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Abstract
The accuracy in electroencephalography (EEG) and combined EEG and magnetoencephalography
(MEG) source reconstructions as well as in optimized transcranial electric stimulation (TES)
depends on the conductive properties assigned to the head model, and most importantly on
individual skull conductivity. In this study, we present an automatic pipeline to calibrate head
models with respect to skull conductivity based on the reconstruction of the P20/N20 response
using somatosensory evoked potentials and fields. In order to validate in a well-controlled setup
without interplay with numerical errors, we evaluate the accuracy of this algorithm in a 4-layer
spherical head model using realistic noise levels as well as dipole sources at different eccentricities
with strengths and orientations related to somatosensory experiments. Our results show that the
reference skull conductivity can be reliably reconstructed for sources resembling the generator of
the P20/N20 response. In case of erroneous assumptions on scalp conductivity, the resulting skull
conductivity parameter counterbalances this effect, so that EEG source reconstructions using the
fitted skull conductivity parameter result in lower errors than when using the standard value. We
propose an automatized procedure to calibrate head models which only relies on non-invasive
modalities that are available in a standard MEG laboratory, measures under in vivo conditions and
in the low frequency range of interest. Calibrated head modeling can improve EEG and combined
EEG/MEG source analysis as well as optimized TES.

1. Introduction

The distribution of electric activity in the head strongly depends on the geometric and conductive properties
of the head tissues. Understanding these volume conduction effects is crucial for many applications in
neuroscience, such as electroencephalography (EEG), combined EEG and magnetoencephalography (MEG)
and transcranial electric stimulation (TES) (Brette and Destexhe 2012, Bikson et al 2016). To address this
aspect, magnetic resonance imaging (MRI) has been widely used to create more realistic head volume
conductor models by segmenting the head into several tissues. Typically, literature values are used to assign
conductivities to these tissue compartments.

Although the conductivities of most head tissues are subject to a relatively high uncertainty, the skull
seems especially important due to its high resistivity and considerable influence on the electric forward
solutions. Sensitivity studies of EEG and TES forward and inverse problems have highlighted the importance
of skull conductivity and the skull/scalp conductivity ratio (Vorwerk et al 2019, Vallaghé and Clerc 2009,
Saturnino et al 2019, Schmidt et al 2015). Consequently, variations in skull modeling and conductivity have a
strong effect on source reconstruction and TES, e.g. shown in simulations in spherical and realistic models
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(Chen et al 2010, Montes-Restrepo et al 2014, Roche-Labarbe et al 2008, Saturnino et al 2019, Schmidt et al
2015) or in the context of localizing interictal spikes in epilepsy diagnosis (Aydin et al 2017).

It is assumed that the skull conductivity strongly varies inter- and intra-individually, e.g. based on age
(Antonakakis et al 2020, Hoekema et al 2003, Wendel et al 2010). Different measurement techniques such as
electrical impedance tomography (Abascal et al 2008, Fernández-Corazza et al 2018, Nissinen et al 2015),
directly applied current (Akhtari et al 2002, Hoekema et al 2003, Tang et al 2008) and magnetoacoustic
tomography (Li et al 2016) have been proposed and used to individually estimate this parameter. In
combination with different measurement conditions (e.g. different temperature or frequency, in vivo/in vitro
samples) and skull tissue modeling assumptions, a recent review by McCann et al (2019) found highly
varying literature values for bulk skull conductivities with a weighted mean of 0.016 S m−1 based on the
reliability rating of the study results. Similarly varying values have been reported for the brain-to-skull
conductivity ratio (Lai et al 2005, Gonçalves et al 2003, Baysal and Haueisen 2004).

Therefore, an individual calibration of the head volume conductor model with respect to skull
conductivity has been suggested. There have been several attempts to estimate skull conductivity from EEG
alone (Akalin Acar et al 2016, Lew et al 2009). However, due to its complementarity and its insensitivity to
skull and skin conductivity, additional MEG stabilizes the skull conductivity estimation procedure
(Antonakakis et al 2020, Gonçalves et al 2003, Baysal and Haueisen 2004, Huang et al 2007, Wolters et al
2010, Fuchs et al 1998). These studies rely on recorded somatosensory evoked potential (SEP) and field (SEF)
data, where the underlying source of the P20/N20, i.e. the component at 20 ms post-stimulus, is mainly of
lateral, focal, single dipolar origin and tangential orientation (Nakamura et al 1998, Allison et al 1991, Götz
et al 2014, Antonakakis et al 2019, 2020).

In this work, we present a new pipeline for volume conductor calibration by means of individual skull
conductivity estimation in a continuous parameter space. Our method is only relying on non-invasive
modalities that are available in a standard MEG laboratory. It measures under in vivo conditions and in the
low frequency range of interest, when considering the frequency-dependence of conductivity measurements
(Stinstra and Peters 1998, Akhtari et al 2002, Tang et al 2009). Using individually measured P20/N20 SEP and
SEF topographies, it estimates the most influential head model conductivity parameter, namely skull
conductivity (Vorwerk et al 2019, Saturnino et al 2019, Schmidt et al 2015), together with the underlying
source. This so-called calibrated head model can then be used for the evaluation of EEG or combined
EEG/MEG data of interest, for example in presurgical epilepsy diagnosis (Aydin et al 2017), as well as to
individually optimize multi-channel TES montages (Saturnino et al 2019, Huang et al 2017, Guler et al 2016,
Schmidt et al 2015, Sadleir et al 2012).

Our calibration algorithm exploits the complementarities of EEG and MEG and builds upon already
existing calibration methods such as (Aydin et al 2014, Antonakakis et al 2019, 2020). In these calibration
approaches, a discrete set of possible skull conductivity values is used, which limits the accuracy of the
algorithm if the optimum lies in between these values. In (Aydin et al 2014), for instance, 11 discrete values
for the skull conductivity were used, while in (Antonakakis et al 2019, 2020), 14 discrete values were used by
individually choosing further values around the expected optimal value. In addition, the studies mentioned
above use a time-consuming manual calibration procedure involving different toolboxes, e.g. SimBio5 for the
forward calculations and Curry6 for dipole scans.

In this work, we present a calibration procedure which calibrates the head model with respect to the most
influential parameter skull conductivity using a continuous parameter space. Additionally, by providing a
complete mathematical description and an optimization method to automatically update the skull
conductivity parameter iteratively in order to find the best fitting value, we allow an automated and accurate
calibration procedure which can easily be integrated into existing analysis pipelines.

Moreover, in Aydin et al (2014), and Antonakakis et al (2019, 2020), their calibration algorithm was
applied to some realistic cases without estimating its reliability. In this study, we explicitly use a controlled
scenario of the multi-layered sphere model, where (quasi-)analytic forward modeling solutions exist.
Therefore, we can systematically quantify the errors without interplay with numerical errors that are
unavoidable in realistic head modeling setups. We investigate the effects of different levels of noise and of
inaccurate assumptions on skin conductivity. Moreover, we analyze the accuracy of the method with regard
to different dipole eccentricities and orientations in order to investigate the option of calibrating using other
than somatosensory sources, although the focus lies on dipole characteristics corresponding to the P20/N20
component of somatosensory evoked responses.

Results indicate that the reference skull conductivity can be reliably reconstructed for sources similar to
the generator of the P20/N20 response. If wrong assumptions are made for the scalp conductivity, the

5 https://www.mrt.uni-jena.de/simbio/index.php/Main_Page.
6 https://compumedicsneuroscan.com/products/by-name/curry/.
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Table 1. Four compartment sphere model (Akhtari et al 2002, Ramon et al 2004, Hoekema et al 2003, Haueisen et al 1997, Aydin et al
2014, Antonakakis et al 2020).

Tissue Radii (mm) Conductivity (S m−1)

Scalp 89.1 0.43
Skull 83.3 0.01 (reference)

(0.0008, 0.033) (optimization)
CSF 77.5 1.79
Brain 75.6 0.33

algorithm results in a skull conductivity parameter which counterbalances this effect, so that EEG source
reconstructions using the calibrated skull conductivity result in lower errors than when using standard skull
conductivity.

2. Methods

2.1. Spherical headmodel and sensor setup
For the simulations, a concentric sphere model was used consisting of 4 layers, which correspond to scalp,
skull, cerebrospinal fluid (CSF), and brain tissue. A least-squares fit was used to fit a standard sphere model
with radii of 78, 80, 86 and 92 mm to the electrode positions of a subject who participated in a somatosensory
experiment, keeping the ratios between the radii unchanged. The resulting sphere model parameters are
summarized in table 1. For the MEG sensor positions and orientations, the realistic sensor setup (CTF, VSM
MedTech Ltd) of this measurement was used consisting of 271 first-order axial gradiometers and 13 reference
coils. The spherical head model with the EEG/MEG sensors is visualized in figure 1(a).

2.2. Test dipole characteristics
The characteristics (location, orientation, strength) of the test dipoles used in the simulations are based on
source reconstructions of the somatosensory P20/N20 response in realistic head models. Three different
stimulation techniques were investigated for five subjects in Antonakakis et al (2019): electric stimulation of
the median nerve at the wrist (EW), and tactile stimulation of the distal phalanx of the index finger using
either a pneumatic membrane (PT) or a Braille stimulator (BT). The average reconstructed P20/N20 dipole
strength of the SEP and SEF response in a six compartment realistic head model was 4.7 µAmm±
2.2 µAmm (PT), 9.7 µAmm± 6.0 µAmm (BT) and 25.1 µAmm± 6.5 µAmm (EW) for the three
stimulation types. Furthermore, in a follow-up study in a group of 20 subjects, we observed mean source
depths of 15.5 mm± 4.5 mm relative to the inner skull surface (Antonakakis et al 2020). The sources were
rather tangentially oriented with a mean elevation angle towards the radial orientation of 25.5◦ ± 18.6◦, the
largest outlier was observed with 65◦. As test dipole locations, 500 randomly positioned points at eight
different eccentricities ranging from 0.2 to 0.982 relative to the inner sphere surface were constructed within
the upper half of the spherical model. This includes the eccentricity of 0.821, which corresponds to a distance
of approx. 15.5 mm to the inner skull surface to simulate realistic P20/N20 source depth (Antonakakis et al
2020). Other eccentricities are considered to investigate the performance of the algorithm under more
extreme scenarios, e.g. if other sources than the somatosensory evoked P20/N20 response generator are
considered that are closer to the region of interest for EEG/MEG source analysis or optimized TES.
Additionally, a regular source grid with a resolution of 2 mm was constructed covering the upper half of the
brain compartment. Note that the test dipole locations do not coincide with nodes of this source space in
order to avoid an inverse crime for inverse reconstructions, i.e. model and reality are identified (Kaipio and
Somersalo 2005), as this usually leads to overly optimistic results. On average, the test dipoles are 0.97 mm±
0.28 mm away from the closest source space node.

For each test dipole position, a random tangential orientation and vectors elevated by 25◦ and 65◦

towards the radial direction, were created to simulate the average and the extreme P20/N20 source scenario,
both observed in the experiment (Antonakakis et al 2019).

In a first comparison, the dipole strengths of the three different stimulation types are compared to each
other. For the other test cases, the dipole strength corresponding to EW stimulation was used for the
simulations. The test dipole characteristics are visualized in figure 1(b).

2.3. Reference EEG andMEG signals with realistic noise levels
(Quasi-)analytical solutions for the EEG and MEG forward problems exist for concentric multi-layer sphere
models. For each test dipole, the analytical MEG solution was computed using the closed formula provided
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Figure 1. Characteristics of the 4-layer sphere model: (a) realistic electrode (red) and magnetometer (black) positions and (b) 500
test dipoles at eight eccentricities oriented tangentially (black) or elevated by 25◦ (blue) or 65◦ (red).

Algorithm 1. Calibration procedure

Input:MEEG,MMEG, lEEG, lMEG, σmin, σmax, ε
1. Compute the optimal dipole position fromMEG data:

xMEG = argminx∈S ||MMEG − lMEG(x) [lMEG(x)]
+ MMEG||22

LMEG,xMEG = lMEG(xMEG)

2. Find σskull,est = argminσskull∈(σmin,σmax)
r(σskull) using Brent’s method, which proposes σi

skull in iteration
i= 0, 1, ..., with the residual variance defined as

r(σi
skull) :=

||MEEG−L
EEG,xMEG,σ

i
skull

jest||
2
2

||MEEG||22
,

where LEEG,xMEG,σ
i
skull

and the dipole moment jest are computed as follows:

LEEG,xMEG,σ
i
skull

= lEEG(xMEG,σ
i
skull)

jEEG,xMEG
= [LEEG,xMEG,σ

i
skull

]+ MEEG

oest =
jEEG,xMEG

||jEEG,xMEG
||2

mest = [LMEG,xMEG oest]
+ ·MMEG

jest = oestmest

Terminate iteration, when σi+1
skull −σi

skull < ϵ.
Output: xMEG, oest,mest, σskull,est

by (Sarvas 1987). The quasi-analytical EEG solution was computed using the series expansion formulas
following (de Munck and Peters 1993).

In order to simulate realistic conditions, in some of the test scenarios noise was added to the (quasi-)
analytical solutions using either uncorrelated Gaussian noise or measured baseline signals. The average
standard deviation per channel of the baseline signals in the prestimulus interval [−100 ms,−5 ms] was
computed for five subjects participating in a somatosensory experiment involving electric wrist stimulation
in (Antonakakis et al 2019). These average standard deviations of noise signals were approximately 0.13 µV
for electrodes and 3.2 fT for gradiometers, leading to an average signal-to-noise ratio (SNR) for the P20/N20
response of approximately 5.8 (EEG) and 8.8 (MEG), following the SNR definition of (Fuchs et al 1998). In a
first noise scenario, white Gaussian noise with the described average strength was added to the
(quasi-)analytical EEG and MEG signals. In a second test, signals at random time points within the
prestimulus interval [−100 ms,−5 ms] of the electric wrist stimulation measurement of one test subject
were scaled to match the mean standard deviation observed in the five subjects and added to the (quasi-)
analytical solutions. In both cases, a better SNR is achieved for more superficial sources than for deep
sources, as it is the case in realistic scenarios.

2.4. Algorithm for skull conductivity calibration
The procedure for estimating skull conductivity presented here exploits the different sensitivity profiles of
EEG and MEG and is based on the reconstruction of the generator of the SEP/SEF P20/N20 response. In
practice, the P20/N20 component of somatosensory evoked responses is well suited, since this early response
is extensively studied, indicating a focal and quasi-tangentially oriented dipolar source in Brodmann area 3b
(Nakamura et al 1998, Allison et al 1991, Antonakakis et al 2019, Götz et al 2014). Thus, it has often been
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used for skull conductivity calibration (Aydin et al 2014, Huang et al 2007, Vallaghé and Clerc 2009, Fuchs
et al 1998, Antonakakis et al 2019, 2020).

In sphere models, where (quasi-)analytical solutions exist, the MEG signal is independent of the
conductivity profile of the volume conductor (Sarvas 1987). Also in the realistic case, the MEG forward
solution was shown to be insensitive to conductivity changes in the skull and skin compartment (Lew et al
2013, Haueisen et al 1997). EEG, on the other hand, strongly depends on volume conduction effects and is,
from all conductivities, most sensitive to skull conductivity (Vorwerk et al 2019). Moreover, there is a strong
correlation between skull conductivity and source depth (Chen et al 2010, Vorwerk et al 2019, Lew et al 2009,
Akalin Acar et al 2016, Huang et al 2007, Antonakakis et al 2020). When it comes to source orientation, the
MEG is blind to radial sources in the analytical sphere model scenario (Sarvas 1987) and insensitive to radial
orientation components in the realistic head model (Fuchs et al 1998, Antonakakis et al 2019, Aydin et al
2014).

Based on these strengths and weaknesses of both modalities, the calibration procedure is set up and
implemented in a Matlab (R2018a, Natick, Massachusetts: The MathWorks Inc.) pipeline, see algorithm 1. As
input, it requires reference dataMEEG ∈ RsEEG ,MMEG ∈ RsMEG , where s denotes the number of sensors for each
modality. In practice, these are the measured dipolar P20/N20 responses at the sensors, in our test cases the
(quasi-)analytical solutions of test dipoles with location xref, unit length orientation oref and magnitudemref

are used. All conductivities in the reference volume conductor model are fixed as shown in table 1, except for
one test scenario in which σscalp, ref is varied. In most of our validation tests, realistic noise is added to the
simulated data, as described in section 2.3. Additionally, functions lEEG : R3 ×R→ RsEEG×3,
(x,σskull) 7→ LEEG,x,σskull and lMEG : R3 → RsMEG×3,x 7→ LMEG,x are provided, where rank(LMEG,x) = 2 (Wolters
et al 1999). These functions lEEG and lMEG compute the EEG and MEG leadfields LEEG,x,σskull and LMEG,x,
respectively, i.e. the simulated sensor signals for a dipolar source at location x with moments oriented in the
three Cartesian directions. These forward calculations are influenced by the head model and sensor
characteristics, and in the EEG case also the conductivities, as described in section 2.1. In the realistic case,
the leadfields would be computed numerically, in our test scenario, the (quasi-)analytical solutions are used.
Additionally, the range (σmin,σmax) for the skull conductivity estimation is defined in table 1 and the
convergence tolerance ε= 1× 10−5 S m−1 is provided.

Since the MEG is insensitive to skull conductivity, it has the capability to localize the underlying P20/N20
source in the primary somatosensory cortex with high accuracy, even if skull conductivity is not accurately
chosen (Nakamura et al 1998, Fuchs et al 1998, Aydin et al 2014). Therefore, similar to Antonakakis et al
(2020), Fuchs et al (1998), Huang et al (2007), Wolters et al (2010), Aydin et al (2014) and Haueisen et al
(1997), the MEG is used to fix the location of the P20/N20 source. In step 1, an MEG equivalent current
dipole scan is used to find the best fitting source location xMEG within the source space S. From here on, j
denotes the dipole moment and [·]+ the Moore-Penrose pseudo-inverse of a matrix, which in case of the
MEG leadfield relies on a truncated singular value decomposition (Wolters et al 1999). In step 2, a derivative
free minimization method, the so called Brent method (Brent 1972), is used within the Matlab routine
fminbnd to iteratively perform the steps described below for different skull conductivities σi

skull in the
predefined continuous range. The aim is to determine the skull conductivity value which results in the
minimal residual variance computed as follows: First, EEG is used for the determination of the source
orientation oest using a least squares fit, since EEG is sensitive to both radial and tangential orientation
components. The latter is, however, influenced by individual skull conductivity (Vorwerk et al 2019). Thus,
the source amplitudemest for this fixed source orientation is determined from the MEG again. This is
because the tangential component of this source orientation must match the measured MEG, which in turn
is insensitive to skull conductivity. Finally, the residual variance is computed between the reference EEG
signal and the forward computed EEG for the current skull conductivity and the reconstructed dipole with
this fitted orientation and magnitude. These steps are carried out until the tolerance criterion is reached. As a
result, the algorithm returns the skull conductivity value σskull,est which best explains the reference data, as
well as the estimated source characteristics xMEG, oest andmest.

In the following, this algorithm is validated and evaluated in a well-controlled forward scenario, namely
the multi-layered spherical head model, see figure 2 for an overview of the complete workflow.

2.5. Error measures
We evaluate our new calibration algorithm by means of different error measures. First, the relative difference
between the estimated and the reference skull conductivity is measured:

eskull = 100 · σskull,est −σskull,ref
σskull,ref

.
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compute
(quasi-)analytical
EEG and MEG

forward solutions

add noise with
realistic
standard
deviation

apply Algorithm 1:
estimate σskull,est and
reconstruct the dipole
with location xMEG,
orientation oest and

magnitude mest

σbrain,ref

σscalp,ref
σskull,ref
σcsf,ref

xref
mref · oref

Figure 2. Validation and evaluation pipeline: At first, the sphere model with the reference conductivities (figure 1 and table 1) is
used to compute (quasi-)analytical EEG and MEG solutions for test dipoles with realistic source strengths. In most test scenarios,
noise with realistic strength is added. Subsequently, algorithm 1 is performed, reconstructing the dipolar source while fitting a
further degree of freedom, namely the skull conductivity parameter.

Note that since we investigate the range of (0.0008, 0.033) S m−1 (see table 1) for the skull conductivity,
possible values for eskull are within the interval (−92%, 230%). In figures 3–7, for the reconstructed dipole,
the localization eloc and depth error edepth (mm), where c denotes the center of the sphere, the orientation
error eori (degrees) and the magnitude error emag (%) compared to the reference dipole are given as

eloc = ||xMEG − xref||2,
eori = cos−1 (oest · oref) ,

emag = 100 · mest −mref

mref
,

edepth = ||xMEG − c||2 − ||xref − c||2.

3. Results

The algorithm for volume conductor calibration by means of individual skull conductivity estimation was
validated and evaluated in the spherical model under different conditions. On average, approximately 11
iterations were required in algorithm 1 until the tolerance criterion was met.

3.1. Noise level comparison
In a first test scenario, the (quasi-)analytical solutions were distorted by adding white Gaussian noise with
realistic amplitudes. For the tangential test dipoles, the source strengths corresponded to EW, PT and BT as
explained in section 2.2.

The results for the reconstructed dipole errors (eloc, eori, emag) as well as the overall skull conductivity
estimation error eskull are depicted in figure 3. The localization errors (figure 3(a)) as well as the magnitude
errors (figure 3(c)), which are related to the MEG signal, are at a low level and nearly constant for more
eccentric sources including the practically most interesting eccentricity of 0.821, while they strongly increase
for deeper sources. At the most relevant eccentricity of 0.821 when considering the P20/N20 source, the
localization errors are at 1.1 mm± 0.4 mm (EW), 1.2 mm± 0.5 mm (BT) and 1.7 mm± 0.8 mm (PT), the
magnitude errors at 0.1%± 2.6% (EW), 0.02%± 3.1% (BT) and 0.3%± 4.4% (PT). The dipole orientation
errors (figure 3(b)) show a similar trend, although the noise level related to the stimulation types seems to be
more influential than the eccentricity. The orientation errors at an eccentricity of 0.821 are 1.1◦ ± 0.6◦ (EW),
2.7◦ ± 1.5◦ (BT) and 5.5◦ ± 3.1◦ (PT). Overall, all error measures increase for lower dipole strengths, as the
SNR decreases. The resulting mean skull conductivity errors (figure 3(d)) are 0.06%± 5.4% (EW), 1.0%±
10.5% (BT) and 3.3%± 20.8% (PT) at an eccentricity of 0.821. The SNR (figure 3(e)) increases with source
strength and eccentricity and is higher for MEG than for EEG, with mean SNRs of 7.0 (EW), 2.8 (BT) and
1.5 (PT) for EEG and 12.8 (EW), 5.0 (BT) and 2.6 (PT) for MEG at this eccentricity. Note that for the deepest
sources at eccentricity 0.2, the MEG least-squares fit in step 2c) in the calibration algorithm results in a
negative magnitude, thus flipping the orientation obtained from the EEG fit in step 2b), for 23 (PT) dipoles,
resulting in orientation errors of almost 180◦ (not within the shown range).

In a second scenario, realistic prestimulus noise was added with an identical mean standard deviation.
The results for the reconstructed dipole errors (eloc, eori, emag) as well as the overall skull conductivity
estimation error eskull are depicted in figure 4. The localization errors (figure 4(a)) as well as the magnitude
errors (figure 4(c)), which are related to the MEG signal, are again at a low level and constant for more
eccentric sources, while they strongly increase for deeper sources.
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Figure 3. Errors in the calibration procedure for tangential sources with magnitudes corresponding to typical values from electric
wrist (EW), Braille-tactile (BT) or pneumato-tactile (PT) somatosensory experiments. Source reconstruction errors related to (a)
localization, (b) orientation and (c) magnitude, (d) skull conductivity estimation error and (e) SNR of all conditions. As a
reference solution, white Gaussian noise with a realistic strength was added to the (quasi-) analytical solutions. The result is shown
for test dipoles at different eccentricities plotted on a logarithmic scale. Boxplots show 25th and 75th percentile and median.

Figure 4. Errors in the calibration procedure for tangential sources with magnitudes corresponding to typical values from electric
wrist (EW), Braille-tactile (BT) or pneumato-tactile (PT) somatosensory experiments. Source reconstruction errors related to
(a) localization, (b) orientation and (c) magnitude, (d) skull conductivity estimation error and (e) SNR of all conditions. As a
reference solution, prestimulus noise was added to the (quasi-) analytical solutions. The result is shown for test dipoles at
different eccentricities plotted on a logarithmic scale. Boxplots show 25th and 75th percentile and median.
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Figure 5. Errors in the calibration procedure for sources with different orientations (tangential or rotated by 25◦ or 65◦). Source
reconstruction errors related to (a) localization, (b) orientation and (c) magnitude, (d) skull conductivity estimation error and
(e) SNR of all conditions. As a reference solution, white Gaussian noise with a realistic strength was added to the
(quasi-)analytical solutions, while the source strength corresponds to electric wrist (EW) stimulation. The result is shown for test
dipoles at different eccentricities plotted on a logarithmic scale. Boxplots show 25th and 75th percentile and median.

At the most relevant eccentricity of 0.821 when considering the P20/N20 source, the localization errors
are at 1.3 mm± 0.5 mm (EW), 2.3 mm± 1.2 mm (BT) and 4.3 mm± 2.7 mm (PT), the magnitude errors
at -0.01%± 3.9% (EW), 0.2%± 8.2% (BT) and 1.4%± 18.7% (PT). The orientation errors at an
eccentricity of 0.821 are 3.3◦ ± 1.7◦ (EW), 8.6◦ ± 4.4◦ (BT) and 18.0◦ ± 9.6◦ (PT). Overall, all error
measures increase for lower dipole strengths, as the SNR decreases. The resulting mean skull conductivity
errors (figure 4(d)) are 0.5%± 10.9% (EW), 3.5%± 28.0% (BT) and 16.1%± 60.0% (PT) at an eccentricity
of 0.821. The SNR (figure 4(e)) increases with source strength and eccentricity and is higher for MEG than
for EEG, with mean SNRs of 7.2 (EW), 2.9 (BT) and 1.6 (PT) for EEG and 12.9 (EW), 5.0 (BT) and 2.6 (PT)
for MEG at this eccentricity. Note that the MEG least-squares fit in step 2c) in the calibration algorithm
results in a negative magnitude, thus flipping the orientation obtained from the EEG fit in step 2b), for 8
(EW), 85 (BT) and 143 (PT) dipoles at eccentricity 0.2 and 16 (PT) for eccentricity 0.49, resulting in
orientation errors of almost 180◦ (not within the shown range).

Since at the most relevant eccentricity of 0.821, Gaussian noise in combination with EW stimulation
leads to overall skull conductivity errors of 0.06%± 5.4% which are in a similar low error range, we will
proceed in the following with only Gaussian noise scenarios and later discuss how to further optimize our
stimulation protocols.

3.2. Source orientation comparison
In a second study, the orientation of the test dipoles was varied to investigate the stability of the calibration in
case of non-zero radial orientation components of the reference sources in the presence of realistic Gaussian
noise levels. For that purpose, each dipole was either fully tangentially oriented or rotated by 25◦ or 65◦ out
of the tangential plane (see figure 1(b)). Realistic noise levels are used in combination with the source
strength resulting in the highest SNR in the previous study (EW). Note that the tangential condition here
corresponds to the EW case in the previous section when Gaussian noise is used.

The results for the reconstructed dipole errors (eloc, eori, emag) and the overall skull conductivity
estimation errors eskull for this test scenario are depicted in figure 5.

At an eccentricity of 0.821, the localization errors (figure 5(a)) are at 1.1 mm± 0.4 mm (tangential, 25◦)
and 1.2 mm± 0.5 mm (65◦), the magnitude errors (figure 5(c)) at 0.1%± 2.6% (tangential), 0.1%± 2.9%
(25◦) and−0.1%± 6.7% (65◦). The orientation errors (figure 5(b)) at an eccentricity of 0.821 lie at
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Figure 6. Errors in the calibration procedure for tangential sources using different reference scalp conductivities (±25 and
±50%), while the standard value of 0.43 S m−1 was used in the calibration procedure. Source reconstruction errors related to
(a) localization, (b) orientation and (c) magnitude and (d) skull conductivity estimation error. In this scenario, no realistic noise
was added to the (quasi-)analytical solutions. The result is shown for test dipoles at different eccentricities plotted on a
logarithmic scale. Boxplots show 25th and 75th percentile and median.

1.1◦ ± 0.6◦ (tangential), 1.1◦ ± 0.7◦ (25◦) and 1.2◦ ± 0.8◦ (65◦). The resulting mean skull conductivity
errors (figure 5(d)) are 0.06%± 5.4% (tangential), 0.1%± 6.0% (25◦) and 1.7%± 14.2% (65◦) at an
eccentricity of 0.821. In the neighboring eccentricities, nearly identical errors can be observed. For EEG, the
SNR (figure 5(e)) is almost unaffected by different orientations with a mean value of 7.0 (tangential, 25◦)
and 7.1 (65◦) at 0.821. For MEG, higher SNRs can be observed for more tangential sources with mean values
of 12.8 (tangential), 11.6 (25◦) and 5.5 (65◦). Note that for the deepest sources the calibration algorithm
results in a negative magnitude, thus flipping the orientation obtained from the EEG fit, for 32 (65◦) dipoles.

3.3. Influence of erroneous conductivities of other tissues
So far, we have assumed literature values for the compartments of scalp, CSF and brain. However, especially
for the scalp compartment the conductivity is not known exactly and reported values vary (McCann et al
2019). Since the importance of the scalp conductivity has been emphasized in several studies as the second
most important conductivity after skull conductivity (Vallaghé and Clerc 2009, Vorwerk et al 2019), we
investigated the influence of wrongly assigned conductivity values for the scalp compartment on the
proposed calibration procedure. For this purpose, the reference (in reality unknown) scalp conductivity
value was increased or reduced by 25% or 50%, while the standard value of 0.43 S m−1 was used in the
calibration procedure. The results for the reconstructed dipole errors as well as the overall skull conductivity
estimation error are depicted in figure 6.

All mean localization errors (figure 6(a)) lie below 1.4 mm with a maximal standard deviation of 0.6 mm,
and are independent of conductivities. Similarly, the mean orientation errors (figure 6(b)) are below 0.6◦

with a maximal standard deviation of 0.6◦ and therefore also negligible. For the magnitude errors
(figure 6(c)), the maximummean is at 0.3%, the maximum standard deviation is 7.4%. For an eccentricity of
0.821, the skull conductivity estimation errors (figure 6(d)) are 136.4%± 8.6% (41.9%± 5.0%) if the
actual scalp conductivity is 50% (25%) lower compared to the standard value, and−38.1%± 2.2%
(−23.4%± 2.8%) if it is 50% (25%) higher that the standard scalp conductivity of 0.43 S m−1 used in the
estimation algorithm. In the neighboring eccentricities, similar errors can be observed. From a medical
standpoint, we are not interested in the actual physical conductivity of the skull, but we are fitting this
important parameter to achieve accurate source reconstructions using EEG and combined EEG/MEG. Thus,
we evaluated the accuracy of an EEG single dipole deviation scan taking the uncertainty of scalp conductivity
into account. For the reference solutionsMEEG, a higher (+25%) or lower (–25%) scalp conductivity
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Figure 7. EEG dipole scan errors for tangential sources using reference scalp conductivities deviating± 25% (i.e. 0.32,
0.54 S m−1). For the forward solutions in the dipole scan, the standard scalp conductivity of 0.43 S m−1 was used and either the
standard (blue) or fitted (green) skull conductivities (individual for each dipole, see figure 6). For comparison, the errors are
shown when using the correct scalp and skull conductivities (yellow). Source reconstruction errors related to (a) localization,
(b) orientation, (c) magnitude and (d) depth are shown for test dipoles at different eccentricities plotted on a logarithmic scale.
Boxplots show 25th and 75th percentile and median.

compared to the standard value was used. In the calibration algorithm the standard value of 0.43 S m−1 was
used, thus, the real value was either under- or overestimated. In addition, either the standard skull
conductivity or the fitted skull conductivity (see figure 6) was used. Figure 7 depicts the EEG source
reconstruction errors when different scalp and skull conductivities are used. For comparison, the results are
shown when using the correct scalp and skull conductivity in algorithm 1 (yellow).

It can be observed that using the standard values (over- or underestimating scalp conductivity by 25%),
the localization error (figure 7(a)) is clearly higher when using the standard skull conductivity with mean
values of 2.8 mm for overestimating (light blue) and 2.2 mm for underestimating (dark blue) scalp
conductivity at eccentricity 0.821. These localization errors mainly translate into depth errors (figure 7(d))
and result in amplitude errors (figure 7(c)) of on average 11.1% (−8.9%) for overestimating
(underestimating) scalp conductivity.

If the fitted skull conductivities are used, this effect can be alleviated, leading to mean localization errors
of maximally 1.3 at the most relevant eccentricity for overestimating (dark green) and underestimating (light
green) scalp conductivity. Note that on average, the test dipoles are 0.97 mm away from the closest source
space node, see section 2.2.

4. Discussion

Although it has been shown that skull conductivity has a large impact on EEG source localization (Vorwerk
et al 2019, Montes-Restrepo et al 2014, Gonçalves et al 2003, Baysal and Haueisen 2004, Huang et al 2007) as
well as on TES (Saturnino et al 2019, Schmidt et al 2015), standard literature conductivity values are still
most often used in the application fields. In this study, we presented a novel method for calibrating head
volume conductor models in a continuous parameter range. It can take into account the inter-subject
variability of bulk (calibrated) skull conductivity using only the non-invasive modalities EEG and MEG
available in a standard MEG laboratory and for which ethical clearance is nowadays standard. Our new
method can be used as follows. (a) One run of SEP and SEF data acquisition, to evoke the individual
P20/N20 component. (b) The P20/N20 peak topographies are then used to individually calibrate the head
volume conductor model. (c) This individualized head model can then be used for source analysis of EEG or
combined EEG/MEG data of interest such as, for example, inter-ictal activity in presurgical epilepsy
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diagnosis (Aydin et al 2017), or for an individual optimization of a multi-channel TES montage (Huang et al
2017, Guler et al 2016, Wagner et al 2016). In our algorithm, we use Brent’s method to find the best fitting
skull conductivity, which involves iterations using the golden section search and inverse parabolic fitting and
which results in a higher accuracy using a comparable number of iterations compared to similar discrete
approaches (Aydin et al 2014, Antonakakis et al 2019, 2020). By providing a complete mathematical
description and an optimization method to iteratively update the skull conductivity parameter in order to
find the best fitting value, we allow an automated calibration procedure which can easily be integrated into
existing analysis pipelines. Therefore, the presented method is a promising new tool to provide an automatic
pipeline to replace the standard models by individually calibrated head models that could lead to more
reliable EEG or combined EEG/MEG source reconstruction results as well as improved optimized
multi-channel TES montages in the future.

Our goal was to first validate and evaluate the new method in a controlled scenario, as done in the work
at hand, by using a spherical head volume conductor model in which (quasi-)analytical expressions for the
EEG and MEG solutions exist. Using this simplified setup, we can validate the algorithm in a fully controlled
forward scenario, without interplay with numerical errors that are unavoidable in realistic head modeling
setups. The proposed algorithm is validated and tested with regard to different levels of noise and typical
source strengths from somatosensory experiments, different source depths and orientations, and inaccurate
scalp conductivity assumptions.

First, in section 3.1, the source strengths resulting from different somatosensory experiments are
compared using either Gaussian noise or prestimulus signals from a realistic measurement. Overall, the
reference skull conductivity and source characteristics can be reliably reconstructed for sources similar to the
generator of the P20/N20 response. Using prestimulus signal noise from an experimental measurement and
tangential sources at an eccentricity of 0.821 which approximately corresponds to the P20/N20 source, the
resulting mean estimated skull conductivity errors are 0.5%± 10.9% for source strengths corresponding to
electric wrist stimulation. Since realistic noise is correlated in time and space, we observe higher errors in the
calibration algorithm when using baseline noise than we observe with white Gaussian noise with the same
mean standard deviation per channel. This might be due to the high stimulation rate for the data we used
here, where the somatosensory processing of trial n− 1 is still going on, while trial n starts to be processed
(Antonakakis et al 2019). After averaging, the baseline might contain a remaining weak signal, possibly even
produced by later components from the somatosensory network. Second, in section 3.2, the influence of
different source orientations is examined, while noise with realistic strength is added to the (quasi-)analytical
solutions. As in the previous scenario, the localization and magnitude errors, which are related to the MEG
signal, become nearly constant for more eccentric sources and strongly increase for deeper sources. The
reason for this is that the sensor level noise has a stronger effect for deeper sources, while the more eccentric
sources can still be well identified. Note that the localization error is also bound by the 2 mm resolution of
the source space, since the closest source space node is up to 1.66 mm away, while the average distance is
0.97 mm to avoid an inverse crime (Kaipio and Somersalo 2005). In a third study, see section 3.3, the
influence of erroneous scalp conductivity is analyzed without artificial noise. The low localization errors
mainly result from the resolution of the source space and the increasing numerical errors when computing
the pseudo-inverse of the leadfield matrix for the dipole scan for deeper sources in case of MEG. No
localization difference can be observed for the different conditions, since the MEG is unaffected by
conductivities in a multi-layer sphere model. When performing an EEG single dipole deviation scan while
over-/underestimating scalp conductivity, the errors are largely counterbalanced by our calibration approach,
leading only to small localization errors. The opposite effect of scalp and skull conductivity on source depth
has also been shown in Vorwerk et al (2019). Note that in our calibration algorithm only one free parameter
is fitted, which is the most influential conductivity parameter, namely skull conductivity (Vorwerk et al
2019). However, as this scenario shows, the other conductivity values are indirectly taken into account, as we
do not physically measure the skull resistivity, but rather fit this important parameter so that in combination
with the other tissue conductivities, the data is best explained.

Our algorithm requires both EEG and MEG modalities to be experimentally available which may limit its
applicability. However, the MEG is necessary for stabilizing the calibration procedure by fixing the source
location, as calibration approaches using EEG alone (Lew et al 2009) have proven to be too unstable due to
the correlation between source depth and skull conductivity. Additionally, further studies are needed to
assess the stability and reliability in controlled scenarios using realistic head models.

As future outlook, our next step will therefore be to evaluate the new method in realistic head models
using measured SEP/SEF data. This entails several challenges, e.g. there are different approaches to model the
skull, ranging from a homogeneous tissue to a sandwich structure or even individually segmented spongy
part of the cranial bone from imaging data (Antonakakis et al 2020, Montes-Restrepo et al 2014, McCann
et al 2019). Additionally, since no analytical solutions exist for realistically shaped head models, the forward

11



Phys. Med. Biol. 65 (2020) 245043 S Schrader et al

solutions need to be computed numerically. Multiple methods to efficiently solve the EEG forward problem
and to accurately model the source term have been proposed (Cuartas Morales et al 2019, Azizollahi et al
2018, Beltrachini 2019, Piastra et al 2018, Montes-Restrepo et al 2014). Moreover, in the realistic head model,
the MEG might be affected by the conductivity profile of the tissues close to the source (Haueisen et al 1997).
Skin and skull conductivities, however, which are the most influential material parameters on the EEG side
(Vorwerk et al 2019), have nearly no influence on the MEG side also in a realistic head model (Lew et al 2013,
Antonakakis et al 2019, Brette and Destexhe 2012, Haueisen et al 1997), except in the case of skull defects
(Lau et al 2016). Therefore, in order to minimize the computational cost for the numerical calculations for a
realistic head model, we suggest to carry out the MEG single dipole deviation scan in step 1 of algorithm 1
also only once to fix the source location (by using a standard skull conductivity for the realistic head model),
very similar to the multi-layer sphere model and as done in Antonakakis et al (2019, 2020). This way, the
computationally expensive MEG leadfield needs to be computed only once to fix the source location. Since
we require the MEG forward solution for the entire source grid within the gray matter compartment, the
transfer matrix approach is an efficient way to compute this leadfield (Wolters et al 2004). In step 2 of the
algorithm, the source location is already fixed, so the EEG forward solution is only computed for this specific
location, not the entire source grid. Therefore, we suggest not to use the transfer matrix approach, but
instead compute the potential directly in this case. In addition to these measures, modern approaches to
estimate the conductivity-dependent leadfield matrices using reduced order modeling approaches or
hierarchical tensor formats in combination with leadfield interpolation techniques might further reduce the
computational costs (Beltrachini 2017, Werthmann et al 2020). For the spherical case described in this study,
we performed the entire pipeline in Matlab. For the future realistic head model studies, we intend to use the
Matlab interface of the DUNEuro7 toolbox for the forward calculations to allow an automated Matlab-based
procedure as well. We believe that this will make the calibration procedure more applicable and user-friendly.

Additionally, further somatosensory experiments are needed to optimize the experimental parameters
such as, for example, the stimulation rate so that a maximal P20/N20 SNR is accompanied by minimal
remaining additive correlated noise, as can be estimated from the baseline.

A possible option to develop the calibration algorithm further might be to use the MEG data to
determine not only the dipole location, but also the (quasi-)tangential orientation components of the source,
and only rely on the EEG for the (quasi-)radial one (Huang et al 2007). This might be a possibility to further
stabilize the method. Furthermore, alternatively (or also additionally) other SEP/SEF data (e.g. left and right
wrist medianus or tibialis) or auditory evoked potentials/fields might be used for a further stabilization of the
proposed calibration approach.

5. Conclusion

The aim of this study was to evaluate the accuracy of the proposed automatic calibration algorithm in the
controlled setup of a multi-layer sphere model, i.e. without numerical errors, and under conditions which
are as realistic as possible. In the presence of realistic noise levels and for dipole characteristics related to
source reconstructions of SEP/SEF from electric wrist stimulation, the reference skull conductivity could be
reliably reconstructed. In case of incorrect assumptions about the scalp conductivity, the algorithm resulted
in a skull conductivity that counterbalanced this effect. EEG source reconstructions using the fitted skull
conductivity parameter resulted in lower errors than when using the standard value. Future studies are
required to validate the method in realistic head models with the aim to improve the individualization in
EEG and combined EEG/MEG source analysis as well as in optimized multi-channel TES.
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