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Abstract—Epilepsy is one of the most common brain disorders
worldwide. The basic principle in epilepsy is to resect the
epileptogenic zone (EZ) when the medicaments are inadequate to
suppress epileptic seizures. Epilepsy is accompanied by interictal
spikes, a surrogate marker serving as an identifier of seizures.
The automatic temporal detection of these spikes is of major
importance due to the demanding time consumption of the man-
ual annotation. Electro- and magneto- encephalography (EEG
and MEG) are the most usual measurement modalities for the
recording of brain activity. EEG and MEG are ideal modalities
for the non-invasive monitoring of drug-resistant epilepsy. Many
approaches have been proposed for the temporal detection of
interictal spikes. However, only single measurement modality
(EEG or MEG) has been used up to now, neglecting their
complementary content. In this study, we develop a multi-feature
and iterative classification scheme with input from either single
modality (EEG or MEG) or combined EEG/MEG (EMEG).
The inputs include statistical (kurtosis and Renyi Entropy) and
spectral (Energy) features as well as the functional connectivity
metrics, global and local efficiency from imaginary phase lag
index networks. The classification performance for all modalities
ranges from 89 % to 92.8 %, with the maximum performance
being observed for EMEG. Overall, the complementarity of EEG
and MEG on the detection of interictal spikes is promising,
opening new considerations on the development of automatic
epileptic spike detection approaches.

Index Terms—epilepsy, automatic spike detection, SVM, EEG,
MEG, classification

I. INTRODUCTION

Epilepsy accounts for one of the most common brain
disorder affecting more than 50 million people worldwide and
almost two million people in Europe 1. 30% of those cases
remain resistant to any known combination of antiepileptic
drugs, making surgery, the most promising alternative treat-
ment [1], [2]. The main principle of epilepsy surgery is
to resect the epileptogenic zone, the cortical area in which
epileptic seizures can appear [3]. In order to proceed with
surgery, the epileptogenic zone (EZ) has to be localized with
sufficient accuracy. To adequately indicate the EZ, interictal
spikes are widely used as a well-established biomarker [4].
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Invasive electrophysiological measurements of those spikes
with the use of intra-cranial Electroencephalography (iEEG)
is the most common method to localize precisely the EZ.
However, iEEG is an invasive method that needs assistance to
localize or indicate successfully EZ [3]. Electroencephalog-
raphy (EEG) and magnetoencephalography (MEG) are non-
invasive types of brain activity measurement that are used for
the guidance of iEEG or even indication of EZ [3]. Due to
their high temporal resolution and their relatively easy and
comfortable use, EEG and MEG have been extensively used
for monitoring brain activity and recording interictal spikes.
Due to their complementary nature [5], [6], [7], [8], their
simultaneous acquisition can detect interictal spikes located
in a different side of a specific cortical patch [9], [10], [11].
At a report series of 297 consecutive patients, Ebersole and
Wagner [11], showed that an 8% of all spikes were detected
in MEG alone, whereas 36% in EEG alone.

In many cases, a set of interictal spikes is annotated
manually by board certified epileptologists. However, such a
procedure is quite demanding and laborious, making the need
of automatic detection procedures the only alternative. General
classification approaches, using mimetic, spikes templates or
spike-specific characteristics (i.e. peak) [12], [13] have been
exploited. Recently, machine and deep learning approaches
gained considerable ground. Weber [14] developed an artificial
neural network detector with sensitivity equal to 73%. Gabor
and Seyal [15] combined time domain features with an error-
back-propagation feed-forward neural network classifier with
a sensitivity of 94.2% [13]. One of the few Spike detectors
on MEG data implemented by Khalid [16] used common
spatial filters (CSPs) for feature extraction and linear dis-
criminant analysis (LDA) for classification with sensitivity
and specificity equal to 91.03% and 94.21%, respectively.
Inan and Kuntalp [17] implemented a neural pre-classifier
and a fuzzy c-means (FCM) with sensitivity and specificity
equal to 93.3% and 74.1%, respectively. Feuchet combined
instantaneous power computed by Hilbert Transform with a
multilayer perceptron (MLP) reaching an average sensitivity
and specificity of 88.1% and 89.3%, respectively. Tjepkema-
Cloostermans [18] implemented a neural network based spike
detection algorithm, tested only on EEG data with AUC,
sensitivity and specificity equal to 0.94, 47.4% and 98.0%,
accordingly. Similarly, Lourenço [19] applied a VGG C con-
volutional neural network on EEG data. To increase scheme’s
performance, the data were augmented by applying temporal
shifting and using different EEG montages. Sensitivity in-
creased from 63% to 96% at 99% specificity. However, none



of these studies utilize the complementary content of EEG and
MEG measurement modalities [5]–[7], [20].

In the present study, we used machine learning techniques
to automatically detect interictal spikes not only on the ex-
tracted signal features of EEG, and MEG data but also on
the combination of them, EMEG data. In our procedure, we
propose the estimation of multiple features based on the sta-
tistical and spectral analysis of the signals as well as network
connectivity metrics based on the estimation of the imaginary
part of coherency alleviating volume conduction effects [21].
After feature extraction, we then assess the performance of
two proven classification algorithms with the use of iterative
stratified cross-validation schemes.

II. PATIENT AND METHODS

A. Ethics Statement

All the procedures took place after the written consent
of the patient and have been approved by the local ethics
committee, as well as by the ethics committee of the University
of Erlangen (Ref No 4453 B).

B. Patient’s Electrophysiological Data

In this study, we analyzed the electrophysiological data
(EEG and MEG) of a twenty-year old female patient. The
patient suffered from pharmacorestistant epilepsy since the
age of 14 without affecting her intellectual abilities and focal
neurological deficit. The seizure semiology was described as
distributed thinking and inability to speak or follow a conver-
sation, without any motor symptoms and without impairment
of awareness. Initially, a medical treatment was not fully
successful (indication of a drug-resistant case), leading to a
presurgical evaluation for possible resective epilepsy surgery.

The data were acquired with an EEG and MEG recording
system while the patient was in supine position. Specifically,
eighty AgCl sintered ring electrodes (EASYCAP GmbH,
Herrsching, Germany 2, 74 channel EEG plus additional 7
channels to detect eye movements and heart artifacts) were
conducted for EEG and a whole-head MEG system with 275
axial gradiometers and 29 reference coils (OMEGA2005, CTF,
VSM MedTech Ltd., Canada 3) for MEG. Six runs were
acquired in total to annotate possible interictal spikes on the
resting state brain activity. The runs were 8 min long with a
sampling rate at 2400Hz.

C. Preprocessing

The first step of EEG/MEG processing included filtering
and reduction of the non-cerebral activity. After the baseline
correction of the raw EEG/MEG recordings, a notch filter was
applied to reduce the power line noise component at 50 Hz
and its harmonics. Then, using a digital band-pass filter, the
recordings were filtered between 1 and 100 Hz. Measurements
were visually inspected for the exclusion of ”bad” channels,
EEG and MEG channels that contain highly noise activity and
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cannot be further analyzed. The detected “bad” channels TP9,
P6, O9, Iz, P10, MLT44, MLT47, MLT55, and MLT56 were
excluded from the analysis. The ocular and cardiac artifacts
were detected based on a matching of the measurements with
the recorded EEG ocular and cardiac activity followed by
visual inspection of the candidate non-cerebral activity in each
EEG/MEG modality.

The interictal spikes were manually identified and marked
by two experienced epileptologists on the artifact-free EEG
and MEG continuous data. The final number of spikes was
1050, after the annotation of the two evaluators. Each spike
peak was aligned around the zero time point and a trial with
time duration 400 ms (200 ms before and after the spike peak)
was defined. The electrode F3 was used as reference since it
presented the highest negativity compared to the rest channels.
Non-Spike trials with time duration of 400 ms were randomly
extracted from the EEG/MEG data independently, with no
overlapping with the Spike trials. The number of extracted
Non-Spike trials was 1050.

The final step of the data preprocessing was the combination
of EEG and MEG data. The EEG/MEG artifact-free trials were
vertically concatenated and then the whitening transformation
was applied, according to the noise level of each channel. As
noise, we considered the time window between -400 ms to
-200 ms before the spike peak. The whitening approach was
followed to obtain unitless EMEG trials for further analysis
[20].

D. Feature extraction

As explained in Section III. Results, a variety of features
was extracted from each modality (EEG, MEG and EMEG)
comprising a global matrix which was fed into the classifica-
tion scheme.

1) Time domain features: The extracted time domain fea-
tures were kurtosis (forth standardized moment) and Rényi
entropy. Kurtosis as a measure of extreme values at the tails
of a distribution gives a good insight about the differences
between a Spike and a Non-Spike. A spike is characterized
by a specific morphological pattern with a peak, while a Non-
Spike appears as a random signal state [22], [23]. On the
same basis, Rényi entropy as a measurement can identify the
repeated pattern of a Spike and the randomness of a Non-
Spike [24], yielding higher values for the second case. To our
best of knowledge, this is the first time, that Rényi entropy is
examined for the identification of interictal spikes.

2) Frequency domain features: The spectral content of
the EEG/MEG data contains useful information about the
Spike and Non-Spike trials (Fig. 2). Interictal spikes, except
their characteristic pattern on time domain, show a unique
frequency fingerprint as a restricted island [25]. This fre-
quency signature denotes an energy accumulation at spe-
cific frequency-time ranges, unseen at the random Non-Spike
events. Consequently, the total energy spectrum was a spectral
feature calculated as the square value of the absolute Discrete
Fourier Transform (DFT) coefficients [23].



Fig. 1. Overview of the proposed Spike detection pipeline. Spike and Non-spike trials were categorized as two different event types. (a) After the preprocessing
of the raw data, 1050 Spike and 1050 Non-Spike trials were extracted from each modality, EEG and MEG. For EMEG, the EEG and MEG Spike and Non-
Spike trials were vertically concatenated and whitened. The feature extraction approach was applied independently for EEG, MEG and EMEG. (b) Features
were extracted for each trial, constructing a matrix with dimensions 1050 x ch, where 1050 is the number of events (Spike or Non-Spike) and ch denotes
the number of channels. (c) After all features had been extracted from each event type, they were vertically concatenated creating a global feature matrix. (d)
The global feature matrix was fed into the classification scheme.

3) Network metrics: In this study, we also estimated the
pairwise relation between pairs of channels by means of
imaginary part of phase lag index (iPLV). In this manner, we
intended to embed in our classification scheme, the functional
interactions among channels expressed as connectivity graphs.
The bivariate metric iPLV was selected due to its sensitivity to
non-zero-phase lags [26]. Given a pair of two phase signals,
φx(t) and φy(t), derived from the application of the Hilbert
transformation to the original signals x(t) and y(t), the iPLV
is described as follows:

iPLVxy =
∣∣im(

∑
i

ei(φx(t)−φy(t))/N )
∣∣,

where N is the number of samples and and |.| denotes the
absolute value operator [27]. To enhance the most significant
connections on the connectivity graphs we applied a topolog-
ical filtering based on graph theory principles and data-driven
thresholding.

To study the structure of the neural system we were in-
terested in, topological filtering based on graph analysis was
used [28], [29]. To quantify the functional relation in a row, we
used the network metrics Global and Local efficiency for each
estimated connectivity graph. Global efficiency was defined as
the average inverse shortest path length in the network [27],
[30]. Local efficiency, a segregation measure, was computed
as the global efficiency on node’s i neighborhood [27], [30].

E. Classification scheme

The proposed classification scheme comprises of a feature
shuffling and scaling step, tuning of the classifiers’ hyperpa-
rameters and final classification using two different classifiers
[31]. Standardization was used as a feature scaling method

to restrict feature value range. As a subset of a classifier’s
hyperparameters can significantly affect the cross-validation
score, an optimization of the hyperparametrs value was imple-
mented. Optimal values were obtained by an exhaustive search
on a user-defined parameter grid. Hyperparameters optimiza-
tion was implemented for the examined classifiers, Random
Forest (RF) [31] and Support Vector Machines (SVM) [31],
independently.

Repeated Stratified k-fold cross-validation was used to
validate the classifiers’ performance. Specifically, the data
were split into k consecutive folds, where each fold was used
as test set and the remaining folds as training sets. Each fold
contained equal sample percentages of both classes and each
repetition of Stratified k-fold cross validation was differently
randomized. To evaluate the classifiers performance the
scoring parameters Accuracy, Precision, Recalls and F1s
were calculated and defined as follows:

• Accuracy = TP+TN
TP+FP+FN+TN

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1s = 2 PrecisionṘecall
Precision+Recall ,

where TP stands for True Positive, FN for False Negative,
TN for True Negative and FP for False Positive.

III. RESULTS

As a binary classification problem, Spike detection requires
a targeted feature extraction approach summing up to a signa-



Fig. 2. A characteristic example of a Spike (upper row) and Non-Spike (lower row) event at time, time-frequency domain and their corresponding energy. At
the left column, the characteristic Spike peak at the time is illustrated. At the middle column, the corresponding events are represented at the time-frequency
domain as magnitude scalograms. At the Spike’s scalogram (middle row, upper figure) its frequency signature stands out from the background as a resctricted
activity. As expected the Spike’s energy is concentrated at the frequency and time range denoted by the magnitude scalogram plot.

TABLE I
HYPERPARAMETER OPTIMIZATION

Classifier Modality Hyperparameter Optimal value

RF

EEG

bootstrap False
max depth 20
min samples leaf 4
min samples split 2
n estimators 150

MEG

bootstrap False
max depth 50
min samples leaf 2
min samples split 6
n estimators 300

EMEG

bootstrap False
max depth 50
min samples leaf 1
min samples split 6
n estimators 150

SVM

EEG
C 100
gamma 0.0001
kernel RBF

MEG
C 10
gamma 0.0001
kernel RBF

EMEG
C 10
gamma 0.0001
kernel RBF

ture feature matrix for the Spike and Non-Spike events. Our
approach is tested on three different datasets, EEG, MEG and
EMEG. As explained in Section I. Introduction, EMEG detects
a wider spectrum of spike types, a paramount trait we aim
to exploit applying the classification scheme on the unitless

EMEG dataset.
The pipeline followed is illustrated at Fig. 1. Specifically, for

each measurement modality, EEG, MEG and EMEG, features
were extracted independently, creating three global feature
matrices. The proposed classification scheme was evaluated
for each global feature matrix independently. All features were
calculated independently for each event type (Spike and Non-
Spike). Consequently, each feature is represented as a matrix
with dimensions 1050xch, where 1050 is the number of events
and ch stands for the channels.

The connectivity matrices were calculated based on iPLV
for each event. Therefore, the connections were filtered out
so that the pattern with the most significant connections could
emerge. The topological filtering we performed was based on
graph theory principles and data-driven thresholding [27].

For the global feature matrix construction, the vectorized ap-
proach was used [31]. Specifically, we concatenated horizon-
tally the individual feature matrices of each event type creating
a Spike and Non-Spike signature to explain them sufficiently.
The global feature matrix was the vertical concatenation of the
Spike and Non-Spike signatures. At Fig. 2 an example of a
Spike and Non-Spike event with the corresponding magnitude
scalograms and energies are shown. The characteristic spike
fingerprint is not visible only on time domain. The magnitude
scalogram, as a time-frequency representation, illustrates the
Spike’s unique fingerprint. Therefore, a Spike contains an
increased amount of energy, differentiating from a random
signal trial.



TABLE II
CLASSIFICATION RESULTS

Modality Classifiers Accuracy Precision Recalls F1

EEG Random Forest 89.3± 1.4 92.5 85.5 88.8
SVM (RBF) 89.0± 1.4 92.3 85.2 88.6

MEG Random Forest 87.5± 1.5 89.9 84.5 87.1
SVM (RBF) 90.1± 1.2 93.2 86.5 89.7

EMEG Random Forest 92.5± 1.2 94.2 90.5 92.3
SVM (RBF) 92.8± 1.1 95.1 90.2 92.6

After completing the feature extraction step, we proceeded
with the evaluation of the classification scheme, which was
fed with each global feature matrix. Firstly, the data were
shuffled and standardized. To find the optimal hyperparameters
for each classifier, we defined the parameters grid: (1) RF:
’n estimators’: [25, 50, 100, 150, 300], ’max depth’: [20, 30,
50], ’min samples split’: [2, 4, 6], ’min samples leaf’: [1, 2,
4], ’bootstrap’: [True, False], (2) SVM: ’C’: [0.001, 0.10, 0.1,
10, 25, 50, 100, 1000], ’gamma’: [0.001, 0.0001], ’kernel’:
[’rbf’, ’linear’]. Table I displays the optimal values for each
classifier and modality.

The cross validation was repeated 1000 times and the
number of stratified folds was 5. The evaluation metrics were
calculated as the mean value of the repetitions. For Accuracy,
we also calculated the standard deviation. Table II shows the
classification results for each studied case. For EEG and MEG
data, both classifiers reached an Accuracy score close to 90%
percent with a low standard deviation. SVM estimated better
the MEG Spikes with a high Accuracy score of 90.1%, a low
standard deviation of 1.2% and a trade-off between Precision
and Recall (F1) equal to 89.7%.

Overall, the synergy of EEG and MEG, EMEG, significantly
outperformed both single measurement modalities yielding
an Accuracy score equal to 92.5% for RF and 92.8% for
SVM. In both cases, the standard deviation was majorly small,
proving the classification scheme robustness. The paramount
metric F1 with a score of 92.3% and 92.6% for RF and SVM,
respectively, elaborates that a minor percentage of Spikes and
Non-Spikes was miss-classified; an important observation as
Spikes and Non-Spikes miss-classification can propagate seri-
ous errors on further analysis steps such as the EZ indication
(Section I. Introduction).

IV. DISCUSSION

In this study, we developed an iterative classification scheme
for the accurate detection of interictal spikes. Firstly, we
estimated statistical, spectral and channel synchronization-
based features, representing an essential content of the signal.
The classification scheme was examined for each measurement
modality (EEG, MEG and EMEG), separately. After the es-
sential optimization of the hyperparameters, two classification
algorithms were examined. Their performance within iterative
stratified k-fold validation scheme led to higher than 85% for
single modality while the combination of EEG and MEG led
to higher and less deviant results (> 90%). Such classification
performances show a promising window for future studies
about the accurate detection of interictal spikes with the

utilization of the complementary information of EEG and
MEG.

A binary classification scheme using Machine Learning
approach is a two step process; (1) a targeted feature extrac-
tion, explaining adequately the data to be detected and (2)
building a robust classification scheme. As showed in Section
II-D Feature extraction, we shown Spike unique pattern and
characteristics by means of the extracted features (Kurtosis,
Rényi entropyi, Energy, Global and Local Efficiency). An
indispensable part of improving classifiers performance is also
the hyperparameters optimization. The exhaustive grid search
yielded the combination of optimal values for a subset of
classifiers hyperparameters. It is important to notice that the
use of default hyperparameters might lead to less optimal
results, making the exhaustive grid search essential.

In the present study, we employed EMEG for interictal spike
detection, leading to high classification performances. Previous
studies on automatic spike detection approach the problem
with different methods. The majority of those studies im-
plemented a thresholding-based classification technique based
on statistical and morphological characteristics [13]. Artificial
Intelligence methodologies gradually gain ground on the spike
detection field [14], [15], [17], [32]–[35]. In both cases the
Spike detection schemes have been tested mainly on EEG data,
with a few cases on MEG [13], [16], [36]. In this study we
went one step further exploring the dynamics of the combined
EEG and MEG which provided a more accurate and robust
classification scheme with F1 score well above 90% for the
automatic Spike detection.

In conclusion, we successfully built a robust Spike detection
scheme comprising a feature extraction and a classification
step. Our results demonstrate combined EEG and MEG as a
promising multimodal approach for interictal spike detection
as it significantly outperforms single modality EEG and MEG.
These preliminary results could form the basis for establishing
EMEG as a powerful tool for non-invasive presurgical epilepsy
diagnosis.
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[7] Ü. Aydin, S. Rampp, A. Wollbrink, H. Kugel, J.-H. Cho, T. R. Knösche,
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