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Abstract: The source localization in the human brain depends
on different uncertain parameters, e.g., the conductivity in the
head. The computation of the leadfield matrix for all param-
eter combinations with classical methods leads to an arith-
metic effort, that grows exponentially and thus renders the
consideration of parameters infeasible. Using hierarchical ten-
sor formats the linear system, which needs to be solved for the
leadfield matrix, is represented in a parameter-dependent way.
A linear solver within the format computes the parameter-
dependent leadfield matrix and thus avoids the exponential de-
pendency. Numerical experiments indicate a fast and accurate
approximation of the leadfield matrices.

The electroencephalography

Electroencephalography (EEG) is a diagnostic procedure, e.g.,
for epilepsy. It involves attaching measuring sensors to the
scalp of the patient to noninvasively locate the signal source in
the brain that triggers the diseases. Some of the additional in-
formation required, such as the conductivity tissue in the head,
is often only roughly known. Since the problem is unstable,
i.e., small parameter changes lead to large deviations from the
predicted source location, the accurate localization is a chal-
lenging problem. Methods to solve this inverse problem [2]
often rely on the accurate solution of the corresponding for-
ward problem.

The EEG forward problem
In the forward problem [3] the primary current source density
jp is known and one wants to calculate the electric potential
u in a head domain Ω ⊂ R3. The following partial differential
equations describe this mathematically:

∇ · (σ∇u) = ∇ · jp in Ω,

σ∂⃗nu = 0 on ∂Ω,
(1)
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where ∂Ω is the domain surface with normal vector n⃗ and con-
ductivity tensor σ . We assume that the head is divided into
disjoint subdomains with piecewise constant conductivity.

Since for realistic head geometries the analytical solution
of (1) is unknown, we discretize the problem and approxi-
mate the solution numerically, e.g., using finite element meth-
ods [5]. This leads to a discrete representation of (1) as linear
system Ax = b with

Ai, j = ah(ψ j,ψi) =
∫
Ω

⟨∇ψ j(y),σ(y)∇ψi(y)⟩dy (2)

and bi = ℓh(ψi) =
∫

Ω
f ψi dy, where (ψi)i are the test functions

used in the finite element method.

The leadfield matrix
Since solving the inverse problem depends only on the solu-
tion of (1) at the measuring sensors, computing the leadfield
matrix L reduces the computational effort [6]. Based on a lin-
ear map R and the transfer matrix T it holds:

L = T b = RA−1b = Rx = ueeg.

As A is symmetric we can solve AT T = RT to get the transfer
matrix and with a multiplication the leadfield matrix L = T b,
which then can be used to solve the inverse problem for a fixed
conductivity. But due to the ill-posedness of the inverse prob-
lem, we would like to consider variable conductivity values.

Parameter-dependent leadfield matrices

As Ω consists of d subdomains (Ωk)k with constant conduc-
tivity, for (2) it holds:

Ai, j =
d

∑
k=1

σk

∫
Ωk

⟨∇ψ j(y),∇ψi(y)⟩dy =
d

∑
k=1

σkAk
i, j,

where Ak is independent of the conductivity. Choosing n val-
ues for all d local conductivities σk means that we would need

to solve nd linear systems of the form
d
∑

k=1
σkAk T T (σ) = RT .

Even for moderate values, e.g., d = 10 and n = 10, we would
need to store and solve 10000000000 linear systems, which
renders this method infeasible. One way to overcome this
problem was presented in [4]. Based on the reduced basis
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method an approach was used to approximate the parameter-
dependent leadfield matrix.

Our approach here uses low-rank tensor formats, where
we can prove the following data-sparse representation of all
linear systems simultaneously with

A =
r

∑
k=1

d⊗
µ=1

Ak
µ , r = d, (3)

where Ak
µ =


Ak if µ = d,

diag(σ (1)
k , . . . ,σ

(nk)
k ) if µ + k = d,

Idnd−k otherwise.

Similar results hold for the right-hand side. Such a representa-
tion is called a CANDECOMP/PARAFAC (CP) representation
with representation rank r.

Low-rank tensor formats
In the CP format a tensor with representation rank r of the
form (3) has a storage cost in O(dnr). This means that for our
previous example of d = 10, r = 10 and n = 10 we only need
to store 1000 values.

Unfortunately arithmetic operations in such formats lead
to a growth of the representation rank, and therefore we need
a truncation down to smaller rank. For this reason we will use
the hierarchical Tucker format, in which most arithmetic oper-
ations have linear complexity in the number of parameters d,
cf. [1]. Because of the error controlled truncation within this
format, we can directly solve the linear system using a linear
solver and avoid the exponential dependency on the number of
parameters.

Numerical experiments
We present numerical experiments for a spherical head model,
where we use a linear solver within the low-rank tensor format.
After each arithmetic operation we truncate the representation
of our solution with a relative accuracy of ε = 1×10−9. As
a first experiment we compare the runtime of our method for
d = 4 parameters and different number of values n against the
classical method in Fig. 1. We observe that the time to com-
pute all solutions in the tensor format depends only weakly
on n, while we observe an exponential growth in the runtime,
if we would use classical methods. As a second experiment
we compare the reference solution uref, calculated numerically
with duneuro1 for random parameter values, with our solution
for d = 4 and different n in Tab. 1. There we use the rela-
tive difference measure (RDM) given by RDM(unum,uref) =

∥ unum

∥unum∥2
− uref

∥uref∥2
∥2 and the logarithmic magnitude error (ln-

1 http://www.duneuro.org
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Fig. 1: Comparison of the runtime to compute all leadfield matrices for 4
parameter

Tab. 1: Sampled mean error measures of the approximated tensor
format solution with 4 parameter

Values per parameter RDM lnMAG

3 6.04×10−8 2.79×10−8

5 8.43×10−7 −5.03×10−8

10 5.67×10−5 1.01×10−5

15 1.05×10−4 −1.56×10−5

MAG) given by lnMAG(unum,uref) = log( ∥unum∥2
∥uref∥2

) as error
measures. We observe that for varying values of n the error
measure is small, which indicates that our solution is accurate.
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