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phenomena. Incorporating temporal a priori informationmainly helps by
two mechanisms in this situation:

1. To mitigate the effects of noise: If the sources are temporally corre-
lated and follow a joint dynamic that is well reflected by the tempo-
ral prior (e.g., they vary smoothly in time), the information about the
underlying sources given by each measurement point is mainly the
same, limited by the uncertainty caused by the independent realiza-
tions of the measurement noise. Therefore, combining the informa-
tion of the whole time series primarily reduces that uncertainty.
The extreme case is given by a completely static source configuration
that is independently measured at many different time points (see
Wipf and Nagarajan, 2009 for further discussion).

2. By simplifying source separation: If the source configuration con-
sists of multiple sources with different time courses, the temporal
measurement data can help to separate them at a time point
where they are simultaneously active (see Wipf and Nagarajan,
2009 for further discussion).

In summary, the temporal extension improves the information given
by themeasurementwhile not directly counteracting the ill-conditioning
of the spatial forward operator L. This suggests that one has to pay atten-
tion when comparing the results of the static and dynamic inverse
methods for a source scenario in which difficulties arise from the spatial
configuration of the sources. If the spatial a priori information used by the
twomethods differs and the performance of the dynamic is superior, it is
not clear whether this is due to the improved information given by the
measurements or the different spatial a priori information. For a fair
and meaningful comparison one would need to consider only dynamic
or static inversemethods.While dynamic formulations of equivalent cur-
rent dipole and beamformingmethods are established in practice, the sit-
uation for CDR is, so far, less elaborated (for a recent overview, see
Gramfort et al., 2011; Ou et al., 2009). In addition, conducting simulation
studies with dynamic inversemethods also incorporates the risk of com-
mitting an inverse crime by assuming time courses that arewell reflected
by some temporal models while inconsistent with other models.

Results

Setting for the studies

Head model and source space
For the numerical approximation of the forward problem, we use

the finite element (FE) method because of its flexibility with regard
to the realistic modeling of the head volume conductor at a fast com-
putational speed with respect to this degree of modeling accuracy.
Although working with a head model that is as realistic as possible is,
in general, preferable (see the references in the description below), the
specific aims of our studies require some simplifications. We do not
want to include the inner brain compartments (the CSF, gray matter
and white matter) because we want to focus on the effect of depth bias
separately from other sources of error, e.g., from the effects caused by
the anisotropy of thewhitematter (which alsomakes the results compa-
rable to those obtained using BEMmodels, which cannot capture the an-
isotropy and normally do not differentiate between the inner brain
compartments as well). Additionally, to facilitate the interpretation of
the results, we require a homogeneous innermost compartment without
holes and enclosures where we can place the test sources. Another im-
portant aspect for practical EEG/MEG studies is the effect of insufficient
sensor coverage. For an optimal scan of the electromagnetic field pattern,
the sensors should be uniformly distributed in every spatial direction.
However, for practical reasons, this is not possible in realistic settings.
The neck causes a semi-shell-like sensor distribution, which is not able
to record fields in the direction of the feet. In particular deep-lying
sources suffer from this insufficiency. The influence of insufficient sensor
coverage should not be mixed with the effects of depth bias in this first,
basic study. Therefore, wewill use two sensor configurations in our stud-
ies. First, an artificial sensor configuration consisting of 134 EEG sensors
distributed uniformly over the surface of the head model is created (ab-
breviated f-cap for full cap). From these sensor positions, a subset of 63
sensors, which represents a realistic sensor placement, are chosen as a
second sensor configuration (abbreviated r-cap for realistic cap). Fig. 8
shows both configurations.

In the following section, we will outline the model generation
pipeline, which is also depicted in Fig. 1.

T1- and T2-weighted magnetic resonance images (MRI) of a healthy
subject weremeasured on a 3 TMR scanner. A T1w pulse sequencewith
fat suppression and a T2w pulse sequence with minimal water-fat shift,
both with an isotropic resolution of 1.17×1.17×1.17 mm, were used.
The T2-MRI was registered onto the T1-MRI using an affine registration
approach, and themutual information as a cost function as implemented
in FSL.1 The compartments of the skin, the skull compacta and the skull
spongiosa were segmented using a gray-value-based active contour
model (Vese et al., 2002) and thresholding techniques. The segmenta-
tion was carefully checked and corrected manually. Because of the im-
portance of skull holes on source analysis (Oostenveld and Oostendorp,
2002; Van den Broek et al., 1998), the foramen magnum and the two
optic canals were correctly modeled as skull openings. Following Bruno
et al. (2003, 2004) and Lanfer et al. (2010), the inferior part of the
modelwas not directly cut below the skull butwas realistically extended
to avoid volume conduction modeling errors. The software CURRY2 was
then used for the segmentation of the cortex surface as well as the ex-
traction of high-resolution meshes of the surfaces of the skin, the eyes,

http://www.fmrib.ox.ac.uk/fsl/flirt/index.html
http://www.fmrib.ox.ac.uk/fsl/flirt/index.html
http://www.neuroscan.com/


3 TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator,
http://tetgen.berlios.de/.

Fig. 2. Results from different inverse methods for a single reference dipole source (green cone) using the r-cap. From top to bottom and from left to right: MNE, WMNE with l2 weighting,
WMNEwith regularizedl∞ weighting, sLORETA, CM,MAP1,MAP2 andMAP3. (For interpretation of the references to color in thisfigure legend, the reader is referred to theweb version of this
article.)
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the skull compacta, the skull spongiosa and the brain from the voxel-
based segmentation volumes. The surfaces were smoothed using Taubin
smoothing (Taubin, 1995) to remove the blocky structure, which results
from the fine surface sampling of the voxels. For the aims of our specific
studies, only the surfaces of the skin, the eyes, the skull compacta and the
skull spongiosa were then used to create a high-quality 3D Delaunay tri-
angulation using TetGen.3 In total, the resulting tetrahedral finite

http://tetgen.berlios.de/


Table 1
Statistics of validation measures for study 1 for both sensor caps (mean±std).

Method DLE, f-cap DLE, r-cap SD, f-cap SD, r-cap EMD, f-cap EMD, r-cap

MNE 29.46±11.24 33.07±12.65 2.4e−1±1.0e−1 2.5e−1±1.0e−1 53.20±2.74 54.90±4.50
WMNE l2 30.65±13.52 35.08±15.96 2.5e−1±1.1e−1 2.5e−1±9.7e−2 52.17±2.53 53.64±3.35
WMNE l∞;reg 29.40±14.81 35.38±17.42 2.2e−1±8.0e−2 2.2e−1±7.0e−2 49.56±3.64 51.08±3.82
sLORETA 6.10±2.35 6.60±2.83 1.9e−1±6.8e−2 2.2e−1±7.1e−2 40.58±2.48 43.43±3.42
CM 6.16±2.37 6.94±3.14 1.3e−3±1.1e−3 2.0e−3±1.9e−3 7.32±2.31 8.85±3.33
MAP1 27.00±11.90 32.77±14.32 9.8e−3±5.8e−2 2.7e−2±9.8e−2 28.18±11.54 33.76±13.70
MAP2 5.85±2.16 6.39±2.74 2.2e−4±3.3e−4 1.1e−4±2.6e−4 6.08±2.22 6.45±2.74
MAP3 5.79±2.13 6.14±2.48 7.1e−6±4.5e−5 2.8e−5±1.2e−4 5.84±2.21 6.15±2.49
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element (FE) model consists of 512.394 nodes and 3.176.162 tetrahe-
dral elements. The conductivity values (denoted in S/m) for the differ-
ent compartments were chosen to be 0.43 for the skin (Dannhauer et
al., 2011), 0.505 for the eyes (Ramon et al., 2006), 0.0064 for the skull
compacta, 0.02865 for the skull spongiosa (Akhtari et al., 2002;
Dannhauer et al., 2011) and 0.33 for the inner brain compartment
(Dannhauer et al., 2011).

Within the inner compartment, a source space consisting of 1.000
source locations based on a regular grid is chosen, and the grid size is
10.99 mm (see Fig. 10). At each node, d=3 orthogonal dipoles in Carte-
sian directions are placed. For computing the corresponding lead-field
matrices, different FE approaches for modeling the source singularity
are known from the literature: The subtraction approach (Bertrand
et al., 1991; Drechsler et al., 2009; Schimpf et al., 2002; Wolters et al.,
2007b), the partial integration direct method (Schimpf et al., 2002;
Vallaghé and Papadopoulo, 2010; Weinstein et al., 2000) and the Venant
direct method (Buchner et al., 1997). In this study, we used the Venant
approach based on a comparison of the performance of all three inmulti-
layer spheremodels,which suggested that for sufficiently regularmeshes,
the Venant approach yields suitable accuracy over all realistic source loca-
tions (Lew et al., 2009; Vorwerk, 2011). This approach has the additional
advantage that the resulting FEM approach has a high computational effi-
ciency when used in combination with the FE transfer matrix approach
(Wolters et al., 2004). Standard piecewise linear basis functions were
used. The computations were performed with SimBio.4 In Fig. 9, the sum
of the l2-norms of the three gain vectors for each location is depicted
for both sensor caps.

Another benefit of the Venant approach is that the sources are not
modeled as point-like sources, but patch-like, which is more realistic
(Buchner et al., 1997; Hämäläinen et al., 1993; Niedermeyer and Lopez
da Silva, 2004; Wolters et al., 2007a). We also stress that the term
“focal” in our investigations is to be understood relative to the grid reso-
lution used. The activity at a source space node represents the cumulative
activity of a volume of graymatter tissue, which is dependent on the grid
resolution. Representing reference sources by single dipoles should also
be regarded as modeling with respect to this resolution rather than a
definite representation independent of the resolution. Simulating the
corresponding reference data using dipoles is the current “gold standard”
in EEG/MEG. Therefore, we chose to use this source model in this first,
elementary study, especially because important features of the inverse
problem, such as depth bias and masking, are already present using this
source model (and can, thus, be addressed within our studies).

Inverse methods
In this section, we list the methods we use together with the choice

of internal parameters. For the hierarchical model, choosing α and β is,
in fact, a difficult practical andmethodical task. Our choice relies on pre-
liminary computations and considerations that can be found in Lucka
(2011), Section 4.4.2. We chose the parameters for each method in an
optimal way for a fair comparison of their performance. A further refer-
ence addressing with this issue is Nummenmaa et al. (2007a).
4 SimBio: A generic environment for bio-numerical simulations, https://www.mrt.
uni-jena.de/simbio.
The following methods will be examined in our studies:

• MNE as described in Bayesian formulation of the static inverse
problem section (Hämäläinen et al., 1993);

• WMNEwith l2 and regularized l∞ weighting as described in Bayesian
formulation of the static inverse problem section (Fuchs et al., 1999);

• sLORETA as described in Bayesian formulation of the static inverse
problem section (Pascual-Marqui, 2002);

• Full-CM estimation using the algorithm described in Algorithms for
fully-Bayesian inversion section for the HBM introduced in
Hierarchicalmodeling in EEG/MEG section (thismethodswill be abbre-
viated by CM from this point forward). Parameters: α=0.5 and
β=5⋅10−8;

• Full-MAPusing the threemethods,MAP1-3, described inAlgorithms for
fully-Bayesian inversion section for the HBM introduced in Hierarchical
modeling in EEG/MEG section. Parameters: α=0.5, β=5⋅10−6 for
MAP1 and α=0.5 and β=5⋅10−8 for MAP2 and MAP3;

The regularization parameter λ for MNE, WMNE and sLORETA are
chosen using the discrepancy principle (e.g., Engl et al., 1996; Kaipio
and Somersalo, 2005) because we assume that the noise variance σ2

is known (or assume that we have a good estimate of it, e.g., based
on pre-stimulus data).

To obtain an initial visual impression of the different methods, the
reconstruction results for a single dipole source using the r-cap are
shown in Fig. 2 (the source is located between the source space
nodes to avoid an inverse crime, cf., Validation means and inverse
crimes section).

Study 1: single dipole reconstruction

Setting
For the first study, 1000 single unit-strength source dipoles with ran-

dom location and orientationwere placed in the inner compartment (not
necessarily on the source space nodes to avoid an obvious inverse crime,
cf. Validationmeans and inverse crimes section). The following restriction
on their depth (measured in the f-cap) was posed: First, the nearest sen-
sor is searched for. For that sensor, the nearest source space node is
searched for. The position of the dipole is only accepted if its depth (cf.,
Validation means and inverse crimes section) is larger than the depth of
the source space node plus 10 mm. Using this procedure, dipoles that
are closer to the sensors than any source space node are avoided, which
facilitates the interpretation of the results (dipoles that are closer to the
surface than any source space node cannot be reconstructed too
superficial).

Measurement data are generated for both caps using the same for-
ward computation procedure used for the lead-field generation, and
Gaussian noise is added at a noise level of 5%. In line with Calvetti et al.
(2009), we will refer to a (relative) noise level of x if the standard devi-
ation of the measurement noise (i.e., σ in our notation) fulfills
σ=x⋅‖b0‖∞, where b0 are the measurements in the noiseless case.
Because we did not find any systematic effect of adding noise on the
depth bias and masking, a comparison to other noise levels is omitted
here. The full results can be found in Lucka (2011), Section 4.5.

https://www.mrt.uni-jena.de/simbio
https://www.mrt.uni-jena.de/simbio


Fig. 3. Scatter plots to visualize the depth bias from different inverse methods using the f-cap. From top to bottom and from left to right: MNE, qab=−0.441; WMNEwith l2 weight-
ing, qab=−0.410; WMNE with reg. ell∞ weighting, qab=0.095; sLORETA, qab=−0.057; CM, qab=−0.058; MAP1, qab=−0.398; MAP2, qab=−0.007; .MAP3, qab=−0.007.
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Table 2
The resulting qab for 1000 single unit-strength dipoles for both sensor caps.

Method qab, f-cap qab, r-cap

MNE −0.441 −0.392
WMNE l2 −0.410 −0.256
WMNE l∞;reg 0.095 0.087
sLORETA −0.057 −0.049
CM −0.058 −0.054
MAP1 −0.398 −0.322
MAP2 −0.007 −0.028
MAP3 −0.007 −0.019
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Results

General properties. Themean distance from the reference dipoles to the
next source space node was 5.27 mm, which is the lower bound for the
DLE and EMD for all methods. Table 1 shows the DLE, SD and EMD aver-
aged over all dipoles. For an idea of the practicality of theHBMmethods,
we note that our current implementations of the CM, MAP2 and MAP3
in Matlab take approximately 5 min of computation time for the f-cap
and 3 min for the r-cap for each inverse reconstruction on a normal
desktop PC.

Depth bias. We now focus on the first phenomenon introduced in Brain
networks involving deep-lying sources section: the depth bias. To sepa-
rate this phenomenon from the effects of insufficient sensor coverage,
wewill mainly use the reconstructions based on the f-capmeasurements
(see Setting for the studies section). We rely on a visual presentation
using scatter plots. In Fig. 3, the depth (cf. Validation means and inverse
crimes section) of the reference source is plotted on the horizontal axis,
whereas the depth of the source space node with the largest estimated
source amplitude is plotted on the vertical axis. A mark within the area
below the y=x line indicates that the dipole has been reconstructed
too close to the surface, whereas a mark above the line indicates the op-
posite. qab denotes the percentage of the marks above the y=x line
minus 0.5. If a method shows a clear tendency to favor the lower area
and qab is considerably below 0, the method suffers from depth bias
(e.g., it is well known that MNE suffers from depth bias which can be
seen clearly in Fig. 3, and is reflected in a qab of−0.441). A method per-
forms well if its marks in this type of scatter plot are tightly distributed
around the y=x line, as this does usually not only indicate a localization
at the correct depth but also a good overall localization. Table 2 lists qab
for both the f-cap and the r-cap (note that the measure of depth
relies on the individual caps, and therefore, a direct comparison between
both qab is difficult).

Study 2: masking of deep-lying sources in two-dipole scenarios

Setting
The single dipoles thatwe used in the first study are now combined to

form source configurations consisting of a deep-lying and a near-surface
dipole. The dipoles are evenly divided into three parts according to their
depth (measured in the f-cap; depth ranges of the three groups: 23.76–
38.25, 38.25–49.41 and 49.42–77.65). For each of the 1000 source config-
urations used in this study, one dipole from the part with the largest and
one from the part with the smallest depth are randomly picked. Noise is
added at a level of 5% is added to the measurements.

Results

Initial example. We show an initial example where the effect of masking
is very pronounced.5 In all the subfigures of Fig. 4, the reference sources
are represented by two green cones. One source is very close to the
5 It was chosen by visual inspection after viewing the results for the study's first five
source configurations.
sensors, whereas the other source is very distant. The different subfigures
of Fig. 4 show the reconstructions of the differentmethods based on the r-
cap data. In the results of MNE, both WMNEs and sLORETA, even with a
careful successive thresholding of the estimated source amplitudes do
not reveal any evidence for the presence of the deep-lying source. In prac-
tice, these resultswould probably not provoke a user to attempt addition-
al inverse methods in addition. Therefore, the deep-lying source is most
likely overlooked. The MAP1 estimate does not reflect the reference
sources in any useful way. The CM estimate reconstructs the near-
surface source and presents some evidence for the deep-lying source, al-
though this is hardly visible in the chosen image perspective. However,
this small activation is sufficient for theMAP2 estimate (whichwas seed-
ed at this CM estimate) to create good-quality reconstructions of both
sources (remember that the test sources are placed in between the source
space grid nodes, cf. Validation means and inverse crimes section). The
MAP3 estimate also reconstructs two sources, although the deep source
is not reconstructed at the nearest source space node.

General properties. Table 3 shows the EMDaveraged over all source con-
figurations (the SD provides little valuable information without a corre-
sponding localization measure, and the DLE is not available in a
multiple source scenario anymore, cf. Validation means and inverse
crimes section).

Study 3: masking of deep-lying sources in three-dipole scenarios

Setting
The same setting as in study 2 is used except that the source configu-

rations consist of one deep-lying and two near-surface dipoles. A further
restriction is that the minimal distance between the different sources is
at least 50 mm.

Results

Initial example. Similar to study 2, we show an initial example, where
the effect of masking is very pronounced. The different subfigures of
Fig. 5 show the reconstructions of the different methods relying on
the r-cap data of a three-dipole source configuration (green cones).
Again,with careful successive thresholding of the estimated source ampli-
tudes of MNE, both WMNEs and sLORETA do not reveal any evidence
for the presence of the third, deep-lying source. The WMNE with l2
weighting and sLORETA barely reveal the presence of the two near-
surface sources, but they reconstruct one large cluster of activity be-
tween them. Once again, the MAP1 estimate does not reflect the ref-
erence sources in any useful way. The CM estimate presents evidence
for all three sources, although it does not reconstruct them with the
same amplitude. The results of the MAP2 and MAP3 are both accu-
rate, and the MAP2 estimate outperforms the MAP3 estimate.

General properties. Table 4 shows the EMD averaged over all source
configurations.

Comparison between MAP approximations

We briefly compare the differentMAP estimation algorithms focusing
on the posterior probability of their results. These algorithms all use dif-
ferent seed points for their optimization but rely on the sameHBM. How-
ever, onlymethods that rely on the same parameter set can be compared.
Because MAP1 uses a different setting than MAP2 and MAP3, the results
for MAP1 were recomputed using the same parameter setting as that
used in MAP2 and MAP3. These results will be named MAP1_cmp. How-
ever, note that MAP1_cmp performs even worse than MAP1 in terms of
the EMD, DLE and SD. In Table 5, the average rank of the three methods
within the three studies is shown. For each source configuration in a
study, a ranking of themethods is computed by comparing the (rounded)
probabilities of the MAP approximations found by the different methods.



Fig. 4. Estimates of different inverse methods for a source configuration consisting of one near-surface and one deep-lying dipole (green cones) using the r-cap. The bottom left source is
very close to the sensors, whereas the top right source is very distant. From top to bottom and from left to right: MNE, WMNE with l2 weighting, WMNE with regularized l∞ weighting,
sLORETA, CM, MAP1, MAP2 and MAP3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Statistics of the EMD for study 2 for both sensor caps (mean±std).

Method EMD, f-cap EMD, r-cap

MNE 44.63±2.23 45.75±3.06
WMNE l2 43.75±1.97 44.62±2.28
WMNE l∞;reg 41.79±2.06 42.78±2.20
sLORETA 36.38±2.51 38.07±2.70
CM 14.57±4.98 18.21±6.05
MAP1 42.10±11.00 47.97±10.98
MAP2 12.25±6.30 16.53±9.47
MAP3 12.41±6.50 15.83±9.32
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The method that yielded the approximation with the highest probability
is ranked highest. Methods that yielded an approximation with the
same probability are ranked at similar levels. Subsequently, the mean
rank of each method is computed over all 1000 source configurations.

Discussion

We examined new hierarchical Bayesian inference methods (HBM)
for the EEG inverse problem and compared these methods to the results
of established current density reconstruction (CDR)methods. In particu-
lar, we compared the fully-Bayesian conditional mean (CM) and



Fig. 5. Estimates of different inverse methods for a source configuration consisting of two near-surface and one deep-lying dipole (green cones) using the r-cap. The bottom sources are
very close to the sensors,whereas the top source is very distant. From top to bottom and from left to right:MNE,WMNEwithl2 weighting,WMNEwith regularizedl∞ weighting, sLORETA,
CM, MAP1, MAP2 and MAP3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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maximum a-posteriori (MAP) estimates to the minimum norm esti-
mates (MNE, Hämäläinen and Ilmoniemi, 1994), two weighted mini-
mum norm estimates (WMNE, Fuchs et al., 1999) and sLORETA
(Pascual-Marqui, 2002). For theMAP estimationwe examined three dif-
ferent approaches: MAP1, which was proposed in (Calvetti et al., 2009),
MAP2 and MAP3, which we proposed in Algorithms for fully-Bayesian
inversion section.
Study 1 (single dipole reconstruction)

HBM methods
The MAP2 and MAP3 methods perform well with respect to the per-

formance measures (cf. Table 1), and furthermore, they do not seem to
suffer from depth bias (cf. Fig. 3) The MAP3method slightly outperforms
the MAP2method. Compared to the other MAP approximation schemes,



Table 4
Statistics of the EMD for study 3 for both sensor caps (mean±std).

Method EMD, f-cap EMD, r-cap

MNE 39.59±1.72 40.57±2.37
WMNE l2 39.02±1.56 39.78±1.83
WMNE l∞;reg 37.97±1.52 38.76±1.69
sLORETA 34.59±2.18 36.05±2.48
CM 17.60±5.14 22.35±5.89
MAP1 50.04±13.43 57.30±13.12
MAP2 17.10±7.64 24.25±9.22
MAP3 18.89±7.88 25.72±8.92
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MAP3 also clearly attains the highest posterior probability (cf. Table 5),
which suggests that it is the best approximation of the real MAP esti-
mate. The CM method shows good result; however, it is interesting
that the MAP2 method, which directly relies on the CM estimate,
can clearly improve upon the CM estimate. Because the additional com-
putation time is negligible, this result suggests that a subsequent opti-
mization after an initial CM estimation should always be performed.
The MAP1 scheme did not show convincing results both with regard
to the DLE, SD and EMD (cf. Table 1) as well as with respect to depth
bias (cf. Fig. 3). Compared to MAP2 and MAP3, it also attains less high
posterior probabilities on average (cf. Table 5), which suggests that it
might often only find a minor mode of the posterior and might, thus,
not yield a reliable representation of the MAP estimate.

Our work was partly motivated by the results of Calvetti et al.
(2009): Within a simplified geometry, a single deep-lying source
was reconstructed (cf. Figs. 1–4 on pages 893–894 in Calvetti et al.,
2009). The CM estimate with an inverse gamma hyperprior (which
corresponds to the CM method used here) yielded the best result,
both in location and in the extent of the estimated source. More-
over, the CM estimate seemed to have no depth bias, whereas the
MAP estimate, by use of the uniformly initialized IAS algorithm
(which corresponds to the MAP1 method used here), seemed to suf-
fer from depth bias. In our work, we confirmed this impression
about the CM estimate by performing a study on a realistic 3D head
model over a larger number of single dipoles and by assessing perfor-
mance measures. However, we also found that depth bias is not a
feature of the MAP estimate itself, as suggested in the Discussion
section in Calvetti et al. (2009), but the depth bias is, rather, a fea-
ture of the algorithm used to compute it. Due to the results in
Comparison between MAP approximations section, we can be sure
that the MAP3 result is closer to the real MAP estimate in terms of
posterior probability as compared with MAP1, and MAP3 even per-
forms slightly better than the CM estimate with regard to depth bias
(qab=−0.007 to qab=−0.058, cf. Table 2).

Minimum norm based methods
The WMNE schemes used in this study are modifications of the

original MNE explicitly aiming to improve the depth localization.
Fig. 3 clearly show that they succeed in this aspect (although the scat-
terplot for the WMNE with regularized l∞ weighting and qab=0.095
suggests that this weighting slightly exaggerates this aspect). These
results confirm earlier studies on this topic, see, e.g., Fuchs et al.
(1999). Concerning EMD, DLE and SD, the conclusion is less clear
Table 5
Mean ranking of different MAP estimation algorithms in the three studies.

Method Study 1,
f-cap

Study 1,
r-cap

Study 2,
f-cap

Study 2,
r-cap

Study 3,
f-cap

Study 3,
r-cap

MAP1_cmp 2.390 2.313 2.640 2.7480 2.928 2.9340
MAP2 1.398 1.275 1.547 1.6460 1.561 1.7150
MAP3 1.002 1.049 1.093 1.1020 1.367 1.2190
(cf. Table 1). The visualizations in Fig. 2 do not yield clear impressions
of the different estimate characteristics as well. Therefore, more de-
tailed examinations are required. The sLORETA estimate (which is
also essentially based on the minimum norm, as it consists of comput-
ing a non-diagonal weighted norm of a MNE, see Pascual-Marqui
(2002)) performs well concerning the DLE and depth bias (cf.
Table 1 and Fig. 3). However, Fig. 2 suggests that the sLORETA result
overestimates the spatial extent of the reference source scenario con-
siderably. The average EMD and SP of sLORETA clearly confirm this
impression (cf. Table 1). These results are in line with several other
theoretical and numerical studies, see, e.g., (Lin et al., 2006; Pascual-
Marqui, 2002; Sekihara et al., 2005; Wagner et al., 2004).

Direct comparison
The direct comparison in the single focal reference source scenario

shows that compared to established methods such as the MNE and
sLORETA, the HBM-based methods such as the CM, MAP2 and MAP3
clearly yield better results concerning the EMD and SD (cf. Table 1),
and the visual impression is more convincing as well (cf. Fig. 2). How-
ever, it is important to stress that the above results were only attained
for the specific source scenario examined in this study. Without fur-
ther examination, their significance might be very limited because the
ability to localize single dipoles is a rather trivial and a largely uninforma-
tive property, as shown by Grave de Peralta et al. (2009). Nevertheless,
reconstructing single dipoles is a starting test for every inverse method
for CDR, and the results for the methods based on the HBM clearly moti-
vate the examination of their use in more detail.

Study 2 (masking of deep-lying dipole by near-surface dipole)

The initial example showed that the source scenario examined in
this study is a very challenging scenario for inverse methods (see
Fig. 4, and the studies in Wagner et al., 2004). The methods that per-
formed best in the first study, i.e., the MAP2 and MAP3 scheme, also
performed the best in this study (cf. Table 3 and Fig. 4). The compar-
ison with the results from the MNE and sLORETA shows that HBM is
able to improve upon established inverse methods in this source sce-
nario by detecting the deep-lying source despite the presence of the
near-surface source.

Compared to each other, the MAP3 scheme still outperforms the
MAP2 scheme with regard to the posterior probability (cf. Table 5),
but the situation concerning the EMD is less clear (see Table 3). This
needs to be examined in more detail. Similar to the first study,
Table 3 shows that, again, the MAP2 result improves upon the corre-
sponding CM result upon which it is based. The results also suggest
that the posterior distribution for these scenarios is more complex
than for single sources.

Study 3 (masking of deep-lying dipole by two near-surface dipoles)

The results are very similar to the results of study 2. However, Tables 3
and 5 show that the relationship between the CM, MAP2 and MAP3 be-
comes more complicated and is to be examined in even more detail.
Part of the reason that the MAP2 outperforms MAP3 in this scenario
might be that the parameters Q and M for MAP3 have been optimized
in a single-dipole recovery study.

The value of the EMD as a performance measure

In thiswork,we introduced the earthmover's distance (EMD) asmea-
sure that is both sensitive to localization and spatial extent of an estimate
(cf. Validation means and inverse crimes section). Table 1 shows that the
EMD fulfills these requirements. Only methods that attain a low DLE and
SD will produce a low EMD. However, with regard to the sLORETA esti-
mate, it would be preferable if more weight is put on the correct localiza-
tion. Even though the sLORETAmethod has a small DLE and is commonly
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used due to its localization properties, its EMD ismuch larger than that of
othermethods that produce focal estimates but considerablymis-localize
the sources (e.g., theMAP1 scheme). The big advantage of the EMD is that
it is applicable to more complex source scenarios as well. Conversely, the
extension of other localization measures such as the DLE is not straight-
forward neither in terms of the implementation nor in the interpretation
of the results. For the two- and three-source scenarios investigated in this
work, the EMDwas the onlymeasure sensitive to localization that did not
rely on an inverse crime (cf. Validation means and inverse crimes
section).
Limitations and outlook

Confirming the present results with real data provides an impor-
tant future work to complement the present simulation study. Our
study specifically aimed at situations that are normally encountered,
e.g., in the analysis of the early components of evoked responses (cf.
Brain networks involving deep-lying sources section), i.e., focal
source configurations that are measured at a single time instant. A
validation with real data will be performed and reported in the near
future.

Now that we have a profound knowledge on how the different
methods behave with regards to the difficulties of the static inverse
problem for the source scenarios investigated, an extension into the
temporal domain can be investigated on this basis (cf. Static and
dynamic inverse problems section). For the HBM, different possibilities
to incorporate temporal information have been proposed or tested
(Trujillo-Barreto et al., 2008;Wipf and Nagarajan, 2009), while a detailed
comparison between these approaches has not yet been undertaken (to
the best of our knowledge). This direction for future studies is extremely
important to fully exploit the high temporal resolution offered by EEG/
MEG recordings.

Motivated by the analysis of the early components of evoked re-
sponses and specific cases in presurgical epilepsy diagnosis, our
current focus was on focal source scenarios incorporating up to three
active focal sources. The HBMwe usedwas tailored for such situations.
In the future, we will examine extended source scenarios and the ex-
tended HBM for such scenarios, which should be of more interest for
research in the area of cognitive neuroscience and other scenarios in
presurgical epilepsy diagnosis with more extended underlying source
patches.

Only two of the possible estimation methods that the HBM offers
(cf. Inference for Hierarchical models section) were examined con-
cerning our specific questions (cf. Brain networks involving deep-
lying sources section). As most other publications using HBM address
Variational Bayesian inference methods (VB, see, e.g., Friston et al.,
2008; Nummenmaa et al., 2007a; Sato et al., 2004), a direct compari-
son between fully and variational Bayesian inference for HBM will be
the next topic for simulation studies.

The present results concerning MAP2 and MAP3 estimates, which
were introduced in this article, clearly show that superior results concern-
ing performancemeasures and visual impression can be achieved as com-
pared to the approach of Calvetti et al. (2009). To further improve the
MAP estimation performance, alternative, non-convex optimization
schemes for finding the true (global) MAP will be considered. MAP2
and MAP3 rely on searching for the MAP estimate in the vicinity of
the CM estimate, and the present results clearly motivate research in
this direction. Additionally, the actual cause for the depth bias, and
why somemethods suffer from it, has to be examined froma theoretical
perspective as well.

For this first, elementary study, we simplified the brain volume con-
duction properties as homogeneous and isotropic, as is often performed
in source analysis (see e.g., Acar and Makeig, 2010; Fuchs et al., 1998;
Kybic et al., 2005). Future studies will investigate the interplay of HBM
and more realistic head modeling, e.g., by incorporating the inner brain
compartments and white matter anisotropy (Hallez, 2008; Haueisen et
al., 2002).

Using only point estimates such as MAP and CM results on the
neglect of a huge amount of the information that is contained in
the abstract, n+k-dimensional posterior distribution (cf. Bayesian
Formulation of the static inverse problem section). The exploitation
and translation of this information to allow statements about certain
reconstruction qualities (like the uncertainty of the estimated source
location or extent) or to test a hypothesis is a very exciting topic for
future research.

Only CDR methods were compared, while no comparison to
dipole-fitting methods and scanning/beamforming methods was per-
formed (cf. Inverse methods for EEG/MEG section for references).
This will be an interesting direction for further studies.

Conclusions

HBM is a promising framework for EEG source localization. For the
important source scenarios we examined, fully-Bayesian inference
methods for HBM are able to improve upon established CDR methods
such as MNE and sLORETA, in many aspects. In particular, these
methods show good localization properties for single dipoles and do
not suffer from a depth bias. As has been shown in this study, small
localization errors for single source scenarios are not sufficient to
judge the quality of an inverse method for EEG or MEG source analy-
sis. However, in contrast to established inverse methods, such as min-
imum norm estimation and sLORETA, HBM-based methods are able to
yield good reconstructions in the presence of two or three focal
sources. Wasserstein metrics, in particular the earth mover's distance
(EMD), are promising validation tools for future research on more
complex source scenarios with multiple sources.
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Appendix A. Algorithmical details

The blocked Gibbs sampler, Algorithm 1, and the IAS, Algorithm 2,
are based on sampling or optimizing conditional densities. In more
abstract words, they rely on alternated conditional moves through
the parameter space Rn � Rk to construct a sequence of points
si;γið Þ∈Rn � Rk; i ¼ 1;…; t. In the first half step (step 1 in both algo-
rithms) the value of s is changed keeping γ fixed, while in the second
half step (step 2 in both algorithms), the value of γ is changed while
keeping s fixed. This is sketched in Fig. 6. While the CM approxima-
tion is inferred from that sequence by computing its empirical
mean, the MAP approximation is given by the last point of the se-
quence. From Fig. 6, it is apparent why the IAS algorithm might be-
come stuck in local minima when used with a multimodal posterior.
However, Gibbs samplers are known to exhibit problems with multi-
modality as well (especially if s and γ are strongly correlated).



Fig. 6. Sketch of alternated conditionalmoves for amultimodal posterior (plotted via con-
tour lines). Red starsmark subsequent states and circlesmark half steps. Left: Algorithm1;
Right: Algorithm 2; The blue lines correspond to step 1 and the green lines correspond to
step 2 in the respective algorithms. (For interpretation of the references to color in this fig-
ure legend, the reader is referred to the web version of this article.)
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As a consequence, steps 1 and 2 in both algorithms can be solved
using surprisingly similar approaches.

Step 1

In step 1, the sampling and optimization of a conditional Gaussian
density with expectation and covariance given by

Epðs γ;bj Þ sð Þ ¼ ΣsL
t LΣsL

t þ σ2Idm
� �−1

b

Covpðs γ;bj Þ sð Þ ¼ Σs−ΣsL
t LΣsL

t þ σ2Idm
� �−1

LΣs ¼ Σ−1
s þ 1

σ2 L
tL

� �−1
;

has to be solved (a derivation is given in Kaipio and Somersalo, 2005 and
Lucka (2011), Section A.1.4). Remember that Σs=Σs(γ) changes every
step j, and therefore, a direct computation of the above quantities is not
preferablewith respect to computation time (andwith respect to stability
for the covariance matrix). Instead, both optimization and sampling can
be realized by solving a relaxed weighted least squares problem:

L
σ Σ−1=2

s


 �
s j½ � ¼ls b

0


 �
þ σ ωm

ωn


 �
; ðA:1Þ

wherewe setωm=0,ωn=0 to attain the conditionalmode and drawωm

andωn from standard normal distributions of dimensionm and n to attain
a sample from the conditional distribution (the details and derivation of
this reformulation can be found in Lucka (2011), Section A.1.4).

Iterative solvers
Solving (A.1) can be done by using Krylov subspace methods such as

the conjugate gradient least squaresmethod (CGLS)with a preconditioning
by Σs

−1/2(γ) as proposed in Calvetti et al. (2009). Applied to iterative
solvers for inverse problems, this technique is called priorconditioning
(Calvetti and Somersalo, 2007b). In our hierarchical framework, the
prior covariance itself is not fixed but relies on the fixation of the hyper-
parameters to their current values. The idea of using this present state
of information, updated in every step of composite conditional walks is
referred to as a hyperpriorconditioning (Calvetti et al., 2009).

Using preconditioned iterative solvers for problem (A.1) was pro-
posed in Calvetti et al. (2009) and seems to be a canonical choice with
regard to the high dimension of the problem. The advantage is that
these schemes can be easily transferred to other fields of inverse prob-
lems, where the forward mapping is not provided in explicit matrix
form (Calvetti and Somersalo, 2007a,b, 2008a,b; Kaipio and Somersalo,
2005). Additionally, the CGLS solver allows for the construction of
blocked inversion schemes, where multiple right hand sides are inverted
simultaneously which results in a considerable gain in speed (details on
this can be found in Lucka, 2011, Section 3.6).
Explicit solution
Due to the small number of sensors in the EEG (we usem=63,134

in our studies), we found a very simple alternative implementation that
is competitive to the iterative approaches in terms of computation
speed can be found. Using some matrix identities, the explicit solution
of the systems can be computed very efficiently:

s j½ � ¼ Σs−ΣsL
t LΣsL

t þ σ2Idm
� �−1

LΣs

� �
⋅

Lt σ−2bþ σ−1ωm

� �
þ Σ−1=2

s ωn

� �

This formula can be implemented in a straight forward manner:

Algorithm 3. Explicit Step 1 solution
1. Set r=(Lt(σ−2b+σ−1ωm)+Σs

−1/2ωn);
2. Set s1=Σsr;
3. Set t=Ls1;
4. Set ~Σb ¼ LΣ1=2

s

� �
LΣ1=2

s

� �t
þ σ2Idm;

5. Solve ~Σbx ¼ t;
6. Set s2=ΣsL

tx;
7. The solution is given by s[j]=s1−s2.

Remember that the multiplication with Σs can be performed com-
ponentwise. The computation of the projected source covariance
LΣsL

t within step 4 is the most computationally intensive part of the al-
gorithm, and solving the linear system in step 5 is far less demanding.
The system is only of size m×m and is symmetric positive definite. A
solution via Cholesky decomposition is still fast enough to be negligible
in comparison to the matrix–matrix multiplication in step 4. The solu-
tion of (A.1) with this algorithm is considerably faster than with itera-
tive solvers (see Section A.1.10. in Lucka, 2011), and finding an optimal
implementation is less demanding. Furthermore, it yields the exact
solution of (A.1) within the bounds posed by ill-condition and finite
precision, and no stopping criteria have to be chosen ad hoc. Another
advantage is that the computation time is effectively independent of
the right hand side, which is not the case for the iterative solvers we
applied. Empirically, it was observed that more complex source config-
urations also result in a slower convergence of the CGLS algorithm.

Step 2

As the posterior factorizes over the single hyperparameters γi (cf.
Eq. (16)), optimization and sampling can be performed component-
wise. The hyperparameter-dependent single-component part of the
posterior is (cf. Eq. (16)):

ppost γið js; bÞ∝ exp −1
2

‖si�‖
2

γi
þ 2

β
γi

� �
þ 2 α þ 5

2

� �
lnγi

 ! !

Computing the first- and second-order conditions for the maxi-
mum of this expression shows that the update rule is given by:

γ j½ �
i ¼

1
2 ‖si�‖

2 þ β
κ

; with κ ¼ α þ 3=2

Concerning the sampling, the conditional distribution ppost(γi,s|b)
can be rearranged to:

ppostðγi; sjbÞ∝ exp
−1

2 ‖si�‖
2 þ β

γi
þ − α þ 3=2ð Þ−1ð Þ ln γið Þ

 !
:

This is also an inverse gamma distribution, with parameters
�β ¼ 1

2 ‖si�‖
2 þ β and �α ¼ α þ 3=2ð Þ (cf. Eq. (15)). This invariance prop-

erty is called conditional conjugacy and simplifies the sampling scheme
considerably, as standard sampling routines can be used.
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Parameter setting
The values for the parameters Q, M, T and U used in the studies for

the HBM-based methods are listed in Table A.6.
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Fig. 7. The curves of N ¼ f
∘
s; qð Þ for s ¼ ŝCM (red), s ¼ ŝMNE (blue) and s=φsLORETA

(green) for a simplified model. (For interpretation of the references to color in this fig-
ure legend, the reader is referred to the web version of this article.)

Parameters used in the simulation studies.

Method Parameter Study1 Study 2

CM Q 1000 1000
M 50 000 200 000

MAP1 T 50 50
MAP2 Q 1000 1000

M 50 000 200 000
T 50 50

MAP3 U 128 256
Q 25 25
M 200 200
T 50 50
Appendix B. Validation measures

Spatial dispersion (SD)

A standard approach to measure the spatial spread of an estimated
current distributionwould be to define a threshold q, and count the per-
centage of sources of which the amplitude is above q times themaximal
source amplitude max‖si ‖2. Wewill call this measure f

∘
s; qð Þ. However,

f
∘
s; qð Þ is not continuous, and involves some arbitrariness, because q has

to be chosen ad hoc. In Fig. 7 three plots of f
∘
s; qð Þ as a function of q are

depicted for a simplified model geometry. The curves for focal and
widespread CDRs show quite obvious differences.

We, therefore, propose to use a normalized version of the area
below the curve as a measure for the spatial dispersion:

Definition 1. Spatial dispersion, SD

ΓSP :¼ 1
k−1ð Þ ∫1

0 f
∘
s; qð Þdq−1

� �

¼ 1
k−1ð Þ

Xk
i¼1

‖si�‖2

a⋆;∞
−1

0
BBBB@

1
CCCCA; with a⋆;∞ ¼ max

j
‖sj�‖2

:

Note that this measure does not compare the spatial spread of
the real and estimated source but only yields information on the
estimate.

Earth mover's distance (EMD)

Supplementary to the text, we provide the mathematical definition
of the EMD and some comments on its practical computation. The
EMD is a Wasserstein metric which are distance measures between
probability distributions (Ambrosio et al., 2008):

Definition 2. Wasserstein metric

Let μ and v be two probabilitymeasures on a Radon space (Ω,d) that
have a finite pth moment for some p≥1. Then the pth Wasserstein
distanceWp(μ,ν) is defined as:

Wp μ;νð Þ ¼ ð inf
γ∈Γ μ;νð Þ

∫
Ω�Ω

d x; yð Þp dγ x; yð ÞÞ1=p;
where Γ(μ,ν) denotes the class of all transport maps, i.e., measures on
Ω×Ω with marginals μ and v.

In our study, we examine the p=1 Wasserstein distance for the
3D-Euclidean distance d(x,y)=‖x−y‖2, which is also called earth
mover's distance due to the following analogy. The intuitive explana-
tion behind this quantity dates back to Monge who published its for-
mulation in 1781 as an optimal transport problem: The first
probability measure is considered as an amount of sand piled on a
space Ω and the second measure as a hole with the same size. For a
given distance function d, the minimum-cost transport of the sand
into the holes has to be determined (where the cost of a single assign-
ment is understood as classical physical work in terms of distance
times amount of sand). This minimal cost is the Wasserstein distance
between the two measures.

The definition appears rather abstract for our practical task, but the
lack of a simpler measure that is commonly accepted may be rooted in
the fact that the task is not that simple after all. A good measure has to
mimic the way source estimates from inverse methods are interpreted
by the user and compare this interpretation with the reference source
activity.

To compute the EMD between the reference and estimated source
activity, both activities are transferred into discrete probability distri-
butions. In our setting, the reference source activity jref was composed
of single current dipoles at locations �r i; i ¼ 1…; τ:

jref rð Þ ¼
Xτ
i¼1

Mi· δi �r i−rð Þ ∀r∈Ω

Now define a discrete signature P by:

P ¼ p1;wp1

� �
;…; pτ ;wpτ

� �n o
with pi :¼ �ri; wpi

:¼ Mij j
Mtot

; Mtot ¼
Xτ
i¼1

Mij j

For the estimated CDR, we define a signature Q by:

Q ¼ q1;wq1

� �
;…; ql;wqk

� �n o
with qi :¼ ri; wqi

:¼ ‖si�‖2

atot
; atot ¼

Xk
i¼1

‖si�‖2



Fig. 9. The sum of the l2 norms of the three gain-vectors at a given position is depicted.
Left: realistic sensor configuration (r-cap); Right: artificial sensor configuration (f-cap).
The influence of the hole at the base of the skull (foramen magnum) on the magnitudes
of the deep-lying sources is noticeable for both sensor configurations.
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Finally, define the distance matrix D by letting D(i, j) be the 3D-
Euclidean distance between pi and qj. Now, we are ready to recast the
computation of the EMD between P and Q into a linear programming
problem as formulated by Kantorovich (Kantorovich, 1942; Kantorovich
and Gavurin, 1949):

Definition 3. Reformulation of the EMD

With the above definitions, find a transport plan Γ∈Rτ�k that min-
imizes the work

W P;Q ; Γð Þ ¼
Xτ
i¼1

Xk
j¼1

D i;jð Þ·Γ i;j ðB:1Þ

subject to the following constraints:

Γ i;j≥0; 1≤i≤τ;1≤j≤k ðB:2Þ

Xk
j¼1

Γ i;j ¼ wpi
; 1≤i≤τ ðB:3Þ

Xτ
i¼1

Γ i;j ¼ wqj
; 1≤j≤l ðB:4Þ

The minimal work resulting from this computation is the EMD
between P andQ. The constraints (B.2)–(B.4) ensure that Γ is a valid trans-
port plan:

(B.2) ensures that themass is transferred from P toQ and not vice versa.
(B.3) determines the amount ofmass that has to be transferred fromone

place.
(B.4) determines the amount ofmass that has to be transferred into one

place.

In the studieswe performed, the size of P is usually very small, and the
problem can be solved using standard linear programming toolboxes. The
transformation of (B.1) into the standard form can be found in (Lucka,
2011), Section A.1.6.

Appendix C. Additional figures

Figs. 8, 9 and 10.
Fig. 8. Sensor positions used in the studies. The realistic r-cap configuration consists
of 63 electrodes at the positions marked with the red spheres. The artificial f-cap
configuration consists of 134 electrodes at the positions marked with both the red
and blue spheres. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 10. The locations of the 1000 source space nodes used in the studies.
References

Acar, Z.A., Makeig, S., 2010. Neuroelectromagnetic forward head modeling toolbox. J.
Neurosci. Methods 190, 258–270.

Ahlfors, S.P., Ilmoniemi, R.J., Hämäläinen, M., 1992. Estimates of visually evoked cortical
currents. Electroencephalogr. Clin. Neurophysiol. 82, 225–236.

Akhtari, M., Bryant, H., Mamelak, A., Flynn, E., Heller, L., Shih, J., Mandelkem, M., Matlachov,
A., Ranken, D.M., Best, E., et al., 2002. Conductivities of three-layer live human skull.
Brain Topogr. 14, 151–167.

Ambrosio, L., Gigli, N., Savaré, G., 2008. Gradient Flows in Metric Spaces and in the
Spaces of Probability Measures. Birkhäuser, Basel. 2nd edition.

Aubert, G., Kornprobst, P., 2006. Mathematical problems in image processing, 2nd edi-
tion. Applied Mathematical Sciences, vol. 147. Springer.

Baillet, S., Garnero, L., 1997. A Bayesian approach to introducing anatomo-functional
priors in the EEG/MEG inverse problem. IEEE Trans. Biomed. Eng. 44, 374–385.

Bertrand, O., Thévenet, M., Perrin, F., 1991. 3D finite element method in brain electrical
activity studies. In: Nenonen, J., Rajala, H., Katila, T. (Eds.), Biomagnetic Localiza-
tion and 3D Modelling. Helsinki University of Technology, Helsinki, pp. 154–171.

Bruno, P., Vatta, F., Mininel, S., Inchingolo, P., 2003. Head model extension for the study
of bioelectric phenomena. Biomed. Sci. Instrum. 39, 59–64.



1381F. Lucka et al. / NeuroImage 61 (2012) 1364–1382
Bruno, P., Vatta, F., Minimel, S., Inchingolo, P., 2004. Referenced EEG and head volume
conductor model: geometry and parametrical setting. Conf Proc IEEE Eng Med Biol
Soc, San Francisco, USA.

Buchner, H., Knoll, G., Fuchs, M., Rienäcker, A., Beckmann, R., Wagner, M., Silny, J., Pesch,
J., 1997. Inverse localization of electric dipole current sources in finite element
models of the human head. Electroencephalogr. Clin. Neurophysiol. 102, 267–278.

Calvetti, D., Somersalo, E., 2007a. A Gaussian hypermodel to recover blocky objects. Inverse
Probl. 23, 733–754.

Calvetti, D., Somersalo, E., 2007b. Introduction to Bayesian scientific computing. Surveys
and Tutorials in the Applied Mathematical Sciences., vol. 2. Springer, New York.

Calvetti, D., Somersalo, E., 2008a. Hypermodels in the Bayesian imaging framework.
Inverse Probl. 24, 034013 (20 pp.).

Calvetti, D., Somersalo, E., 2008b. Recovery of shapes: hypermodels and Bayesian learn-
ing. J. Phys. Conf. Ser. IOP Publishing, p. 012014.

Calvetti, D., Hakula, H., Pursiainen, S., Somersalo, E., 2009. Conditionally Gaussian
hypermodels for cerebral source localization. SIAM J. Imaging Sci. 2, 879–909.

Dalal, S., Guggisberg, A., Edwards, E., Sekihara, K., Findlay, A., Canolty, R., Berger, M.,
Knight, R., Barbaro, N., Kirsch, H., Nagarajan, S., 2008. Five-dimensional neuroimag-
ing: localization of the time-frequency dynamics of cortical activity. NeuroImage
40, 1686–1700.

Dalal, S., Jerbi, K., Bertrand, O., Adam, C., Ducorps, A., Schwartz, D., Garnero, L., Baillet, S.,
Martinerie, J., Lachaux, J., 2010. Insights from simultaneous recording of MEG and
intracranial EEG. Front. Neurosci. Conference Abstract: Biomag 2010 — 17th Inter-
national Conference on Biomagnetism.

Dale, A.M., Sereno, M.I., 1993. Improved localization of cortical activity by combining EEG
and MEG with MRI cortical surface reconstruction: a linear approach. J. Cogn. Neu-
rosci. 5, 162–176.

Dannhauer, M., Lanfer, B., Wolters, C., Knösche, T., 2011. Modeling of the human skull
in EEG source analysis. Hum. Brain Mapp. 32, 1383–1399.

de Munck, J.C., van Dijk, B.W., Spekreijse, H., 1988. Mathematical dipoles are adequate
to describe realistic generators of human brain activity. IEEE Trans. Biomed. Eng.
35, 960–966.

Drechsler, F., Wolters, C.H., Dierkes, T., Si, H., Grasedyck, L., 2009. A full subtraction ap-
proach for finite element method based source analysis using constrained Delau-
nay tetrahedralisation. NeuroImage 46, 1055–1065.

Durka, P.J., Matysiak, A., Montes, E.M., Sosa, P.V., Blinowska, K.J., 2005. Multichannel
matching pursuit and EEG inverse solutions. J. Neurosci. Methods 148, 49–59.

Ebersole, J.S., Ebersole, S.M., 2010. Combining MEG and EEG source modeling in epilep-
sy evaluations. J. Clin. Neurophysiol. 27, 360–371.

Engl, H., Hanke-Bourgeois, M., Neubauer, A., 1996. Regularization of inverse problems.
Mathematics and Its Applications. Springer, Netherland, Berlin.

Friston, K.J., Mattout, J., Trujillo-Barreto, N.J., Ashburner, J., Penny, W.D., 2007. Varia-
tional free energy and the Laplace approximation. NeuroImage 34, 220–234.

Friston, K.J., Harrison, L., Daunizeau, J., Kiebel, S.J., Phillips, C., Trujillo-Barreto, N.J.,
Henson, R.N., Flandin, G., Mattout, J., 2008. Multiple sparse priors for the M/EEG in-
verse problem. NeuroImage 39, 1104–1120.

Fuchs, M., Drenckhahn, R., Wischmann, H., Wagner, M., 1998. An improved boundary
element method for realistical volume conductor modeling. IEEE Trans. Biomed.
Eng. 45, 980–997.

Fuchs, M., Wagner, M., Köhler, T., Wischmann, H.A., 1999. Linear and nonlinear current
density reconstructions. J. Clin. Neurophysiol. 16, 267.

Galka, A., Yamashita, O., Ozaki, T., Biscay, R., Valdés-Sosa, P., 2004. A solution to the dy-
namical inverse problem of EEG generation using spatiotemporal Kalman filtering.
NeuroImage 23, 435–453.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., Gelman, A., Carlin, J.B., Stern, H.S., Rubin,
D.B., 2003. Bayesian data analysis, Chapman and Hall/CRC Texts in Statistical Scien-
ce2nd edition. CRC Press. 2nd edition.

Gencer, N.G., Williamson, S.J., 1998. Differential characterization of neural sources with
the bimodal truncated SVD pseudo-inverse for EEG and MEG measurements. IEEE
Trans. Biomed. Eng. 45, 827–838.

Gramfort, A., Strohmeier, D., Haueisen, J., Hämäläinen, M., Kowalski, M., 2011. Func-
tional brain imaging with M/EEG using structured sparsity in time-frequency dic-
tionaries. Inf. Process. Med. Imaging. Springer, pp. 600–611.

Grave de Peralta, R., Hauk, O., Gonzalez, S.L., 2009. The neuroelectromagnetic inverse
problem and the zero dipole localization error. Comput. Intell. Neurosci. 2009, 11
pages. http://dx.doi.org/10.1155/2009/659247 (Article ID 659247).

Greenblatt, R.E., Ossadtchi, A., Pflieger, M.E., 2005. Local linear estimators for the bioe-
lectromagnetic inverse problem. IEEE Trans. Signal Process. 53, 3403–3412.

Hallez, H., 2008. Incorporation of Anisotropic Conductivities in EEG Source Analysis. Ph.D.
thesis. Faculteit Ingenieurswetenschappen, Universiteit Gent, Belgium.

Hämäläinen, M., Ilmoniemi, R.J., 1984. Interpreting measured magnetic fields of the
brain: minimum norm estimates of current distributions. Helsinki University of
Technology, Technical Report TKK-F-A559.

Hämäläinen, M., Ilmoniemi, R.J., 1994. Interpreting magnetic fields of the brain: mini-
mum norm estimates. Med. Biol. Eng. Comput. 32, 35–42.

Hämäläinen, M., Haario, H., Lehtinen, M., 1987. Inference about sources of neuromag-
netic fields using Bayesian parameter estimation. Helsinki University of Technolo-
gy, Technical Report TKK-F-A620.

Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993. Magneto-
encephalography— theory, instrumentation, and applications to noninvasive stud-
ies of the working human brain. Rev. Mod. Phys. 65, 413–497.

Haueisen, J., Tuch, D.S., Ramon, C., Schimpf, P.H., Wedeen, V.J., George, J.S., Belliveau,
J.W., 2002. The influence of brain tissue anisotropy on human EEG and MEG.
NeuroImage 15, 159–166.

Henson, R.N., Mattout, J., Phillips, C., Friston, K.J., 2009a. Selecting forward models for
MEG source-reconstruction using model-evidence. NeuroImage 46, 168–176.
Henson, R.N., Mouchlianitis, E., Friston, K.J., 2009b. MEG and EEG data fusion: simulta-
neous localisation of face-evoked responses. NeuroImage 47, 581–589.

Henson, R.N., Flandin, G., Friston, K.J., Mattout, J., 2010. A parametric empirical Bayesian
framework for fMRI-constrained MEG/EEG source reconstruction. Hum. Brain
Mapp. 31, 1512–1531.

Hufnagel, A., Elger, C.E., Pels, H., Zentner, J., Wolf, H.K., Schramm, J., Wiestler, O.D., 1994.
Prognostic significance of ictal and interictal epileptiform activity in temporal lobe
epilepsy. Epilepsia 35, 1146–1153.

Ioannides, A.A., Bolton, J.P.R., Clarke, C.J.S., 1990. Continuous probabilistic solutions to
the biomagnetic inverse problem. Inverse Probl. 6, 523–542.

Janszky, J., Jokeit, H., Schulz, R., Hoppe, M., Ebner, A., 2000. EEG predicts surgical out-
come in lesional frontal lobe epilepsy. Neurology 54, 1470–1476.

Jun, S.C., George, J.S., Kim, W., Paré-Blagoev, J., Plis, S.M., Ranken, D.M., Schmidt, D.M.,
2008. Bayesian brain source imaging based on combined MEG/EEG and fMRI
using MCMC. NeuroImage 40, 1581–1594.

Kaipio, J.P., Somersalo, E., 2005. Statistical and computational inverse problems.
Applied Mathematical Sciences, vol. 160. Springer, New York.

Kantorovich, L., 1942. On the translocation ofmasses. Dokl. Akad. Nauk SSSR 37, 227–229.
Kantorovich, L., Gavurin, M., 1949. The application of mathematical methods in prob-

lems of freight flow analysis. Collection of Problems Concerned with Increasing
the Effectiveness of Transports, pp. 110–138.

Kiebel, S.J., Garrido, M.I., Moran, R., Chen, C.C., Friston, K.J., 2009. Dynamic causal
modeling for EEG and MEG. Hum. Brain Mapp. 30, 1866–1876.

Klenke, A., 2008. Probability Theory: A Comprehensive Course, 1st edition. Springer, London.
Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T., 2005. A com-

mon formalism for the integral formulations of the forward EEG problem. IEEE
Trans. Med. Imaging 24, 12–28.

Lanfer, B., Scherg, M., Dannhauer, M., Knösche, T., Wolters, C., 2010. Influence of deficien-
cies in segmenting the skull on EEG source modeling. Proc. of the 16th Annual Meet-
ing of the Organization for Human Brain Mapping, Barcelona, Spain, June 6–10.

Lew, S., Wolters, C.H., Dierkes, T., Röer, C., MacLeod, R.S., 2009. Accuracy and run-time
comparison for different potential approaches and iterative solvers in finite element
method based EEG source analysis. Appl. Numer. Math. 59, 1970–1988.

Lin, F.H., Witzel, T., Ahlfors, S.P., Stufflebeam, S.M., Belliveau, J.W., Hämäläinen, M.,
2006. Assessing and improving the spatial accuracy in MEG source localization
by depth-weighted minimum-norm estimates. NeuroImage 31, 160–171.

Lucka, F., 2011. Hierarchical Bayesian Approaches to the Inverse Problem of EEG/MEG
Current Density Reconstruction. Master's thesis. University of Muenster, Germany.

MacKay, D., 2003. Information Theory, Inference, and Learning Algorithms, 1st edition.
Cambridge University Press.

Mattout, J., Phillips, C., Penny, W.D., Rugg, M.D., Friston, K.J., 2006. MEG source localiza-
tion under multiple constraints: an extended Bayesian framework. NeuroImage 30,
753–767.

Molins, A., Stufflebeam, S.M., Brown, E.N., Hämäläinen, M., 2008. Quantification of the
benefit from integrating MEG and EEG data in minimum l2-norm estimation. Neu-
roImage 42, 1069–1077.

Mosher, J.C., Lewis, P.S., Leahy, R.M., 1992. Multiple dipole modeling and localization
from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39, 541–557.

Niedermeyer, E., Lopez da Silva, F.L., 2004. Electroencephalography: Basic Principles,
Clinical Applications, and Related Fields, 5th edition. Lippincot Williams &Wilkins,
Philadelphia.

Nummenmaa, A., Auranen, T., Hämäläinen, M., Jääskeläinen, I.P., Lampinen, J., Sams, M.,
Vehtari, A., 2007a. Hierarchical Bayesian estimates of distributed MEG sources:
theoretical aspects and comparison of variational and MCMC methods. Neuro-
Image 35, 669–685.

Nummenmaa, A., Auranen, T., Hämäläinen, M., Jääskeläinen, I.P., Sams, M., Vehtari, A.,
Lampinen, J., 2007b. Automatic relevance determination based hierarchical Bayesian
MEG inversion in practice. NeuroImage 37, 876–889.

Nunez, P.L., Srinivasan, R., 2005. Electric Fields of the Brain: The Neurophysics of EEG,
2nd edition. Oxford University Press, USA.

Oostenveld, R., Oostendorp, T., 2002. Validating the boundary element method for for-
ward and inverse EEG computations in the presence of a hole in the skull. Hum.
Brain Mapp. 17, 179–192.

Ou, W., Hämäläinen, M.S., Golland, P., 2009. A distributed spatio-temporal EEG/MEG
inverse solver. NeuroImage 44, 932–946.

Parkkonen, L., Fujiki, N., Mäkelä, J., 2009. Sources of auditory brainstem responses revis-
ited: contribution by magnetoencephalography. Hum. Brain Mapp. 30, 1772–1782.

Pascual-Marqui, R.D., 1999. Review of methods for solving the EEG inverse problem.
Int. J. Bioelectromagn. 1, 75–86.

Pascual-Marqui, R.D., 2002. Standardized low-resolution brain electromagnetic tomog-
raphy (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–12
Suppl. D.

Phillips, C., Mattout, J., Rugg, M.D., Maquet, P., Friston, K.J., 2005. An empirical Bayesian
solution to the source reconstruction problem in EEG. NeuroImage 24, 997–1011.

Ramon, C., Schimpf, P.H., Haueisen, J., 2006. Influence of head models on EEG simula-
tions and inverse source localizations. Biomed. Eng. Online 5, 10 (13 pp.).

Rampp, S., Stefan, H., 2007. Magnetoencephalography in presurgical epilepsy diagno-
sis. Expert Rev. Med. Devices 4, 335–347.

Rullmann, M., Anwander, A., Dannhauer, M., Warfield, S.K., Duffy, F.H., Wolters, C.H.,
2009. EEG source analysis of epileptiform activity using a 1 mm anisotropic hexa-
hedra finite element head model. NeuroImage 44, 399–410.

Sander, T.H., K.T., S.A., K.F., W.C., H.J., T.L., 2010. Recent advances in modeling and anal-
ysis of bioelectric and biomagnetic sources. Biomed. Tech. (Berl) 55, 65–76.

Santiuste, M., Nowak, R., Russi, A., Tarancon, T., Oliver, B., Ayats, E., Scheler, G., Graetz,
G., 2008. Simultaneous magnetoencephalography and intracranial EEG registra-
tion: technical and clinical aspects. J. Clin. Neurophysiol. 25, 331–339.



1382 F. Lucka et al. / NeuroImage 61 (2012) 1364–1382
Sarvas, J., 1987. Basic mathematical and electromagnetic concepts of the biomagnetic
inverse problem. Phys. Med. Biol. 32, 11–22.

Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., Kawato, M., 2004. Hi-
erarchical Bayesian estimation for MEG inverse problem. NeuroImage 23, 806–826.

Scherg, M., Buchner, H., 1993. Somatosensory evoked potentials and magnetic fields:
separation of multiple source activities. Physiol. Meas. 14, A35.

Scherg, M., Cramon, D.V., 1985. Two bilateral sources of the late AEP as identified by a
spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 62, 32–44.

Schiffbauer, H., Berger, M., Ferrari, P., Freudenstein, D., Rowley, H., Roberts, T., 2002. Pre-
operative magnetic source imaging for brain tumor surgery: a quantitative compar-
ison with intraoperative sensory and motor mapping. J. Neurosurg. 97, 1333–1342.

Schimpf, P., Ramon, C., Haueisen, J., 2002. Dipole models for the EEG and MEG. IEEE
Trans. Biomed. Eng. 49, 409–418.

Schmitt, U., Louis, A.K., Wolters, C.H., Vauhkonen, M., 2002. Efficient algorithms for the reg-
ularization of dynamic inverse problems: II. Applications. Inverse Probl. 18, 659–676.

Sekihara, K., Nagarajan, S.S., 2008. Adaptive spatial filters for electromagnetic brain im-
aging, 1st edition. Series in Biomedical EngineeringSpringer.

Sekihara, K., Sahani, M., Nagarajan, S.S., 2005. Localization bias and spatial resolution of
adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuro-
Image 25, 1056–1067.

Stefan, H., Hummel, C., Scheler, G., Genow, A., Druschky, K., Tilz, C., Kaltenhauser, M.,
Hopfengartner, R., Buchfelder, M., Romstock, J., 2003. Magnetic brain source imag-
ing of focal epileptic activity: a synopsis of 455 cases. Brain 126, 2396–2405.

Tao, J.X., Ray, A., Hawes-Ebersole, S., Ebersole, J.S., 2005. Intracranial EEG substrates of
scalp EEG interictal spikes. Epilepsia 46, 669–676.

Taubin, G., 1995. A signal processing approach to fair surface design. Proceedings of the
22nd annual conference on Computer graphics and interactive techniques. ACM,
pp. 351–358.

Trujillo-Barreto, N.J., Aubert-Vázquez, E., Valdés-Sosa, P.A., 2004. Bayesian model aver-
aging in EEG/MEG imaging. NeuroImage 21, 1300–1319.
Trujillo-Barreto, N.J., Aubert-Vázquez, E., Penny, W.D., 2008. Bayesian M/EEG source re-
construction with spatio-temporal priors. NeuroImage 39, 318–335.

Vallaghé, S., Papadopoulo, T., 2010. A trilinear immersed finite element method for solving
the electroencephalography forward problem. SIAM J. Sci. Comput. 32, 2379–2394.

Van den Broek, S., Reinders, F., Donderwinkel, M., Peters, M., 1998. Volume conduction ef-
fects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 106, 522–534.

Vese, L.A., Chan, T.F., 2002. A multiphase level set framework for image segmentation
using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271–293.

Vorwerk, J., 2011. Comparison of Numerical Approaches to the EEG Forward Problem.
Master's thesis. University of Muenster, Germany.

Wagner, M., Fuchs, M., Kastner, J., 2004. Evaluation of sLORETA in the presence of noise
and multiple sources. Brain Topogr. 16, 277–280.

Wang, J.Z., Williamson, S.J., Kaufman, L., 1992. Magnetic source images determined by a
lead-field analysis: the unique minimum-norm least-squares estimation. IEEE
Trans. Biomed. Eng. 39, 665–675.

Weinstein, D., Zhukov, L., Johnson, C., 2000. Lead-field bases for electroencephalography
source imaging. Ann. Biomed. Eng. 28, 1059–1065. http://dx.doi.org/10.1114/
1.1310220.

Wipf, D., Nagarajan, S.S., 2009. A unified Bayesian framework for MEG/EEG source im-
aging. NeuroImage 44, 947–966.

Wolters, C.H., Grasedyck, L., Hackbusch, W., 2004. Efficient computation of lead field
bases and influence matrix for the FEM-based EEG and MEG inverse problem. In-
verse Probl. 20, 1099–1116.

Wolters, C.H., Köstler, H., Möller, C., Härdtlein, J., Anwander, A., 2007a. Numerical approaches
for dipolemodeling infinite elementmethodbased source analysis. Int. Congr. Ser. 1300,
189–192 ISBN-13:978-0-444-52885-8. http://dx.doi.org/10.1016/j.ics.2007.02.014.

Wolters, C.H., Köstler, H., Möller, C., Härtlein, J., Grasedyck, L., Hackbusch, W., 2007b.
Numerical mathematics of the subtraction method for the modeling of a current
dipole in EEG source reconstruction using finite element head models. SIAM J.
Sci. Comput. 24–45.

http://dx.doi.org/10.1114/1.1310220
http://dx.doi.org/10.1114/1.1310220

	Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents
	Introduction
	Inverse methods for EEG/MEG
	Brain networks involving deep-lying sources
	Contributions and structure of this study

	Methods
	Bayesian formulation of the static inverse problem
	Hierarchical modeling in EEG/MEG
	Inference for hierarchical models
	Algorithms for fully-Bayesian inversion
	CM estimation
	MAP estimation

	Validation means and inverse crimes
	Static and dynamic inverse problems

	Results
	Setting for the studies
	Head model and source space
	Inverse methods

	Study 1: single dipole reconstruction
	Setting
	Results
	General properties
	Depth bias


	Study 2: masking of deep-lying sources in two-dipole scenarios
	Setting
	Results
	Initial example
	General properties


	Study 3: masking of deep-lying sources in three-dipole scenarios
	Setting
	Results
	Initial example
	General properties


	Comparison between MAP approximations

	Discussion
	Study 1 (single dipole reconstruction)
	HBM methods
	Minimum norm based methods
	Direct comparison

	Study 2 (masking of deep-lying dipole by near-surface dipole)
	Study 3 (masking of deep-lying dipole by two near-surface dipoles)
	The value of the EMD as a performance measure
	Limitations and outlook

	Conclusions
	Acknowledgments
	Appendix A. Algorithmical details
	Step 1
	Iterative solvers
	Explicit solution

	Step 2
	Parameter setting


	Appendix B. Validation measures
	Spatial dispersion (SD)
	Earth mover's distance (EMD)

	Appendix C. Additional figures
	References


