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1 Introduction
The human brain has been a research topic of central relevance for a long time. As it is
such a complex organ, there are still many open or only partially answered questions. Tech-
nologies that provide a way to localize brain activity are still being developed or known
approaches are being improved. There are many diseases which benefit from a more ac-
curate localisation. For example in pre-surgical epilepsy diagnosis it is very important to
find the epileptogenic zone as accurately as possible, so that it can be removed without
damaging any other important areas of the brain. There are many different technologies
to study the human brain with. Some of them create images of the anatomy of the head,
e.g. X-ray computed tomography (CT) or magnetic resonance imaging (MRI). Others can
observe the characteristics of metabolism, e.g. positron emission tomography (PET), single
photon emission computed tomography (SPECT) or functional magnetic resonance imaging
(fMRI). A non-invasive way to measure the simultaneous activity of patches of neurons on a
millisecond timescale is provided by electroencephalography (EEG) and magnetoencephalog-
raphy (MEG). In order to use EEG and MEG for localizing brain activity an inverse problem
has to be solved. This cannot be done analytically, but requires the solving of the corre-
sponding forward problem.

In this thesis we will consider different ways to solve the EEG forward problem using the
Principle of Saint Venant. The EEG forward problem plays an important role in the process
of accurate localization, which is why we will invest in improving the solution of this prob-
lem. We will start giving a short overview of the physiological basics of the human brain in
order to get a basic understanding about how a signal is produced. Afterwards we will see an
introduction to the mathematical modeling of brain activity and the finite element method
(FEM). The finite element method provides a way to numerically solve partial differential
equations.

In order to be able to apply the FEM to the EEG forward problem, we have to investigate
the way of modeling the source. The frequently used mathematical point dipole has a singu-
larity and therefore cannot be handled directly. We will avoid this singularity by modeling
the source as a monopole distribution. In order to do so, we will make use of the Principle of
Saint Venant. In chapter 3 we will introduce this different way to model the source and look
at approaches that use it. At first we will introduce a rather recent approach, the multipolar
Venant approach, which has been developed by [HA19] and [VO+19]. It provides a pos-
sibility to compute the monopole distribution making use of a multipole expansion. After
that we will have a look at the well-known monopolar Venant approach. The monopolar
Venant approach provides another possibility to compute the monopole strenghts. Next to
the commonly used monopolar Venant approach without mixed moments we will also have a
look at the monopolar approach with mixed moments, which has been introduced by [NÜ18].

After presenting the approaches, we will see that the multipolar Venant approach cannot
only handle dipolar moments but also multipolar moments, which means that we can add
quadrupoles. This may provide a way to better approximate extended sources. In chapter
4 we will look at how we can add these quadrupolar moments to our computational algo-
rithm. Additionally we will define patches of activity which we will use to test the accuracy
of modeling extended sources by the dipolar and the multipolar model.

At the end, in chapter 5, we will perform some tests in a 4-layer-sphere model. There-
fore we will first of all introduce the used software, DUNEuro.
In a first experiment we will then perform some tests to find the best parameters for the
multipolar Venant approach. In the second experiment we will use these parameters for the
multipolar Venant approach and the monopolar Venant approaches and compare them to
each other. In the last experiments we will then use our defined patches and test how much
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the use of quadrupolar moments additionally to dipolar moments can improve the approxi-
mation of extended sources. We will look at optimized and computed quadrupolar moments,
compare the performance of these two approaches and see how the resulting quadrupolar
moments differ.
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Figure 2.1: Human brain seen from the left side. Some of the important structural landmarks
and special areas of the cerebral cortex are indicated. [HÄ+93]

2 The EEG Forward Problem
In order to understand the EEG and MEG data we want to investigate in this thesis, one
has to understand basic working processes in the human brain. In the first section we will
see how electric or magnetic potentials in the brain are created. Later on we will look at
the mathematical modeling of these potentials. In the last part we will introduce a way
to numerically solve the EEG forward problem, the finite element method. This chapter is
geared to the elaborations by [HÄ+93], [HA19] and [VO11].

2.1 Physiological Basics
In figure 2.1 you can see a human brain viewed from the left side with some anatomical
features identified. In EEG and MEG we are mostly interested in the uppermost layer of
the brain, the cerebral cortex, which is a 2-4 mm thick sheet of gray tissue [HÄ+93]. One
essential part of the brain are the neurons, which are concentrated in the gray matter. The
human brain consists of 86 ± 8 billions of these neurons, which are clustered in areas with
unique responsibilities in processing on information and controlling the body. The areas re-
sponsible for each task are often assumed to be similar for individual human-beings, only the
persons handedness seems to make a strong difference [HA19]. Neurons have the task to pro-
cess informations in the human brain. In order to communicate among each other, they use
electrochemical signaling. This process creates a measurable electric and magnetic potential.

Neurons consist of a cell body (soma), the dendrites, which are threadlike extensions, and
the axon, a single long fiber arising at the axon hillock, see figure 2.2. The soma contains
the nucleus and much of the metabolic machinery. The dendrites are receiving signals from
other neurons and the axon has the task to carry the nerve impuls away from the soma to
other cells.

Signal transfer along an axon is based on the ability of the membrane to alter its per-
meability to ions and the thus created rise and fall of electric potentials. The change is
due to the opening of voltage-sensitive ion-channels as a result of an approaching action
potential. This process leads to intra- and extracellular ion currents. Following Maxwell’s
equations of electrodynamics, the movement of electric charges results in electromagnetic
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Figure 2.2: Illustration of a Neuron. [BA+18]

fields.

If the voltage at the axon hillock has reached a certain value, an action potential is ini-
tiated. Then the neuron “fires” and gives the signal to its neighboring neurons. This is done
by a sudden change of the membran potential consisting in an abrupt rise followed by a fall
of the same amplitude. The action potential then spreads along the axon and causes poten-
tial changes in the neighboring neurons, the post-synaptic neurons. This potential change
(or the sum of various of these potential changes) may initiate an action potential again,
which would mean the signal is passed on.

Since action potentials are too short (0.5 - 2 ms, [VO11]), not synchronized enough and
their far-field induced by the resulting ion currents is dominated by the quadrupole term,
they do not evoke a measurable EEG signal. Contrary to the action potential, the post
synaptic potentials are simultaneous generated at different neurons. They last for tens of
milliseconds at some ten-thousands neighboring and similarly oriented neurons, which build
a patch of a few square millimeters of cortex surface [VO11]. This potential is strong enough
to produce measurable electric potential differences at the headsurface which can be detected
by EEG sensors. On top of that, there is a magnetic field generalized by the electric current,
which can be measured by MEG sensors.
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2.2 Mathematical Modeling
As we know now that there is electric current in the brain, we want to look at Maxwell’s
equations, see [MA65]. With the help of these equations we can calculate the electric po-
tential and magnetic field.

∇ · E =
ρ

ε0

∇× E = −∂B
∂t

∇ ·B = 0

∇×B = µ0

(
J + ε0

∂E

∂t

)
.

(2.1)

Here E is the electric field, ρ the electric charge density, ε0 the electric constant, B the
magnetic field, µ0 the magnetic constant and J is the current density. Following [HÄ+93],
and due to the low frequency regime, we can use the quasi-static approximation of Maxwell’s
equations. This means that in the calculations of E and B, ∂E∂t and ∂B

∂t can be ignored as
source terms. So we get:

∇ · E =
ρ

ε0
∇× E = 0

∇ ·B = 0

∇×B = µ0J

(2.2)

Since ∇× E is zero, the electric field can be represented as a gradient field, i.e. E = −∇u
for an electric potential u.

On top of that, in bioelectromagnetism, the current density J produced by neuronal ac-
ticity is split into two parts:

J = Jp + σE. (2.3)

Here Jp is the primary current and σE is the volume or return current with σ as an electric
conductivity tensor. The primary current can be seen as the main source of electric activity.
The volume or return current is the result of the macroscopic electric field on charge carriers
in the conducting medium. In order to localize the source of brain activity, we have to find
the primary current.
Inserting the electric potential leads to

J = Jp − σ∇u. (2.4)

With this we can rewrite the last equation of (2.2) to

∇×B = µ0 (Jp − σ∇u) . (2.5)

Now we are taking the divergence. As the divergence of the curl is zero, we get

∇ · σ∇u = ∇ · Jp. (2.6)

We want to use this to formulate the EEG inverse and forward problem. Additionally, we
need some definitions.

Definition 2.1. Let Ω ⊂ R3 be a domain, σ(x) : Ω → R3×3 be symmetric, positive and
bounded with σ(x) ∈ L∞(Ω) and Xsens ∈ ∂Ω a set of discrete points at the boundary of Ω.
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Here Ω represents the head domain and σ(x) is an electric conductivity tensor represent-
ing the conductivities of the different components of the human head. Following [HA19],
we can assume the defined properties of the functional to be conformed. The set Xsens

represents the sensor positions at the headsurface.

Using the results from Maxwell’s equations we can formulate the EEG inverse problem.

Problem 2.2 (EEG Inverse Problem). Let Ω, σ and Xsens be like in definition 2.1. Let the
scalar potential be u : Ω→ R. The EEG inverse problem is to find neural activity J : Ω→ R
which fulfills that

∇ · (σ∇u) = J in Ω,

σ∇u · n = 0 on ∂Ω.
(2.7)

Let u|xsens := usens be given.

The problem says that we have measured an electric potential at the EEG sensors and
then want to find the underlying sources in the brain that generated this potential. In a
realistic model of the human brain this problem cannot be solved analytically. To solve
it anyway, we have to solve the correspondent forward problem. That is to compute the
expected potentials at the sensor positions for many different source locations in the brain.
These potentials are saved in a so-called lead field matrix. Then there are different inverse
solutions such as dipole fit or current density reconstruction methods that can be used to
reconstruct possible inverse solutions. In order to get good inverse solutions, it is therefore
very important to have good forward solutions. Also, as there have to be solved quite many
forward computations, it is important to find a quick way to do so. Hence we will invest in
finding an optimized way to solve the forward problem.

Problem 2.3 (EEG Forward Problem). Let Ω ⊂ R3 and σ(x) : Ω→ R3 be like in definition
2.1. The EEG forward problem is to find the scalar potential u : Ω → R which solves the
equation

∇ · (σ∇u) = J in Ω

σ∇u · n = 0 on ∂Ω,
(2.8)

where J is the model for a given neuronal activity in the brain.

A common used model for the neuronal activity in the brain is the mathematical point
dipole [DM+88]. The mathematical dipole is a point source with a location and a direction
and can be expressed by a Dirac delta distribution. Let x0 be the location of the dipole and−→
M ∈ R3 its moment. Then we can rewrite J(x) as

J(x) = ∇ ·
(−→
Mδx0

(x)
)
. (2.9)

The mathematical dipole has shown to be a “good enough” approximation for many ap-
plications, but in certain scenarios like in epilepsy it might get important that, in fact, a
biological electrical source has a physical extend and is no point singularity. Therefore we
want to consider another approach to model the right hand side later on, which might be
even more realistic. Furthermore, we will check if the use of multipolar sources can improve
the approximation of extended sources.
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2.3 Finite Element Method
The are many different approaches to solve the EEG forward problem, like the bound-
ary element method ([AC+10], [GR+11], [MO+99], [ST+12]), the finite difference method
([MO+14], [VA+09], [WE+08]) or the finite volume method ([CO+06]). The finite element
method, which we will present here, has some advantages over the others. For example it can
treat geometries of abitrary complexity, it has the possibility to consider material properties
on a node-to-node or element-to-element basis and it has a very high accuracy, especially
in the treatment of Neumann boundary conditions, which are important in the application
considered [BU+97]. The FEM Theory is based on a variational formulation of the original
partial differential equation. In the variational formulation, a solution is searched for in a
in so-called Sobolev spaces, which we will introduce in this section. In order to solve the
variational problem numerically, we are going to use finite dimensional subspaces, finite el-
ement spaces. With the definitions of the finite element method we mainly follow the ideas
of [BR13].

In order to give a short overview of the FEM theory, we are going to look at a general
problem.

Problem 2.4. Let Ω be an open domain and σ : Ω → R be positive and bounded. Find
u : Ω→ R which solves

∇ · (σ∇u) = f in Ω

σ∇u · n = 0 on ∂Ω,
(2.10)

for f ∈ L2(Ω).

Classical solutions, i.e. solutions with conditions like being differentiable sufficiently of-
ten, can only be found under strong assumptions. This means that e.g. σ has to be a
continuous conductivity, which is not true in our scenario. In order to find a solution any-
way, one can use a variational formulation of the problem. Therefore we need the theory of
Sobolev spaces. Sobolev spaces are based on the theory of weak derivatives so we have to
define them at first. Let L1

loc(Ω) be the space of locally summable functions, see [?]

Definition 2.5 (Weak Derivative). Suppose u, v ∈ L1
loc(Ω) and α = (α1, ..., αn) is a multi-

index of order |α| = α1 + ...+ αn = k. We say the v is the αth-weak partial derivative of u,
written

Dαu =
∂α1

∂xα1
1

...
∂αn

∂xαnn
u = v,

provided ∫
Ω

uDαφdx = (−1)|α|
∫
Ω

vφ dx

for all test functions φ ∈ C∞0 (Ω).

With the help of weak derivatives we can define Sobolev spaces.

Definition 2.6 (Sobolev Spaces). For m ∈ N0 the Sobolev space Hm(Ω) is the set of all
functions u ∈ L2(Ω) with a weak derivative Dαu for all |α| ≤ m. The scalarproduct is
defined by

(u, v)m :=
∑
|α|≤m

〈Dαu,Dαv〉,

and the corresponding norm is
‖u‖m :=

√
(u, u)m.

Let Hm
0 (Ω) be the completion of C∞0 (Ω) regarding the sobolov norm ‖ · ‖m.
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For our purpose we need a test space which is a subset of H1(Ω). We define the test
space V as

V := {v ∈ H1(Ω): ∇ · (σ∇v) ∈ H1
0 (Ω) and σ∇v · n = 0 on ∂Ω}.

Let v ∈ V . In order to obtain a variational formulation of the problem 2.4, we multiply both
sides with v, integrate over Ω and apply integration by parts to the left hand side.

Problem 2.7 (Variational Formulation). Find an u ∈ H−1(Ω) which fulfills∫
Ω

σ∇u∇v dx =

∫
Ω

fv dx, (2.11)

for all v ∈ V .

Here H−1(Ω) is the dual space to H1
0 (Ω). Since we use σ(x) from definition 2.1, the left

hand side is positive, symmetrical and bounded. Therefore we have a bounded and thus
continuous and coercive bilinearform. If f ∈ L2(Ω), the right hand side is a linear functional.

Just like this, there will not be a unique solution to the problem. If there is a solution,
it is only unique up to a constant. In order to get a unique solution, we add another
condition following [HA19].

Problem 2.8. Let η ∈ H1
0 (Ω) be a function with

∫
Ω
ηdx = 1.

Find u ∈ {g ∈ H−1(Ω):
∫

Ω
ηgdx = 0} such that∫

Ω

σ∇u∇v dx =

∫
Ω

fv dx for all v ∈ V. (2.12)

The solution u is then called the weak solution. In order to prove that there is a solution
to Problem 2.8, we use the theorem (or lemma) of Lax Milgram.

Theorem 2.9 (Lax-Milgram Theorem, [BR+07], Theorem 2.7.7). Given a Hilbert-Space
(V, (·, ·)), a continuous and coercive bilinearform a(·, ·) and a continuous linear functional
F ∈ V ′, there exists a unique u ∈ V such that

a(u, v) = F (v) for all v ∈ V. (2.13)

In our case we can consider

a(u, v) :=

∫
Ω

σ∇u∇vdx,

with u ∈ {g ∈ H−1(Ω):
∫

Ω
ηgdx = 0}, v ∈ V as the bilinearform and

F (v) :=

∫
Ω

fvdx

as the linear functional. Then the Lemma of Lax-Milgram tells us that there is a unique
solution u ∈ H1(Ω) if f ∈ L2(Ω).

Based on the presented mathematical foundation, we want to introduce a discretization
method to numerically solve the EEG forward problem, the finite element method (FEM).
We will follow the elaboration by [NÜ18].
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The main idea is to replace the infinite dimensional space V with a finite dimensional space
Vh. Instead of solving

a(u, v) = F (v) for all v ∈ V
we are going to solve

a(uh, vh) = F (vh) for all vh ∈ Vh

Here h is a discretization parameter such that the solution converges to the original solution
if h → 0. In order to get an idea about the accuracy of this approach, we will cite Céa’s
Lemma.

Lemma 2.10 (Céa’s Lemma, [BR+07], Theorem 2.8.1). Given a Hilbert space (V, 〈·, ·〉), a
continuous, coercive bilinear form a(·, ·), a continuous linear functional f ∈ V ′ and u ∈ V
solving the weak formulation. For the solution uh ∈ Vh of the finite element variational
problem we have

‖u− uh‖V ≤
C

α
min
v∈Vh

‖u− v‖V ,

with C being the continuity constant and α being the coercivity constant of α(·, ·) on V .

The lemma shows that the accuracy of the finite element solution strongly depends on
how the discrete function space is chosen to approximate the solution u. Therefore we will
have a look at the construction of this discrete function space. The basis is a partition of
the computational domain Ω.

Definition 2.11 (Tessellation). A tessellation of a domain Ω is a set τh(Ω) := {E0, ..., Em−1}
of open convex polytopes Ei ⊂ Ω such that

m−1⋃
i=0

Ēi = Ω̄ and

Ei ∩ Ej = ∅, i 6= j.

A tessellation is called admissible if the following conditions are met:

1. If Ēi ∩ Ēj consists of exactly one point, this point is a common vertex of Ei and Ej.

2. If Ēi ∩ Ēj consists of more than one point for i 6= j, then Ēi ∩ Ēj is a common edge
or, in three dimensions, a common face of Ei and Ej.

A family of tessellations {τh} is called shape-regular if there is a κ > 0 such that every T in
τh contains a circle of radius ρT with

ρT ≥
hT
κ
,

where hT denotes the diameter of T . A family of tessellations is called uniform, if every T
in τh contains a circle with radius ρT with

ρT ≥
h

κ
,

with h := maxT∈τh hT .

In this thesis we will look at admissible tessellations with tetrahedral or hexahedral
polyhedrons. On such tessellations we define the finite element space V kh .

Definition 2.12 (Finite Element Space). The space V kh is defined as the space of continuous,
piecewise polynomial functions, i.e.

V kh := {vh ∈ C0(Ω): vh|E ∈ P
k(E) ∀E ∈ τh(Ω)},

where P k(E) denotes a space of polynomials of degree k ∈ N on an element E.
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This space is a conforming space, i.e. V kh ⊂ H1(Ω), see [BR13, Theorem 5.2]. Usually,
first order polynomials are employed, i.e. linear polynomials on tetrahedrons and multi-
linear polynomials on hexahedrons [NÜ18]. The basis functions φi for the piecewise linear
function space are chosen as the Lagrangian basis functions.

Definition 2.13 (Lagrangian Basis Functions). Let x0, ..., xN−1 ∈ Rd denote the vertices
of a tessellation τh. The basis consisting of the linear functions φi, i = 0, ..., N − 1 which
fulfill the property

φi(xj) =

{
1 , i = j

0 , i 6= j,

is called Lagrangian basis.

This would be a good way to solve our forward problem, but we still have to deal with
the fact that the right hand side is too complicated. If we consider the neural activity as
a mathematical dipole, J(x) /∈ L2(Ω). Therefore we have to use a regularization before we
can use FE methods.
There are different ideas on how to deal with this problem using the mathematical dipole, see
for example the partial integration approach ([YA+91], [WE+00]), the full and projected
subtraction approach ([DR+09], [WO+07b], [BE18], [BE19]) and the Whitney approach
([PU+11], [PU+16], [TA+05], [BA+15], [MI+19]). We are going to use another way. We
will not consider the mathematical point dipole but an approximation.
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Figure 3.1: Choice of monopole locations in a 2D FEM mesh. [KR19]

3 Principle of Saint Venant
In this chapter we are going to present a way to model the source avoiding the point singu-
larity caused by a mathematical point dipole. Afterwards we will introduce a relatively new
approach to compute the forward problem with this model, the multipolar Venant approach.
At the end of this section we will look at a well known approach to solve the problem using
the introduced model, the monopolar Venant approach, which we want to compare with the
multipolar Venant approach.

3.1 Monopole Distribution
One idea on how to get rid of the singularity caused by a mathematical point dipole is to
model the source in a different way. As the dipole has shown to be a good approximation
of brain activity, we are going to try to create a similar potential with the new model. Here
the idea to model the source is to place n ∈ N monopoles on mesh vertices x1, ..., xn ∈ Rd
close to the source location x0 ∈ Rd. The approach has first been developed by Richard
Schönen and colleagues and published in [BU+97] and was known as the blurred dipole ap-
proach. Later on it has been used in many publications, e.g. [LE+09], [VO16], [WO+07a],
[WO+07b], [ME15].

A common way to choose the monopoles is to find the monopole that lies closest to the
dipole location and mark it as x1. In the next step the vertices sharing an edge, a face or
a volume with x1 are marked as x2, ..., xn - this means, for tetrahedrons you get about 16
and for hexahedrons you get 27 monopoles [BU+97]. See figure 3.1 to find an example of
this choice of the monopole locations in a 2D FEM mesh.

Following the principle of Saint Venant saying “specific details of load application (e.g.
mathematical dipole or monopole distribution) do not influence the result observed some
distance away from the locus of load application (i.e. the measured potential difference at the
head surface)” [BU+97], the potential at the sensor positions can be similar for a monopole
distribution around the source location and the point dipole at the source location. With
regard to the underying pdysiology, the monopole distribution might even be a more realistic
sourcemodel than the point dipole. As explained before, activity in the brain has a certain
extent. To measure a signal, there has to be a large number of active neurons, consisting of
around 105 to 107 cells, laying in a small volume [ME15]. This extent cannot be represented
by a point dipole. The monopole distribution, as it is distributed over some vertices, might
represent the extent better. Later on we will have a closer look at extended sources and try
to approximate them even more accurate with the use of quadrupolar moments.
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With the monopole distribution we can rewrite the right hand side J as

Jm(x) =

n∑
i=1

qiδxi(x), (3.1)

with δxi the delta distribution at xi. Here x1, ..., xn ∈ R3 are the monopole locations and
q1, ..., qn ∈ R3 represent the strengths at each of these locations.
Then we can define the monopole distribution forward problem:

Problem 3.1 (Monopole Distribution Forward Problem). Let Ω ⊂ R3 and σ(x) : Ω→ R3×3

be like in definition 2.1. Find the scalar potential u : Ω→ R which solves the equation

∇ · (σ∇u) =

n∑
i=1

qiδxi in Ω,

σ∇u · n = 0 on ∂Ω.

(3.2)

It can be proven that there is a unique solution to this problem, see [HA19].

For using the Finite Element Method, the right-hand-side can be discretized as [HA19]

Jm(x) =

n∑
i=1

(Jh)i · φi(x),

with

(Jh)j =

{
qj , if xj ∈ {x1, ..., xn}
0, else.

There are different ways to choose the monopole locations x1, ..., xn. We will go on with
the one described above except for one additional condition. We will see that in some test
scenarios the solutions can be improved if we only consider monopole locations which are
in the same conductivity layer as the source namely in grey matter, the so-called Venant
Condition [ME15]. We will have a closer look at this in chapter 5.

Once the monopole locations are fixed, it will be our task to determine the strenght qi,
i = 1, ..., n, at each monopole location, in order to optimally reproduce the moments of the
source. In this thesis we will consider different ways to solve this problem and compare
them.

12



3.2 Multipolar Venant Approach
In this section we will look at an approach to compute the monopole strengths q1, ..., qn, the
multipolar Venant approach. Following [HA19] and [VO+19], we are going to use multipole
expansion to compute the moments of the monopole distribution. We will begin with a
repetition of the forward problems for the mathematical point dipole and the monopole
distribution.

Problem 3.2 (Mathematical Point Dipole Forward Problem). Find ud for the mathematical
dipole that solves the equations

∇ · (σ∇ud) = ∇ · (
−→
Mδx0

(x)) in Ω,

σ∇ud · n = 0 on ∂Ω.

Problem 3.3 (Monopole Distribution Forward Problem). Find um for the monopole dis-
tribution that solves the equations

∇ · (σ∇um) =

n∑
i=1

qiδxi in Ω,

σ∇um · n = 0 on ∂Ω.

In these problems ud and um symbolize the electric potential of the dipole and of a
monopole distribution, respectively. We want to ensure that these potentials are the same.
In order to simplify the comparison, we will use multipole expansion to expand the monopole
distribution potential.

First of all we have to consider the fact that if the right hand side is assumed to have
singularities, the potentials are not in the function space L2(Ω). Therefore we cannot use
the L2-norm to measure the difference between the dipole potential and the monopole dis-
tribution potential. Following [HA19], we will develop another norm. For the development
we assume the source position at the origin. We will get rid of this by subtracting the real
source location at the end. We will start with an assumption.

Assumption 3.4. Let x1, ..., xn ∈ Ωh fulfill that a small ball around the source location x0

with radius δ ∈ R>0 exists such that

x1, ..., xn ∈ Bδ(0) := {x ∈ Ωh : |x| < δ},

and a σ0 ∈ R>0 such that
σ(x) = σ0 for all x ∈ Bδ(0).

This means that we want to find a ball around the source location which contains all
monopole locations and has the same conductivity in the whole region. Therefore the ball
has to lie completely in one compartment of the headmodel. Out of this assumption we can
define some parameters which will be used for the required norm.

Definition 3.5. Define δ0 as the maximal δ ∈ R such that assumption 3.4 holds and

δ1 := inf {δ ∈ R : δ0 ≥ δ1 > max{|x1|, ..., |xn|}} .

See figure 3.2 to get an idea how it could look like in 2D. Additionally let σ0 ∈ R>0 be
as in assumption 3.4.
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Figure 3.2: Let the red dot be the origin and the x the monopole locations. Then δ1 would
be the radius of the inner circle and δ0 the radius of the outer circle.

As we do not have the goal to estimate the error at the dipole and monopole locations,
we are more interested in choosing the parameters in a way that the difference between the
dipolar source and the monopolar source distribution at the EEG sensor positions, which
are located at the surface of the domain, ∂Ω, is minimal. Also we are only able to estimate
the error on the surface of the small ball around the dipole location where there is the same
conductivity [HA19]. In order to do so, we choose our norm

‖v‖∗ := ‖v‖L2(Bδ0 (0)\Bδ1 (0)).

This norm we are going to use to measure the difference between the dipole potential and
the monopole distribution potential. Prior to that we will look at the dipole and monopole
distribution potential again. In infinite space with homogeneous conductivity the potential
of the dipole can be represented by the fundamental solution

ΦD(x) =
1

4πσ0
· 〈
−→
M,x〉
|x|3

. (3.3)

This is a pure dipole potential and cannot be expanded further. Every moment except the
dipole moment is zero. In order to be able to easily compare this potential to the monopole
distribution potential, we use multipole expansion for the latter. The multipole expansion
is based on a Taylor expansion of the electric field evoked by a charge distribution ρ. An
electric potential Φ evoked by a general charge distribution ρ can be computed as [JA99]

Φ(x) =
1

4πσ0

∫
Ω

ρ(x′)

‖x− x′‖
dx′. (3.4)

If we apply our discrete source distribution, Jm =
∑n
i=1 qiδxi , for the potential of the

monopole distribution we get

ΦM (x) =
1

4πσ0
·
n∑
i=1

qi
‖x− xi‖2

. (3.5)

Following [JA99] and assuming |xi| < |x|, which is given as we only consider locations x at
the surface of the domain, it holds that

1

‖x− xi‖2
=

∞∑
l=0

|xi|l

|x|l+1
Pl(cos(θi)). (3.6)
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Here θi is the angle between xi and x and Pl(x), l = 0, 1, 2, ... , are the Legendre Polynomials,
i.e.

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

...

Inserting this in (3.5) leads to the multipole expansion for the monopole distribution poten-
tial:

ΦM (x) =
1

4πσ0

∞∑
l=0

n∑
i=1

qi · |xi|l

|x|l+1
Pl(cos(θi)). (3.7)

Computing the strength of the monopole distribution such that the potential is the same as
the dipole potential would lead to the following problem. As a difference measure we use
the ∗-norm.

Problem 3.6. Given are the monopole locations x1, ..., xn and the dipole potential ΦD.
Compute q1, ..., qn such that

‖ΦD − ΦM‖∗ = min
q̃1,...,q̃n

∥∥∥∥∥ 1

4πσ0
· 〈
−→
M,x〉
|x|3

− 1

4πσ0

∞∑
l=1

n∑
i=1

q̃i · |xi|l

|x|l+1
Pl(cos(θi))

∥∥∥∥∥
∗

.

The norm can be minimized by comparing the coefficients of both expansions. Unfortu-
nately, this requires to solve an infinite sum of equations. Thus we have to find a way to
reduce this problem and make it solveable.
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3.3 Computational Algorithm
Our aim is to reduce the problem to a finite number of calculations. Then we are able to
generate a computable algorithm. Therefore we follow the concept of [HA19] and [VO+19].
The idea is to only consider the terms up to second order moments. The terms within the
multipole expansion decay with at least 1

δl0
and hence it es reasonable to cut the expansion

after the third term [HA19]. With this assumption the problem reduces to find q1, ..., qn
such that ∥∥∥∥∥∥∥∥∥∥∥

ΦD −
1

4πσ0

2∑
l=0

n∑
i=1

qi · |xi|l

|x|l+1
Pl(cos(θi))︸ ︷︷ ︸

=:Φ̃M (x)

∥∥∥∥∥∥∥∥∥∥∥
∗

→ min .

With the definition of the scalar product and with

cos(θi) =
x · xi
|x||xi|

,

we can split Φ̃M (x) into single terms for each moment order.

Φ̃M (x) =
1

4πσ0|x|

n∑
i=1

qi

+
1

4πσ0|x|2

〈
n∑
i=1

qixi,
x

|x|

〉

+
1

4πσ02|x|3

〈
x

|x|
,

∑n
i=1 qi(3xi ⊗ xi − |xi|2I3×3)

2

x

|x|

〉
,

with I3×3 ∈ R3×3 being the identity matrix. Looking at the dipole potential, we notice that
it only contains the moments of first order - all other terms are zero. If we insert this, we
get the following conditions for the monopole distribution potential:

0 =
1

4πσ0|x|

n∑
i=1

qi

1

4πσ0

〈
−→
M,x〉
|x|3

=
1

4πσ0|x|2

〈
n∑
i=1

qixi,
x

|x|

〉

0 =
1

4πσ02|x|3

〈
x

|x|
,

∑n
i=1 qi(3xi ⊗ xi − |xi|2I3×3)

2

x

|x|

〉
.

Based on the fact that this conditions have to hold for all x ∈ Ω, they can be transformed
into equations independent from x:

0 =

n∑
i=1

qi

−→
M =

n∑
i=1

qixi

03×3 =

n∑
i=1

qi(3xi ⊗ xi − |xi|2I3×3)

In order to get rid of our assumption that the source location is in the origin, we replace xi
by

∆xi := xi − x0,
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for all i = 1, ..., n.
We can interpret these conditions as linear equations of q1, ..., qn and thus we can write
the conditions in vector-matrix-notation. In order to improve the conditions of the linear
system, we need a scaling factor aref so that xij

aref
< 1 holds for all i = 1, ..., n, j = 1, 2, 3.

The scaled variables will be indicated by the bar. We get

0
m̄1

m̄2

m̄3

0

...

0


︸ ︷︷ ︸

=:
−→
t

=



1 1 · · · 1
∆x̄11 ∆x̄21 · · · ∆x̄n1

∆x̄12 ∆x̄22 · · · ∆x̄n2

∆x̄13 ∆x̄23 · · · ∆x̄n3

3 ·∆x̄2
11 − ‖∆x̄1‖22 3 ·∆x̄2

21 − ‖∆x̄2‖22 · · · 3 ·∆x̄2
n1 − ‖∆x̄n‖22

3 ·∆x̄2
12 − ‖∆x̄1‖22 3 ·∆x̄2

22 − ‖∆x̄2‖22 · · · 3 ·∆x̄2
n2 − ‖∆x̄n‖22

3 ·∆x̄2
13 − ‖∆x̄1‖22 3 ·∆x̄2

23 − ‖∆x̄2‖22 · · · 3 ·∆x̄2
n3 − ‖∆x̄n‖22

3 ·∆x̄11 ·∆x̄12 3 ·∆x̄21 ·∆x̄22 · · · 3 ·∆x̄n1 ·∆x̄n2

3 ·∆x̄12 ·∆x̄13 3 ·∆x̄22 ·∆x̄23 · · · 3 ·∆x̄n2 ·∆x̄n3

3 ·∆x̄13 ·∆x̄11 3 ·∆x̄23 ·∆x̄21 · · · 3 ·∆x̄n3 ·∆x̄n1


︸ ︷︷ ︸

=:V

·



q1

q2

...

...

qn


︸ ︷︷ ︸

=:−→q

.

(3.8)
We can compute −→q by minimizing the functional

F (−→q ) = ‖V · −→q −−→t ‖22 → min .

In general the number of degrees of freedom n is larger than the number of determined
parameters on the left hand side. Hence there is no unique solution to the minimization
problem. In this case we will use a Tikhonov regularization and look for a solution with
low energy. This means that high spatial frequency components in the q-vector shall be
penalized [HA19]. In order to achieve this, we choose a regularisation parameter 0 < λ < 1,
a weighting exponent r and a matrix W ∈ Rn×n with

W =


‖∆x̄1‖r2 0 · · · 0

0 ‖∆x̄2‖r2
. . .

...
...

. . . . . . 0
0 · · · 0 ‖∆x̄n‖r2


Following [VO+19], we will set the weighting exponent to r = 1. With this we can consider
a new functional

Fλ(−→q ) = ‖−→t − V · −→q ‖22 + λ‖W · −→q ‖22.

Minimizing Fλ(−→q ) will lead to a unique solution. The regularisation parameter λ indicates
how much q1, ..., qn will be smoothed. It can be chosen arbitrarily, but its choose affects the
results. In [HA19] it has been shown that a λ in the range of 10−4 to 10−10 is a good choice.
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3.4 Error Estimation
Having this approach, one could ask how suitable this way of using a monopole distribution
instead of a mathematical dipole is. In [HA19] an error estimation has been proven, which
we just want to cite here.

Theorem 3.7. Let assumption 3.4 hold, x1, ..., xn be the monopole locations and q1, ..., qn
fulfill the conditions

0 =

n∑
i=1

qi,

−→
M =

n∑
i=1

qixi,

03×3 =

n∑
i=1

qi(3xi ⊗ xi − |xi|2I3×3).

Then the error between the potential of the monopole distribution ΦM (x) and the potential
of the dipole ΦD(x) is

‖ΦD(x)− ΦM (x)‖∗ ≤ C
1

δ0

(
1

1− |xmax|δ0

)
,

with xmax := max{|xi| : i = 1, ..., n}, C ∈ R and C = C(σ0, n, qmax,Ω).

This error estimation cannot be used like this in an EEG forward setting. A realistic
setting will have conductivity jumps which are not covered by this error estimation. Non-
theless, we can use this estimation to get a better understanding of the multipolar Venant
approach. It shows that the error decreases when the difference between |xmax| and δ0 in-
creases. This means that for a scenario of computing on uniform conductivity, the error is
maximal at the border of B|xmax|(x0) and decreases towards the border of the domain where
we are computing on. This means the error would be minimal at the sensor positions, which
are located at the border of the domain.
For a scenario in which we include several layers with different conductivities, which is more
realistic, we can achieve a big difference between |xmax| and δ0 by ensuring that the area of
possible monopole distribution is as small as possible and the area of uniform conductivity
is as big as possible. As the area of uniform conductivity is determined by the head model,
we cannot control this part. However, we can control the area of monopole distribution by
changing the grid resolution. The higher the resolution, the smaller the area of monopole
locations. If the grid is coarser, the area where monopoles are placed is widened and so the
distance to the next conductivity jump is decreased. Thus we can deduce the importance
of a high grid resolution from this error estimation.
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3.5 Monopolar Venant Approach
The monopolar Venant approach, also known as the blurred dipole approach, is another well
known possibility to solve the EEG monopole distribution forward problem. Again we want
to find the strength q1, ..., qn for the monopoles at the locations x1, ..., xn, but this approach
does not use multipole expansion. Here we will follow the ideas of [VO16], [NÜ18] and
[WO+07a], which are all based on the ideas of [BU+97]. We want to introduce two vari-
ations of the monopolar Venant approach. Later in chapter 5 we will compare these two
approaches to the multipolar Venant approach.

Instead of computing the monopole distribution potential following the multipole expan-
sion as

ΦM (x) =
1

4πσ0

∞∑
l=0

n∑
i=1

qi · |∆xi|l

|x|l+1
Pl(cos(θi)), (3.9)

(compare equation (3.7)), here it is computed as

ΦMono(x) =
1

4πσ0

Nm∑
l=0

n∑
i=1

qi(∆xi)
l. (3.10)

This way of computing the moments is a consequence of the historical derivation of the
Venant approach [VO16]. Here Nm ∈ N represents the number of moments and again, in
order to get a computable algorithm, we will only consider the terms up to Nm = 2. This
leads to the following conditions

0 =

n∑
i=0

qi

−→
M =

n∑
i=0

qi∆xi

−→
0 =

n∑
i=0

qi(∆xi)
2

We see that the first four conditions are the same as for the multipolar Venant approach.
Only the equation for l = 2 is different.
We can rewrite the problem in matrix-vector notation. We need a vector −→t with

−→
t =



0
m1

m2

m3

0
...
0


where m1,m2,m3 ∈ R are the moments in each spatial direction and either −→t ∈ R7 for the
monopolar Venant approach without mixed moments or −→t ∈ R10 for the monopolar Venant
approach with mixed moments. We will take a closer look at these two cases further down
below. Furthermore, we need a vector −→q ∈ Rn containing the monopole loads

−→q =


q1

q2

...
qn.


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On top of that, we need a matrix V ∈ Rm×n with

V (j, i) = (∆xi)
αj ,

i = 1, ..., n and α1, ..., αm ∈ N3
0 a set of multi-indices, where

(∆xi)
αj = (∆xi)

αj1
1 · (∆xi)

αj2
2 · (∆xi)

αj3
3 .

For the monopolar Venant approach without mixed moment, the multi-indices are chosen
as the zero vector and the vectors consisting of a single non-zero entry l ∈ N with l ≤ Nm,
i.e. 0

0
0


︸ ︷︷ ︸
α1

,

1
0
0


︸ ︷︷ ︸
α2

,

0
1
0


︸ ︷︷ ︸
α3

,

0
0
1


︸ ︷︷ ︸
α4

,

2
0
0


︸ ︷︷ ︸
α5

,

0
2
0


︸ ︷︷ ︸
α6

,

0
0
2


︸ ︷︷ ︸
α7

.

So in this case it is m = 7. Inserting these multi-indices leads to the conditions presented
above for each dimension.
As presented in [NÜ18], one can also include mixed moments, i.e. include multi-indices α
with non-diagonal entries and |α| ≤ Nm. For the monopolar Venant approach with mixed
moments, the following vectors are added to the set of multi-indices:1

1
0


︸ ︷︷ ︸
α8

,

1
0
1


︸ ︷︷ ︸
α9

,

0
1
1


︸ ︷︷ ︸
α10

.

Therefore it ism = 10 here. Thus the problem to find the monopole strenghts can be written
as −→

t = V · −→q .

This equation differs from equation (3.8) only in the matrix V , so we have to take the same
steps to compute −→q . We are going to use the same regularization matrix and parameters
for all three approaches. Also we use the same way of applying the scaling factor aref to
the monopolar approaches as we previously did for the multipolar Venant approach. The
functionals

Fλ(−→q ) = ‖−→t − V · −→q ‖22 + λ‖W · −→q ‖22,

that we have to solve for all approaches will only differ in the matrix V .

In chapter 5 we are going to perform some tests with the three Venant approaches and
compare them.
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Figure 4.1: Illustration of a radial (left) and a tangential (right) patch. The red arrow
represents the original dipole and the black arrows the patch dipoles. The illustration has
been created by Jan Hüwel.

4 Quadrupolar Moments
As mentioned before, the mathematical dipole is often used to model brain activity, but it
can only indirectly represent the extent of a source. To invest in multipoles with quadrupo-
lar moments unequal zero, could be a way to improve the source reconstruction. The source
extent underlying the EEG signal has been estimated to values of up to 600 mm2 [NU+00]
and therefore should not be neglected. We will try to improve the representation of an ex-
tended source with using quadrupolar moments. There are already some studies where the
contribution of multipolar sources to source analysis has been examined, see e.g. [BE18],
[JE+02], [JE+04].

Looking back on equation (3.8), we see that the moments of the quadrupolar terms have
been set to zero. In the following we are going to define some extended sources, patches,
and see if we can improve the numerical forward solution to this scenario by setting the
quadrupolar moments unequal zero.

At first we will define the patches we are going to compute the analytical solution with.
We will only consider a spherical head model to ensure a controllable scenario and have a
well defined goal function. The definition of the patches has been developed in collaboration
with Jan Hüwel [HÜ21]. Each patch will be constructed from a single dipole by distributing
a grid of patch dipoles around its position. Let M be the original dipole moment and R1

a normalized vector that is orthogonal to M . Let R2 be the cross procuct of M and R1

and therefore orthogonal to both of them. We will differentiate between radial patches and
tangential patches for the original dipole being radial or tangential, respectively. The dipoles
that are forming the patch, patch dipoles, are always going to have the same orientation as
the original dipole and are scaled to have in sum the same moment strength as the original
dipole. For radial dipoles, the patch dipoles moments are achieved by scaling the distance
vector between the center of the sphere and the patch dipole’s position, in order to ensure
completely radial direction. For tangential dipoles, the patch dipoles are just going to have
a scaled version of the original moment and do not need to be reoriented. For imagination
of such patches see figure 4.1.

Now we will define the patches.

Definition 4.1 (Radial Patches). Let R1 and R2 be the orthogonal vectors described above.
Let c ∈ R3 be the center of a sphere, h ∈ R a grid width and n ∈ N0 the patch size such that
N := (2n + 1)2 is the desired amount of patch dipoles. Given a radial dipole d0 = (x0,m0)
at position x0 ∈ R3 with moment m0 ∈ R3 such that ‖m0‖ = 1, we define a radial patch
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around d0 as follows:

Prad =

{
pij = (xij ,mij) ∈ R3 × R3 : i, j ∈ [−n, n] ∩ Z,

xij = x0 + ihR1 + jhR2,

mij =
1

N

xij − c
‖x0 − c‖

} (4.1)

Theorem 4.2. A radial patch Prad constructed from a radial dipole d0 fulfills:

1. x0 = 1
N

n∑
i,j=−n

xij

2. m0 =
n∑

i,j=−n
mij

3. mij is radial for all i, j ∈ [−n, n] ∩ Z

Condition 1 indicates, that x0, the original dipole’s position, is the center of the patch
and condition 2 that the sum of all patch dipole moments forms the original dipole moment.
Let us proof this theorem.

Proof. 1.

1

N

n∑
i,j=−n

xij =
1

N

n∑
i,j=−n

(x0 + ihR1 + jhR2)

=
1

N

n∑
i,j=−n

x0

=
N

N
x0

= x0

2.
n∑

i,j=−n
mij =

n∑
i,j=−n

1

N

xij − c
‖x0 − c‖

=
1

N

1

‖x0 − c‖

( n∑
i,j=−n

xij −
n∑

i,j=−n
c

)
1
=

1

N

1

‖x0 − c‖
N(x0 − c)

=
x0 − c
‖x0 − c‖

∗
= m0,

* is valid because m0 is radial and scaled to norm 1, so it has to be equal.

3. Since mij is a scaled version of xij − c, it is trivially radial.

Comment 4.3. The radial patch can also be constructed for radial dipole moments m0 ∈ R3

with ‖m0‖ 6= 1. Then the patch dipole moments mij just have to be mutliplied by ‖m0‖.
However, in our tests we will only consider dipole moments scaled to norm one.
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We will now take a look at patches for tangential dipoles in the same way.

Definition 4.4 (Tangential Patches). Let R1 and R2 be the orthogonal vectors described
above. Let c ∈ R3 be the center of a sphere, h ∈ R a grid width and n ∈ N0 the patch size
such that N := (2n + 1)2 is the desired amount of patch dipoles. Given a tangential dipole
d0 = (x0,m0) at position x0 ∈ R3 with moment m0 ∈ R3, we define a tangential patch
around d0 as follows:

Ptan =

{
pij = (xij ,mij) ∈ R3 × R3 : i, j ∈ [−n, n] ∩ Z,

xij = x0 + ihR1 + jhR2,

mij =
1

N
m0

} (4.2)

Theorem 4.5. A tangential patch Ptan constructed from a tangential dipole d0 fulfills:

1. x0 = 1
N

n∑
i,j=−n

xij

2. m0 =
n∑

i,j=−n
mij

3. mij is tangential for all i, j ∈ [−n, n] ∩ Z

Proof. 1. Identical to the proof of theorem 4.2.

2.
n∑

i,j=−n
mij =

n∑
i,j=−n

1

N
m0 = m0.

3. In order to prove this, we will show that mij is orthogonal to xij − c for all i, j ∈
[−n, n] ∩ Z

〈mij , xij − c〉 = 〈 1

N
m0, x0 + ihR1 + jhR2 − c〉

=
1

N

(
〈m0, x0 − c〉+ ih〈m0, R1〉+ jh〈m0, R2〉

)
∗
= 0,

* is valid because as m0 is tangential, it is orthogonal to x0−c and R1, R2 were defined
to be orthogonal to m0.

For these patches, we are going to compute an analytical solution, which is possible since
we are only looking at spherical head models in this thesis. This analytical solution will
be our goal function and we are going to try to approximate it with the multipolar Venant
approach. Therefore we will compute the forward solution using the original dipole and,
with the intention of better approximating the extend of the patch, give the quadrupolar
moments a value.

One approach to give the quadrupole moments a value will be to compute them in the
following way. The idea has been shown in [BE18] and is based on a series expansion using
a Taylor series.
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Definition 4.6 (Computing of Quadrupole Moments). Given a patch P of N ∈ N dipoles
(xi,mi) ∈ R3 × R3, i = 1, ..., N around dipole d0 = (x0,m0), we define the quadrupolar
moments mquad ∈ R3×3 of that patch as

mquad =
1

2

N∑
i=1

(
(xi − x0)m′i +mi(xi − x0)′

)
.

With equation (3.8) in mind, we are going to replace the vector −→t by

0
m̄1

m̄2

m̄3

m̄quad[1, 1]
m̄quad[2, 2]
m̄quad[3, 3]
m̄quad[1, 2]
m̄quad[2, 3]
m̄quad[1, 3]


,

with m̄quad[i, j] :=
mquad[i,j]
aref

. Unfortunately this way of computing the quadrupole moments
leads to zero for all quadrupolar moments when using our tangential patches. As our tan-
gential patches are highly regular and all patch dipoles have the same moment, they cancel
each other. So we are only going to use this equation for radial dipoles. If a patch is not as
regular as ours, which is likely to be the case for realistic patches, the equation could also
be used for tangential dipoles.

As an alternative we will use an optimization to set the quadrupole moments. In chap-
ter 5 we will describe the procedure in more detail.
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Figure 5.1: tet_high Figure 5.2: tet_low Figure 5.3: hex

5 Numerical Experiments

5.1 Multi-layer Sphere Setups for Evaluation Studies
In this chapter we want to perform some tests using the multipolar Venant approach. At
first we will look at some parameters and find out which are the best to choose. Then we
will look at how the multipolar Venant approach performs in comparison to the commonly
used monopolar Venant. As a last experiment we will have a look at multipoles and the
question of whether we can improve the approximation of an extended source by adding
quadrupole moments to the multipolar Venant approach.

All tests are performed in a four-layer sphere model. Ideally, we would choose a realis-
tic head model and compare the results to a reference solution, but there are no realistic
models with a known reference solution. Therefore we choose a simplified 3D model, a series
of concentrically nested spheres. For this kind of source model we can compute pointwise
an analytical solution with a series expansion. This was derived by de Munck and Peters
[DM+93]. So the setting is well controlled and we easily get a reference solution to compare
our results with. We will use FieldTrip-SimBio (http://fieldtriptoolbox.org, [VO+18]) to
compute the analytical solution. The source model distinguishes the conductive compart-
ments brain, cerebrospinal fluid (CSF), skull and skin. We will use two tetrahedral meshes
with different resolutions and one hexahedral mesh. See figures 5.1 - 5.3 for a visualization
of the meshes.

The high resolutional tetrahedral model (tet_high) was generated using TetGen (http://wias-
berlin.de/software/tetgen/) by [VO+19] with a quality constraint (qc) and a volume con-
straint (vc). The quality constraint was set to 1.0. It determines the maximum of the ratio
between the circumscribed ball and the shortest edge of a tetrahedron. A low value enforces
the construction of well-shaped tetrahedra. The volume constraint is set to 1.12, it limits
the maximal volume of each tetrahedron to 1.12 mm3 and therefore enforces a uniformly
high mesh resolution.
The tetrahedral mesh with lower resolution, tet_low, has been generated using gmsh
(https://gmsh.info) by [SC+20].
The hexahedral model was generated using FieldTrip-SimBio by [VO+19]. Instead of using
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Figure 5.4: Concept of the hexahedral node-shift approach for the smoothing of interface
boundaries in a 2D scenario: On the left side of the figure, the procedure is illustrated
for only two boundary nodes, from one of which is moved outside and the other one is
moved inside towards the centroids of their minority elements. The final result of the node-
shift, a smoothed boundary represantation using deformed hexahedra, is shown on the right
side.[WO+07a]

a regular hexahedral mesh, we will use a geometry adapted one, where a node shift of 0.49
was applied [WO+07a]. This is the highest value that guarantees that all hexahedra remain
convex [WO+07a]. In figure 5.4 the difference between a regular and a geometry adapted
hexahedral mesh can be seen. Following [WO+07a], a geometry adapted mesh reduces both
topography and magnitude error as it better adapts to the geometry of the sphere.
In order to get a central overview of the models see table 5.1 and 5.2.

Table 5.1: Sphere Model

Brain CSF Skull Skin

Radius [mm] 78 80 86 92
Conductivity [S/m] 0.33 1.79 0.01 0.43

Table 5.2: Parameters of the Meshes

Mesh Nodes Elements qc vc [mm3] node shift

tet_high 801 633 4 985 234 1.0 1.12 -
tet_low 54 771 306 439 - - -
hex 3 342 701 3 262 312 - - 0.49

As sources, we use a set of 19 000 dipoles at radii between 2 and 77 mm in 1 mm steps. For
each source eccentricity there are dipoles at 125 random source positions with radial and
tangential dipole orientation, respectively. All dipole moments are scaled to norm one. For
some tests we will only use a subset of these dipoles. For evaluation we use the eccentricity of
the source location, i.e. the quotient of the radius of the source position and the brain/CSF
interface (78 mm) in percent. We will compare the error measure at different eccentricities.
For the purpose of better readability, we rounded the eccentricities and compounded 250
dipoles to the same eccentricity in the plots. We evaluated the forward solution at 200
regularly distributed electrode positions on the surface of the sphere model.
As error measures, in order to see the difference between the analytical and the different
numerical solutions, we use the RE (relative error), the RDM (relative difference measure)
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and the MAG (magnitude error). They are defined as

RE(unum, uana) = ‖unum − uana‖2,

RDM(unum, uana) =

∥∥∥∥ unum
‖unum‖2

− uana
‖uana‖2

∥∥∥∥
2

,

MAG(unum, uana) =
‖unum‖2
‖uana‖2

.

(5.1)

Here unum ∈ Rs, s ∈ N the number of sensors, is the solution to the forward problem of
the used numerical approximation and uana ∈ Rs is the analytical solution which is used as
a reference. For better visualization we will use the lnMAG instead of the MAG, which is
the natural logarithm of the MAG. The RDM provides an approximation of the topography
error and is bounded between 0 (no RDM error) and 2 (highest RDM error). The lnMAG
indicates errors in potential magnitude, its optimal value is 0.

For the tests we use the software DUNEuro (DUNE for neurosciences). Thus the first
step will be to introduce this software.
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5.2 The Software DUNEuro
DUNEuro is an open source software toolbox for forward modeling in bioelectromagnetism.
For a more detailed introduction see [SC+20]. The software is developed and used on Linux
operating system. It can be downloaded from a Gitlab repository (https://gitlab.dune-
project.org/duneuro), which is also linked from the webpage (http://www.duneuro.org).
DUNEuro is based on the C++ software DUNE (distributed and unified numerics environ-
ment, http://www.dune-project.org) and has interfaces in Matlab (The Math Works Inc.,
Natick, Massachussetts, United States; https://www.mathworks.com) and Python (Python
Software Foundation, https://www.python.org). There are already various approaches use-
able in DUNEuro and some more to follow, see [SC+20].

The monopolar Venant approach already existed in the software and the multipolar Venant
has been implemented similar to the implementation of the approach in FieldTrip-SimBio,
see [VO+18]. Many aspects like the choice of the monopole positions are the same for the
monopolar and multipolar Venant. As seen before, it mainly differs in the matrix V .

In order to call the different approaches, we use the DUNEuro Matlab binding. We want to
look at the different steps to call the multipolar Venant approach in the following. Additional
information on this and other approaches can also be found in the wiki of the DUNEuro
GitLab repository (https://gitlab.dune-project.org/duneuro/duneuro/-/wikis).

At first a driver is created. The driver is a coarse grained interface for solving EEG and
MEG forward problems. Different aspects are specified here. First, the general discretiza-
tion type (type) is indicated, fitted implies that a mesh will be provided and standard CG-
or DG-FEM can be used. The FEM-type (solver_type) cg says that we will use continuous
galerkin methods. On top of that, the mesh and the corresponding conductivities are passed.
With element_type we pass the element type of the mesh, which is either tetrahedron or
hexahedron.
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As the next step the electrode positions are passed and projected to the mesh. The type
closest_subentity_center specifies that the electrode positions are set to the closest suben-
tity. The codims parameter represents the codimension of subentities to which the electrodes
should be projected, 3 implies nodes.

Then the transfer matrix can be computed (driver.compute_eeg_transfer_matrix). The
transfer matrix provides a way to simplify the EEG forward problem. It arranges that the
potential generated by a dipole is only computed at the sensor positions and not at all pos-
sible nodes of the mesh. Thus the computational costs are reduced greatly if the number of
sensors is much smaller than the number of sources. The transfer matrix is the same for all
forward approaches, therefore it can be computed before we even determine which approach
to use.

After reading the dipoles, which are passed as a n × 6 matrix containing the dipole lo-
cations and moments, the leadfield can be computed by driver.apply_eeg_transfer_matrix.
Therefore the transfer matrix is multiplied by the right hand side. Before applying the
transfer matrix, there are some parameters yet to be determined.
First of all, the source model (source_model.type). The multipolar Venant approach can
be chosen by multipolar_venant and the monopolar venant is called venant. The meaning
of the parameter source_model.restrict will get clear in the next section.
The source_model.referenceLength is the aref that we have seen before. We are going to
set it to 20 mm in all our tests. The source_model.weightingExponent is our r, the ex-
ponent of the weighting matrix. Following [VO+19] and [HA19] we will set it to 1. The
source_model.relaxationFactor is our λ. Following [HA19] a choice of 10−6 leads to con-
vincing results and therefore we are going to use this for all the following experiments. The
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commented line source_model.mixedMoments is only needed if we set source_model.type
to venant and it then determines if we use the monopolar Venant approach with or without
mixed moments, true means that we use mixed moments.
Also the source_model.numberOfMoments is only needed in the monopolar case. We will
set it to 3, which means that moments up to second order are considered. The parameter
source_model.initialization determines how to choose the monopole locations. The method
closest_vertex uses the way we described earlier. It chooses the vertex closest to the source
and its neighbors. The source_model.quadrupoles parameter we will use in our last experi-
ments. There we will apply the multipolar Venant with quadrupole moments and with this
parameter we can set the values.
The resulting leadfield then contains the potential at the electrodes for each dipole.
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Figure 5.5: Used monopole locations, left: without restriction, right: with restriction [KR19]

5.3 Venants Condition for the Multipolar Venant Approach
In this section we will have a closer look at the parameter source_model.restrict. This is a
bool parameter. Setting it to true means that for the monopole locations only those nodes
that are in the same conductivity domain as the dipole are considered. See figure 5.5 to
get an idea on how restriction works. The idea of cutting the monopole locations which lie
outside the brain has been introduced by [ME15] and was called the Venants Condition. It
says that for dipoles lying close to a conductivity jump it is possible that there are neigh-
boring vertices lying in the next compartment. While choosing the monopole location it
may happen that the monopoles are placed outside the brain and this may lead to errors
in the numerical solution. Therefore it might be better to not take the monopoles outside
the brain into account while computing the forward solution. On the other hand, as can be
seen in figure 5.5, the cutting of the monopole locations in the next compartments leads to
fewer monopole locations. The lack of enough monopoles may also lead to stronger numer-
ical errors as there is a chance that the monopole locations are not uniformly distributed
around the dipole location. Then the dipole potential cannot be represented accurately in
all directions [HA19].

We want to check what consequences to restriction are shown using the multipolar Venant
approach. For the monopolar Venant approach without mixed moments it has already been
shown that the Venant Condition avoids high errors in high eccentricities [ME15]. The re-
striction is only relevant for the dipoles lying close to a conductivity jump, because dipoles
lying deeper in the brain compartment will not have neighboring vertices in another com-
partment anyway. Therefore we will only look at the dipoles with the highest eccentricities.

In figure 5.6 you can see that for the tet_high mesh there are much more outliers if we do not
use the restriction. Especially the RDM for tangential dipoles and the lnMAG for both radial
and tangential dipoles show significant differences. The RDM for radial dipoles seems not
to be that sensitive for restriction in this scenario. We do, however, see an improvement in
applying the Venants Condition, so we will use the restriction for this mesh in the following.

Figure 5.7 shows that there are no significant differences if we use our hex mesh, neither in
RDM nor in lnMAG. As the Venants Condition has been applied in comparable studies like
[HA19], [VO+19], we are going to use the restriction for this model, too.

For the tet_low mesh we did not only consider the values at the highest eccentricity but
also at eccentricity 0.96. Due to the coarseness of the mesh, monopole locations outside the
brain compartment seem to be considered even for dipoles at this eccentricity. In figure 5.8
we see differences between the restricted and the not restricted models at eccentricity 0.96.
Unfortunately, it is rather unclear which approach performs better. For tangentially oriented
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Figure 5.6: RDM (top row) and lnMAG (bottom row) for tangential (left column) and radial
(right column) source orientations for model tet_high. Comparing the multipolar Venant
approach with restriction (restricted) and without restriction (not restricted).
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Figure 5.7: RDM (top row) and lnMAG (bottom row) for tangential (left column) and
radial (right column) source orientations for model hex. Comparing the multipolar Venant
approach with restriction (restricted) and without restriction (not restricted).
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Figure 5.8: RDM (top row) and lnMAG (bottom row) for tangential (left column) and
radial (right column) source orientations for model tet_low. Comparing the multipolar
Venant approach with restriction (restricted) and without restriction (not restricted).

dipoles we observe more outliers in both RDM and lnMAG when looking at the restricted
case. However, ignoring the outliers, at least the RDM at 0.96 shows a slightly better per-
formance using the restricted model. For radial dipoles the lnMAG of the restricted model
shows clearly better performance at both eccentricities. In contrast the RDM is better for
the not restricted model, especially looking at eccentricity 0.98.
The non-optimal performance when using the Venant condition might result from our way
of choosing the monopole locations. As the mesh is coarser, a dipole lying close to the
conductivity jump has more neighboring vertices which lie in the next compartment and are
therefore ignored when we use restriction. This may lead to a too small number of monopole
locations. This problem might be solved by forcing the algorithm to take more vertices into
account that are in the same compartement as the dipole, see [HA19].
As shown by [ME15] the restricted model to be better for the monopolar Venant approach,
and as we want to ensure comparability between our different test scenarios, we are going
to use the restricted model for the tet_low mesh, too.

As we see that the Venant Condition does not lead to convincing results in all scenar-
ios, one could suggest another way to proceed with monopole locations outside the brain
compartement. Instead of cutting them one could try to weight the monopoles lying in
different compartments with the conductivity of the particular compartement. This way
the inaccuracy observed when not using restriction might also be reduced and there would
always be enough monopole locations. This might be a future area of investigation.
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Figure 5.9: RDM (top row) and lnMAG (bottom row) for tangential (left column) and
radial (right column) source orientations for model tet_high. Comparing the monopolar
Venant approach without mixed moments (Monopolar Venant), the monopolar Venant ap-
proach with mixed moments (Monopolar Venant MM ) and the multipolar Venant approach
(Multipolar Venant).

5.4 Comparison of Multipolar and Monopolar Venant Approaches
Now, having set all parameters, we are able to compare the multipolar Venant approach to
the commonly used monopolar Venant approach. As outlined before, we can consider the
monopolar Venant approach with and without mixed moments. The comparison between
the multipolar Venant approach and the monopolar Venant approach with mixed moments
has not yet been carried out before. For the monopolar Venant approaches we use the same
parameters as for the multipolar Venant.

In figure 5.9 we see the results for the high resolution tetrahedral mesh. As a first result we
notice that the monopolar Venant approach with mixed moments shows better performance
in both RDM and lnMAG for tangential and radial dipoles than the monopolar Venant
approach without mixed moments. This fits to the findings of [NÜ18]. Nevertheless, the
multipolar Venant approach outperforms both of them and shows even slightly better results
than the monopolar Venant approach with mixed moments for all modalities.
All approaches show an error rise when looking at the highest eccentricities, but the multi-
polar Venant approach presents the lowest values. High eccentricities are of special interest.
In realistic scenarios the source of brain activity normally is close to the head surface, in
the gray matter compartment, and thus is best represented by eccentric sources. Therefore
a good performance is especially important for these dipole locations.
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Figure 5.10: RDM (top row) and lnMAG (bottom row) for tangential (left column) and
radial (right column) source orientations for model hex. Comparing the monopolar Venant
approach without mixed moments (Monopolar Venant), the monopolar Venant approach
with mixed moments (Monopolar Venant MM ) and the multipolar Venant approach (Mul-
tipolar Venant).

In figure 5.10 the results for the hexahedral mesh can be seen. Here the differences between
the approaches are less clear but still the multipolar Venant performs rather well in compar-
ison to the monopolar Venant approaches. For the highest eccentricities the error measures
for all approaches show a high rise. As said before, this could be reinforced by the restric-
tion as it leads to fewer monopole locations and the fact that the hexahedral mesh cannot
represent the sphere surfaces as well as the tetrahedral mesh. Nonetheless the multipolar
approach seems to be less sensitive than the monopolar Venant approach with mixed mo-
ments, which, for the highest eccentricity, performs even worse than the monopolar Venant
without mixed moments.

In figure 5.11 the results for the tet_low mesh can be seen. As expected from our tests on
the restriction, the multipolar Venant approach shows high errors in RDM for the highest
eccentricities. Here it is outperformed by both monopolar Venant approaches. Especially
the monopolar Venant approach with mixed moments does not seem to be very sensitive to
fewer monopole locations, at least when looking at the RDM. As mentioned before, [HA19]
presented another approach to choose the monopole locations. This could improve the mul-
tipolar Venant approach so that it may outperform the monopolar Venant approaches in a
coarse grid scenario, too. Looking at less eccentric sources, the multipolar Venant approach
again leads to the best results in RDM. For lnMAG, the multipolar Venant approach shows
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Figure 5.11: RDM (top row) and lnMAG (bottom row) for tangential (left column) and
radial (right column) source orientations for model tet_low. Comparing the monopolar
Venant approach without mixed moments (Monopolar Venant), the monopolar Venant ap-
proach with mixed moments (Monopolar Venant MM ) and the multipolar Venant approach
(Multipolar Venant).

the best performance, too. Here, especially at highest eccentricity for radial dipoles its error
is on a much lower grade than the error measure for the monopolar approaches.
All in all, comparing the results for the tet_high mesh in figure 5.9 and for the tet_low mesh
in figure 5.11, we can see that especially at high eccentricities the overall performance of the
approaches is much better for the higher resolution mesh. This indicates the importance
of investing in a high resolution model when trying to compute exact forward solutions.
Resulting from the way of choosing the monopole locations as the neighboring vertices, for
the Venant approaches the number of FE nodes between the dipole and the conductiv-
ity jump may determine the accuracy of the forward solution even more than the spatial
distance. Therefore the coarse grid leads to much higher numerical errors than the finer one.

Taking all test scenarios into account, the high and low resolution tetrahedral mesh and
the hexahedral mesh, the multipolar Venant approach shows a very good performance in
comparison to the known monopolar Venant approaches. For the high resolution tetrahe-
dral mesh it clearly outperforms the monopolar Venant approaches. The monopolar Venant
approach without mixed moments has been tested in many studies like [BA+15] or [LE+09]
and has always shown a performance superior to that of other approaches based on the
classical continuous Galerkin (CG)-FEM. In [NÜ18] has been shown that the monopolar
Venant approach with mixed moments performs even better in tetrahedral meshes. From
our results we can deduce that the multipolar Venant approach outperforms both of them
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and therefore most other approaches based on CG-FEM as well. For the hexahedral mesh
the differences were less clear and for high eccentricities all approaches show a high error
rise. This could be result of the fact that the hexahedral mesh cannot represent the sphere
surfaces as well as the tetrahedral mesh. Anyway, the multipolar Venant approach shows
slightly better performance than the monopolar Venant approach with mixed moments when
looking at the highest eccentricities. For lower eccentricities there are no striking differences
between the approaches, but the multipolar Venant approach performs marginally better
than the monopolar approaches. Therefore the multipolar Venant approach seems to be a
good approach for hexahedral meshes, too. The only apparent weakness of the multipolar
Venant approch seems to occur when looking at coarse meshes and taking too few monopole
locations into account. There, for high eccentricities, in RDM error the multipolar Venant
approach is outperformed by both monopolar Venant approaches. As mentioned before,
[HA19] suggested to solve this problem by changing the process of choosing the monopole
locations. This should be a future goal to integrate in DUNEuro, too. It should be possible
for the user to define a minimal number of monopole locations which the algorithm should
then find in the brain compartment. Chances are good that the multipolar Venant then
shows good results for coarse grids, too. On top of that in realistic tests, one should always
try to create a grid fine enough to ensure that all neighboring vertices of a possible source
position are within the brain compartement. That way the weakness of the multipolar
Venant approach actually should not occur in realistic tests anyway. And, however, for less
eccentric sources the multipolar Venant approach still shows the best performance.
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Table 5.3: Patches

Patch Size n Number of Dipoles Patch Extent [mm2]

4 81 16
14 841 196
24 2401 576

5.5 Approximation of Extended Sources
In the following experiments we will consider sources not as point sources but as patches
of activity. We will use patches as defined in chapter 4. For the first tests, as original
dipoles around which we build the patches, we use three sets of ten dipoles, respectively.
One set at eccentricity 0.72, one at 0.82 and one at eccentricity 0.9. We do not use dipoles at
higher eccentricities to ensure that even for larger patches all patch dipoles lie in the brain
compartment of the source model. Also, for the most eccentric dipoles we do not use the
largest patch scenario as there were patch dipoles lying outside the brain compartement, too.
For each dipole of a set we construct a patch around it and compute the analytical solution
for all of the patch dipoles. Then we sum up the analytical solutions for all patch dipoles of
one patch. This represents the potential at the EEG sensor positions for all patch dipoles
of one patch being activated at the same time and will be our goal function to compare the
multipolar Venant approach to. This, of course, is not a completely realistic scenario, either.
An extended source activity in the brain might be more smooth and not just at some points
in the activated area. However, it is a way to get a first idea of the impact of quadrupole
moments. As we know from the principle of Saint Venant, the potential measured at the
EEG sensor positions should be similar for some activated points which lie close to each
other and an uniformly distributed activity in the same area.
The parameters for the multipolar Venant approach remain the same as in the last sections.
For our studies we use a grid width h = 0.5 mm and investigate different patch sizes n which
lead to different numbers of dipoles and different extents of the patch. See table 5.3 for
detailed information.

As a first experiment we want to see for both radial and tangential patches how much the
performance of the multipolar Venant approach in representing a patch can be improved
by using quadrupolar moments. Therefore we use a non-linear least squares optimization
over the relative error between the analytical solution and the forward solution with the
quadrupole moments as variables. We made use of the Matlab function lsqnonlin, as the
lower bound we set -1 for all quadrupole moments and as the upper bound 1. For radially
oriented dipoles we will also look at the performance of computed quadrupoles as defined in
definition 4.6.

In order to get an idea of the impact of quadrupoles on different meshes, eccentricities,
dipole orientations and patch sizes, we can look at the norm of the quadrupole moments.
Therefore we computed the L2-norm of the optimized quadrupole moments for every dipole
of an original-dipoles-set and then took the mean of these values for each set. See table 5.4
for an insight into the results. A higher value represents quadrupoles with larger entries and
therefore the quadrupoles have a greater impact than in scenarios with smaller values.

Let us at first look at tangential dipoles and patches. In figure 5.12 the RDM und lnMAG
measures for the different scenarios using the tet_high mesh can be seen. For all eccen-
tricities, we observe that the error rises with rising patch size. Looking at the RDM, we
also see that the improvement of using quadrupole moments increases with increasing patch
size. This fits to the values in table 5.4. There we find higher values for bigger patches.

39



Table 5.4: L2-norm of the optimized quadrupolar moments for each dipole set.
Tangential Radial
Patch Size Patch Size

Mesh Eccentricity 4 14 24 4 14 24

tet_high 0.72 0.05 0.05 0.08 0.07 0.12 0.28
0.82 0.06 0.06 0.1 0.08 0.13 0.26
0.9 0.06 0.07 - 0.08 0.13 -

tet_low 0.72 0.2 0.2 0.2 0.20 0.23 0.32
0.82 0.21 0.21 0.2 0.25 0.29 0.39
0.9 0.23 0.22 - 0.27 0.29 -

hex 0.72 0.12 0.1 0.06 0.14 0.22 0.36
0.82 0.12 0.09 0.04 0.14 0.22 0.36
0.9 0.11 0.07 - 0.14 0.22 -

The patches eccentricity seems to change the influence of the quadrupoles only a little, we
observe slightly rising values with more eccentric patches. In lnMAG measure we find that
the values for the dipole and the multipole diverge. While the dipole underestimates the
magnitude more and more with rising patch size, the lnMAG values for the multipole rises
with increasing patch size and overestimate the magnitude more and more. At some point
the lnMAG is even worse for the multipole. This may result from our way of optimization.
As we optimize over the relative error - which somehow represents both the RDM and the
lnMAG - a value that strongly improves the RDM can worsen the lnMAG. Nonetheless,
if we assume that a low RDM, as it represents the location and orientation of the source,
is often more important in practice, we could interpret this result as a argument for using
multipoles.

In figure 5.13 we see the results for tangential dipoles using the hex mesh. Here we find a
trend that is contrary to that for the tet_high mesh. While the RDM for the small patch
is improved by the use of multipoles, for bigger patches it is even worse than the pure
dipole. For the lnMAG we now see that both the dipole and the multipole overestimate the
magnitude for all patch sizes and eccentricities. While the lnMAG for the dipole decreases
and gets better for bigger patches, the lnMAG for the multipole rises for larger patches.
However, the lnMAG using the multipole is better than the dipole for all test scenarios.
Thus, in contrast to the last test here we see the improvement in lnMAG instead of RDM.
In table 5.4 we also observe a contrary development in the norm of the quadrupole moments
in comparison to the tet_high mesh. The norm decreases with increasing patch size. This
may explain the improvement of the lnMAG and worsening of the RDM in this case. Also
the values get slightly smaller for more eccentric patches, so we see a trend contrary to the
tet_high mesh here, too.

As a last experiment for the tangential patches we want to look at the tet_low mesh,
figure 5.14. At first we observe that the differences between the different patch sizes do
not have such a profound impact on the error measures in this case. For the dipole we
can see the same trends in RDM in lnMAG as for the tet_high mesh (figure 5.12), but
much less clear. However, what is clear here is the improvement that comes with using
the multipole. It shows better performance for all eccentricities in both RDM and lnMAG.
Looking at table 5.4 we also observe, that the quadrupole moments hardly change between
the different patch sizes, which fits to the rarely changing errormeasures. Only a slight rise
with increasing eccentricity can be observed.
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Figure 5.12: RDM (left column) and lnMAG (right column) for tangential patches at eccen-
tricity 0.72 (top row), 0.82 (mid row) and 0.9 (bottom row) for model tet_high. Comparing
the multipolar Venant approach using only dipolar moments (Dipole) and additional opti-
mized quadrupolar moments (Multipole).
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Figure 5.13: RDM (left column) and lnMAG (right column) for tangential patches at eccen-
tricity 0.72 (top row), 0.82 (mid row) and 0.9 (bottom row) for model hex. Comparing the
multipolar Venant approach using only dipolar moments (Dipole) and additional optimized
quadrupolar moments (Multipole).
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Figure 5.14: RDM (left column) and lnMAG (right column) for tangential patches at eccen-
tricity 0.72 (top row), 0.82 (mid row) and 0.9 (bottom row) for model tet_low. Comparing
the multipolar Venant approach using only dipolar moments (Dipole) and additional opti-
mized quadrupolar moments (Multipole).

43



Now we will look at the results for the same experiment using radial dipoles and patches.
Additionally to the optimized quadrupolar moments, we will also consider computed quadrupo-
lar moments as defined in definition 4.6.

Again, we will start with the tet_high mesh. At first we look at the RDM for the different
scenarios, see figure 5.15. We observe that the use of multipoles with both computed and
optimized quadrupolar moments improves the performance. The improvement gets stronger
with increasing patch size. As expected, a small patch is already relatively well approxi-
mated by a pure dipole, but for bigger patches the need to consider the physical extend of the
source gets more important. For the computed quadrupolar moments we also observe that
the improvement increases with more eccentric sources. Especially for patch size 14 we see
that at eccentricity 0.72 there is hardly any difference between the dipole and the multipole
with computed quadrupoles, while at eccentricity 0.9 there is a clear difference. This may
result from the fact that the error for the pure dipole increases for more eccentric patches
and the error for the multipole approximately stays the same. As expected, when looking
at the multipole with optimized quadrupoles we see that they show a better performance
than the multipole with computed quadrupoles. Here, there already is an improvement in
RDM for patch size 4 and the improvement increases with increasing patch size. Contrary to
the computed quadrupoles, the improvement by the multipole with optimized quadrupoles
hardly shows a difference between the different eccentricities. This fits to the values in table
5.4 where we see that the norm of the optimized quadrupolar moments stays approximately
the same for the different eccentricities. Looking at the lnMAG, again we see that for patch
size 4 there is nearly no difference between the pure dipole and the multipoles. For patch
size 14 we observe that expecially the computed quadrupoles improve the errors, even more
than the optimized quadrupolar moments. For patch size 24 we also see an improvement
that comes with using the multipole and here, again, the optimized quadrupolar moments
show the best performance. All in all, we can deduce that using multipoles provides a strong
improvement in the approximation of extended sources. The bigger the patch is the more
quadrupolar moments are needed. The computed quadrupoles already show a good perfor-
mance, but with the optimized values we see that even better results can be achieved at
some points.

In figure 5.16 we see that for radial dipoles the results for the hexahedral mesh are similar
to the result for the tet_high mesh. For RDM again we see that the use of quadrupolar
moments reduces the errors and this improvement gets stronger with increasing patch size.
For the hex mesh we already see a difference between the pure dipole and the multipole for
patch size 4, but as it still is rather small, one can deduce that the pure dipole represents
this patch size well enough. For patch size 14 we observe that the multipole with com-
puted quadrupoles performs almost as well as the multipole with optimized quadrupoles.
For patch size 24 the difference between the computed and optimized quadrupoles increases
again, but still the multipole with computed quadrupoles strongly improves the RDM. Be-
tween the different eccentricities we do not see any difference this time, here the error of
the pure dipole and the multipoles show an equal error rise with more eccentric patches.
The multipole with optimized quadrupolar moments again has a growing impact for bigger
patch sizes. This trend fits the findings of table 5.4, where we observe that the norm of the
optimized quadrupolar moments rises with increasing patch size. Looking at the lnMAG,
we see that the improvement that comes with using multipoles increases with rising patch
size here, too. For patch size 4 the difference between the dipole and the multipole with
computed quadrupolar moments is rather small, only the optimized quadrupoles show a
stronger improvement. For patch size 14 we, again, observe that the computed quadrupoles
show a strikingly good performance. Here the multipole with computed quadrupolar mo-
ments shows nearly the same error as for optimized quadrupolar moments, although the
difference is slightly bigger with increasing eccentricity. For patch size 24 again the opti-
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Figure 5.15: RDM (left column) and lnMAG (right column) for radial patches at eccentricity
0.72 (top row), 0.82 (mid row) and 0.9 (bottom row) for model tet_high. Comparing the
multipolar Venant approach using only dipolar moments (Dipole), multipolar moments with
computed quadrupolar moments (Computed) and multipolar moments optimized quadrupo-
lar moments (Optimized).
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mized quadrupolar moments show the lowest errors, but the computed ones improve the
approximation of the magnitude in comparison to the pure dipole, too.

See figure 5.17 for the results using the tet_low mesh. At first we observe that the differences
between the pure dipole approach and the multipolar approach are much less clear than
for the tet_high and the hex mesh. This may result from the overall high errors for the
coarse tetrahedral mesh. The improvement that comes with using multipoles therefore has
a lower percentage than for the other meshes. Nontheless, we can find the same trends. The
multipole with computed quadrupolar moments improves the performance in both RDM
and lnMAG in comparison to the pure dipole and this improvement gets stronger with
increasing patch size. Also the multipole with optimized quadrupolar moments shows even
lower errors, except for the lnMAG for patch size 14, where it is outperformed by the
computed quadrupolar moments. As for the hex mesh, we do not see any markable change
relating to the eccentricity of the patches. In contrast, in table 5.4 we see that the norm
increases for more eccentric sources. This could result from the fact that the tet_low mesh
generally shows high errors for eccentric sources. The optimization might compensate these
modelling errors and therefore lead to higher values for more eccentric patches. The gain of
impact with increasing patch size again fits to the values in table 5.4.

All in all, looking at the optimization for the quadrupole moments, we can observe that
quadrupoles in fact have a strong impact when trying to represent patches of activity. For
tangential dipoles we could not find a clear trend whether the error measures can be im-
proved, as the multipole has shown worse performance than the pure dipole in some scenar-
ios. This could be a result of our way of constructing the patch, which is very regular and
therefore already well represented by a pure dipole.
However, for radial dipoles we see a clear improvement when using multipoles instead of
pure dipoles for representing the patches. The introduced way of computing the quadrupo-
lar moments has demonstrably brought an improvement in comparison to the pure dipole
which gets stronger with increasing patch sizes. The optimized quadrupolar moments have
shown that even stronger differences can be achieved regarding some aspects, so there might
be an even better way to determine quadrupolar moments than the one defined in 4.6. As
expected, we saw that the impact of the quadrupole moments increases with increasing patch
size for the optimized quadrupolar moments, too, so for bigger patches stronger quadrupole
moments are needed. Moreover we can deduce that optimal quadrupole moments seem to
depend on the mesh and the patch size rather than on the eccentricity of the patch. In the
following we will have a closer look at the optimized and computed quadrupolar moments
for radial dipoles. We will try to visualize them in order to get a better understanding of
how they should be shaped for optimal results, which might lead to an even better approach
of computation.
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Figure 5.16: RDM (left column) and lnMAG (right column) for radial patches at eccen-
tricity 0.72 (top row), 0.82 (mid row) and 0.9 (bottom row) for model hex. Comparing the
multipolar Venant approach using only dipolar moments (Dipole), multipolar moments with
computed quadrupolar moments (Computed) and multipolar moments optimized quadrupo-
lar moments (Optimized).
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Figure 5.17: RDM (left column) and lnMAG (right column) for radial patches at eccentricity
0.72 (top row), 0.82 (mid row) and 0.9 (bottom row) for model tet_low. Comparing the
multipolar Venant approach using only dipolar moments (Dipole), multipolar moments with
computed quadrupolar moments (Computed) and multipolar moments optimized quadrupo-
lar moments (Optimized).

48



Table 5.5: Optimized and computed quadrupolar moments. Dipole at position (63,0,0) with
moment (1,0,0) as original dipole.

Patch Size
Mesh 4 14 24

tet_high mquad[1, 1] -0.0105 -0.0772 -0.1864
mquad[2, 2] 0.0061 0.0736 0.1829
mquad[3, 3] 0.0138 0.0811 0.1903
mquad[1, 2] 0.0204 0.0223 0.0270
mquad[2, 3] 0.0234 0.0243 0.0264
mquad[1, 3] 0.0156 0.0137 0.0104

tet_low mquad[1, 1] -0.1020 -0.1859 -0.2473
mquad[2, 2] -0.2112 -0.1807 0.0052
mquad[3, 3] 0.1648 0.1838 0.2813
mquad[1, 2] 0.0450 0.0495 0.0593
mquad[2, 3] -0.0310 -0.0317 -0.0311
mquad[1, 3] 0.0341 0.0274 0.0117

hex mquad[1, 1] -0.1106 -0.1622 -0.2494
mquad[2, 2] 0.1295 0.1798 0.2634
mquad[3, 3] 0.0823 0.1396 0.2335
mquad[1, 2] -0.0045 -0.0061 -0.0079
mquad[2, 3] 0.0084 0.0080 0.0070
mquad[1, 3] -0.0172 -0.0161 -0.0138

computed mquad[1, 1] 0 0 0
mquad[2, 2] 0.0265 0.2778 0.7937
mquad[3, 3] 0.0265 0.2778 0.7937
mquad[1, 2] 2.7756e-17 2.7756e-17 1.3531e-16
mquad[2, 3] 4.3368e-19 -4.3368e-19 2.2768e-18
mquad[1, 3] 0 -8.6736e-19 0

As a second experiment, we want to take a closer look at radial dipoles and patches.
We have seen that the use of quadrupolar moments clearly improves the approximation of
extended sources in this scenario. Now we want to look at the exact values that result from
the optimization and computation and therefore we will only consider one dipole at position
(63,0,0) with moment (1,0,0) as original dipole. All parameters to build the patches remain
the same as before, which means that we use the grid width h = 0.5 mm and patch sizes
n = 4, 14, 24. At first we determine the optimized quadrupole moments to this dipole for the
different patch sizes and meshes. Also we compute the corresponding quadrupolar moments
as defined in 4.6. See table 5.5 for the resulting values.

To begin with we observe that the diagonal values of the corresponding tensors, mquad[i, i],
are bigger than the non-diagonal entries for nearly all scenarios. Moreover we see that the
computed quadrupolar moments have the moment zero in direction of the dipolar moment
and very small values at the non-diagonal entries. In contrast, the diagonal values for the
directions orthogonal to the dipolar moment are bigger than for the optimized quadrupoles,
at least fo patch size 14 and 24. For patch size 4, the computed quadrupolar moments
are rather small altogether. This fits to the finding that patches of this size are quite well
represented by a pure dipole, anyway.
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In order to get a better idea of the distribution of the different quadrupolar moments,
we want to visualize them as ellipsoids. In order to visualize a tensor, we have to compute
the eigenvalues and eigenvectors. See table 5.6 for the results.

We observe that the eigenvectors mainly have one main direction: In the first column they
point almost in x direction, in the second column in y and in the third column in z direc-
tion. Nontheless, they are not exactly pointing at the main axes of the coordinate system,
so we computed the corresponding euler angles and rotated the ellipsoids with the resulting
angles. See figures 5.18 - 5.21 for the results. Additionally to the ellipsoids representing
the quadrupolar moments, there is also a blue line representing the direction of the dipole
moment to be seen. For better visualization we cut the dipolar moments at 0.5, so the
moment should be imagined as twice as long as it is in the plots.

In figure 5.18 you see the resulting visualized tensors for the tet_high mesh for each patch
size. For patch size 4 we see that the ellipsoid is rather small. As we have seen in figure 5.15,
the difference between the dipole and multipole approach is also small, and thus this result
also tells us that the small patch is already well represented by the pure dipole. Nevertheless,
the biggest extend of the ellipsoid is in y direction, so it mainly represents the extent in this
direction orthogonally to the dipole moment. For patch size 14 we see that the ellipsoid is
already much bigger. Here we see that the extent in z direction with around 0.1 is similar
to the extent in x direction, which is the direction of the dipole moment. The extent in y
direction is a bit smaller and amounts to around 0.05. Thus we see that the quadrupolar
moments here on the one hand represent the extend in z and y direction and therefore in
the direction of the patch’s extent, but on the other hand have some strength in (or against)
the direction of the dipole moment. For patch size 24 we see that the ellipsoid again got
bigger and more spherical. It shows similar trends and more strength in all directions, which
results from the bigger extent of the patch. This also fits to the findings in figure 5.15, where
the improvement of using the multipole instead of a pure dipole increases with increasing
patch size.

For the results for the hex mesh see figure 5.19. For patch size 4, the ellipsoid has a similar
shape as for the tet_high mesh, but it is already profoundly bigger. This, and all other bigger
values for the quadrupolar moments when looking at the hex mesh, could result from the
fact that the solutions for the hex mesh generally show higher errors than for the tet_high
mesh. Therefore our optimization algorithm and the resulting quadrupolar moment might
additionally compensate for the modeling errors of the mesh and therefore have a greater
impact than for the tet_high mesh. This also fits to the findings from figure 5.16, where
we saw that the difference between the multipole and the pure dipole for the hex mesh is
even more significant than for the tet_high mesh. However, looking at the bigger patch
sizes, again we see that the ellipsoids volumes are rising. For the hex mesh the shape, again,
gets more spherical with increasing patch. This means that the quadrupolar moments show
approximately the same strength in all directions.

For the tet_low mesh in figure 5.20 we see that for patch size 4 the shape of the ellipsoid is
different. It is more extended in z and y direction and less in x direction. This indicates that
for this patch size the quadrupole moments represent the extent of the patch, but rarely
the dipole moment’s direction. Contrary to that, for patch size 14 and 24 the ellipsoids
show a relatively strong extent in x direction, but a small one in y direction. So here the
representation in (or against) the direction of the dipole moment has a greater impact. This
again might result from the fact that the tet_low mesh is rather coarse and therefore has
high modeling errors, so we may get comparatively high values for the quadrupole moments
in x direction as they compensate some modeling errors, too.
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Table 5.6: Eigenvectors and -values to the quadrupolar moments.
Eigen-

Mesh Patch Size value vector value vector value vector

tet_high 4 -0.0242 -0.8276 0.0451 -0.4142 -0.0115 -0.3788
0.5613 -0.6178 -0.5507
-0.0059 -0.6684 0.7438

14 -0.0811 0.9891 0.0532 0.0558 0.1054 0.1361
-0.1326 0.7390 0.6605
-0.0637 -0.6714 0.7384

24 -0.1886 0.9972 0.1605 0.0377 0.2149 0.0641
-0.0709 0.7420 0.6667
-0.0224 -0.6694 0.7426

tet_low 4 -0.0876 0.9298 -0.2316 -0.3504 0.1708 -0.1128
0.3590 0.9309 0.0672
-0.0815 0.1030 -0.9913

14 -0.2370 -0.7192 -0.1338 0.6920 0.1880 -0.0627
0.6878 0.7218 0.0771
0.0986 0.0123 -0.9950

24 -0.2611 0.9747 0.0155 0.2233 0.2848 0.0098
-0.2209 0.9692 -0.1085
-0.0337 0.1036 0.9940

hex 4 -0.1122 0.9961 0.1312 -0.0311 0.0822 -0.0832
0.0155 0.9832 -0.1819
0.0874 0.1799 0.9798

14 -0.1632 -0.9985 0.1816 -0.0266 0.1388 0.0484
-0.0165 0.9800 0.1981
-0.0527 0.1970 -0.9790

24 -0.2499 -0.9995 0.2652 -0.0210 0.2322 0.0242
-0.0150 0.9743 0.2249
-0.0283 0.2244 -0.9741

computed 4 0 1 0.0265 0 0.0265 0
0 1 0
0 0 1

14 0 1 0.2778 0 0.2778 0
0 1 0
0 0 1

24 0 1 0.7937 0 0.7937 0
0 1 0
0 0 1
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Figure 5.18: Ellipsoids for the tet_high mesh. In the top row for patch size 4, mid row for
patch size 14 and bottow row for patch size 24. See table 5.6 for the corresponding values.
The blue line represents the direction of the dipolar moment.
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Figure 5.19: Ellipsoids for the hex mesh. In the top row for patch size 4, mid row for patch
size 14 and bottow row for patch size 24. See table 5.6 for the corresponding values. The
blue line represents the direction of the dipolar moment.
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Figure 5.20: Ellipsoids for the tet_low mesh. In the top row for patch size 4, mid row for
patch size 14 and bottow row for patch size 24. See table 5.6 for the corresponding values.
The blue line represents the direction of the dipolar moment.
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Figure 5.21: Ellipsoid for the computed quadrupolar moments. In the top row for patch
size 4, mid row for patch size 14 and bottow row for patch size 24. See table 5.6 for the
corresponding values. The blue line represents the direction of the dipolar moment.
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In figure 5.21 one can see the visualization of the tensors for the computed quadrupolar
values. As one can easely deduce from the values in table 5.6, they are in fact only two
dimensional circles with a rising radius. We observe that the absence of extent in the direc-
tion of the dipole moment is the main difference between the computed and the optimized
quadrupolar moments. Also, as already mentioned before, we see that for patch sizes 14 and
24 the extent in y and z direction is bigger than for all optimized quadrupolar moments.

All in all, the visualization of the quadrupolar moment tensors indicates that moments
only in the directions orthogonal to the dipole moment, like the computed quadrupolar mo-
ments, can already improve the approximation of extended sources quite well. This shape
is what one might expect, as these are the directions that cannot be represented by a pure
dipole. On the contrary we have seen that all optimized quadrupolar moments also have
extent in (or against) the direction of the dipole moment. There might be different reasons
to that. On the one hand, it can simply arise from the fact that these moments compensate
for modeling errors, which always occur when using a FEM mesh. On the other hand, they
might represent the moments arising from the patch that point in the opposite direction of
the dipole moment. One way or the other, the direction of the dipolar moment seems to
be important when trying to find optimal quadrupolar moments and should therefore be
considered when trying to find an optimized way to compute quadrupolar moments.
However, we have seen that the use of quadrupolar moments can strongly improve the ap-
proximation of extended sources. As expected, we got the best results when using optimized
quadrupolar moments, but this is not applicable in realistic scenarios. For the determination
of optimized quadrupolar moments we did not only need the knowledge about the patch’s
position and extent, but also an analytical solution as a goal function. In realistic head
models, there is no analytical solution, which is why the optimization could not be applied.
On top of that the computational effort of the optimization is too high to be applicable for
a high number of sources even in a spherical head model.
Fortunately, we have also seen a way to compute the quadrupolar moments and, although
it does not perform as well as the optimal quadrupoles, it still clearly improves the approxi-
mation of extended sources. In order to determine the computed quadrupoles, one needs to
know the positions and moments of the patch dipoles. This could be applied in practice, too.
One could try to create a patch, position it at different locations of a realistic head model
and determine some positions within this patch as the positions of the patch dipoles. This
patch generally would not be as regular as our patches, but adapted to the gyrus. The patch
dipoles’ moments should then be determined as being orthogonal to the gyrus. It could be
an interesting future goal to test the computed quadrupolar moments in a realistic scenario.
Moreover one could try to even improve the computation by adapting the equation so that
it leads to quadrupoles shaped more similarly to the optimized ones, i.e. with some extent
in (or against) the dipole moment’s direction.
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6 Conclusion
In this thesis we have seen different ways to solve the EEG forward problem using the princi-
ple of Saint Venant. We have modeled the source of brain activity as a monopole distribution
instead of a mathematical dipole. This provided us with a way to use the Finite Element
Method and avoid the singularity produced by a mathematical point dipole. Besides the
well known monopolar Venant approach without mixed moments, we have looked at the
monopolar Venant approach with mixed moments, which has been introduced by [NÜ18].
On top of that, we considered a relatively new approach using the Principle of Saint Venant,
the multipolar Venant approach. This one has been introduced by [HA19] and [VO+19].
As part of the work for this thesis, the multipolar Venant approach has been implemented
in the software DUNEuro, which has been used for all performed experiments.

In the numerical experiments, the multipolar Venant approach has been compared to the
monopolar Venant approach with and without mixed moments. Using a 4-layer-sphere model
with different meshes, the multipolar Venant approach has shown good results and outper-
formed the monopolar Venant approaches in many scenarios. The only lack of accuracy
occured when the use of the Venants Condition led to a too low number of monopole loca-
tions. Here the multipolar Venant approach seemed to be more sensitive than the monopolar
Venant approaches. At any rate, this problem should be avoided in realistic scenarios as
one should always ensure that the mesh is fine enough, in order for all neighboring vertices
of a possible source to be within the brain compartement. Therefore, in realistic scenarios
the multipolar Venant approach seems to outperform the monopolar approaches. To ensure
this, more tests should be conducted, especially with realistic head models, but the findings
of [HA19] and [VO+19] suggest that the multipolar Venant approach will show good per-
formance in these scenarios, too.

As a last point, we investigated extended sources. The experiments have shown that the
approximation can be strongly improved using multipoles instead of pure dipoles, at least
for radial patches. We have seen two ways to determine the quadrupolar moments, an
optimization and a computation. The optimized quadrupoles have shown the best overall
performance, but the computed quadrupoles have shown a strong improvement in compari-
son to the pure dipole, too. On top of that, we have visualized the optimized and computed
quadrupoles. This led us to the conclusion that the main difference between these two ap-
proaches is that the computed quadrupoles only have extent in the directions orthogonal to
the dipole moment, while the optimized ones have extent in the dipole moments direction,
too. This result might be used to find an even optimized way to compute quadrupolar
moments. In order to make quadrupoles useable in realistic scenarios further investigations
have to be done. The next step might be to test the computed quadrupoles in a realistic
head model. In any case, this thesis has shown that the use of quadrupoles makes a strong
difference and therefore further investment in this topic is worth the effort.

All in all, we saw that the multipolar Venant approach provides a good way to compute
the EEG forward problem. Being used as a dipolar model, it shows a good performance in
comparison to known approaches. Additionally, since it is based on multipole expansion, it
provides a simple way to add quadrupole moments to the computation. In future research
more tests should be conducted in realistic head models and also for MEG. The multi-
polar Venant approach might then turn out to be the best approach to use for combined
EEG/MEG analysis and to represent extended sources.
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