
TECHNICAL UNIVERSITY OF CRETE
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

DIGITAL IMAGE & SIGNAL PROCESSING (DISPLAY)
LABORATORY

BAND SPECIFIC OSCILLATIONS IN

COMBINED EEG/MEG SOURCE

ANALYSIS: CASE STUDY IN DRUG

RESISTANT EPILEPSY

by

Glykeria Sdoukopoulou

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA OF
ELECTRICAL AND COMPUTER ENGINEERING

THESIS COMMITTEE

Professor Michail Zervakis, Thesis Supervisor
Professor Athanasios Liavas

Professor Carsten H. Wolters



Abstract

Objective: In the current study, we investigate the contribution of High

Frequency Oscillations (HFOs) on the indication of the epileptogenic zone

(EZ). We also study new approaches for the automatic detection of the non

cerebral activity.

Motivation: We deployed an integrated pipeline for the detection of the

EZ, incorporating HFOs-based and interictal spikes-based source analysis on

a multi-focal epilepsy case. HFOs have been shown similar and/or better

accuracy on the indication of the EZ compared to interictal spikes. More-

over, a combination of the non-invasive modalities electro- and magneto-

encephalography (EEG) and (MEG), EMEG, has been shown to outperform

single EEG or MEG in source analysis.

Novelty: In this thesis, we provide a patient-specific pipeline to investigate

HFOs contribution on source localization compared to annotated interictal

spikes. We have detected scalp HFOs on each modality using a thresholding

technique in combination with an energy-based clustering approach. A cali-

brated realistic FEM head modelling is used to implement HFOs-based and

interictal spikes-based source localization, independently.

Methods: The brain activity is recorded by EEG and MEG on a patient

who suffered from multi-focal epilepsy. The first step for the EEG/MEG

processing was the preprocessing, including filtering and artifact detection

and correction methods in combination with information theory metrics. We

also investigate new approaches towards the restriction of the non cerebral

activity. Consequently, scalp HFOs are detected on both EEG and MEG.

The detection algorithm consists of 3-phases sequentially implemented incor-

porating a thresholding technique, visual inspection and energy-based clus-

tering approach. Source analysis is performed on detected HFOs and anno-
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tated spikes. For each epileptic indicator, a solution to source localization is

calculated, using the sLORETA algorithm, for different time instances and

for each modality. A realistic head model including six tissue compartments,

white matter anisotropy and calibrated skull conductivities has been used. A

comparison between HFOs and interictal spikes-based source reconstructions

is performed.

Results and Conclusions: Independently for HFOs and interictal spikes,

four time instances have been chosen for each modality to explain better the

underlying epileptic activity and the propagation phenomenon of the activity

between the lesions. The results show that there is a concordance between the

HFOs-based and spikes-based source estimation in all modalities. Although,

single EEG and MEG source analysis indicates successfully the first less

challenging lesion, their source reconstructions are far away from the second

lesion. EMEG source reconstruction is able to indicate both lesions, revealing

also a pathway between them, especially when using HFOs. Therefore, bi-

lesional epileptic activity can be detected through the synergy of EEG and

MEG with HFOs on the basis of realistic head model.

Keywords: Epilepsy, Interictal spikes, HFOs, EEG, MEG, FEM, Source

Analysis



Περίληψη

Καινοτομία: Στην παρούσα μελέτη διερευνούμε τη συμβολή των High Fre-

quency Oscillations (HFOs) στον εντοπισμό της επιλεπτογόνου περιοχής. Ε-

πίσης, διερευνούμε νέες μεθόδους αυτόματου εντοπισμού μη εγκεφαλικής δρα-

στηριότητας.

Κίνητρο: Αναπτύξαμε ένα ολοκληρωμένο σύστημα ανίχνευσης της επιλεπτο-

γόνου περιοχής, χρησιμοποιώντας HFOs και interictal spikes για την ανάλυση

εγκεφαλικών πηγών σε περίπτωση ασθενή που πάσχει από πολυ-εστιακή επιλη-

ψία. Τα HFOs φαίνεται να εντοπίζουν ακριβέστερα την επιλεπτογόνο περιοχή

συγκριτικά με τα interictal spikes. Ο συνδυασμός (EMEG) των μη επεμβατι-

κών μεθόδων της ηλεκτρο- και μαγνητο- εγκεφαλογραφίας (EEG και MEG)

δίνει καλύτερα αποτελέσματα από την κάθε μέθοδο ξεχωριστά στην ανάλυση

πηγών.

Στόχος: Η παρούσα διπλωματική διερευνά τη συμβολή των HFOs στον εντο-

πισμό της επιλεπτογόνου περιοχής συγκριτικά με τα interictal spikes, υλοποι-

ώντας τον αλγόριθμο εντοπισμού των HFOs και τεχνικές ανάλυσης εγκεφαλι-

κών πηγών.

Μέθοδοι: Η καταγεγραμμένη εγκεφαλική δραστηριότητα μέσω των μη ε-

πεμβατικών μεθόδων της ηλεκτρο- και μαγνητο- εγκεφαλογραφίας, προέρχεται

από ασθενή που πάσχει από πολυ-εστιακή επιληψία. Αρχικά τα σήματα προ-

επεξεργάζονται μέσω φιλτραρίσματος και τεχνικές ανίχνευσης και διόρθωσης

του θορύβου. Επίσης, εξετάζουμε νέες μεθόδους περιορισμού της μη εγκε-

φαλικής δραστηριότητας. Εν συνεχεία, εφαρμόζεται ο αλγόριθμος ανίχνευσης

των HFOs, ο οποίος αποτελείται από τρεις διαδοχικές φάσεις: μια μέθοδο κατω-

φλίωσης, την επιθεώρηση των σημάτων, καθώς και την ομαδοποίηση βασισμένη

στην ενέργεια. Η ανάλυση των εγκεφαλικών πηγών βασίζεται τόσο στα ανι-

χνευμένα HFOs, όσο και τα σημειωμένα από επιληπτιολόγο interictal spikes. Η
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λύση στο πρόβλημα εντοπισμού των εγκεφαλικών πηγών υπολογίζεται με βάση

τον αλγόριθμο sLORETA, για διάφορες χρονικές στιγμές. Χρησιμοποιήθη-

κε, επίσης, ένα ρεαλιστικό μοντέλο κεφαλής, το οποίο απαρτίζεται από έξι (6)

τμήματα ιστών, ανισοτροπία λευκής ουσίας και βαθμονομημένη διαγωγιμότητα

κρανίου.

Αποτελέσματα και Συμπεράσματα: Η ανάλυση των εγκεφαλικών πη-

γών έχει γίνει σε τέσσερις (4) επιλεγμένες χρονικές στιγμές, με στόχο την

καλύτερη απεικόνιση της υποβόσκουσας επιληπτικής δραστηριότητας και της

διάδοσης της μεταξύ των κακώσεων. Σύμφωνα με τα αποτελέσματα υπάρχει

συμφωνία των επιλεπτογόνων περιοχών που επιδεικνύονται τόσο από τα HFOs,

όσο και από τα interictal spikes. Αν και η ανάλυση πηγών μέσω ηλεκτροε-

γκεφαλογραφήματος και μαγνητοεγκεφαλογραφήματος εντόπισε επιτυχώς την

πρώτη μη απαιτητική κάκωση, η ανακατσκευή των εγκεφαλικών πηγών απέχει

πολύ απο τη δεύτερη κάκωση. Η ανακατασκευή εγκεφαλικών πηγών βασι-

σμένη στο συνδιασμό EMEG εντόπισε ακριβέστερα και τις δυο κακώσεις και

αποκάλυψε το μονοπάτι-σύνδεσμο μεταξύ τους, ειδικά αξιοποιώντας τα HFOs.

Συνεπώς, η διαταραγμένη εγκεφαλική δραστηριότητα από τις κακώσεις μπο-

ρεί να εντοπιστεί μέσω της συνέργειας του ηλεκτροεγκεφαλογραφήματος και

μαγνητοεγκεφαλογραφήματος, χρησιμοποιώντας ρεαλιστικό μοντέλο κεφαλής.

Λέξεις Κλειδιά: Επιληψία, Ταλαντώσεις Υψηλών Συχνοτήτων, Ηλεκτρο-

εγκεφαλογράφημα, Μαγνητοεγκεφαλογράφημα, Πεπερασμένο Μοντέλο Κεφα-

λής, Ανάλυση Πηγών
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Chapter 1

Introduction

1.1 Thesis Structure

The current study investigates a novel indicator of epileptic activity along-

side with interictal spikes. The so-called High Frequency Oscillations (HFOs)

are used to identify the seizure onset zone from measurements acquired by

non-invasive electro- and magneto-encephalography (EEG and MEG) tech-

niques. The aim and objective are presented at the end of this chapter, after

addressing the framework of the current study. More specifically, the thesis

structure proceeds as follows.

In Chapter 2 the reader is introduced to the fundamental and theoretical

knowledge of the topics covered in this thesis. The chapter starts with the ba-

sics of human brain anatomy and functionality, with emphasis on epilepsy. A

short elaboration is given about the fundamental EEG and MEG operations,

concluding with a comparison between the two measurement modalities.

Chapter 3 focuses on the theoretical background of this work, giving the

mathematical formulations and derivations of the implemented algorithms

and methodologies. Moreover, the pipeline of the thesis is elaborated. Be-

ginning with the description of the preprocessing techniques, the next coming

is the explanation of the semi-automated HFOs detection algorithm, includ-

ing the clustering step. Consequently, the source analysis is fully defined,

consisting of the definition and description of the forward and the inverse

problem.

Chapter 4 presents all the experimental results. Furthermore a detailed

pipeline of each module is explained. The chapter starts with the preprocess-

ing results and the regarding explanations, it continues with the detection

and clustering of HFOs. Finally, the results of spikes-based and HFOs-based
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source analysis are presented for the EEG, MEG and combined EEG/MEG

modalities.

Chapter 5 makes a comparison with other studies in order to high-

light the new findings and discuss the value of the joint processing of EEG

and MEG. Furthermore, it provides the concluding remarks and important

methodological notes resulting from the current study.

Chapter 6 briefly introduces the reader to the user interface of the two

toolboxes used on this thesis work: FieldTrip and Brainstorm. A concise

comparison is made and the main merits of each toolbox are highlighted.

1.2 Aims and Innovation

The main aim of this thesis is to study the contribution of High Frequency

Oscillations (HFOs) as indicators of epileptic activity. HFOs are used to

identify the seizure onset zone. Also, annotated spikes are used for the seizure

onset zone identification and a comparison between HFOs-based and spikes-

based source analysis results is made. When the epileptic foci is distributed

into more than one brain regions the diagnosis is getting complex, making

the harmonization of several trials and modalities important. The goals of

this thesis work are the following:

1. First goal: clean the recordings from the possible artifacts in order to

increase the signal to noise ratio and assist source localization. EEG

and/or MEG sensors record not only brain activity but also artifactual

signals such as oculars, cardiac, muscular or head movements.

2. Second goal: detect and cluster scalp HFOs on EEG/MEG record-

ings. Because HFOs detection is a laborious and time consuming hu-

mans in the loop task, a semi-automated detection algorithm with a

clustering approach is examined in order to assist epileptologist’s work.

3. Third goal: study the concordance between source reconstructions

using HFOs and Interictal Spikes. The capabilities of head modelling
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and localization methods were examined, particularly using realistic

head modelling with FEM and sLORETA, respectively.

4. Forth goal: study the potential of joint source analysis of EEG and

MEG recordings. Even though this study examines an EEG dominant

epilepsy case, MEG accurately detects epileptic activity on different

brain regions. Nevertheless, EEG resolution is lower and its localization

potential is weaker that MEG. Consequently, combined EEG/MEG

source analysis takes into account the different characteristics of each

modality and deploys EEG/MEG complementary nature.

These issues are studied in the next sections and applied on real EEG

and MEG recordings, kindly provided by Prof. Carsten Hermann Wolters

(University of Münster, Institute for Biomagnetism and Biosignalanalysis

IBB).

1.3 Related work

Preprocessing methods for noise cancellation and artifact rejection have been

widely used in every study of EEG and MEG. Filtering is the most common

first step of fundamental noise reduction. Furthermore, component analy-

sis, including PCA, ICA and SSP (especially for MEG recordings) has been

widely examined in association with several pathologies, such as epilepsy,

Parkinson and Alzheimer. The main goal is to accurately distinguish the

artifactual from the cerebral sources and suppress the first ones, while the

brain activity remains totally or almost totally unaffected. For the arti-

factual components’ identification a lot of methods have been developed

incorporating techniques both on time and time-frequency domain [1], [2],

while machine and deep learning alongside with tensor decomposition have

been introduced for EEG/MEG processing [3], [4], [5], [6]. High Frequency

Oscillations (HFOs) detection algorithms are a subject undergoing intense

studying. A variety of algorithms on time and/or time frequency domain has

been implemented, incorporating thresholding or statistical techniques [7],

[8], [9], [10], [11]. The most recent advances in presurgical epilepsy diagnosis
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integrate detection of scalp HFOs [12]. Also, recent studies use machine or

deep learning approaches for HFOs detection [13]. Localization of the brain

activity of interest has been widely exploited for both EEG and MEG record-

ings. Interictal spikes are well-established indicators of epileptic activity and

they have been extensively used for the identification of the epileptogenic

zone [14], [15]. Combined EEG/MEG source analysis is an emerging ap-

proach for solving the Forward Problem as it yields superior results in terms

of source estimation according to studies [16], [17], [18]. On the other hand,

HFOs are newly introduced indicators of epileptic activity, meaning that

they are not a fully exploited research topic [19]. Studies show that scalp

and intracranial HFOs represent the same brain phenomena. Localization of

scalp HFOs is an emerging research topic, with a limited number of studies

examining HFOs-based source analysis on MEG recordings [12], [20].



16

Chapter 2

Fundamentals

In this chapter all the medical background and the description of the modal-

ities are given. The chapter begins with a brief description of the anatomy

of the human head and continuous with the explanation of the Nervous Sys-

tem. This thesis work study a focal epilepsy case, so a definition of focal

epilepsy as a disorder is given including the definition of interictal spikes,

High Frequency Oscillations (HFOs) and the applied focal epilepsy treat-

ments. Finally, EEG and MEG modalities are explained, while a comparison

between them is made. Also, the advantages of combined EEG/MEG are

highlighted, especially when studying focal epilepsy cases.

2.1 Anatomy and Physiology of the Human

Brain

Brain is the most complex organ, responsible for processing all body func-

tions, integrating, and coordinating the information it receives from the sense

organs, and making decisions, accordingly. It is enclosed by the skull and it

is surrounded by the CSF that is also flowing inside the brain through the

cerebral ventricles. Additionally, brain is the most important organ of the

nervous system. It consists of the cerebrum, diencephalon, cerebellum and

brainstem (Fig. 2.2a 1). The Nervous System comprises of nerves and neu-

rons that transmit electrical and chemical signals across all body parts. A

typical neuron consists of a cell body (soma), dendrites, and an axon with an

axon terminal. The electrical impulses that are conveyed by the signals are

called Action Potentials (AP) and are caused when the neuron’s membrane

1https://www.visiblebody.com/learn/nervous/brain

https://www.visiblebody.com/learn/nervous/brain
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potential temporary changes from negative to positive (Fig. 2.1a). This

potential shift is caused by the abrupt influx and outflow of ions.

Cerebrum is the largest part of the brain and its outer segment (cerebral

cortex) consists of the right and left cerebral hemispheres. Each hemisphere

controls the bilateral part of the human body and they are responsible for

the performance of higher intellectual functions. The cerebral hemispheres

consist of the grey matter which is the outer layer and the white matter

which is the inner layer. The outer layer of the grey matter is called cerebral

cortex (2.1b). The cerebral cortex is about 3mm thick and takes over almost

half of the weight of the brain. The surface is highly folded, forming ridges

and valleys which are called gyri and sulci, respectively. The distinct fissures

of the cerebral hemispheres divide the brain into four lobes (2.2b 2) for each

hemisphere.

(a) The states of
the Action Poten-
tial (AP). Adapted
from https://www.

moleculardevices.

com.

(b) Cerebrum consists of the grey
and white matter. Grey mat-
ter is the outer layer of the
cerebrum, while the inner layer
is called white matter. The
outer layer of the grey matter is
called cerebral cortex. Adapted
from Autism Spectrum Disorder:
Brain Images and Registration.

Figure 2.1: Action Potential and cerebral cortex.

Diencephalon located in the central region of the brain, it i responsi-

ble for the relay and process of the sensory information and the autonomic

control.

Cerebellum is located underneath the cerebrum and coordinates muscle

movements, maintain posture, and balance.

2https://www.nbia.ca/brain-structure-function/

https://www.moleculardevices.com
https://www.moleculardevices.com
https://www.moleculardevices.com
https://www.nbia.ca/brain-structure-function/
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Brainstem relays signals between the cerebrum, cerebellum and to the

spinal cord. It is responsible for automatic functions.

(a) The com-
partments of the
human head.

(b) Brain lobes.

Figure 2.2: Brain compartments and lobes.

2.2 Epilepsy

2.2.1 Epilepsy as a Disorder

Epilepsy is a common central nervous system disorder, affecting 1% of people

worldwide and 2% in EU. More than 5 million cases are diagnosed annually.

It has been estimated that approximately 7%–8% of the global population

have at least 1 epileptic seizure during their lifetime. Epilepsy is expressed as

an unconscious recurrent occurrence of synchronous electrical discharges in

cerebral cortical neurons, called epileptic seizures. It is caused by temporally

abnormal brain activities which result in uncontrollable and unconscious jerk-

ing, temporary confusion, loss of consciousness and awareness and feelings

such as fear, anxiety or déjà vu. Each type of seizure may be expressed with

different symptoms. Commonly, the patients show the same type of epileptic

seizure during each episode, so the symptoms will be similar each time.

2.2.2 Focal Epilepsy

The main categories of epilepsy are the grand mal, the petit mal, and the

focal epilepsy [21]. In this thesis, only focal epilepsy has been studied. This

type of epilepsy can arise from any lobe of the brain or deeper structures of
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brain stem. Initially, it affects only one part of the brain which is the whole

hemisphere or a part of the lobe from which the seizure generated. Usually,

focal seizures arise from brain lesions due to a brain injury, brain infection,

or functional abnormalities such as a tumor region. The surface of this

cortical region varies from a few millimeters to centimeters. The semiology of

these seizures depend on the brain region in which the synchronous electrical

discharges are generated. In this research work, the case study is a frontal

lobe epilepsy. Usually, frontal lobe seizures last less than 30 seconds and tend

to occur at night. Due to the numerous connections between the frontal and

temporal lobe, it can be difficult to determine which section of the brain is

being affected.

2.2.3 Interictal Spikes

Generally, spikes are generated by the synchronous electrical discharges of

a group of neurons [22]. Interictal spikes are the spikes detected between

seizures (interictally). Also, they may occur before (preictally), during (ic-

tally) and after (postictally) a seizure. They are correlated with epilepsy

because the brain region that generates them is highly associated with the

epileptogenic zone. The epileptogenic zone (EZ) is defined as the cortex area

responsible for the epileptic seizures initiation (EZ is integral for the epileptic

seizures). An alternative definition of the epileptogenic zone is the minimum

amount of cortex that must be resected (inactivated or completely discon-

nected) to produce seizure freedom [21]. The seizure onset zone is the cortex

area that actually generates the epileptic seizures [21]. The volume of tissue

that is responsible for the interictal spikes generation is called irritative zone

(IZ) [23]. To mention that interictal spikes are a part of the interictal dis-

charges and they are followed by sharp waves. Interictal discharges express

high amplitude (> 50µV ), interictal spikes have less that 50ms duration and

sharp waves last from about 50ms to 200ms [14].
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2.2.4 High Frequency Oscillations

High Frequency Oscillations (HFOs) have been emerged as a new biomarker

in epilepsy. The frequency band that is mainly used in the majority of

clinical cases is below 100 Hz. However, HFOs can be found on the frequency

band between 80Hz and 500Hz and they are excessively studied in order

to understand their contribution in epilepsy. HFOs are divided into two

categories: ripples (80Hz-250Hz) and fast ripples (250Hz-500Hz) [24]. Studies

[25] indicate that some ripples may exist physiologically in the brain and they

are associated with memory consolidation. On the other hand, fast ripples are

highly connected with the epileptogenic cortex [26]. Frequency itself is not

adequate to determine if HFOs are pathologically or not. For example, ripples

generated by the dentate gyrus are always connected with epileptic activity

[27]. The classification of HFOs as pathological or normal is still under

investigation [27]. Probably, normal ripples are generated by the summation

of synchronous IPSPs generated by subsets of interneurons that regulate the

discharges of principal cells, while fast ripples often reflect the synchronized

firing of abnormally bursting neurons [26], [27]. Invasive EEG recording

methods serve as the golden standard for HFOs study. However, studies have

shown that HFOs can be recorded using scalp EEG and MEG [19], [28], [12].

In order to catch HFOs the sampling frequency of the recordings must be

at least 2000Hz and it is advisable to acquire the measurements during the

NREM sleep. Regarding to spikes, HFOs can be detected in three different

ways: (1) HFOs visible in spikes (2) HFOs invisible in spikes (3) HFOs

independent of spikes [29]. According to literature most HFOs occur the

same time with spikes [29], [28].

2.2.5 Focal Epilepsy Treatments

The most common treatment is the anti-epileptic drugs, which help approxi-

mately 60% of the patients to become seizure free after the initial dose (WHO,

2019). Additional medication can be slightly more effective, since the 70% of

the patients will be seizure free. A proportion of 30% of patients suffer from

refractory epilepsy. For those cases the most promising treatment option is
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the epilepsy surgery (WHO, 2019). The holy grail in epilepsy surgery is to

find the brain regions responsible for generating the epileptic activity. The

aim of the presurgical evaluation is to precisely define the epileptogenic zone

(subsection 2.2.3). The cortical zones that should be well defined during the

presurgical evaluation are the [21]:

• Irritative zone (subsection 2.2.3), which is measured by invasive or non-

invasive EEG, and functional magnetic resonance imaging (fMRI)

• Seizure-onset zone (subsection 2.2.3), which is mainly defined by inva-

sive or non-invasive EEG, but can also be defined by ictal SPECT and

to a lesser degree by fMRI and MEG

• Symptomatogenic zone, which is the cortex area that generates the

symptoms when it is activated. This area is obtained by studying the

initial seizure symptomatology.

• Epileptogenic lesion, which is the lesion responsible for the epileptic

seizures. This cortex area is defined by high resolution MRI.

• Functional deficit zone, which is the dysfunctional cortex area dur-

ing the interictal period. This area can be defined by using surrogate

tests including neurological examination, neuropsychological examina-

tion and functional imaging (interictal SPECT and PET).

The cortical zones are devided into practical and theoretical and they are de-

fined using the aforementioned methods [21]. The concept of the theoretical

and practical zones ban be understood mentioning that spikes are generated,

also, by the irritative zone which is not overlapping with the epileptogenic

zone. Often, the scalp recordings underestimate the extent of the irritative

zone, while the invasive recordings cannot detect accurately the irritative

zone. Consequently, for a seizure-free surgical outcome, the accurate defini-

tion of the zones is integral.
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2.3 Non-invasive Measurement Modalities

2.3.1 Electroencephalography

Electroencephalography (EEG) [30] is the recording method for brain’s elec-

trical activity using electrodes forming the electrode cap which is placed on

the scalp surface. The activity measured is generated by the pyramidal cell

2, 3 and 4 that are perpendicularly oriented to the cortex surface. The EEG

system consists of the electrodes that measure brain’s electrical activity, the

differential amplifier, the amplifiers that enhance the signal, low-pass and

high-pass filters and an analogue to digital converter (ADC) in order to digi-

tize the signal and transfer it to the computer or a needle (pen)-type register

to draw the signal on the paper.

Figure 2.3: The EEG system diagram of a single channel, adapted from Wiley
Encyclopedia of Biomedical Engineering, Copyright c© 2006 John Wiley &
Sons, Inc.

In multichannel recording systems the electrodes’ positions are deter-

mined either by the 10-20 system (international system) or the 10− 10 sys-

tem. The 10-20 system consists of 21 electrodes that are placed within a

distance of 10% or 20% of the total front–back or right–left distance of the

skull measured by the anatomic landmarks on the skull. These landmarks

are the nasion (Nz), the inion (Iz) and the left and right pre-auricular points

(A1 and A2). For higher density EEG measurements the 10 − 10 system

can be used, which consists of 75 electrodes. Each channel of EEG measures

scalp’s electric potential between the current channel and the reference chan-

nel in metric units µV . The reference channels depend on the montage that

is used (e.g. it could be another electrode, common average reference etc.)

to better display and review the data.
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The electrodes names are coded regarding their location. The first letters

denotes the brain area that the positions are located: Fp (Frontal pole), F

(Frontal), C (Central), P (Parietal), O (Occipital) and T (Temporal), while

the remaining letter can be either a number or the z letter; if it is an even

number, then the position is located on the right side, if it is an odd number

on the left side, while the letter z (stands for zero) implies a central position.

(a) The EEG electrode
on the scalp. Adapted
from Purves, et al., 2004.

(b) The 10-20 system
with 21 electrodes.
Adapted from Sanei &
Chambers, 2007.

(c) An EASYCAP EEG
cap with 74 electrode po-
sitions (10/10 System)
as adapted from (https:
//www.easycap.de)

2.3.2 Magnetoencephalography

The synchronous electrical activation of neurons generate a weak perpendic-

ular magnetic field that can be recorded using the Magnetoencephalography

(MEG) [31], [32]. The amplitude of the measured signals is in fT . MEG is

very sensitive to ambient magnetic fields, which are several orders of magni-

tude stronger than the MEG. Consequently, the MEG system is placed inside

a magnetically shielded room (MSR). For instance, the magnetic noise in a

typical laboratory is approximately thousand times stronger than the mag-

netic fields generated by brain activity while the earth’s static geomagnetic

filed is 8−9 orders of magnitude stronger. Due to the very low signal-to-noise

ratio of MEG, preprocessing techniques such as filtering, artifact detection,

removal and averaging are highly recommended.

MEG signals can be detected only by superconducting SQUID (Super-

conducting Quantum Interference Devices) sensors. In order to achieve the

https://www.easycap.de
https://www.easycap.de
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critical temperature Tc at which the materials switch from the normal to su-

perconducting state, a coolant is necessary. In MEG, the most common

coolant is liquid helium, with boiling point 4.2K. Because of the small

SQUIDs’ diameter (ranges between a low of 0.9mm to a high of a 1.7mm),

the coupling to the magnetic field is poor. In order to improve the coupling

superconducting flux transformers are used, which collect magnetic flux from

a larger area and fed it into the SQUID loop. The coils (pick-up coils) more

close to the head, collect the magnetic flux, a second optional coil is located

in distance (compensation coil) and finally a signal coil is located on top of

the SQUID loop. The two main configurations are:

1. the magnetometer, which is the simplest form with a single coil only,

without compensation. It is sensitive to nearby and far away (possible

ambient noise) sources. This configuration measures the magnetic field

component with direction perpendicular to the surface of the pick-up

coil.

2. the gradiometers, which consist of a magnetometer with a compensa-

tion coil and measures the spatial gradient of a magnetic field com-

ponent. When the coils are placed in opposite directions, the noise

magnetic fields do not couple to the SQUID and as a result they can-

not capture distant ambient fields. Gradiometers are divided into axial

and planar depending on the coil’s position. The former measures the

change of the radial field component along the radius since the coils

are placed along the same radial axis, while on the latter the coils are

placed side-by-side.

MEG does not take into account the position of the head. In order to solve

this problem prior the measurement, 3−5 Head-Position Indicator (HPI) coils

are placed on fiducial landmarks of the head, for storing information of the

head’s position. MEG and MRI are usually measured on the same coordinate

system in order to visualize MEG results on anatomical MRIs.
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(a) Different types of pickup coils measur-
ing the magnetic field of a source (black
arrow adapted from, Singh 2006)

(b) A flux transformer with mag-
netometer that collects the mag-
netic flux and conveys it to the
SQUID, adapted from Galán et
al. 2013.

2.3.3 Comparison between EEG and MEG

Although EEG and MEG measure electrophysiological activities of the same

underlying brain sources, the measuring process is different alongside with

the recorded signals [33], [34]. Firstly, EEG and MEG are complementary to

each other. EEG electrodes touch the scalp surface of the human head, while

the MEG sensors are not in direct contact with scalp. The main advantages of

EEG and MEG are the high temporal resolution in the range of milliseconds

(ms) and the ability to measure the electrical brain activity directly compared

to functional neuroimaging methods such as functional MRI (fMRI), that

utilize indirect phenomena such as metabolic changes like blood oxygenation.

However, spatial resolution of EEG and MEG is usually lower than fMRI

and their sensitivity is getting weaker for deeper sources [33]. EEG can

detect efficiently both quasi-radial and quasi-tangential sources, while MEG

is sensitive to the quasi-tangential sources only [34], [35], [36]. Also, MEG

is less sensitive to deeper sources, because they are more radially oriented.

On the contrary, MEG signals have higher SNR for more superficial sources

because the quasi-radial biological noise contaminates more the EEG signals

[37]. The signal topographies of EEG and MEG are almost orthogonal to

each other. The distance between the poles of the EEG topographies is

greater than for MEG because the low skull conductivity smears out the
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EEG. Consequently, combined recordings of EEG and MEG are likely to

improve source analysis as they complement each other regarding the source

types and orientations detected by both modalities [34], [38]. However, EEG

and MEG measure signals of different quantity, leading to different units. To

perform a combined source analysis both modalities need to be transferred

to a common space. An SNR based transformation [39] is used in the current

thesis. In this approach, the data are whitened according to the noise level

of each channel to obtain unitless measurements for EEG and MEG. The

EEG and MEG leadfield matrices and measurements are stacked in a row

wise form after normalization with SNR to make them unitless [39].

In focal epilepsy, it has been shown that EEG and MEG can detect differ-

ent interictal spikes indicating that the simultaneous acquisition of EEG and

MEG yields complementary diagnosis [40], [41]. Iwasaki et al. [40] reported

that MEG detects spikes on 19% of patients, EEG on 2% of patients, while

both EEG and MEG detect spikes on 72% of patients. Similarly, Knake

et al. [41] reported EEG spikes on 3% of patients, MEG spikes on 13% of

patients and EEG/MEG spikes detected on 75% of patients. Aydin et al.

showed in a single epilepsy case that combined EEG/MEG outperforms single

EEG or MEG source analysis using calibrated and realistic head modeling,

comparing the results with stereo EEG recordings. These results make clear

that the different sensitivity profile of EEG and MEG could bring source

localization closer to the epilepsy foci. Such a complementary result is pre-

sented in this thesis.
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Chapter 3

Theoretical Background

In this chapter the theoretical background of all implemented methods and

algorithms is given. The aim is to introduce the reader to the basic concepts

of the mathematical and algorithmic background, giving brief and concise

derivations. In Fig. 3.1 is shown the high level pipeline of this thesis work.

The analysis of the methods follows the pipeline. To explain, the chapter

begins with the definitions and derivations of the implemented preprocessing

techniques, it continuous with the statement of the HFOs detection algorithm

and it concludes with the source analysis theory.

Preprocessing

Low-pass filtering
1-80Hz

High-pass filtering
80-500Hz

Source Localization 
based on Spikes

HFO Detection

Source Localization 
based on HFOs

Input: Raw EEG/MEG dataInput: Raw EEG/MEG data

Preprocessing

Low-pass filtering
1-80Hz

High-pass filtering
80-500Hz

Source Localization 
based on Spikes

HFO Detection

Source Localization 
based on HFOs

Input: Raw EEG/MEG data

Preprocessed 
calibrated realistic 
head model with 

FEM

Figure 3.1: Schematic diagram of thesis.
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3.1 Preprocessing Techniques

3.1.1 Downsampling and Filtering

The first step of the preprocessing pipeline is to downsample the data in

order to reduce algorithms’ time complexity. It is important to realize that

downsampling affects only data’s size in a way that time data points are

numerically decreased.

Baseline Correction is another preprocessing step. The raw MEG and

EEG signals from the sensors typically have a large offset. Related to MEG

signals, this offset is caused by SQUID behavior which is periodic in applied

flux and there is no zero level. Furthermore, there will be some low-frequency

noise from the SQUIDs and slow ambient field fluctuations. In order to cor-

rect these low frequency effect, the first approach is to subtract the average

value of the data across specific time intervals from the signal of each chan-

nel [42]. The interval is defined as the baseline and it must be long enough for

an accurate estimate of the DC value at each sensor. Another approach is the

implementation of a high pass filter with a low cut-off frequency (< 0.3Hz)

applied on the continuous raw data. The last approach is highly recom-

mended not to be applied on shorter epoched data since it will cause edge

effects.

Apart from time domain, data are usually examined on frequency domain,

where Energy Spectral Density (ESD) [43] can be calculated. Biosignal’s

mapping into frequency domain allows the examination and evaluation of fil-

tering implementation, through the calculation of ESD. The continuous-time

biosignals are represented to frequency domain, using Frequency Transform.

Specifically, Frequency Transform is given by the following equation:

X(F ) =

∫ ∞
∞

x(t)e−j2πftdt, (3.1)

where x(t) is the initial continuous-time signal and e−j2πft is the so called

phasor. To put it differently, the function X(F ) is called Fourier Transform

of function x(t) and it describes uniquely the latter on frequency domain.
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X(F ) function shows the linear combination of complex exponential signals

(e−j2πft) that comprise x(t). ESD of a signal x(t) describes energy distribu-

tion into frequency components that composite that signal. Given that ESD

is more suitable for transients, such as brain signals, Parseval’s Theorem

gives the expression for the signal’s energy:

Exx = |X(F )|2 = X∗(F )X(F ), (3.2)

where X∗ is the conjugate of X.

After downsampling, the next step is filtering the frequency band of in-

terest and the Power Line Noise (PLN) and its harmonics.

(a) Transition band of different orders of
Butterworth filter1.
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(b) Cut-off frequency of Notch filter at
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Figure 3.2: Filters used on preprocessing.

3.1.2 Decomposition Methods

In the previous section, filtering was examined, to a certain degree, as a

simple denoising method. Due to multichannel recordings among with cere-

bral activity many other physiological and non-physiological activities can be

captured. For the purpose of detection and restriction of those undesirable

1https://dsp.stackexchange.com/questions/34127/

higher-order-butterworth-filters

https://dsp.stackexchange.com/questions/34127/higher-order-butterworth-filters
https://dsp.stackexchange.com/questions/34127/higher-order-butterworth-filters
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activities, more sophisticated methods are needed.

In this section, Component Analysis techniques are described, as they

have been widely used in computational neuroscience in order to perform

dimensionality reduction and data cleaning. More specific, Principal Com-

ponent Analysis (PCA) performs dimensionality reduction, decreasing com-

putational complexity, and creates new uncorrelated variables that consecu-

tively maximize variance. On the other hand, Independent Component Anal-

ysis (ICA) searches for statistically independent components. Frequently,

PCA can precede ICA as the combination of those techniques yield optimal

results.

Principal Component Analysis

PCA is a statistical linear transformation technique. The goal is to compute

a new basis as a linear combination of the original which better re-expresses

the data. Particularly, PCA projects data samples onto a new subspace with

equal or fewer dimensions than the original ones. The orthogonal axes of

the subspace are the principal components, the directions of maximum vari-

ance, with the smaller total error (smaller total length of projections) [44].

Whitening is a linear transformation applied on data through PCA. In detail,

transforms data’s covariance matrix into identity matrix, meaning that data

are uncorrelated, with unit variance.

There are two algebraic solutions of PCA: (1) based on Singular Value De-

composition (SVD), more general solution, and (2) based on the Eigenvalue

Decomposition (EVD) of the covariance matrix [45]. The aforementioned so-

lutions are briefly derived below. PCA can also be implemented prior to ICA

in order to determine the optimal number of Principal Components which is

equal to the Independent Components. In more detail, the number of PCs is

determined by Percentage of Useful Information (PUI) [46], a metric defined

as follows:

PUIi = 100
Eigenvaluei∑m
j=1Eigenvaluej

(%), (3.3)
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where m stands for channels’ number. The eigenvalues used as they resulted

from PCA. To explain, the sum of PUIi is equal to unit, hence only the top-k

components survived with the highest PUI and sum approximately equal to

95%. In other words, the number of components which their sum is at least

95%, are those who explain better the data.

It is important to mention that EVD can be applied only on diagonaliz-

able matrices (so the matrices must be square, too).

Mathematical formulation

Let X and Y be mxn matrices related by a linear transformation P. X is the

original recorded data and Y is a re-presentation of that data:

Y = PX, (3.4)

where Y stands for PCs. PCA’s goal, as explained above, is to convert the

covariance matrix into the identiy. Mathematically expressed:

Sy =
1

n− 1
Y Y T = I, (3.5)

where Sy is the covariance matrix of Y . In particular, the aim is to find

a matrix P such that Sy is diagonalized. The rows of P are the principal

components of X. Using the (3.5):

Sy =
1

n− 1
(PX)(PX)T

=
1

n− 1
PXXTP T

=
1

n− 1
P (XXT )P T

=
1

n− 1
PAP T (3.6)
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where A ≡ XXT is the covariance matrix of X and it is symmetric. Given

that A is symmetric, EVD can be applied:

A = EDET , (3.7)

where D is a diagonal matrix and E is a matrix containing the eigenvectors of

A. Each row of matrix P is an eigenvector of XXT , so P ≡ ET . Substituting

into (3.7) A = P TDP and considering P−1 = P T :

Sy =
1

n− 1
PAP T

=
1

n− 1
P (P TDP )P T

=
1

n− 1
PP TDPP T

=
1

n− 1
PP−1DPP−1

=
1

n− 1
D (3.8)

It is obvious that the choice of P diagonalizes Sy and the PCs of X are

the eigenvectors of XXT or the rows of P .

Principal Component Analysis and Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization of a real or complex

matrix (not necessarily square) that generalizes the EVD approach. Applying

SVD on a matrix Xmxn (m is the number of channels and m the number of

samples):

X = UΣV T , (3.9)

where U is orthogonal matrix, such as V and I is diagonal. Keeping in mind

the previously defined matrix X and given that Y is an nxm matrix:
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Y =
1√
n− 1

XT , (3.10)

where each column of Y has zero mean. Analysing Y Y T :

Y TY = (
1√
n− 1

XT )T (
1√
n− 1

X)

=
1√
n− 1

(XT )TXT

=
1√
n− 1

XXT

Y TY = SX (3.11)

where SX is the covariance matrix of X.

To explain the above:

• The covariance matrix of X equals the Y TY .

• As derived above, PCs of X are the eigenvectors of SX .

• The columns of matrix V , as it resulted from SVD calculation of Y ,

contain the eigenvectors of Y TY = SX .

• As a consequence, the principal components of X are the columns of

V .

• To put it differntly, V spans the row sapce of Y ≡ 1√
n−1

XT , so spans the

column space of 1√
n−1

X. To sum up, finding the principal components

is equivalent with finding an orthogonal basis that spans the column

space of X.

Blind Source Separation

Blind Source Separation (BSS), generally speaking, involves the analysis of

mixtures of signals. The most common case of BSS, is the cocktail party
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problem [47]. The cocktail party problem can be described, for instance, as

the process of distinguishing the source of a specific sound among others, in

a noisy and crowd party. BSS is the separation of a set of source signals

from a set of mixed signals, without a priori knowledge (or with very little

information) about the source signals or the mixing process. General BSS

model is given below:

x(t) = As(t) + n(t), (3.12)

where s(t) are the signals’ sources, x(t) are the mixed signals and n(t) stands

for noise. Noise can be added by the measurements errors or the model’s

deficiency. The goal is to estimate the unknown mixing matrix A and the

original sources of the signal when only the mixed signals s are known. The

most common technique of BBS is the Independent Component Analysis, as

explained below.

Independent Component Analysis

Independent Component Analysis (ICA) is a special case of BSS and was

initially developed to resolve problems closely related to the cocktail party

problem. ICA have been applied on many different scientific cases, such as

EEG and MEG data. EEG and MEG data are generated by mixed brain

activity either cerebral or non-cerebral. ICA’s goal is to divide the initial

multivariate signal into Independent Components (ICs) [48]. The assump-

tions made are:

• x(t) should be a linear combination of statistically independent sources

s(t) that have either non-Gaussian or at least one Gaussian distribution.

• The observed data x(t) should be standardized (unit variance and zero

mean) and whitened (uncorrelated) using PCA.

• The mixing matrix A should be full rank.

More precisely, statistical independence holds when the joint probability
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density function (pdf) of sources is equal to the product of sources’ proba-

bility functions. Mathematically defined:

p(s1, s2, ..., si) = Πip(si)

(3.13)

where s1, s2, ..., si are random variables. It is important to mention that

statistic independence is stronger than uncorrelation since independence in-

volves uncorrelation, but not vice versa. The key point on estimating the ICA

model is non-gaussianity. To put it differently, one way to implement ICA is

the maximization of non-gaussianity, since ICA allows only one (maximum)

source at the time to be independent. Dependence is strongly connected

with the Central Limit Theorem which tells that the distribution of a sum of

independent random variables tends toward a gaussian distribution, under

certain conditions.

On the other hand, there are some ambiguities about ICA. Firstly, the

variances (energies) of the independent components cannot be determined.

To explain, both s and A are unknown, so any scalar multiplier of the sources

si could always be cancelled by dividing the corresponding column ai of ma-

trix A by the same scalar. Secondly, the order of the independent components

cannot be determined. Again, both s and A are unknown, so the order of

the terms in the sum can be freely changed and call any of the independent

components the first one.

In order o define ICA a statistical ’latent variables’ model have been

used. Assume the observation of n linear mixtures x1, .., x2 of n independent

components.

xj = aj1s1 + aj2s2 + ...+ ajnsn,

(3.14)

for all j, where s1, s2, ..., si are the original source signals and aj1, aj2, ..., ajn

are environmental parameters. Both signals s(t) and a parameters are un-



3.1. Preprocessing Techniques 36

known. For the purpose of estimating a parameters, it is enough to rely

on the statistical properties of signals s(t) and assume their statistical in-

dependence at each time instant t. Re-expressing the aforementioned sum

by vector-matrix notation: x denotes the random vector with elements the

mixtures x1, x2, ..., xn and s the random vector with elements s1, s2, ..., si.

Finally, matrix A is called mixing matrix and is a square full-rank matrix.

Each column ak of mixing matrix A represents the mixing weights for all K

sources. According to the previous the above mixing model can be written

as follows.

X=As (3.15)

With this in mind, ICA model is transformed into the following equation

and endeavors to estimate unmixing matrix W , which is as close as possible

to A inverse.

S=WX (3.16)

Important steps prior to ICA are centering and whitening techniques.

Specifically, centering refers to the calculation of vector’s x mean value and

its subtraction such as to make x a zero-mean variable. As mentioned on

the Subsection 3.1.2, whitening yields uncorrelated components with unit

variance. The mathematical formulation of whitening follows below.

First of all EVD is applied on the given data X:

E{XXT} = EDET (3.17)

The goal is to convert data X into uncorrelated variables Y , where Y =

PX and the covariance matrix of Y is diagonal. So,

E{XXT} = ED
1
2D

1
2ET

= E{P−1Y Y TP−T}

= P−1E{Y Y T}P−T (3.18)
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By observation:

P = D−
1
2ET

Finally, Y matrix can be written:

Y = P−
1
2ETX (3.19)

As a result the mixing matrix A is transformed into:

Ã = D−
1
2ETA (3.20)

It is evident that whitening reduces the number of parameters to be es-

timated. Instead of estimating n2 parameters that are the elements of the

original matrix A, only the new orthogonal matrix Ã is estimated with nn−1
2

degrees of freedom.

Apart from whitening, the definition of independence governs the form

of ICA algorithm. The most common approaches for independence are the

(1) maximization of non-gaussianity and the (2) minimization of mutual

information [49]. To put it differently, ICA measures high-order statistics

such as Mutual Information, Negentropy and Kurtosis.

A classical method of non-gaussianity is kurtosis. Kurtosis is the forth

standardized moment of a distribution and a measure of the ”tailedness”.

For a more detailed explanation see subsection (3.1.3).

Another important measure of non-gaussianity is negentropy. Negen-

tropy measures the difference in entropy between a given distribution and

the Gaussian distribution with the same mean and variance. Negentropy is

always non-negative. It is defined as follows:

J(s) = H(sgauss)−H(s) (3.21)

where sgauss is a gaussian random variable, which its covariance equals s and
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H stands for the entropy of a discrete random variable si, defined as follows:

H(x) = −
n∑
i=1

P (xi) logb P (xi) (3.22)

Entropy is equal to zero if and only if the variables are statistically inde-

pendent and it is always non-negative. The main disadvantage of negentropy

is the computational complexity, since the pdf estimation is required in many

cases.

Mutual Information (I) is the natural measure of the dependence between

random variables. Mutual Information between m scalar random variables

yi = 1, ..m is defined as follows:

I(y1, y2, ..., ym) =
m∑
i=1

H(yi)−H(y) (3.23)

Furthermore, for yi of unit variance entropy and negentropy differ only

by a constant and a sign.

I(y1, y2, ..., ym) = C −
∑
i

J(yi) (3.24)

Extended Infomax Algorithm

The two most well known algorithms which implement ICA is Infomax and

FastICA [50]. The first one, aims on the maximization of mutual information

and the second one aims on the maximization of non-gaussianity. The initial

Infomax algorithm implemented by Bell and Sejnowski (1995) [49], is based

on an unsupervised learning algorithm and aims to maximize entropy in a

single layer feed forward neural network. It is important to mention that the

algorithm is effective in separating sources with super gaussian distributions

while fails to separate sources with negative kurtosis. Let’s assume that x

is the input to the neural network whose outputs are of the form φ(wT
i x),

where φi are non-linear scalar functions and wi are the wight vectors of the
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neurons. The goal is to maximize the entropy of the outputs:

L2 = H(φ1(wT
1 x), ..., φn(wT

nx)), (3.25)

which is known as the Infomax principle. According to previous research

[51], [52], maximum likelihood estimation is equivalent to the principle of

network entropy maximization. For the equivalence to hold, it is necessary

to ensure that the non-linearities φi used in the neural network are chosen

as the cumulative distribution functions corresponding to the dendrites fi.

In this research work the algorithm used to implement ICA is Extended

Infomax. Extended Infomax separates mixtures of super gaussian and sub

gaussian sources using a learning rule. As derived above, the goal of ICA is

to find a linear mapping W such that the unmixing signals

u(t) = Wx(t) = WAs(t)

are statistically independent. The learning algorithm can be derived using

the maximum likelihood formulation. The pdf of the observations x can be

expressed as follows:

p(x) = |det(W)|p(u), (3.26)

where

p(u) = ΠN
i=1pi(ui),

is the hypothesized distribution of p(s). The log-likelihood of the equation

(3.26) is:

L(u,W) = log |det(E)|+
N∑
i=1

log pi(ui) (3.27)

Maximizing the log-likelihood with respect to W derives a learning algorithm

for W:

∆W ∝ [(WT )−1 − φ(u)xT ] (3.28)
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where

φ(u) = −
∂p(u)
∂u

p(u)
= [−

∂p(u1)
∂u1

p(u1)
, ...,−

∂p(uN )
∂uN

p(uN)
]T

According to Amari(1998) [53], maximization of the log-likelihood can be

achieved by following the natural gradient:

∆W ∝ ∂L(u,W)

∂W
WTW = [I− φ(u)uT ]W (3.29)

Here, W TW re-scales the gradient, simplifies the learning rule in equation

(3.28) and speeds convergence markedly. If φ(u) is a logistic function so that:

φ(u) = 2 tanh(u) (3.30)

the learning rule can be reduced to the initial Infomax algorithm intro-

duced by Bell and Sejnowski (1995) [49] with the natural gradient:

∆W ∝ [I− 2 tanh(u)uT ]W (3.31)

In order for the Extended Infomax Algorithm to separate sources with

a variety of distributions, the following learning rules were introduced. The

learning rules for subgaussian and supergaussian sources, correspondingly:

∆W ∝

[I− tanh(u)uT − uuT ]W : supergaussian

[I + tanh(u)uT − uuT ]W : subgaussian

The difference between the learning rules of supergaussian and subgaussian is

the sign before the tanh function which can be determined using a switching

criterion.

3.1.3 High Order Statistics

The term High Order Statistics (HOS) denote functions that use the

third or higher moments. The HOS used at this research work are the third
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standardized moment or skewness, the forth standardized moment or kurtosis

and Rényi entropy to assist artifact detection. HOS especially estimate shape

parameters, such as measuring the deviation of a distribution from the normal

distribution. Consequently, the used HOS are briefly defined.

Kurtosis

According to the previous, kurtosis is the scaled version of the fourth moment

of the distribution so it is related to the tails of the distribution. Higher

kurtosis corresponds to outliers or greater deviations and it is defined as

follows:

kurtosis = E{y4} − 3(E{y2})2,

where y is a random variable. Usually is assumed that y has a unit variance,

so the equation above is transformed into E{y4} − 3. It is known that for

a gaussian y, the fourth moment E{y4} equals 3(E{y2})2. Consequently,

kurtosis is zero for a gaussian random variable (mesokurtic). If kurtosis > 3

(positive kurtosis), the random variable y is called super-gaussian or lep-

tokurtic. On the other hand, if kurtosis < 3 (negative kurtosis) then ran-

dom variable y is called subgaussian or platykurtic. The different types of

kurtosis are depicted on the Fig. 3.32.

Figure 3.3: Different types of kurtosis.

2https://www.datavedas.com/measures-of-shape/

https://www.datavedas.com/measures-of-shape/
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Skewness

Skewness measures the lack of symmetry or, in other words, characterizes the

degree of asymmetry of a distribution. Skewness of a distribution is defined

to be:

skewness =
µ3

µ
3
2
2

,

where µn = E{(y−E{y})n} is the nth central moment of the random variable

y. A positive degree of skewness corresponds to a positively skewed distribu-

tion (distribution’s right tail is longer). On the other hand, a negative degree

of skewness corresponds to a negatively skewed distribution (negative skew)

as shown in Fig. 3.4 3.

Figure 3.4: Different types of skewness.

Rényi entropy

Rényi entropy generalizes Shannon entropy and it is a measurement of un-

certainty or randomness of a system. Rényi entropy is defined as:

Hα(p1, p2, ..., pn) =
1

1− α
ln

n∑
i=1

pai ,

where α > 0, α 6= 1. As α→ 1, Hα(p1, p2, ..., pn) converges toH(p1, p2, ..., pn),

which is Shannon’s measure of entropy.

3https://codeburst.io/2-important-statistics-terms-you-need-to-know-in\

-data-science-skewness-and-kurtosis-388fef94eeaa

https://codeburst.io/2-important-statistics-terms-you-need-to-know-in \-data-science-skewness-and-kurtosis-388fef94eeaa
https://codeburst.io/2-important-statistics-terms-you-need-to-know-in \-data-science-skewness-and-kurtosis-388fef94eeaa
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3.1.4 Correlation Coefficient

In this research work, the degree of data’s correlation is measured using Pear-

son’s correlation coefficient. More specific, Pearson’s correlation coefficient

is a statistical measurement of linear correlation and direction between two

random variables X and Y . The values of correlation range between −1

and +1, where +1 denotes perfect positive correlation, −1 denotes perfect

negative correlation and 0 denotes no linear correlation.

ρX,Y =
cov(X, Y )

σXσY
,

where σX and σY stand for the standard deviation of X and Y , respectively.

3.1.5 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) [54] is an adaptive representation

of non-stationary and non-linear signals. The fundamental deference be-

tween EMD and other decomposition methods such as Fourier Transform

and Wavelet Decomposition, it is that the first one is purely data driven. In

other words, on EMD data’s decomposition is adaptively derived from the

data [55]. Moreover, EMD is applicable on non-stationary and non-linear

signals because it is based on the local characteristic time scale of the data.

Large-scale brain responses satisfy both non-stationarity and non-linearity.

EMD decomposes a signal into basic functions called Intrinsic Mode Func-

tions (IMFs) which have instantaneous frequency. The IMFs are computed

by the iterative Algorithm 1.

According to Lindsen et. al (2010) [55] the procedure described on Al-

gorithm 1 4is repeated until the resulting signal satisfies the three following

criteria: (1) the number of extremes and the number of zero crossings must

either be equal or differ at most by one, (2) the mean value of the envelope de-

fined by the local maxima and the envelope defined by the local minima must

be zero at any time point, and (3) the difference between two consecutive

repetitions, in terms of standard deviation, must not be smaller than some
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Algorithm 1 EMD Algorithm

Require: Given a signal x(t)
1) Set r(t) := x(t) and k = 0
while r(t) is not monotonous do

2) Set m(t) = r(t)
while m(t) is nontrivial do

3) Interpolate between minima (resp. maxima), ending up withsome
’envelope’ emin(t) (resp. emax(t))
4) Compute the average m(t) = (emin(t) + emax(t))/2
5) Extract the detail c(t) = r(t)−m(t), and denote c(t) as r(t)

end while
6) Set k = k + 1
7) Set imfk(t) = c(t)
8) Set r(t) = x(t)−

∑k
i=1 imfi(t)

end while
Output: x(t) =

∑k
i imfi(t)

predetermined criterion. Each resulting signal corresponds to an IMF and

it is subtracted from the original data. The algorithm converges when the

residue becomes a monotonic function or when it becomes negligibly small.

The linear sum of the IMFs constitute the original signal.

3.1.6 Wavelet Decomposition

The Wavelet Transform (WT) is a Time-Frequency Representation and a

Multi-Resolution Analysis (MRA) [1]. Wavelet Transform overcomes limita-

tions introduced by classical Fourier techniques by providing optimal time-

frequency localization for non-stationary signals, such as EEG and MEG

time courses. As depicted in Fig. 3.5 5, it produces good frequency local-

ization at low frequencies (long time windows) and good time localization at

high frequencies (short time windows), which is an advantage compared to

short-time Fourier Transform (STFT). Also, reveals features related to the

transient nature of the signal, that are not obvious by the Fourier Transform

4https://www.sciencedirect.com/science/article/abs/pii/

S0957417418304901

https://www.sciencedirect.com/science/article/abs/pii/S0957417418304901
https://www.sciencedirect.com/science/article/abs/pii/S0957417418304901
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techniques.

In practise, Discrete Wavelet Transform (DWT) is used usually instead

of Wavelet Transform. The discrete counterpart [56] of Wavelet Transform

is implemented by bandpass filter banks. Each filer has frequency band and

central frequency half of the previous one. Given a signal S(t), a convolution

of S with a lowpass and a highpass filter extracts an approximation signal

A(t) and a detail signal D(t), accordingly. The generalization of Wavelet

Decomposition technique is depicted in Fig. 3.6 6. In the standard tree of

decomposition only the approximation signal is convoluted with the filters of

the second stage, and so again until the last level of the decomposition. An

example wavelet decomposition of signal S analyzed at level 3 is depicted in

Fig. 3.7 6. The Wavelet Series Expansion [1], [2] of a signal x(t) ∈ L2(<) is

the following:

x(t) =
∑
k

cj0kφj0k(t) +
∞∑
j=j0

∑
k

djkψjk(t), (3.32)

where the scaling function φ is creates approximations of the signal, by a

differing factor of 2.

djk =

∫
x(t)ψ∗(t)dt (3.33)

stands for the detail or wavelet coefficients and

ψjk(t) =
1√
2j
ψ

(
t− k2j

2j

)
(3.34)

are the wavelet functions, which encode the difference between the approxi-

mations. The approximation or scaling coefficients are:

cjk =

∫
x(t)φ∗jk(t)dt, (3.35)

5https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency#Hilbert_

transform
6https://www.mathworks.com/help/wavelet/ref/wavedec.html

https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency#Hilbert_transform
https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency#Hilbert_transform
https://www.mathworks.com/help/wavelet/ref/wavedec.html
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where

φjk(t) =
1√
2j
φ

(
t− k2j

2j

)
(3.36)

are the scaling functions. The details and the approximations are defined as

follows:

Dj(t) =
+∞∑

k=−∞

djkψjk(t) (3.37)

Aj(t) =
+∞∑

k=−∞

cjkφjk(t) (3.38)

The original signal can be reconstructed by the details and the approxima-

tions as described in equation 3.39, for fixed N :

S(t) = AN(t) +D1(t) +D2(t) + ...+DN(t) (3.39)

Figure 3.5: Trade-off between temporal and spectral resolution.

Figure 3.6: Generalization of Wavelet Decomposition.
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Figure 3.7: Tree of wavelet decomposition at level 3.

3.1.7 Signal Space Projection

Signal Space Projection (SSP) is another method for artifact correction. The

sources of cerebral activity generate electric potential (or magnetic field)

distributions with spatial distributions different from these generated by non-

cerebral sources [57], [58]. SSP is based on the assumption that non-cerebral

activity spans a low dimension linear space which is independent from the

space spanned by the cerebral activity.

It is acceptable to decompose any n − channel measurements b(t) into

its signal and noise components respectively:

b(t) = bs(t) + bn(t) (3.40)

An integral part of the algorithm is the sufficient definition of noisy data

b(t) using field patterns b1...bm:

bn(t) = Ucn(t) + e(t), (3.41)

where the columns of U form an orthonormal basis for b1...bm, cn(t) is

an m− component column vector and e(t) introduces a small error with no

consistent spatial distributions over time: Ce = E{eeT = I}. The column

space of U spans the noise subspace. The orthogonal complement operator
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is calculated using the noise subspace and is defined as follow:

P⊥ = I−UUT (3.42)

The projection operator P⊥ is called the signal-space projection operator

and is applied on the initial measurements yielding

b(t) ≈ P⊥bs(t), (3.43)

given that P⊥bn(t) = P⊥Ucn(t) ≈ 0. Generally, the signal-space pro-

jection suppress noise by a factor of 10 or more. The effectiveness of SSP

depends on two factors:

1. The noise distributions should be well-defined by the basis set b1...bm.

2. The angles between the noise subspace spanned by b1...bm and the

signal vectors bs(t) should be as close to π
2

as possible 7.

If the noise subspace is not well-defined, some noise will remain on the

measurements: P⊥bn(t) 6= 0. If any of the brain signal vectors bs(t) is close

to the noise subspace the signal will be attenuated by the application of P⊥,

too.

3.2 Semi-automated Detection of HFOs

High Frequency Oscillations (HFOs) visual marking is an extremely laborious

and time-consuming process. Consequently, the HFOs detection based on

automatic or semi-automatic algorithms has been extensively researched [7].

A variety of algorithms has been developed, some of them depend only on

thresholding techniques in time domain, while others integrate an extra stage

of identification in frequency domain [7], [59], [60], [9], [61], [62], [63], [64], [65],

[66]. The algorithm implemented in the hereunto research work consists of

three consecutive stages. The first stage of analysis is focused on time domain

thresholding technique and aims on the detection of Events of Interest (EoIs),

7https://neuroimage.usc.edu/brainstorm/Tutorials/ArtifactsSsp

https://neuroimage.usc.edu/brainstorm/Tutorials/ArtifactsSsp
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comprising of at least four cycles (oscillations) [7], [12]. The following second

stage incorporate Time Frequency Representation (TFR) in order to visually

distinguish the HFOs from the set of EoIs. In TFR, HFOs can be spotted as

short-lived events with the characteristic morphology of an isolated blob in

contrast with other transient events which form an elongated blob, extended

in frequency [7], [12]. The third stage is the energy-based clustering of the

detected HFOs.

K-means clustering based on HFOs
energy

Output: Clustered HFOs

Time-frequency representation 
of each EoIs (Morlet Transform) 

Discard possible artifacts

Output: Detected HFOs

Definition of each event starting and
ending point:

(Envelope z-score crossing
(1/2)*threshold)

Grouping events with distance lower
than 10ms

Output: EoIs

Time domain Time-Frequency domain

Input: preprocessed EEG, MEG signal

Envelope of the High-Passed signal
(Hilbert Transform)

Z-score of the envelope

Detection of EoIs
(envelope z-score higher than 1.1)

Figure 3.8: Schematic diagram of the algorithm steps.

Stage 1: Detection of EoIs

Firstly, the signal was band-passed filtered between 80 and 500Hz. It is

highly recommended to use Finite Impulse Response (FIR) filter to restrict

ringing effect and the ”Gibbs” phenomenon. Then the signal is examined for

EoIs with relative high amplitude and sufficient duration. The steps of the

algorithm are:

1. Calculate the envelope of the band-pass signal using Hilbert Transform

2. Calculate the mean and standard deviation (SD) of the envelope over

10s sliding windows centered on each point of the signal. Estimate

the overall mean and SD using the median values over all windows.

This technique yields values of mean and SD which are more robust to

segments of signals with a lot of HFOs and high SD [12].

3. Calculate the z-score of the envelope, using the previously calculated

mean and SD values. Set a threshold equal to 1.1. Each event that

exceeds the threshold is marked as EoIs.
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4. Classify events as EoIs with duration of at least 37ms. Merge EoIs

with an inter-interval of less than 10ms into one EoI.

NOTE: the maximum z-score threshold depends on the amplitude of

artifacts that may exist in the recordings and its value should be cali-

brated with respect to the data [12].

Stage 2: Distinguish HFOs among EoIs

The second stage aims on recognising real HFOs among the EoIs. This step

is necessary in order to reject possible artifacts (spurious EEG activity or

filtering effects) that have been classified as EoIs on the first stage of the al-

gorithm. According to literature, HFOs on time-frequency domain appear as

short-lived events with an isolated spectral peak at a distinct frequency above

80Hz. Hence, all the EoIs are divided into trials with duration from −0.5ms

to 0.5ms, where the peak of the EoIs is mapped to 0ms and then transformed

into time-frequency domain. For this transformation Morlet Wavelet Trans-

form is used in the frequency range from 80Hz to 500Hz (central frequency

= 1Hz, Full-Width-At-Half-Maximum = 3 s) [12].

Stage 3: Clustering of detected HFOs

After the detection has been completed, HFOs are clustered based on their

energy. Energy has been calculated on consecutive segments of the signals

with overlap 20%. The output of the K-means is the clustered HFOs.

3.2.1 Hilbert Transform

Since Hilbert Transform (HT) is used for the envelope calculation on the

HFOs Detection Algorithm, it is simply illustrated in this section. HT is a

part of Hilbert Huang transform [67] and for a given signal x(t) is defined as:

x̂(t) = H[x(t)] =

∫ −∞
∞

x(t)
t−τ dτ

π
= x(t) ∗ 1

πt
(3.44)
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The analytic signal can be defined as:

z(t) = x(t) + jx̂(t) = α(t)ejθ(t), (3.45)

where j =
√
−1 and α(t) =

√
x2 + x̂2 and θ(t) = arctan

(
x̂
x

)
. Here, α(t)

stands for the instantaneous amplitude and θ(t) for the instantaneous phase.

From equation 3.45 derives that the analytic signal consists of a real part

x(t), which is the original data, and an imaginary part x̂(t) which contains

the HT. The imaginary part is the original time series after a π
2

rotation. The

instantaneous frequency is given by ω = dθ
dt

. The Hilbert envelope spectrum

is defined as:

h(f) =

∫ ∞
−∞

√
x2 + x̂2e(−j2πft)dt (3.46)

3.2.2 K-means clustering

K-means clustering is an iterative algorithm that partitions data and assigns

n observations to exactly one of the k clusters which are defined by the

centroids (mean or cluster center) [68]. The number of clusters k is one of

the algorithm’s inputs. The algorithm’s steps are the following:

1. Choose k initial cluster centers, which are the centroids. The cluster

center initialization can be implemented by choosing k random obser-

vations or using the K-means ++ algorithm [69].

2. Calculate the distances of points to the closest cluster centroid.

3. The assignment of the observations can be implemented by two different

ways:

• Each observation is assigned to the cluster with the closest cen-

troid.

• Individually assign observations to a different centroid if the reas-

signment decreases the sum of the within-cluster, sum-of-squares

point-to-cluster-centroid distances8.

8https://www.mathworks.com/help/stats/kmeans.html

https://www.mathworks.com/help/stats/kmeans.html
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4. For each cluster calculate the average of the observations in order to

obtain k new centroid locations.

5. Repeat steps 2−4 until no-changes on cluster assignments are detected

or the algorithm has reached the maximum number of iterations.

3.3 Source Analysis

Source Analysis is the scientific field which studies modeling and estimating

techniques of the neuronal currents throughout the brain that generate the

electric potentials and magnetic fields measured by invasive or non-invasive

data acquisition systems. The aim of Source Analysis techniques is to find

the brain areas responsible for the generation of a particular type of activity.

Especially in epilepsy, Source Analysis techniques are used in order to localize

more accurately the epileptogenic zone, alongside with MRI, and facilitate

the epilepsy surgery. Source Analysis consists of solving the so-called forward

and inverse problem. Briefly, the Forward Problem models the potentials at

the electrodes from a given electrical source in the brain. On the other

hand, the Inverse Problem estimates the brain sources when knowing the

potentials at the EEG electrodes. The forward modeling of head tissues and

sensor characteristics are necessary to solve the Inverse Problem, so the latter

is completed second.

Figure 3.9: Forward and Inverse problems. Adapted from Brainstorm tool-
box.
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3.3.1 Forward Problem

Mathematical Formulation

The forward problem estimates the channels measurements by assuming all

possible sources (dipoles), using a head model which is a simulation of the

electromagnetic properties of the head. The sources span the source space

(or source model) which express all candidate positions of the sources. Given

the aforementioned definition of dipoles, sources are defined by their position

and moment (amplitude and orientation), too. Their position is expressed

in the Cartesian coordinate system, so only the amplitude is unknown hence

the orientation is given by {ex, ey, ez}.
For N sensors and p dipoles:

m =


m(r1)

...

m(rN)

 =


l(r1, rQ1) . . . l(r1, rQp)

...
. . .

...

l(rN , rQ1) . . . l(rN , rQp)




s1e1

...

spep

 (3.47)

where i = 1, ..., p, the column indices, j = 1, ..., N , the row indices and s

substitutes dipole’s magnitude di (assume that the source is determined by

one amplitude and orientation).

For N sensors, p dipoles (or sources) and n discrete time points:

M =


m(r1, 1) . . . m(r1, n)

...
. . .

...

m(rN , 1) . . . m(rN , n)

 = L({rj, rdipi})


s1,1e1 . . . s1,ne1

...
. . .

...

sp,1ep . . . sp,ne1ep



= L({rj, rdipi})S (3.48)

where M ∈ RNxn is the matrix of data measurements at different time points,

L is the leadfield and S is the matrix of dipole magnitudes at various time

instants. Each row of the leadfield L ∈ RNxp is, also called leadfield and de-



3.3. Source Analysis 54

scribes the current flow for a given sensor through each dipole position [70].

It is usually assumed that the apical dendrites that produce the measure-

ments are oriented normally to the cortex, so dipoles are usually constrained

to have such an orientation [70]. As a result, only the magnitude of the

dipoles are unknown:

M =


l(r1, rdip1)e1 . . . l(r1, rdipp)ep

...
. . .

...

l(rN , rdip1)e1 . . . l(rN , rdipp)ep




s1

...

sp



= L({rj, rdipi}, ei)


s1,1 . . . s1,n

...
. . .

...

sp,1 . . . sp,n

 (3.49)

= L({rj, rdipi , ei})S (3.50)

All things considered, the data matrix M can be written as:

M = LS + n (3.51)

where n stands for noise added to system. Generally, the noise is modelled

as zero mean Gaussian random variable: n ∼ N(0, σ2IN), where σ2 is the

standard deviation of the noise and IN is the identity matrix.

The electromagnetic field is the combination of the electric field E (V/m2)

and the magnetic field B (T) and it can be computed by Maxwell’s equations

and the Continuity equation.
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Maxwell’s equations

∇E = ρ/ε (3.52)

∇× E = −∂B/∂t (3.53)

∇B = 0 (3.54)

∇×B = µ(J + ε∂E/∂t), (3.55)

where µ stands for magnetic permeability in H/m and ε stands for the elec-

trical permitivity of the material.

Continuity equation:

∇J = −∂ρ
∂t
, (3.56)

where the total current density J is measured in A/m2 and ρ stands for the

charge density C/m3.

Maxwell’s equations can be simplified considering:

• the magnetic permeability of head tissue is equal to that of free space:

µ = µ0

• ∂E/∂t and ∂B/∂t can be neglected while computing E and B

In order to take quasistatic approximations under consideration, the time-

derivative terms have to be small compared to the ohmic current:
∣∣∣ε∂E∂t ∣∣∣ �∣∣∣σE

∣∣∣, for example 2πfε
σ
� 1. The current density Jp consists of the primary

current and the volume or return current Ju = σE, which is passive and σ

stands for microscopic conductivity. Primary current is produced by neural

activity and it flows mainly inside or in the vicinity of a cell, while the vol-

ume current flows passively everywhere in the medium [31]. Mathematically

speaking:

J = Jp + σE (3.57)

Given that the expected frequency range of neural sources is less than

1kHz, magnetic fields and electric currents behave as stationary at all time
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instances. Consequently, the quasi-static approximation of Maxwell’s equa-

tions can be used. By differentiating equation 3.57 and taking into account

that ∇J = 0 in the quasistatic approximation:

∇J = ∇Jp + σ∇E⇒ ∇Jp = −σ∇E (3.58)

Given that ∇×E = 0 (quasistatic approximations), E = −∇V (V stands

for a potential) the equation 3.58 can be written as follows:

∇Jp = −∇(σ(∇V )) (3.59)

The aim is to estimate V using analytical or numerical techniques. After

calculating V , the computation of B is direct. The whole forward problem is

summarized in the computation of the magnetic field B outside the head from

a given primary current distribution Jp within the brain [31]. Taking into

account that brain sources are represented as mathematical point dipoles:

Jp = m0δ(x− x0), (3.60)

where m0 is the dipole moment, δ stands for the Dirac function and x0 is

the dipole position. Given that the magnetic potential A can be written as:

A(x) =
µ

4π

∫
Ω

Jp(x
′
)− σ(x

′
)∇V (x

′
)

|x− x′|
dx

′
(3.61)

The magnetic flux Ψ measured within a surface area S and circumference

l can be written as:

Ψ =

∫
S

BdS =

∮
l

A(x)dx (3.62)

Ψ =
µ

4π

[∮
l

∫
Ω

Jp(y)

|x− y|
dydx+

∮
l

∫
Ω

−σ(y)∇V (y)

|x− y|
dydx

]
(3.63)

where the first term is the primary magnetic flux and the second term is the

secondary magnetic flux.



3.3. Source Analysis 57

3.3.2 Conductivity

According to Ohm’s law, the current density J is given by the electric field

E as follows:

J = σE (3.64)

where σ ∈ R3x3 stands for the conductivity tensor in each position r:

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (3.65)

with units A/(V m) = S/m.

(a) On the left: the three layers of the skull (hard-
spongiform-hard). Radial conductivity (σr) is 10
times smaller than the tangential conductivity
(σt). On the right: white matter consists of differ-
ent nerve fibers (axons grouped in bundles). The
conductivity along the nerve bundle is 9 times
larger than perpendicular to the nerve bundle.
Adapted from Hallez et al., 2007.

(b) The different colors indicate the pri-
mary fiber orientation (red: left-right,
green: anterior-posterior and blue superior-
inferior). Adapted from http://www.sci.

utah.edu/~wolters/PaperWolters/2017/

AntonakakisTalkBACI2017.pdf

Human head compartments are classified into two categories regarding

http://www.sci.utah.edu/~wolters/PaperWolters/2017/AntonakakisTalkBACI2017.pdf
http://www.sci.utah.edu/~wolters/PaperWolters/2017/AntonakakisTalkBACI2017.pdf
http://www.sci.utah.edu/~wolters/PaperWolters/2017/AntonakakisTalkBACI2017.pdf
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their conductivity: isotropic and anisotropic [71]. Isotropic conductivity de-

notes that the current flow is the same in every direction (conductivity is

equal in all directions [72]). Grey matter, scalp and cerebro-spinal fluid

(CSF) are characterized by isotropic conductivity and the position depen-

dent conductivity tensor, σ, is reduced to a position dependent conductivity

scalar. Anisotropic conductivity denotes conductivity inequality across the

different directions since the electric field can induce a current density com-

ponent perpendicular to it with the appropriate σ in equation 3.64 [72]. Skull

and white matter are compartments of anisotropic conductivity; skull con-

sists of two hard layers with relative low conductivity and a spongiform layer

between them with higher conductivity. White matter consists of different

nerve fibers with higher conductivity in the direction along them. Accord-

ing to Wolters et al. anisotropic conducting tissues jeopardize the forward

problem calculation and consequently the inverse problem [73], [74].

3.3.3 Boundary Conditions

There are two boundary conditions that govern the interface between two

compartments. The first boundary condition is based on the compartment’s

transparency. A ll the current that flows out from one compartment enters

the neighboring compartment. This condition does not hold if one of the

compartments is the air because of its very low conductivity [72]. For non-

air compartments the Neumann boundary condition is defined as follows:

J1en = J2en (3.66)

(σ1∇V1)en = (σ2∇V2)en (3.67)

For air compartment the homogeneous Neumann boundary condition

holds:

J1en = 0 (3.68)

(σ1∇V1)en = 0 (3.69)
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For non-air compartments only, the potential between the compartments

is continuous (Dirichlet boundary condition):

V1 = V2 (3.70)

Figure 3.11: Boundary between two compartments with conductivities σ1

and σ2. en stands for the normal vector to the interface. Adapted from
Hallez et al., 2007.

3.3.4 Head Volume Conductor Models

Head models can be classified into two major categories: simple and realistic

head models. The former incorporates analytical homogeneous single spheres

or multi-spheres while the latter use numerical solutions, such as Boundary

Element Method and Finite Element Method (FEM), to approximate head

geometry. MRI scan can be involved on both categories in order to assist

head modeling for more accurate results [75].

Spherical Head Model

Spherical head models are the simplest and most popular models of head ge-

ometry in MEG/EEG. They consist of concentric spherical layers, where each

spherical layer represents a different head tissue: scalp, skull, cerebrospinal

fluid (CSF) and brain. Especially for MEG spherical head models, some

unique properties are held. To explain, spherical MEG head models remain

unaffected by the number of shells and their respective conductivity. That is
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why a source inside concentric spherical layers with different conductivities

generates the same MEG fields as if it was located inside a single homo-

geneous sphere, because only the distribution of secondary volume currents

affect conductivity. Just to mention that secondary volume currents are sup-

pressed by the original primary neural currents. According to the analytic

formulation of Maxwell’s equations in the spherical geometry, secondary cur-

rents do not generate any magnetic field outside the volume conductor [75].

As a result, measured MEG fields are not affected by the conductivity and the

radius of each spherical layer [75], which is one of MEG’s major advantages.

It is important to mention that MRI-scan can be used in spherical head

modeling to optimize sphere’s fitting to the participant’s head. Moreover,

outside the spherical volume conductor there are not any magnetic fields

generated by radially oriented brain currents. This is the reason why currents

generated at gyral crests or sulcal depths produce attenuated MEG signals

in contrast with those signals generated by currents flowing perpendicularly

to the sulcal walls [75]. Finally, another difference between MEG and EEG is

the sensitivity to source orientation. MEG is considered less sensitive given

that the magnitude of magnetic fields attenuates faster than the magnitude of

the electrical potential. Although it is believed that MEG can detect mesial

and subcortical brain structures, some studies prove the opposite [75], [76].

Figure 3.12: 3-concentric sphere head model. Adapted from G. Crevecoeur
et al. 2008.

Realistic Head Model

Even though spherical models are simple to be applied and not computation-

ally demanding, they lead to poor source estimations due to rough approx-

imations of the human’s head. A number of realistic head models has been
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proposed in order to face the aforementioned disadvantages. Realistic head

models solve Maxwell’s equations with numerical methods. The two major

numerical approaches are the: Boundary Element Method (BEM) and Fi-

nite Element Method (FEM). In these approaches MRI scan of the subject’s

head is necessary in order to extract the geometric tessellations of the various

envelopes forming the head tissues [75].

Boundary Element Method: is a numerical technique based on ho-

mogeneous and isotropic head compartments. This method calculates the

potential values. In this method MRI yields triangulated segmented en-

velopes. Therefore, BEM uses triangles (boundary elements) as building

blocks. Surface boundaries are defined upon each triangle. The tissue en-

velope is produced after calculating the potential difference at each triangle

between the two compartments with different conductivities. The potential

difference is induced of a current source inside the brain, such as a dipole.

Interfaces are defined by separating volume regions with different conduc-

tivities while the boundary is the outer surface of the compartment and

distinguishes the non-conducting air from the conducting volume [72]. For

instance, a typical head model comprises of 3 surfaces: brain-skull interface,

skull-scalp interface and outer surface.

(a) Brain com-
partment.

(b) Skull com-
partment.

(c) Scalp com-
partment.

(d) Altogether the com-
partments.

Figure 3.13: BEM head model consisting of three compartments, generated
using FieldTrip Toolbox.

Finite Element Method: is also a numerical technique which uses as a

building block, elementary volumes such as tetrahedron or hexahedrons [73],

[72], [77], [15]. The potential difference is calculated on the vertices of the

building blocks. FEM, also, allows anisotropic tissue conductivity, such as the
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three-layered skull bone (compacta-spongiosa-compacta), CSF and the white

matter. The modelled compartments are: the scalp, the skull compacta, the

skull spongiosa, the CSF and the gray and white matter. Finally, FEM’s

calculation is a laborious and complex task.

Figure 3.14: Six-compartment anisotropic realistic head model and source
space. Adapted from https://onlinelibrary.wiley.com/doi/full/10.

1002/hbm.24754

3.3.5 Inverse Problem

The Inverse Problem (IP) applied on non-invasive or invasive electromagnetic

(EM) recording technologies is dedicated on estimating and modeling the

spatiotemporal dynamics of neuronal currents that flow through the brain

and induce the electric potentials and magnetic fields measured at sensor

level. The Inverse Problem is also addressed in literature as Neuroelectro-

magnetic source imaging (NSI). The Inverse Problem is classified as ill-posed.

To elaborate, the given sensor topography could be generated by an infinite

number of active brain sources. The reason behind this, is the existence of

sources who do not generate any measurable EM signals (silent sources) but

they contribute to the solution without affecting the data fit. Assumptions

that results in a priori information are a standard comping mechanism of

non-uniqueness in order to restrict the solution space. Mainly, the assump-

tions made determine the nature of the sources, for example their quantity,

anatomical and neurophysiological constraints, a priori probability density

https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.24754
https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.24754
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functions and covariance models. Source localization accuracy depends on

variant reasons such as head and source modelling errors and of course bio-

logical and non-biological noise.

3.3.6 Mathematical Formulation

Keeping in mind equation 3.51, the IP is summarized in finding an estimation

Ŝ of the dipole magnitude matrix given sensor positions and measurements

M, using the leadfield L calculated in the forward problem.

Ŝ = L−1M (3.71)

In mathematical terms, the ill-posed Inverse Problem is explained because

of N << p, L is ill-conditioned and so equation 3.51 is under-determined.

Moreover the forward model computed for the EEG data can be applied to

solve the IP for the MEG data given that the magnetic field can be calculated

by the electrical potential by integration.

Mathematical models aiming on the inverse solutions depend on assump-

tions about number, position, magnitude and orientation of dipoles and

whether they are known or unknown. According to literature [70], [78], mod-

els can be classified as:

• Single dipole with unknown position, orientation and magnitude that

change over time.

• A predetermined number of dipoles with predetermined unknown po-

sitions and orientations but different amplitudes.

• Predetermined dipole positions and different orientations and ampli-

tudes.

• Different number of dipoles with constraints.

Regarding the dipole moments constraints, four models can be classified:

• Constant unknown dipole moment.
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• Predetermined known dipole moment orientation and varying moment

magnitude.

• Predetermined unknown dipole moment orientation with varying mo-

ment magnitude.

• Varying dipole moment orientation and magnitude.

The two main categories of Inverse Problem’s solutions are the non-

parametric and parametric methods [70]. Briefly, in non-parametric models

a number of dipole sources with predetermined locations and orientations

are allocated alongside the brain volume or cortical surface. Regarding the

parametric methods, the aim is to find the best dipole position and orienta-

tion. The model consists either of a single dipole in a spherical head model

or of multiple dipoles in a realistic head model. Also, dipole orientations

can be predetermined or varying. On the other hand, non-parametric tech-

niques estimate dipole’s moment in a predetermined source space, leading on

a linear problem. In this research work, only non-parametric methods have

been used, so an attempt to briefly explain them is made. The mathematical

derivation following is based on the Bayesian framework.

In order to define the conditional probability density of M given S, the

likelihood density is given by the following formula:

pli(m|s) = (
1

2πσ2
)
N
2 exp(− 1

2σ2
||m− Ls||22) (3.72)

Given M is ill-posed, the a-priori information of S is encrypted in its density

probability ppr(s) and Bayes’ rule is applied as follows [78]:

ppost(s|m) =
pli(m|s)ppr(s)

p(m)
(3.73)

where ppost stands for the posterior, the conditional density of S given M.

The derivation of point estimates for the values of S can be achieved ei-

ther by Maximum A-posteriori Estimate (MAP) or the Conditional Mean

Estimate (CM). The first method uses the maximum of the posterior distri-

bution (mode) while the second method is the mean or expected value of the
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posterior [78]:

ŝMAP := arg max
s∈Rn

ppost(s|m) (3.74)

ŝCM := E[s|m] =

∫
dppost(s|m)ds (3.75)

In order to link the aforementioned methods with other widely used tech-

niques Gibbs distributions are used as priors:

ppr(s) ∝ exp(− λ

2σ2
P (s)) (3.76)

where P(s) is an energy function, affecting features independent of d and

λ > 0 is called regularization parameter and scales the values of P(s).

ŝMAP : = arg max
s∈Rn

{
exp

(
− 1

2σ2
||m− Ls||22 +

λ

2σ2
P (s)

)}
(3.77)

= arg max
s∈Rn

{
||m− Ls||22 + λP (s)

}

ŜMNE = GT (GGT + λIm)−1B, p > m (3.78)

3.3.7 Standardized low resolution brain

electromagnetic tomography (sLORETA)

Standardized low resolution brain electromagnetic tomography (sLORETA)

[70], [78], [79] is based on the standardized current density estimate given by

the MNE.

For each source p sLORETA yields the estimate of standardized current

density power:

Ŝ
T

MNE,p{[VŜpp
]}−1ŜMNE,p (3.79)

where ŜMNE,p ∈ R3x1 is the current density estimate at the pth voxel given by

the minimum norm estimate and {[VŜpp
]} ∈ R3x3 is the pth diagonal block of

VŜ (MNE variance). Compared with the MNE, sLORETA yields the lowest
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localization errors, according to noisy simulations [70]. Finally, sLORETA

detects more accurately deep sources even multiple sources which are not

temporally related or their leadfields are uncorrelated [17].
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Chapter 4

Methodology and Results

In this chapter the methodologies followed and the experimental results are

shown. The pipeline given in Fig. 3.1 is followed. Beginning from prepro-

cessing an extended explanation of the methodlogy and the corresponding

figures is given. Consequently, the HFOs detection and clustering module is

further elaborated in the Fig. 4.12, while examples of HFOs and spurious

events are given in order to assist the reader understanding the HFOs and

the bottleneck of the detection algorithms in literature. The chapter contin-

uous with the results in the section 4.3, where an explorative work regarding

the solutions of the Forward Problem is given, while the main focus is on the

FEM head models and sLORETA as a combination yielding more accurate

results in terms of source estimation. On the other hand, in section 4.4 only

the results of the combination FEM head models and sLORETA are shown.

Finally, a brief comparison between HFOs-based and interictal spikes-based

results is made.

4.1 Preprocessing and Spike Detection

In this research work measurements were acquired by EEG and MEG record-

ing procedures, simultaneously. The MEG system was provided by a CTF

setup from VSM MedTech Ltd. which was placed in a properly modified

Magnetic Shielded Room and was equipped with 275 axial gradiometers of

which the 4 were bad sensors. The EEG system is equipped with 72 HydroGel

electrodes (along with 6 EOG and 1 ECG channel). Also, there are reference

channels that record non-cerebral activity such as ocular and cardiac activ-

ity (’EOG’ and ’ECG’ channels) which are used for denoising techniques.

Additionally, the subject underwent a Magnetic Resonance Imaging (MRI)
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recording to obtain head’s images for possible lesions and abnormal areas.

The MRI system is a 3 Tesla MAGNETOM recording setup offering mm3 ac-

curacy by Siemens Medical Solutions. Data was acquired from a 49-year-old

female suffering from drug resistant focal onset epilepsy since the second year

of her life. The measurements were acquired by seven runs. During the first

run (7 min long) skull conductivity was calibrated for the head model (stim-

ulation of median nerve of patient’s right arm with electrical pulses above

the motor threshold) [17]. The rest six runs were 8 min long with sampling

rate 2400Hz and interictal epileptic discharges were measured. The MRI

recordings were performed on T1, T2 and Diffusion Tensor Imaging (DTI)

sequences and were completed with 1.89mm edge length, one flat diffusion

gradient image and 20 volumes. The subject signed all the consent forms

which were approved by the ethics committee.

Input: Raw EEG/MEG data

Downsample
1200 Hz

Band-pass filtering 1-500 Hz

Notch Filter

Detect & Reject Bad Channels

Input: Raw EEG/MEG data

Downsample
1200 Hz

Band-pass filtering 1-500 Hz

Notch Filter

Detect & Reject Bad Channels

PCA/ICA PCA/SSP

High Order Statistics
(Antonakakis et al., 2013)

Correlation 
Coefficient

(Antonakakis et al., 2013)

Reject Artifactual 

Components *

EEG MEG

High Order Statistics

Correlation 
Coefficient

Reject Artifactual 
Components

* Artifact Correction 

with EMD (Lindsen et 

al., 2010) and WD 

(Kumar et al., 2008) has 
been implemented

Wavelet 
Decomposition

(Calcagno Et al., 2014)

Wavelet 
Decomposition

Figure 4.1: Preprocessing pipeline

As can be seen in Fig. 4.1, the first steps of the implementation are the

downsampling, band-pass and notch filtering and the detection and rejection



4.1. Preprocessing and Spike Detection 69

of any bad channels. Those steps are applied independently on EEG and

MEG data. On the other hand, the artifact correction process is different for

each modality. PCA is applied on the EEG data in order to define the number

of the Independent Components (IC) of ICA. The number of the components

that explain the 95% of data’s information has been defined by the metric PUI

as explained in the subsection 3.1.2. The ICs that contain mostly artifactual

activity are removed. For MEG data, PCA has been applied in order to

find the spatial components that explain better the artifacts to be removed.

The number of the Principal Components (PCs) is equal to the number

of the MEG sensors. After the identification of the artifactual Principal

Components, SSP calculates the linear projectors that will be applied on the

recordings in order to correct them from the artifacts. The identification of

the artifactual components in EEG and MEG recordings is a sophisticated

approach which is depicted in Fig. 4.4. For the cleaning of the artifactual

ICs two approaches have been implemented but not integrated yet into the

preprocessing pipeline.

As explained in section 3.1, firstly the original data were sampled at

2400Hz, initially and then downsampled by a sampling rate of 1200Hz. In

this research work, the band of interest ranges between 1Hz and 500Hz. In

that frequency range occur the most abnormal frequency activities (1Hz −
100Hz) [80] and also HFOs can be found (80Hz − 500Hz) [81]. In that

case the implemented band-pass filter is a 4th order (steep transition band)

Butterworth (flat frequency response in the passband). The PLN is delivered

at 50Hz (frequency of power utility in Europe) and its harmonics are removed

by a Notch filter.

After filtering, it is important to inspect data on frequency domain and

check filters implementation. As shown in Fig. 4.3, Notch filter removed any

PLN and its harmonics on the corresponding frequencies.
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(a) Specifications of the used band-pass
filter.

(b) Specifications of the used Notch filter.

Figure 4.2: Specifications of the used filters.
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Figure 4.3: PSD of EEG channels before and after filtering
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Input: Components of EEG/MEG data

High Order statistics

Wavelet Decomposition Correlation Coefficients 
(globally/locally) with EOG/ECG 

channels

Correlation > 0.8

Kurtosis Skewness Rényi entropy

Threshold ±1.64

Kurtosis Skewness Rényi entropy

Threshold ±1.64

Input: Components of EEG/MEG data

High Order statistics

Wavelet Decomposition Correlation Coefficients 
(globally/locally) with EOG/ECG 

channels

Correlation > 0.8

Kurtosis Skewness Rényi entropy

Threshold ±1.64

Figure 4.4: Pipeline for the detection of artifactual components

As the figure 4.4 illustrates, three different approaches have been imple-

mented in order to identify the artifactual components. Firstly, correlation

coefficients have been calculated between the components and the reference

channels globally and locally. The term globally denotes that the correla-

tion coefficients have been calculated upon all the duration of the compo-

nent and the reference channels. Locally indicates that the components and

the reference channels have been segmented into portions with duration 2s.

Correlation coefficients have been calculated for each segment. In order to

classify a component as an outlier, the global correlation coefficients should

be greater that 0.8 and the local correlation coefficients should exceed the

threshold of the 0.8 in more than 20% of the segments [82], [83]. The local

correlation coefficients approach is applied only for the identification of oc-

ular activity. Ocular activity is non-periodic and spontaneous while cardiac

activity appears periodically and contaminates the component alongside its

whole duration. On the second approach High Order Statistics have been
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calculated directly on the components. The metrics that have been used

are the Kurtosis, Skewness and Rényi entropy. A component is classified

as an outlier if the z-scored values of the metrics exceed the empirically de-

fined threshold which is set to ±1.64. Finally, Wavelet Decomposition (WD)

is applied on each component. High Order Statistics are calculated on all

the wavelet coefficients that WD yielded. The same thresholding technique

(with the application of HOS directly on the components) has been followed

to identify the outlier components. Even though a complicated artifact cor-

rection methodology has been implemented the results are always inspected

visually in order to avoid any false identifications.

In Fig. 4.5 the topologies of the ICs of the EEG data are depicted.

The typical artifactual topographies are IC2 and IC8 for ocular and cardiac

activity, respectively.

Figure 4.5: Topographies of ICs of EEG data

Although IC1 does not depict a typical artifactual topography, by ob-

serving the corresponding time series in Fig. 4.6a some eye movement can

be spotted, such as saccades and blinks. This case explains the necessity

of implementing an artifact detection algorithm since the topography is not

always representative of the activity.
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(a) ICs containing ocular activity

(b) IC containing cardiac activity

Figure 4.6: Artifactual ICs

In Fig. 4.7, the subfigures 4.7a, 4.7b, 4.7c illustrate the z-scored High

Order Statistics calculated in time. All metrics classify IC6 as an outlier.

According to Fig. 4.5 IC6 does not illustrate a representative topography

of cardiac artifact so it is not classified as an outlier. On the other hand in

the subfigures 4.7d, 4.7e and 4.7f the z-scored High Order Statistics are cal-

culated on the ICs wavelet coefficients and yield better results. The metrics

classify as outliers IC1 and IC8 which contain ocular and cardiac activity,

respectively. This example enhances the contribution of WD on the detection

of the artifactual components.

For the MEG data, PCA is applied for each type of artifact in order to

identify the spatial components of the artifact to be removed. Consequently,

SSP is applied separately for the correction of each type of artifact. Firstly,

many examples of the artifact to be removed have been identified. A short

time window is extracted around each of these event markers and all the

small blocks of the recordings are concatenated in time. PCA is applied on

the concatenated artifacts in order to get a decomposition in various spatial

components (number of components = number of sensors). The aim is to

identify the spatial components that are representative of the artifacts to be

removed. The pipeline depicted in Fig. 4.4 is followed to identify the most

representative spatial components. A linear projector for each spatial com-

ponent to remove is computed and applied on the recordings. As explained in
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subsection 3.1.7 the order matters so components containing cardiac activity

are calculated first.
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(a) Z-scored kurtosis of ICs
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(b) Z-scored Rényi entropy of ICs
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(c) Z-scored skewness of ICs

Kurtosis of Independent Components' Wavelets Decomposition
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(d) Z-scored kurtosis of ICs wavelet co-
efficients
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(e) Z-scored Rényi entropy of ICs
wavelet coefficients
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(f) Z-scored skewness of ICs wavelet co-
efficients

Figure 4.7: High Order Statistics on ICs
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(a) Spatial Components of cardiac activity

(b) Spatial Components of cardiac activity to remove.
Spatial component 1 illustrates a representative topogra-
phy of cardiac activity.

(c) Spatial Components of ocular activity

(d) Spatial Components of ocular activity to remove. Spa-
tial component 1 and 2 illustrate representative topogra-
phies of ocular activities.

Figure 4.8: Spatial components of MEG data. The percentage denotes the
normalized singular value of each component. It indicates the amount of
signal that was captured by the component during the decomposition. Higher
percentages indicate that the component is more representative of the artifact
recordings that were used to calculate it.
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The artifact correction approach should be concentrated only on the ar-

tifactual activity without affecting the useful brain information. In this re-

search work the annotated spikes are the useful information that will be

examined. In order to assure that the annotated spikes have been remained

intact after the implementation of the preprocessing, each spike has been

segmented into a trial from [−0.5s, 0.5s], where zero is mapped to the peak

of the spike and all trials have been arithmetically averaged. This approach

has been implemented for the spikes before and after the preprocessing and

independently for the MEG and EEG spikes.

(a) Averaged MEG spikes before
artifact correction

(b) Averaged MEG spikes after
artifact correction

(c) Averaged EEG spikes before
artifact correction

(d) Averaged EEG spikes after
artifact correction

Figure 4.9: Examination of annotated spikes before and after artifact clean-
ing.

Comparing the Fig. 4.9a and 4.9b, no significant differences can be spot-

ted. In Fig. 4.9b the topology in the vicinity of the left FCD is slightly

enhanced and also the amplitude of the spikes’ peaks. For the EEG spikes,

the channel with maximum negativity (F6) is depicted in red colour (EEG-

dominant epilepsy case). Comparing the Fig. 4.9c and 4.9d, the topography

after the preprocessing has been enhanced, illustrating clearly the maximum

negativity at F6 and that the amplitudes of the spikes’ peaks have been

significantly increased.

As it is shown in 4.1 for the correction of the artifactual ICs two ap-

proaches have been implemented but not integrated yet into the preprocess-
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ing pipeline. These approaches are based on the local correlation coefficients

and they are used to correct only ocular activity. The aim is to correct only

the segments of the components that have been contaminated. The contam-

inated segments have been detected by the local correlation coefficients ap-

proach and they are corrected using Empirical Mode Decomposition (EMD)

and Wavelet Decomposition (WD), independently.

EMD calculates the Intristic Mode Functions (IMFs) of the contaminated

segments. A thhresholding technique is applied in order to classify the IMFs

that contain mostly ocular activity. Specifically, the standard deviation (SD)

of all IMFs is calculated and the IMFs that their SD is α times bigger than

the SD of the first IMF are classified as artifactual. Mathematically speaking,

SD1 < αSDi, where i = 1, ..., N , N stands for the number of IMFs and α

is empirically defined. In Fig. 4.10, IMF3− IMF5 contain ocular activity.

For the segment’s reconstruction only the remaining IMFs have been used.

The corrected signal consists of the sum of the IMFs which satisfy the afore-

mentioned inequality. In Fig. 4.11a an example of a contaminated signal is

illustrated before and after the correction of the blinks.
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Figure 4.10: IMFs after EMD has been applied on a specific segment

WD transforms the contaminated segments into time-frequency domain.

Daubechies have been used as mother wavelet and the decomposition level is

3. A thresholding technique has been applied on all the wavelet coefficients.

Specifically, the amplitude of the wavelet coefficients that exceed the thresh-

old are downscaled by a factor 0.2. The threshold is defined as the product
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of a regularization factor and the segment’s standard deviation. In Fig. 4.11

a comparison between the two methods is made. In both examples the ini-

tial contaminated segment is the same. In 4.11a the reconstructed signal is

clear of the blinks but it is possible that some useful information has been

extracted, too. On the other hand, the WD approach interferes less to the

signal and downscales the blinks.
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(a) EMD example
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(b) WD example

Figure 4.11: Comparison between EMD and WD artifact correction. EMD
discards a lot information of the signal, while WD it is possible to form sharp
peaks while downscaling the wavelet coefficients.

The main advantage of both approaches is that interfere only on segments

containing non-cerebral activity, leaving intact portions of the component

that may contain useful information.

4.2 HFOs detection and clustering

For the HFOs detection the algorithm explained in Fig. 3.2 in section 3.2

has been implemented. The algorithm has been applied independently for

the EEG and MEG data. From now on, HFOs detected on EEG data will

be called EEG HFOs and HFOs detected on MEG data will be referred to

as MEG HFOs. The algorithm searches for HFOs in the time vicinity of the

annotated spikes. Specifically, a time window with duration 10ms around

the spikes is examined. Given the topologies in Fig. 4.9d and 4.9b in section

4.1 the regions responsible for the underlying epileptic activity are known.

This a-priori information is used to examine only the corresponding sensors
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for any possible HFOs. As it is illustrated in Fig. 4.12 the input of this

module is the preprocessed EEG and MEG data. A high-pass filter between

the frequencies 80 − 500Hz is applied on the recordings because HFOs live

in that frequency range. The module give two outputs: clustered EEG and

MEG HFOs.

Input: Preprocessed EEG/MEG data

High-pass filtering
80-500 Hz

HFOs Detection
(Papadelis et al., 2016)

Clustering on HFOs
(Antonakakis Diploma Thesis, 2013)

Output: Clustered HFOs of 
EEG data

Output: Clustered HFOs of 
MEG data

Figure 4.12: Pipeline of the HFOs detection and clustering module
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Figure 4.13: Filtered signal and Hilbert Transform
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(a) Filtered EEG signal. The starting
and ending point of the HFOs are de-
noted. The red dotted vertical line de-
notes the peak of the event.

(b) Time-frequency representation of fil-
tered EEG signal. (c) Instantaneous Power Spec-

trum of the peak.

Figure 4.14: Example of a detected EEG HFOs.

In Fig. 4.13 an example of a segment of a signal is illustrated. Specifi-

cally, in the upper subfigure the segments of the signal and its corresponding

upper envelope are illustrated. Signal’s envelope has been calculated using

Hilbert Transform. In the lower subfigure the z-scored upper envelope of the

channel’s segment is illustrated. The red vertical line denotes the threshold

while the vertical red line denotes the peak of an event that exceeds the

threshold.

In Fig. 4.14 is illustrated an example of a detected EEG HFOs. In 4.14a

is shown the segment of the signal that the HFOs detected. The starting

and ending point of the event are denoted by the blue vertical lines, while

the red vertical line denotes the peak of the event. The event consists of

at least 4 oscillations in order to be well-distinguished from spurious EEG

activity or transient events. An indispensable part of the algorithm is to
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review the segment of the event in time-frequency domain. In Fig. 4.14b

the segment of the channel depicted in 4.14a has been transformed using

Morlet Transformation. The vertical line denotes the peak of the HFOs.

As can be seen, the signature of the event is well-restricted in frequency,

well-distinguishable from the background and resembles an isolated island

it time-frequency domain. In 4.14 the instantaneous power spectrum of the

peak is above the 80Hz as it is required.

(a) Filtered MEG signal. The starting
and ending point of the HFOs are de-
noted.

(b) Time-frequency representation of fil-
tered MEG signal. (c) Instantaneous Power Spec-

trum.

Figure 4.15: Example of a detected MEG HFOs.

In 4.15 is illustrated an example of a detected MEG HFOs. Similarly

with the Fig. 4.14, the event consists of at least 4 oscillations, its signature

in frequency is well- restricted and represented by an isolated peak in time-

frequency plot (restricted activity that resembles an ”island”). In 4.15c the

instantaneous power spectrum of the peak is above the 80Hz as it is required

and well-distinguishable from the background activities.
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In Fig. 4.16 an example of a false identification is given in order to fully

understand the importance of visual inspection in time-frequency domain.

As can be seen in Fig. 4.16a the peak of the event exceeds the threshold and

in Fig. 4.16b more than 4 oscillations between the starting and ending point

of the event can be distinguished. However, the time-frequency plot gives

valuable information of the event’s frequency signature as it is extended as

an elongated blob. Also, the instantaneous power spectrum of the peak is

not above 80Hz as it is required for an event to be considered as an HFOs.

That event has been excluded from the process.
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(a) Upper Fig: filtered signal and its up-
per envelope. Lower Fig.: z-scored upper
envelope of the filtered signal.

(b) Event on filtered signal. The
starting and ending point of the
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(c) Time-frequency representation of fil-
tered signal.

(d) Instantaneous Power
Spectrum.

Figure 4.16: Example of erroneous HFOs detection.

Visually inspection of the EoIs in time-frequency domain is an indispens-

able part of the algorithm and a laborious and time-consuming task. Since

it is a humans in the loop process, errors caused by the human factor are

possible. In order to restrict the false identifications one more step has been

added to the detection algorithm. All the HFOs that have been detected

and visually reviewed are grouped into clusters according to their energy.
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(a) Silhouette plot for optimal number of clusters
in EEG
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(b) Silhouette plot for optimal number of clusters
in MEG

Figure 4.17

The clustering is implemented by K-means algorithm with energy feature.

K-means requires as input the number of clusters. The optimal number of

clusters is selected by silhouette plots. In Fig. 4.17 the silhouette plots for

the HFOs detected on EEG and MEG data are depicted. For the EEG HFOs

the cluster that yielded optimal results in terms of source reconstruction is

the 1st, while for MEG HFOs is the 6th cluster.

The HFOs of each cluster are arithmetically averaged in time domain.

In Fig. 4.18a the averaged EEG HFOs are shown. The red vertical dotted

line denotes the peak of the averaged events at 0s while the duration of the

trials is 1s ([−0.5s, 0.5s] around the HFOs peak). As can be seen the peaks

of the HFOs are significantly enhanced. A fact that is clearly observed in

Fig. 4.18b. On the other hand, in Fig. 4.18c the peaks of the averaged

MEG HFOs are not clearly distinguishable from the background. In Fig.
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4.18d is clearly shown that the peak of the averaged MEG HFOs have been

significantly attenuated.

(a) Averaged EEG HFOs

(b) Channel example of averaged
EEG HFOs

(c) Averaged MEG HFOs

(d) Channel example of averaged
MEG HFOs

Figure 4.18: Averaged HFOs
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4.3 Interictal Spikes-based Source Analysis

The aim of this section is to explore the brain areas which generate the

epileptic activity. The source estimation is based on interictal spikes, well

established and widely used biomarkers of epilepsy. An explorative approach

has been followed, using different Forward Models and Inverse Solutions in

order to designate the most appropriate combination of the aforementioned

for the current subject.

Overall, all the Forward Solutions are based on the subject’s head anatomy

in order to obtain accurate and realistic solution for the Inverse Problem.

Briefly, for the EEG data, the Forward Models which have been tested are

3-shell sphere, BEM (based on FieldTrip implementation [84]) and FEM

(based on FieldTrip implementation [84]). All this methods used only the

T1 image MRI scan in order to generate the head model, while for MEG

data single-sphere was used as a head model obtained from the T1 image

MRI scan. In order to obtain accurate and realistic results by the Inverse

Problem, the Forward Problem was solved using FEM as a head model com-

bined with Venant principle. The FEM uses hexahedral as finite elements

and the head model includes brain anisotropy and calibrated skull conduc-

tivities. The head model consists of six tissues (skin, skull compacta, skull

spongiosa, CSF, gray and white matter) and it is constructed by the images of

MRI T1w− and T2w− using MATLAB and SPM12, FieldTrip [84]. Finally,

combined EEG/MEG (EMEG) approach has been tested, only for the FEM

head modelling case. The source space has 40468 × 3 dimensions while the

leadfield used for the reconstruction is a concatenated form of the EEG and

MEG leadfield. In all cases tested the noise covariance has been calculated

around [−500ms,−200ms] before the spike’s rising flag. sLORETA yielded

more satisfying results in terms of source estimation. The regularization

parameter λ has been empirically set equal to 25.

For the demonstrating results, the Forward Problem has been solved using

3-shell sphere, single-sphere and FEM, while for the Inverse Problem solution,

sLORETA has been applied.
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EEG data and 3-shell sphere head modeling

The 3-shell sphere as depicted in Fig. 4.19, is estimated based on scalp. The

sphere is aligned with brain.

Figure 4.19: 3-shell sphere as head modeling.

(a) −5 ms (b) −3.3 ms (c) 0 ms

Figure 4.20: Source estimation on EEG data: 3-shell sphere head model and
sLORETA.

The Fig. 4.20 depicts the results yielded from sLORETA for different time

instances. As can be seen, the left fronto-central FCD is not detected and

the propagation phenomenon, which begins from the fronto-central FCD and

ends at the right FCD, is also not illustrated. However, a gradually increasing

brain activity is depicted on the different time instances encircling the right

FCD and an extensive region around it. A threshold of 70% of the maximum

activation has been applied in order to display the final maps.
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MEG data and single sphere head modeling

Figure 4.21: Single sphere as head modeling.

In Fig. 4.21, the head model has been estimated based on scalp.

(a) −5 ms (b) −3.3 ms (c) 0 ms

Figure 4.22: Source estimation on MEG data: single sphere head model and
sLORETA.

By observing Fig. 4.22 at −5ms, no source activity has been detected.

At −3.3ms source activity can be detected on the vicinity of the right FCD

which gradually increased until 0ms. The subtle left FCD is undetectable

by MEG, too. As can been observed on the following results, using FEM

to solve the Forward Problem, the Inverse Problem yields accurate spatial

results for different time instances before the seizure onset. In Fig. 4.23,

EEG fails to detect the left FCD but still illustrates source activity at the

central brain region at −23.3ms. The propagation phenomenon is shown. In

Fig. 4.24, source activity around the vicinity of the subtle left FCD has been

detected, which propagates across the different time instances from the left

to the right brain region. The right FCD is well-detected.
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EEG data and FEM head modeling

(a) −23.3 ms (b) −13.3 ms (c) −8.3 ms

(d) −3.3 ms

Figure 4.23: FEM head model and sLORETA on EEG spikes.

MEG data and FEM head modeling

(a) −23.3 ms (b) −13.3 ms (c) −8.3 ms

(d) −3.3 ms

Figure 4.24: FEM head model and sLORETA on MEG spikes.
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(a) −23.3 ms (b) −13.3 ms (c) −8.3 ms (d) −3.3 ms

Figure 4.25: Topologies of averaged spikes on EEG.

(a) −23.3 ms (b) −13.3 ms (c) −8.3 ms (d) −3.3 ms

Figure 4.26: Topologies of averaged spikes on MEG.
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In Fig. 4.25 the corresponding topographies of the time instances source

reconstruction can been observed. Topographies are, also, a valuable source

of information since on EEG they clearly depict only the right FCD with

maximum negativity at F6 channel. Compared to the Fig. 4.25, in Fig.

4.26 the left FCD is detected by MEG, an observation deriving from source

reconstruction, too. The topographies show not corrected ocular activity,

which have been remained intact on purpose in order to not discard any

useful information, currently the interictal spikes.

EMEG data and FEM head modeling

(a) −23.3 ms (b) −13.3 ms

(c) −8.3 ms (d) −3.3 ms

Figure 4.27: FEM head model and sLORETA on EMEG spikes.

In Fig. 4.27 the results of the combined EEG/MEG are shown. Brain activity

is more pronounced in EEG compared to MEG. At −23.3ms the contribution

of MEG can been seen since there is source activity in vicinity of the left FCD.

The right FCD is detected including an extended brain region.
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4.4 HFOs-based Source Reconstruction

For the HFOs-based source reconstruction the Forward Problem has been

solved using the same realistic FEM head modeling in section 4.3. Specif-

ically, the leadfields calculated to solve the Forward Problem of the cases

described in 4.3 has been used for solving the Forward Problem of the

HFOs-based source reconstruction. The Inverse Problem has been solved

using sLORETA. As explained in section 4.2 HFOs were grouped in clusters.

Source reconstruction was applied on each HFOs cluster. For the EEG HFOs

the cluster that yielded optimal results in terms of source reconstruction is

the 1st, while for MEG HFOs is the 6th cluster. Only the results of those

clusters are shown in this section.

EEG data and FEM head modeling

(a) −23.3 ms (b) −13.3 ms

(c) −8.3 ms (d) −3.3 ms

Figure 4.28: FEM head model and sLORETA on EEG HFOs.
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As can be seen in Fig. 4.28, EEG fails to detect the left FCD but detects

accurately the right FCD. The same behaviour can be seen in the section

4.3. EEG is unable to detect any source activity around the left FCD, but

it detects accurately the right FCD.

MEG data and FEM head modeling

(a) −23.3 ms (b) −13.3 ms

(c) −8.3 ms (d) −3.3 ms

Figure 4.29: FEM head model and sLORETA on MEG HFOs.

The Fig. 4.29 illustrates the source estimation results from MEG data. The

source maps show extended activity, some of which is placed in the vicinity of

the left FCD. However, there are, also, more brain regions highlighted while

the right FCD is not accurately detected.
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Figure 4.30: Topologies of averaged HFOs on EEG.

(a) −23.3 ms (b) −13.3 ms (c) −8.3 ms (d) −3.3 ms

Figure 4.31: Topologies of averaged HFOs on MEG.
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In Fig. 4.30 the topographies of the averaged EEG HFOs show a clear

resemblance with the corresponding topographies of the averaged spikes. In

concordance with the spikes-based source reconstruction at the time instance

−3.3ms, negativity is spotted on the right FCD. The difference is that maxi-

mum negativity is shifted upwards at FP2 channel. Similarly with the spikes-

based source reconstruction, EEG fails to illustrate the subtle left FCD. In

Fig. 4.31d the topography shows brain activity around the two FCDs.

EMEG data and FEM head modeling

(a) −23.3 ms (b) −13.3 ms

(c) −8.3 ms (d) −3.3 ms

Figure 4.32: FEM head model and sLORETA on EMEG HFOs.

In Fig. 4.32 the combined EMEG can detect the right FCD and yields

source activity in the left FCD, which is the contribution of the MEG. In

concordance with the results in 4.3, HFOs-based source reconstruction results

show an EEG-dominant epilepsy case.
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4.5 Comparison between HFOs-based and

Interictal Spikes-based Source Analysis

In order to compare the results of the HFOs-based and Interictal Spikes-based

Source Analysis, a table of a specific time instance of the source localization

for all modalities is shown. The holy grail of the presurgery epileptic studies is

to accurately localize the seizure onset zone and therefore the epileptic zone.

HFOs and Interictal Spikes are used as indicators of the seizure onset zone.

The question that arises is if the HFOs are capable or even better indicators

of the Interictal Spikes. According to the Fig. 4.33, HFOs indicate the right

FCD accurately. Interictal Spikes yield source activity on the vicinity of the

left FCD and also, seem to detect the propagation phenomenon. However,

HFOs yield source activity closer to seizure onset zone that Interictal Spikes.

EEG MEG EMEG

HFOs

Interictal Spikes

Figure 4.33: Comparison between HFOs-based and Interictal Spikes Source
Analysis.
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Chapter 5

Discussion, Conclusion and

Future Work

5.1 Discussion

In this thesis an explorative work at low and high frequencies independently

has been done. The aim of this thesis is to study HFOs as indicators of the

seizure onset zone in epilepsy cases in comparison with interictal spikes. The

first module implemented is preprocessing. Filtering is used as a first ap-

proach for noise cancellation such as Power Line Noise. For artifacts such as

blinks, saccades and the heartbeats (the typical QRS complex) the cleaning

process is more sophisticated. A different cleaning approach was followed

for EEG and MEG data. ICA performed well on on EEG data in terms of

distinguishing artifactual from brain sources. The automatic identification

of artifactual components can be a complicated task. Partially, this is one of

the reasons behind the implementation of the complex pipeline illustrated in

Fig. 4.4. The other reason emerges from the necessity to reject only the most

representative artifactual components without affecting useful brain signal.

Wavelet Decomposition was applied in order to enhance signal’s properties

in time-frequency domain. As can been seen in Fig. 4.7, ICs representation

on time-frequency domain improved the algorithm’s results. On the other

hand, on MEG recordings, SSP cleaned the artifacts sufficiently. As can been

seen in Fig. 4.9 the artifactual components’ rejection process did not affected

the useful information, which in that case is the annotated interictal spikes.

As explained in section 4.1 two more artifact cleaning approaches have been

implemented but not integrated on the pipeline. In Fig. 4.11 the results of

EMD and WD in terms of artifact cleaning are shown and compared. EMD
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and WD are only used for ocular artifact cleaning because blinks and sac-

cades contaminate signals on specific segments. The main merit of these

approaches is that interfere with the components only on the contaminated

segments, without affecting the brain activity. The interictal spikes were

annotated by an epileptologist, meaning that no further job had to be done

regarding their detection. On the contrary, HFOs had to be detected by

us, so one of the main thesis goals was to develop a robust HFOs detection

algorithm. As explained in section 4.2, the implemented algorithm is based

on literature’s previous implementations with an additional clustering mod-

ule in order to stabilize and increase algorithm’s robustness. Energy-based

clustering serves as an extra filtering step for the detected HFOs since it

distinguishes any erroneously detected spurious EEG or MEG events from

real HFOs. In Fig. 4.14, 4.15 examples of detected EEG and MEG HFOs

are shown, while in Fig. 4.16 an example of erroneous detection is shown in

order to highlight the importance of visual inspection and clustering. Even

though the algorithm detects real HFOs, it also includes spurious events that

resemble HFOs. To put it differently, high sensitivity has been ensured in

trade-off to a low specificity to obtain a large number of EoIs. Proceeding

with the source analysis techniques, it is based on HFOs and interictal spikes.

Averaging spikes for source localization is a well established approach. The

same explorative approach was followed for HFOs-based source localization.

Even though averaging of HFOs is not recommended, since they are not

time-locked events , in Fig. 4.18a it is obvious that HFOs peaks’ have been

enhanced. On the contrary, averaging of MEG HFOs did not yielded suf-

ficient results according to Fig. 4.18c where the HFOs peaks’ are shown

attenuated. For the FP a realistic head model with realistic connectivities

was used for both HFOs-based and interictal spikes-based source localiza-

tion, while the IP was solved by sLORETA on both cases. As can be seen in

Fig. 4.28 and 4.29 EEG modality detectes accurately the right FCD, while it

fails to detect the left FCD. On the other hand, MEG’s superiority is shown

on the detection of source activity around the vicinity of the left FCD. In

Fig. 4.32 the combination of both modalities yields better results. The same

trend is spotted on interictal spikes-base source localization according to Fig.
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4.23 and 4.24. In that case, MEG yields more sufficient results for the detec-

tion of both FCDs. The complementary nature of EEG and MEG towards

each other in EMEG can lead to a sufficient and stable result suppressing

simultaneously any spurious brain signals not associated with the epileptic

activity. Spikes-based source localization confirms HFOs indications about

an EEG dominant epilepsy case. Overall, HFOs and interictal spikes suc-

cessfully indicate the seizure onset zone, with HFOs being more accurate.

5.2 Conclusion

This thesis study proposes a subject specific pipeline for the exploration of

scalp HFOs as epileptic indicators of seizure onset zone compared with in-

terictal spikes on non-invasive EEG and MEG recordings. Detection scalp

HFOs is an intriguing and not fully exploited task with many developing

possibilities. Under this light we implemented an existed detection algo-

rithm adding a clustering module for stabilizing and making the algorithm

more robust. Furthermore, it takes into account the combined EMEG that

can bring out the complementary information of the EEG and MEG, which

enhances the main merits of each modality. Last but not least, the realistic

head model that is used in source localization comprises six compartments

(skin, skull compacta, skull spongiosa, cerebrospinal fluid (CSF), gray and

white matter) including the anisotropies of the white matter and skull.

5.3 Future Work

As future work we propose machine learning and tensor decomposition, using

PARAFAC, for a fully automated artifact detection and cleaning algorithm.

Such an approach should facilitate and improve preprocessing approaches.

Moreover, deep learning techniques could be used as HFOs detection al-

gorithms in order to significantly decrease time complexity and human’s in-

volvement. Finally. the integrated pipeline could be applied on more epilepsy

cases for validation.
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Chapter 6

Comparison between toolboxes

There are many available open source software toolboxes or applications with

online tutorials that can be used for EEG and/or MEG analysis. In this

research work, two different open source tools have been used: FieldTrip [84]

and Brainstorm [85]. In this chapter a comparison between the two toolboxes

is made regarding the preprocessing approaches, denoising techniques and the

source analysis. The comparison is made on this topics only, because they

are in the scope of this thesis work.

To begin with, Fieldtrip runs only via Matlab, while Brainstorm gives

the choice to the user to run it via Matlab or as a stand alone application.

The two toolboxes are structured in a very different philosophy and they are

addressed to users with a wide academic background. Specifically, Fieldtrip

is a software only toolbox, so a basic Matlab coding knowledge is mandatory.

On the other hand, Brainstorm is a user friendly application with an easy

to learn GUI and does not require any programming knowledge, making it

suitable for physicians.

Preprocessing

Regarding the proprocessing approach, both FieldTrip and Brainstorm offer

quite similar choices in terms of processes. In FieldTrip, preprocessing is

achieved using the built-in function ft preprocessing (6.1a). To explain, pro-

cesses like reading data, removing linear trend, subtracting baseline DC offset

and applying filters (e.g. Notch or band-specific filters) are all implemented

via ft preprocessing. For data resampling and the conversion of 1st order gra-

diometers to 3rd order, the functions ft resampledata and ft denoise synthetic

were used, respectively. It is important to mention that the preprocessing

option cfg.dftfilter, which removes line noise using Discrete Fourier Trans-
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form (DFT), and the cfg.dftfreq, which accepts the line noise frequencies in

Hz for DFT, does not run properly. Instead, a band-stop filter can be used

with stop-band bandwidth on the frequencies of the line noise. Regarding

epileptic data, the recordings are continuous, meaning that they are not seg-

mented into portions or as they called trials. When using a toolbox, it is

required to define if the data contain any trials or not. In FieldTrip this

is defined by the preprocessing option cfg.continuous. An integral step of

preprocessing is to detect any bad channels. Usually, most bad channels are

identified by the technician during the measurements acquisition. However, it

is always advisable to examine data for any noisy channels or jumps on chan-

nels. Visual inspection is necessary and should always be used. FieldTrip

has implemented the function ft rejectvisual, which illustrates the prepro-

cessed data in all channels and allows the user to make a visual selection of

the data that should be rejected (6.2b). Different metrics such as variance,

kurtosis or z-value, for example (the metric is defined by the preprocess-

ing option cfg.metric), are computed for each channel. The outliers denote

bad or noisy channels. Although this function can be useful for indicating

the bad channels, it is necessary to always review the results and inspect

visually the data. In some cases, when source analysis is not in the scope

of the study, the detected bad channels can be repaired. FieldTrip via the

function ft channelrepair, repairs the bad channels by replacing them with

information given by the neighbors channels. The method used for repairing

is selected by the preprocessing option cfg.method.

On the other hand, all the aforementioned processes are applied via GUI

on Brainstorm (6.1b). To mention that CTF MEG/EEG system stores the

recordings into two types of files: epoched (.ds) or continuous ( AUX.ds).

In Brainstorm the files are saved as small blocks of recordings of a constant

time length. All these time blocks are continuous, without any gap between

them. By default Brainstorm imports the .ds folders as epoched, so it is

necessary to manually switch from any epoched data to continuous data

using the GUI command Switch epoched/Continuous. In order to correct

the order of the gradiometers the process Apply SSP & CTF compensation

must by applied. Consequently, the remaining aforementioned processes can
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be applied. The processes are selected only via GUI and can be applied on

one pass. Regarding bad channels detection, Brainstorm suggests to inspect

the Power Spectrum Density of all channels. Usually, noisy or bad channels

have greater PSD amplitude and stand out from the recordings (6.2a). For

bad channels repair, Brainstorm provides the built-in process Interpolate bad

electrodes, which allows the user to define the maximum distance between

the neighbors. However, Brainstorm has integrated the Fieldtrip function

ft channelrepair which has been explained before, allowing users to choose

different repairing methods.

(a) (b)

Figure 6.1: Figure 6.1a shows a batch of code on FieldTrip, while figure 6.1b
shows Brainstorm’s GUI running the same processes as FieldTrip does.

(a) (b)

Figure 6.2: Figure 6.2a shows FieldTrip’s interface for detection and rejection
of bad channles. Figure 6.2b shows Brainstorm’s approach for bad channels
detection. The PSD of all channels has been computed. The red channel
which shows an increased amplitude is a bad channel and it can excluded
from the further processing with right click on figure and selecting the option
Mark selected as bad.



Chapter 6. Comparison between toolboxes 102

Artifact Cleaning Techniques

FieldTrip and Brainstorm contain built-in functions for automatic artifact

detection. Both toolboxes can detect various artifacts; FieldTrip allows the

user to detect ocular, cardiac and muscle activity or even detects jumps and

channels that clip. Brainstorm, also detects subject movements, EOG and

ECG events, while it supports the detection of custom events, not necessarily

artifacts, based on the signal power in a specific frequency band. Component

analysis techniques are used to clean the detected artifacts of both EEG and

MEG recordings. FieldTrip supports variations of ICA, for instance binary

ICA, Fast ICA, JADE, while algorithms such as SVD and PCA can be com-

puted. Each method is accompanied by method-specific options, giving a lot

of liberties to the user when applying a method. On the other hand, Brain-

storm has integrated Infomax and JADE ICA only. The main difference

between Brainstorm and FieldTrip regarding the artifact cleaning techniques

is that the former uses extensively SSP for artifact cleaning on MEG record-

ings. Before apply SSP, is vital to detect the events that the algorithm will

clear. In general, SSP algorithm is avoided when dealing with low-density

EEG recordings.

Source Analysis

As has been extensively explained in Chapter 3, Source Analysis comprises

of the Forward Problem and the Inverse Problem. At this point it is impor-

tant to explain how the subject’s anatomy is imported into the toolboxes.

Brainstorm tutorials begin by importing subject’s MRI and allows the user

to calculate and apply the MNI transformation in order to use the normalized

MNI coordinate system for concordance with literature. Brainstorm uses an

affine co-registration with the MNI ICBM152 template from the SPM soft-

ware as an extra step of normalization in order to obtain the MNI coordinates.

The anatomical characteristics are saved on a separate tab from the record-

ings and are used for solving the FP 6.3b. On the other hand, in FieldTrip,

because all variables are saved on MATLAB’s workspace, it is recommended

to import the subject’s MRI when it comes to solving the FP and the IP.
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The next step after importing, is to spatially align the anatomical MRI with

head coordinates based on external fiducials or anatomical landmarks, using

the built-in function ft volumerealign. The next step belongs to a standard

procedure that is always followed when solving FP, and it is the reslice of

the anatomical MRI. FieldTrip uses the built-in function ft volumereslice.

All toolboxes co-register the given anatomical MRI with templates of typical

adult heads and brains. Consequently, the volume has to be segmented into

a specific number of compartments (3) and create the corresponding meshes.

FieldTrip uses the built-in functions ft volumesegment and ft prepare mesh,

respectively. In Brainstorm the meshes can be produced by right-clicking on

the subject’s MRI, which is displayed on the anatomy tab. Also, Brainstorm

has integrated FieldTrip’s function ft volumesegment. In both toolboxes, the

geometry of the head is defined following the same standard procedure ex-

plained above.

A crucial part of solving the FP is the accurate construction of the head

model. Both toolboxes support the widely used head models (3-shell sphere,

single sphere, BEM) with FieldTrip providing more options. The major

difference is that FieldTrip has implemented FEM, based on SimBio and

DUNEuro, for EEG only, while Brainstorm’s FEM based on DUNEuro is

not yet available for public use. In both toolboxes FEM for MEG recordings

has not yet implemented. The major disadvantage of both toolboxes is that

they do not support combined EEG/MEG, which yields superior results in

terms of source estimation as explained in chapter 4.
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(a) (b)

Figure 6.3: Figure 6.3a shows a batch of code on FieldTrip about processing
anatomical MRI, while figure 6.3b shows Brainstorm’s GUI about processing
amatomical MRI.

For solving the IP a variety of source reconstruction algorithms, such

as minimum-norm solutions, beamformers and dipole modeling, are pro-

vided by the two toolboxes. An important aspect of Brainstorm is that

it has incorporated FieldTrip built-in functions such as ft dipolefitting and

ft sourceanalysis, allowing the user to apply more source reconstruction algo-

rithms such as eLORETA for example, which is not implemented on Brain-

storm. Moreover, Brainstorm has integrated the toolbox BEst – ”Brain En-

tropy in space and time”, that implements several EEG/MEG source lo-

calization techniques within the “Maximum Entropy on the Mean (MEM)”

framework. These methods are effective on estimating brain activity sources

of EEG/MEG together with their spatial extent along the cortical surface.

For instance, when it comes to HFOs source localization, wMEM has been

proved to yield accurate results because it was designed to localize single-

trial events of oscillatory transient cortical activity, usually associated with

low signal-to-noise ratio. Finally, on FieldTrip the methods DICS (Dynamic

Imaging of coherent sources) and PCC (partial canonical correlation/coher-

ence) are for frequency or time-frequency domain data.
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Conclusion

The main differences between FieldTrip and Brainstorm can be summarized

on the users experience. FieldTrip can be confusing at parts when cod-

ing skills are not fully developed, but it allows the user to extract easily

the data and processes them further. On the contrary Brainstorm is quite

suitable for users with none or limited coding background, while it is not

always straightforward to extract the desired signals for further processing.

The main merit of Brainstorm is the general organization of the application,

which automatically positions the figures and allows multiple views of the

same data, with common x-axis (mainly representing time). Visualizations

are extremely valuable when it comes to signal processing and data review.

Brainstorm creates accurate visualizations and provides an easy navigation

system across them, facilitating the comparison and the review of the results.
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[44] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley

interdisciplinary reviews: computational statistics, 2(4):433–459, 2010.

[45] Jon Shlens. A tutorial on principal component analysis: derivation,

discussion and singular value decomposition. Mar, 25(1):16, 2003.

[46] Marios Antonakakis, Giorgos Giannakakis, Manolis Tsiknakis, Sifis

Micheloyannis, and Michalis Zervakis. Synchronization coupling inves-

tigation using ica cluster analysis in resting meg signals in reading diffi-

culties. In 13th IEEE International Conference on BioInformatics and

BioEngineering, pages 1–5. IEEE, 2013.

[47] Simon Haykin and Zhe Chen. The cocktail party problem. Neural com-

putation, 17(9):1875–1902, 2005.

[48] Aapo Hyvärinen and Erkki Oja. Independent component analysis: al-

gorithms and applications. Neural networks, 13(4-5):411–430, 2000.



Bibliography 112

[49] Anthony J Bell and Terrence J Sejnowski. An information-maximization

approach to blind separation and blind deconvolution. Neural computa-

tion, 7(6):1129–1159, 1995.

[50] Aapo Hyvärinen and Erkki Oja. A fast fixed-point algorithm for in-

dependent component analysis. Neural computation, 9(7):1483–1492,

1997.

[51] J-F Cardoso. Infomax and maximum likelihood for blind source separa-

tion. IEEE Signal processing letters, 4(4):112–114, 1997.

[52] Barak A Pearlmutter and Lucas C Parra. Maximum likelihood blind

source separation: A context-sensitive generalization of ica. In Advances

in neural information processing systems, pages 613–619, 1997.

[53] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural

computation, 10(2):251–276, 1998.

[54] Norden E Huang, Zheng Shen, Steven R Long, Manli C Wu, Hsing H

Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H

Liu. The empirical mode decomposition and the hilbert spectrum for

nonlinear and non-stationary time series analysis. Proceedings of the

Royal Society of London. Series A: mathematical, physical and engi-

neering sciences, 454(1971):903–995, 1998.

[55] Job P Lindsen and Joydeep Bhattacharya. Correction of blink artifacts

using independent component analysis and empirical mode decomposi-

tion. Psychophysiology, 47(5):955–960, 2010.

[56] Nazareth P Castellanos and Valeri A Makarov. Recovering eeg brain

signals: artifact suppression with wavelet enhanced independent com-

ponent analysis. Journal of neuroscience methods, 158(2):300–312, 2006.

[57] Mikko A Uusitalo and Risto J Ilmoniemi. Signal-space projection

method for separating meg or eeg into components. Medical and Bi-

ological Engineering and Computing, 35(2):135–140, 1997.



Bibliography 113
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