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Abstract: In this article, we focused on developing the conditionally Gaussian hierarchical Bayesian1

model (CG-HBM), which forms a superclass of several inversion methods for source localization of2

brain activity using somatosensory evoked potential (SEP) and field (SEF) measurements. The goal3

of this proof-of-concept study was to improve the applicability of the CG-HBM as a superclass4

by proposing robust approach for parametrization of focal source scenarios. We aimed at a5

parametrization which is invariant with respect to altering the noise level and the source space6

size. The posterior difference between gamma and inverse gamma hyperprior was minimized by7

optimizing the shape parameter, while a suitable range for the scale parameter can be obtained via the8

prior-over-measurement signal-to-noise ratio, which we introduce as a new concept in this study. In9

the source localization experiments, the primary generator of the P20/N20 component was detected10

in the Brodmann area 3b using the CG-HBM approach and a parameter range derived from the11

existing knowledge of the Tikhonov-regularized minimum norm estimate, i.e., the classical Gaussian12

prior model. Moreover, it seems that the detection of deep thalamic activity simultaneously with the13

P20/N20 component with the gamma hyperprior can be enhanced using a close-to-optimal shape14

parameter value.15

Keywords: Electroencephalography (EEG); Magnetoencephalography (MEG); Somatosensory16

Evoked Potentials; Somatosensory Evoked Fields; P20/N20 Component; Hierarchical Bayesian17
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1. Introduction19

This article concerns computational source localization methods for the activity of the brain in20

electro- and magnetoencephalography (EEG and MEG) [1–3]. Reconstructing the primary current21

density of the neurons as a 3D distribution restricted to the grey matter is an ill-posed inverse problem22

in which the prior model and reconstruction technique applied have a major effect on the final result [3].23

Consequently, a priori information such as an anatomically and physiologically accurate head model is24

needed. When the inverse problem is formulated via Bayesian statistics, the a priori knowledge can be25

modelled rigorously as a statistical prior distribution [5,6,35,60,61].26

EEG and, particularly, MEG are famously known to be more sensitive to the superficial parts27

than to the deeper lying areas, e.g., the thalamus [10,18]. In this study, we focused on developing28
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the conditionally Gaussian hierarchical Bayesian model (CG-HBM) [4] which, based on numerical29

simulations [5,6,35,35,60,61], has been suggested as a potential approach to reconstructing networks of30

focal sources with variable depths. In CG-HBM, the prior has a hierarchical structure; the variance of a31

Gaussian conditional prior is steered by a heavy-tailed hyperprior. This allows the primary current32

density to have a considerably greater focal amplitude compared to the background fluctuations than33

what is otherwise possible with a Gaussian prior. CG-HBM forms a superclass for different inversion34

methods as well as a potential platform for the development of new source localization methods [12].35

In clinical applications focal reconstructions are needed, e.g., in epileptic focus localization and in the36

analysis of epileptic networks during seizures for adults and paediatrics [56–58].37

The aim and novelty of this proof-of-concept study is to improve the applicability of the CG-HBM38

for localizing sources with variable depth by proposing a simple and robust parametrization approach39

which has been designed to remain invariant with respect to alterations in the noise level [7–10] and40

the size of the source space [11,59,61], both these factors being essential with respect to the localization41

outcome. An important goal is to obtain an appropriate localization performance with different42

hypermodels and reconstruction techniques. Namely, one of the major challenges in using CG-HBM43

is that the mutual differences between these models and techniques can be significant, if the model44

parameters are not optimally set [5,35]. We referred to both simulated and experimental somatosensory45

evoked potential (SEP) and field (SEF) datasets, and selected the parameter values with the aim of46

detecting the activity corresponding to the P20/N20 component, i.e., the 20 ms post-stimulus response,47

occurring in the median nerve (wrist) stimulation [13–16]. The Brodmann area 3b activity in the48

hand-knob of the primary somatosensory cortex was reconstructed with a high-density forward model.49

This stable and transient activity generally has an excellent signal-to-noise ratio (SNR), especially in50

MEG, but also in EEG [14,17] and is, therefore, well-suited for finding a high-density reconstruction.51

Additionally, a sparse model [11] was applied to detect the deep thalamic activity associated with the52

P20/N20 response.53

We compared the gamma (G) and inverse gamma (IG) hyperprior in detecting the activity in54

these regions. The previous numerical simulation studies [5,12] suggest that G and IG can lead to55

two characteristically different reconstructions, if the shape and scale parameter, i.e., β and the θ056

determining the hyperprior are not ideally set. In particular, the shape parameter value β = 1.557

results in a suppressed deep activity with G hyperprior as shown in [12]. We minimized the posterior58

difference between G and IG by optimizing β, while an initial range for θ0 was obtained based on the59

prior-over-measurement signal-to-noise ratio (PM-SNR), i.e., the relative weight of the prior compared60

to the measurement noise. We introduce PM-SNR here as a new concept to allow balancing the θ0-value61

with respect to the source space size and the estimated level of the measurement and modeling errors.62

The initial value for PM-SNR can be related to the existing knowledge of the Tikhonov-regularized63

minimum norm estimate (MNE) [19,20] following from the classical Gaussian prior model [21].64

In our experiments, the iterative alternating sequential (IAS) and Markov chain Monte Carlo65

(MCMC) sampling technique presented in [5,62,63] were applied to reconstruct the activity. We used66

a finite element method (FEM) based on the forward modeling approach [22,23] which generates67

allows for creating the creation of an accurate volumetric discretization of a multi-compartment head68

segmentation regarding for its conductivity distribution and strongly folded tissue structures [24–28].69

The source localization experiments were performed using the Zeffiro interface1 (ZI) software pipeline70

[29] which couples the FEM forward model with CG-HBM.71

The results obtained for the known synthetic source suggest that through MAP estimation, one72

can reconstruct a simulated P20/N20 component without a priori limiting the region of the activity.73

It was observed that MCMC sampling allowed the posterior to be adopted to the structure and74

resolution of the underlying numerical model and geometry, thus avoiding a numerical bias, e.g.,75

1 The source code is available on-line at https://github.com/sampsapursiainen/zeffiro_interface/graphs/traffic

https://github.com/sampsapursiainen/zeffiro_interface/graphs/traffic
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Figure 1. Left: A schematic illustration depicting the sagittal cut of the primary somatosensory cortex.
The P20/N20 component of the somatosensory activity occurs in the Brodmann area 3b which is
located in the posterior wall of the central sulcus [16]. Right: The orientation of the primary currents
(SEP/SEF components) in the cerebral cortex is normal with respect to the surface due to the normal
alignment of the pyramidal cells [10].

overly focal results. We compared our CG-HBM reconstructions to Tikhonov-regularized MNE [1] and76

the minimum current estimate (MCE) [30] which can be interpreted as special cases of the IAS method77

in combination with the G hyperprior and with β = 1.5. Based on our findings for three subjects, we78

suggest that by choosing an optimization-based shape parameter value β = 3 and a PM-SNR of 0–3079

dB, with the exact value determined by the modeling accuracy assumed, the cortical generator of the80

P20/N20 component can be localized in the Brodmann area 3b with both simulated and measured data.81

Moreover, it seems that the detection of the correlated sub-cortical thalamic activity, simultaneously82

with the cortical one, could be enhanced by using the close-to-optimal shape parameter value, when83

the G hyperprior was used.84

2. Methods85

This section briefly reviews the mathematical CG-HBM approach and its implementation in86

this study. The primary current density is denoted by x which is the discretized approximation87

of the primary current density |~Jp| in the brain, i.e., the unknown of the inverse problem, and the88

measurement data vector is represented by y . In both EEG and MEG, the dependence of y on x,89

i.e., the forward model, can be formulated via the lead field matrix equation of the form y = Lx + n,90

where n is a noise vector and L is the so-called lead field matrix [1]. Here L is obtained via the FEM91

discretization of the classical field equations following from the quasi-static approximation of the92

Maxwell equations as described in [22,31,32]. For the generality of the presentation, we assume that93

L is obtained using SI-units, while y and n are normalized with respect to the amplitude A (here the94

`2-norm) of the measured or simulated signal.95

2.1. Conditionally Gaussian Hierarchical Bayesian model96

For a single given dataset y, the classical Bayes formula for subjective conditional probabilities
can be written as

p(x | y) =
p(x) p(y | x)

p(y)
∝ p(x) p(y | x). (1)

That is, the posterior probability density p(x | y) of the unknown discretized primary current density x97

in the brain is proportional to the product between the prior density p(x), i.e., the a priori knowledge98

of x, and the likelihood function p(y | x) following from the measurement noise model [33].99

The measurement error is here assumed to be a Gaussian zero mean random vector n = y− Lx
with independent entries. Consequently, the likelihood is of the form p(y | x) ∝ exp(−(2σ2)−1‖Lx−
y‖2), where σ is the standard deviation of the noise. In the hierarchical Bayesian approach, one
assumes the prior to be a joint density p(x, θ) ∝ p(θ) p(x | θ) of x and a hyperparameter θ. That is, the
posterior is a joint distribution of the form

p(x, θ | y) ∝ p(θ) p(x | θ) p(y | x). (2)
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In CG-HBM [4,5,34], the conditional part p(x | θ) is also a zero mean Gaussian density. Its diagonal100

covariance matrix is predicted by a heavy-tailed hyperprior p(θ), meaning that the variance vector,101

i.e., the set of diagonal entries, is likely to contain outliers. Thus, it is implicitly assumed that x is a102

sparse vector with a small subset of entries, which are noticeably large in absolute value compared103

to the other entries [35]. The number and intensity of these outliers are controlled by the hyperprior104

[34]. The resulting impulse-like prior model for the unknown is particularly useful in obtaining a focal105

reconstruction for the brain activity. The parameters determining the hyperprior allow the level of the106

focality to be tuned, i.e., the rough relative portion of the x-entries which are likely to a priori differ107

from zero.108

2.1.1. Posterior exploration109

Given the posterior, the actual reconstruction can be found via several different approaches.110

The most common ones can be divided into optimization and sampling techniques. The former111

include the MAP algorithms, which are aimed at finding the maximizer of the posterior density, i.e.,112

xMAP = argmax ppost(x, θ | y). MAP estimation usually provides a faster but less robust way to113

obtain a reconstruction than the sampling techniques, e.g., MCMC methods, which approximate the114

conditional mean xCM = E(x, θ | y) =
∫
(x, θ)ppost(x, θ | y)dx dθ [21]. MCMC methods generate115

samples from the posterior distribution by constructing a Markov chain that has the target posterior116

distribution as its equilibrium distribution. A more detailed descriptions for the IAS MAP estimation117

method and the MCMC sampler employed for CM estimation can be found in [5].118

2.1.2. Gamma and inverse gamma hyperprior119

As the hyperprior, we use both the gamma G(θ | β, θ0) and inverse gamma IG(θ | β, θ0)120

distributions, whose densities are supported on the set of non-negative real numbers with a structure121

determined by the scale and shape parameter θ0 and β, respectively. In the present approach, the122

scale parameter θ0 > 0 essentially sets the expected variance of the conditionally Gaussian prior. It123

can be interpreted as the capability of the prior to detect brain activity growing along with the value124

of θ0. The shape parameter steers the rate of the decay for the tail part. Finding a suitable value for125

θ0 and β is essential to avoid an over- or under- sensitive prior, which might involve depth-bias or126

emphasized noise-effects. Based on our earlier experience, this is especially important with regard127

to G hyperprior which might suppress deep activity, when β = 1.5 [12]. In order to make both the128

G and IG hyperpriors perform similarly given θ0, we select β to be uniformly β = 3, which can be129

interpreted as a close-to-optimal choice for minimizing the differences between the outcomes of G and130

IG (Appendix A).131

2.1.3. Total scale132

The source-wise scale parameter θ0 can be adapted to a given forward model by introducing a
total scale θ(tot)

0 which gives the scale per distribution, while θ0 represents the scale per source. This
follows from the additivity of the Gaussian prior variance, i.e., that the nearby sources s1 and s2 with
variances θ1 and θ2 have the total variance θ1 + θ2, if interpreted as a single source s = s1 + s2. The
relationship between the total and source-wise scale parameter can, thus, be written as

θ0 =
θ(tot)

0 σ2 A2

N
or θ(tot)

0 =
θ0N
σ2 A2 (3)

Namely, to have an invariant weight with respect to the likelihood, the scale θ(tot)
0 of the conditionally

Gaussian prior must be directly proportional to the source position count N of the forward model
and inversely proportional to the relative noise variance σ2 and the squared amplitude A2. Since we
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assume θ(tot)
0 to be an application-specific constant, we introduce here, as a new concept, the following

prior-over-measurement signal-to-noise ratio

PM-SNR=dB(
√

θ(tot)
0 )=dB(

√
N)+dB(δ)+dB(A)−dB(δ(ref)) with δ=

√
θ0

σA
, δ(ref)=

|~Jp|
A

, (4)

and dB(x) = 20 log10 x. Here δ(ref) is a reference level which is obtained as the ratio between the a133

priori estimated norm of the primary current density |~Jp| and the signal amplitude A. The term dB(A)134

is included in (4), as we present θ0 and θ(tot)
0 with respect to normalized amplitude A = 1. PM-SNR135

measures the relative weight of the prior compared to the noise level and is balanced by the system size.136

At the reference level, when PM-SNR is 0 dB or δ
√

N = δ(ref),
√

θ0 matches the a priori noise-induced137

fluctuation of the candidate solution normalized by A
√

N, that is,
√

θ0 = σ|~Jp|/(A
√

N). To generalize138

these expressions for the case of a non-diagonal noise covariance, one can interpret the relative noise139

variance σ2 as the largest eigenvalue, i.e., the `2-norm, of the noise covariance matrix. The PM-SNR140

of the scale parameter values applied in this study, refer to the present EEG amplitude A = 10E-06 V141

obtained as the `2-norm of the measured P20/N20 component, relative noise standard deviation of142

σ = 0.03, and the typical 10 nAm dipolar source strength in the brain [1,65,66], i.e., |~Jp| = 1E-08 Am.143

As δ also represents the relative weight of a non-conditional Gaussian prior, it can be associated144

with the Tikhonov regularization parameter of MNE [5,19,21]. In the Brainstorm software, the default145

level of the relative prior weight is set to a constant value dB(δ)= 9 dB as shown in the tutorial [20].146

Taking into account the source count of this tutorial, which is 15000, this would results in PM-SNR of147

10 dB. Notice that a constant default level is, however, not invariant under changing the dimension of148

the source space.149

Note that the current definition (4) of PM-SNR has been selected to obtain a uniform representation150

with respect to G and IG hyperprior. Alternatively, PM-SNR can be defined with respect to the mean151

of the hyperprior given by the total scale, i.e., θ(tot)
0 β and θ(tot)

0 /(β− 1) for G and IG, resulting into a152

correction of +dB(
√

β) = +5 dB and −dB(
√

β− 1) = −3 dB, when β = 3, respectively.153

2.1.4. Latent noise effects154

We assume that the relative (total) noise standard deviation is of the form σ = sσ, where σ is the
standard deviation of the a priori known noise and s ≥ 1 is a correcting term due to latent noise effects,
such as forward modeling inaccuracies due to the quasi-static approximation, inter-individual head
tissue conductivity differences and/or, segmentation errors, see e.g. [36]. Denoting δ =

√
θ0/(σA) it

follows that the PM-SNR is of the form

PM-SNR = PM-SNR + dB(s), (5)

155

where dB(s) is the total contribution of the latent noise effects. Thus, PM-SNR will be greater than156

PM-SNR for models including latent noise, i.e., when s > 1: the greater the latent noise the greater157

weight of the prior. When PM-SNR is 0 dB, PM-SNR is given by dB(s) and the explicit formula for the158

scaling parameter is
√

θ0 = sσ|~Jp|/(A
√

N), where σ corresponds to the known noise level and s to the159

a priori assumption of the latent noise strength.160

The shape parameter choice defines the spread of the hyperprior which can be related to the161

uncertainty of δ(ref) following from, e.g., the potentially varying source depth which affects the162

amplitude of the measurement: the smaller the shape parameter value the greater the spread. With the163

current value β = 3, the interdecile range (Appendix B) of the hyperprior p(θ) obtains values from164

0.4E(θ) to 1.8E(θ) with E(θ) denoting the hyperprior mean. Thus,
√

θ, i.e., the expected source strength165

given θ, varies dB(
√

1.8/0.4) = 7 dB over the interdecile range. This matches our approximation for166

the variation of δ(ref) obtained as the interquartile range of the lead field based simulated `2-norm167

signal amplitude over the source space.168
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2.2. Numerical model169

2.2.1. Head segmentation170

The FE implementation approach presented in [37] was applied including the formula for the171

EEG and MEG lead field matrix. A tetrahedral finite element mesh was generated by subdividing172

each voxel in a surface-based regular hexahedral segmentation into six tetrahedra. The FE meshes173

were generated using a six-layer surface segmentation based on T1-weighted and T2-weighted MRI174

sequences recorded with a 3T MRI scanner. The surfaces (level-sets) of skin, compact bone (skull),175

spongious bone (skull), cerebrospinal fluid (CSF), grey matter and white matter were included in the176

model. An FE mesh was generated for both 1 and 2 mm resolution (voxel size). The first of these177

included 3.8 M nodes and 22 M tetrahedra and the second one 0.47 M nodes and 2.7 M tetrahedra.178

2.2.2. Source space179

To generate the source space of x, we used the FEM-based quadratic H(div) approach presented in180

[22], employing the Position Based Optimization (PBO) interpolation with the 10-source (8-point) stencil.181

That is, a given dipolar current source was estimated via the 4 linear face and 6 quadratic edge-based182

vector basis functions associated with the barycenter of the tetrahedron containing the source position.183

The sources were placed in the interior part of the grey matter compartment in the elements with a full184

set (four) of neighbors belonging to the same compartment. The rest of the compartment forming the185

boundary layer of the grey matter contained no sources, since the modeling accuracy is known to be186

reduced for the boundary layer [31].187

To obtain a uniform (mesh-independent) source density for reconstructing the somatosensory188

3b activity, a total of 1E+05 points were distributed randomly in the grey matter for each FE mesh.189

This initial source count was selected to allow the present source localization accuracy, in principle,190

to surpass the a priori known maximum limit of EEG and MEG, that is, about 9 mm and 2–4 mm,191

respectively [14,38–41]. A uniform point spread was obtained through a straightforward random192

permutation due to the uniform mesh structure.193

The points placed on the boundary layer in the initial stage were filtered out of the eventual194

distribution, which consisted of 7.6E+04 and 6.1E+4 positions for the 1 and 2 mm FE meshes,195

respectively. The slightly lower source count for the 2 mm case was caused by the thicker boundary196

layer arising from the larger element size. Each position comprised three sources oriented along the197

three Cartesian coordinate axes. Hence, the total number of sources was 2.28E+05 and 1.83E+05 for the198

1 and 2 mm FE meshes, respectively. The source localization experiments were conducted primarily199

with the 1 mm resolution, while the 2 mm accuracy was utilised to examine the forward modeling200

effects on the source localization. In addition to the dense source space, a sparse one was created to201

enhance the detectability [11] of the thalamic component simultaneously with the Brodmann area 3b202

activity [13,42,43]. In the sparse distribution, the number of source positions was 1/100 compared203

to that of the dense one and so the 1 mm mesh was used in the forward simulation. The Cartesian204

set of sources was used in inverting the data. After the inversion process, the distribution obtained205

was projected in the cortical areas using the normal constraint (Figure 1) of the cortex. In other words,206

the vector field component parallel to the surface normal constituted the final reconstruction. In the207

sub-cortical areas, the normal projection was not applied, as the sub-cortical neurons are not generally208

oriented along the surface normal of the neuronal tissue.209

2.3. Measured data210

The source localization experiments were conducted using a dataset which was obtained for three211

healthy and right-handed adult male subjects (I), (II) and (III), who were 49, 32 and 27 years old,212

respectively. The right median nerve was stimulated with the subject lying in a supine position in a213

magnetically shielded room. Simultaneous SEP/SEF measurements were performed using 80 AgCl214
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Figure 2. A butterfly plot of the somatosensory evoked field (SEF) (upper left) and potential (SEP)
(lower left) from 0 to 80 ms post-stimulus with the 20 ms time point indicated by the vertical line. The
P20/N20 peak topographies for SEF (upper, right) and SEP (lower right) are also visualized.

sintered ring electrodes (EASYCAP GmbH, Herrsching, Germany) including 74 EEG channels with an215

additional 6 channels for detecting eye movements together with an MEG setup (OMEGA2005, VSM216

MedTech Ltd). Four out of a total of 275 magnetometers and two out of 74 EEG sensors were reported217

as defective channels. Therefore, the measurements from 72 electrodes and 271 magnetometers (Figure218

3) were used in the eventual dataset. A total of 1,200 stimuli were obtained during a 10 minute219

measurement session. The electric pulse duration was 0.5 ms. To determine the magnitude, the220

stimulus strength was increased until a clear movement of the thumb was visible. Each measurement221

had a 300 ms total duration, which was subdivided into a 100 ms pre-stimulus and 200 ms post-stimulus222

sub-interval. The inter-stimulus interval varied between 350 and 450 ms to avoid habituation. The223

measurements were averaged and pre-processed using a notch filter for the 50 Hz frequency and its224

harmonics to remove the power-line noise. The responses measured for the different stimuli were225

averaged to produce the SEP/SEF dataset (Figure 2) the amplitude of which was normalized to one.

Figure 3. General overview of the P20/N20 component reconstruction for subject (I). The activity is
found in the posterior bank of the central sulcus, the Brodmann 3b area for EEG (left) and MEG dataset
(right). A MAP estimate of the global source distribution is visualized on the surface of the white
matter. The locations of 72 EEG electrodes and 271 magnetometers are shown in the left and right
images, respectively.

226
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The data was filtered using a bandpass of 20-250 Hz [42]. The data vector y for the inversion227

computation corresponded to the P20/N20 activity peak occurring at the 20 ms post-stimulus time228

point (Figure 2).229

2.4. Synthetic data230

To enable a comparison between the measured and synthetic data, a normally-oriented synthetic231

dipolar source was placed in the hand-knob of the 3b area in the posterior wall of the central sulcus232

(Figure 4). Its position in the MNI (Montreal Neurological Institute) coordinate system was x = -38 mm,233

y = -28 mm, z = 56 mm with ±2 mm accuracy. The data for the source was simulated using the234

present FEM-based forward model and additive zero mean Gaussian noise with 3 % standard deviation235

with respect to the maximal signal amplitude. The same noise model was also applied to obtain the236

likelihood function for the measured data.237

2.5. Source localization estimates238

Table 1. The values of the prior-over-measurement signal-to-noise ratio (PM-SNR) for different
reconstructions specified by the type of data (Measured/Synthetic), measurement modality
(EEG/MEG), estimate (MAP/CM), and the hyperprior (G/IG). The source-wise θ0-value used for the
dense and sparse source distribution corresponds to the total scale. PM-SNR can be associated with the
a priori assumption on the latent noise strength, i.e., dB(s) (Section 2.1.4). When PM-SNR is 0 dB, the
weight of the prior matches the a priori known noise level of 3 %.

Data Modality Estimate Hyp. PM-SNR (dB) Sparse θ0 Dense θ0

Meas. EEG MAP G 20 1E-10 1E-12
IG 30 1E-09 1E-11

CM G 20 1E-10 1E-12
IG 20 1E-10 1E-12

MEG MAP G 20 1E-10 1E-12
IG 30 1E-09 1E-11

CM G 20 1E-10 1E-12
IG 20 1E-10 1E-12

Synth. EEG MAP G 20 1E-10 1E-12
IG 30 1E-09 1E-11

CM G 0 1E-12 1E-14
IG 0 1E-12 1E-14

MEG MAP G 30 1E-09 1E-11
IG 30 1E-09 1E-11

CM G 0 1E-12 1E-14
IG 0 1E-12 1E-14

The source localization tests were performed using the dense and sparse source distributions239

described in section 2.2.2. The first of these was applied to be as accurate as possible in detecting the240

cortical source of the P20/N20 component in the 3b area using both measured and synthethic data.241

The reason for using the sparse distribution was to enhance the detectability of the thalamic activity242

[11] which occurs simultaneously with the cortical peak [42,43].243

The MAP estimate was found via three IAS iteration steps. For CM, a sample of 10,000 points244

was created with the MCMC sampler. Of these, 1,000 points in the beginning of the sequence were245

neglected as a burn-in phase. When examining the 3b area, the MCMC-based CM evaluation was, due246

to the high dimensionality of the source space, performed by limiting the activity within a relatively247

small spherical ROI that was, defined based on the MAP estimates (Figure 3). The placement of248

the ROI (Figure 4) was selected according to the literature on the hand-knob within the Brodmann249

area 3b [10]. The difference vector pointing from the synthetic source position to the center point250
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of the ROI was ∆x = 4 mm, ∆y = -1 mm, ∆z = 2 mm. Rather than being regarded as a complete251

reconstruction approach, the spherical ROI is here regarded primarily as a tool for analyzing the peak252

of the posterior in the vicinity of the area where the activity is maximized. When reconstructing the253

thalamic source via MCMC sampling, the ROI covered the somatosensory area together with the254

sub-cortical thalamus and brainstem structures (Figure 4). To investigate the effects of the measurement255

noise, the P20/N20 response was reconstructed with G hyperprior by averaging the EEG data for 300256

and 100 epochs. Compared to the principal case of 1200 epochs, this can be estimated to lead to +6 dB257

and +10 dB increments of the relative measurement noise level σ, based on the central limit theorem,258

i.e., dB(
√

1200/300) ≈ +6dB and dB(
√

1200/100) ≈ +10dB. In the case of elevated noise, the scale259

parameter was adjusted according to (4), assuming that PM-SNR is unaffected by any change in σ.260

Moreover, MNE and MCE were investigated as alternative reconstruction approaches for EEG. These261

were obtained as the first and third step iterates of the IAS algorithm using the G hyperprior with262

β = 1.5, i.e., the value which yields the match between IAS, MNE and MCE [5].

Figure 4. Left: The hand knob (green Ω shape) is a part of the Brodmann area 3b in the central sulcus
(between the pre-central (blue) and post-central (red) areas) [10]. Center: Regions of interest (ROIs)
for the CM computations; the spherical region of interest (ROI) for detecting the 3b activity in the
hand-knob together with the ROI for the thalamic activity detection, including the post-central area
(red), thalamus (orange) and brainstem (cyan). Right: The 24 mm diameter spherical ROI (grey)
approximately covers the hand-knob of the left hemisphere. A global MAP estimate for the synthetic
EEG data is visualized on the cortex.

263

2.5.1. Implementation in Zeffiro interface264

The present forward and inverse methods have been implemented in the Zeffiro interface (ZI) [29]265

toolbox which uses the Matlab (The MathWorks Inc.) platform. ZI aims to provide a user-friendly266

tool for advanced forward and inverse computations, e.g., accurate lead field matrix construction,267

source localization and time-lapse data analysis. ZI’s on-line code repository1 includes the methods268

used in the present study. To speed up the processing, ZI utilizes a Graphics Processing Unit (GPU)269

in the following processes: (1) segmenting the FE grid, (2) creating the lead field, (3) source space270

interpolation for visualizing the reconstructions, and (4) inverting the data. The following computation271

times were obtained for a 1 mm resolution 6-compartment test mesh with 36M elements, 6M nodes272

and 0.5M sources using a Lenovo P910 ThinkStation equipped with 2 x Intel Xeon E5-2697A v4 CPUs273

(RAM 256 GB) and 2 x NVIDIA Quadro P6000 GPUs (RAM 24 GB): (1) FE mesh generation= 1329 s, (2)274

EEG lead field for 128 electrodes= 2362 s, (3) MEG lead field for 154 magnetometers= 4826 s, (4) Source275

space interpolation= 212 s.276

3. Results277

This section describes the results obtained with the data of subjects (I)–(III). An in-depth source278

localization analysis was conducted in the case of (I). Additionally, the parameters suggested by this279

analysis were tested with (II) and (III) in order to learn about the inter-subject variability of the results.280

The results of the source localization analysis have been included in Figures 5–9 and Table 2, and the281

results of the additional tests are shown in Figure 10.282
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Table 2. Subject (I). The spread of the current distribution reconstructed in the Brodmann area 3b
together with the position and orientation difference between the synthetic and reconstructed source.
The position and orientation of the reconstruction was obtained from its center of mass in the spherical
ROI. The MAP estimates were obtained without restricting the source space. In the case of CM, the
reconstruction process was limited to ROI.

FE MAP Spread Orientation Position
Mesh Data Model Data /CM Space Hyper. (mm2) ∆ (deg) ∆ (mm)

1 mm Meas. HBM EEG MAP Global G 44.7 9.7 3.4
Global IG 43.9 9.5 3.4

CM ROI G 71.8 13.3 3.8
ROI IG 37.7 14.4 3.8

MEG MAP Global G 32.0 10.8 3.4
Global IG 32.2 10.8 3.4

CM ROI G 48.8 11.7 3.7
ROI IG 42.0 12.5 3.8

Synth. EEG MAP Global G 42.0 5.8 3.5
Global IG 40.3 5.7 3.5

CM ROI G 64.8 11.5 3.7
ROI IG 69.9 12.1 3.7

MEG MAP Global G 22.0 12.8 3.5
Global IG 13.7 14.3 3.5

CM ROI G 52.5 12.8 3.7
ROI IG 52.6 12.6 3.7

+6 dB EEG MAP Global G 43.2 10.3 3.4
CM ROI G 68.9 14.8 3.7

+10 dB MAP Global G 26.8 11.1 3.4
CM ROI G 40.2 17.2 3.7

Regul. EEG MNE Global G 38.1 9.2 3.4
MCE Global G 12 8.8 3.6

2 mm Meas. EEG MAP Global G 34.8 9.7 3.4
Global IG 30.9 9.7 3.4

CM ROI G 43.4 10.8 3.5
ROI IG 67.7 7.0 3.4

MEG MAP Global G 87.9 11.5 3.5
Global IG 87.9 11.5 3.5

CM ROI G 99.4 15.8 3.5
ROI IG 115.9 15.6 3.5

Synth. EEG MAP Global G 64.2 6.7 3.3
Global IG 64.2 6.7 3.3

CM ROI G 39.1 13.7 3.5
ROI IG 8.3 14.2 3.3

MEG MAP Global G 60.2 10.2 3.5
Global IG 51.0 10.0 3.5

CM ROI G 109.0 16.1 3.5
ROI IG 110.2 16.1 3.5
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Figure 5. Subject (I). The MAP estimation results obtained with the IAS iteration corresponding to the
measured and synthetic data and the 1 mm FE mesh. The placement and orientation of the synthetic
source is shown by the red pin and the mass center of the reconstruction by the green one. The MAP
estimates shown have been obtained using a global source space.

Figure 6. Subject (I). The CM estimation results obtained with the sampler corresponding to the
measured and synthetic data and the 1 mm FE mesh. The marginal density (histograms) of the
(volumetric) posterior mass centre is illustrated for each case and the Cartesian coordinate component,
including the median (red dashed line) and the 90 % credibility interval, is conditional on the
subjectively selected parameters (solid blue line). The placement and orientation of the synthetic
source is shown by the red pin and the mass center of the reconstruction by the green one. The CM
estimates shown have been obtained by limiting the source space within ROI

3.1. Subject (I)283

The proposed parametrization approach was found to perform appropriately in detecting the peak284

of the P20/N20 component in the area 3b of the left hemisphere. In addition to the activity of the 3b285

area, the overlaid thalamic component was found to be detectable in the experiments performed with286

the sparse source density. In each source localization test, the scale parameter value was selected based287
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Figure 7. Subject (I). The thalamic activity found with 1200 epochs and 1 mm FE mesh resolution. The
ventral posterolateral part of the left thalamus (contralateral to the stimulation side) can be observed as
having been activated in most reconstructions. The source space is global for the MAP estimates and
limited to ROI in the case of CM.

Figure 8. Subject (I). The results obtained with an EEG and G hypermodel using 300 and 100 epochs,
i.e., approximately +6 dB and +10 dB noise level, respectively. The source space is global for the MAP
estimates and limited to ROI in the case of CM.

Figure 9. Subject (I). Minimum norm estimation (MNE) and minimum current estimation (MCE)
results for the P20/N20 component network for surface activity (central sulcus) and deep activity
(thalamus). The source space is global for both MNE and MCE.

on PM-SNR, whose case-specific value was within the range 0–30 dB depending on the assumption of288

the latent noise level (Section 2.1.4): the greater the latent noise the larger the PM-SNR, i.e., the stronger289
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Figure 10. Visualization of the cortical and sub-cortical activity reconstructed for subjects (II) on the
left and (III) on the right using the EEG data corresponding to the P20/N20 component. In addition
to the cortical overview, showing the reconstruction obtained with G hyperprior, excerpts of the
cortical activity around the central sulcus and the sub-cortical (deep) activity are shown for G and IG
hyperprior.

the prior. PM-SNR was chosen to be 20 dB and 0 dB for the measured and synthetic data, respectively,290

assuming that the latent modeling errors related to the measured data are emphasized by a +20 dB291

difference in PM-SNR compared to the simulated case. The PM-SNR value for the MAP estimation292

process was set to be larger than for the CM evaluation, allowing +10 dB for the latent errors due to the293

a priori lower accuracy of the MAP compared to CM [21], if the gradient-based IAS algorithm did not294

otherwise find the peak of the posterior. An important criterion in selecting PM-SNR was the shape of295

the posterior density, whose peak in the 3b area was assumed to be a few millimeters diameter w.r.t.296

the mass center of x, i.e., comparable to the mutual distance of the lead field source space density. This297

was done, in order to avoid the failure of the sampling process due to an excessively peaked posterior298

structure.299

3.1.1. Brodmann area 3b300

Table 2 includes a numeric measure for the spread (focality) of the reconstructed and normally301

restricted activity (in the 3b area), defined as the area of the set in which its intensity exceeds 80 % of302

the maximum value. The position and orientation differences between the synthetic source and the303

mass center of the reconstructed activity are also given. In the case of the measured data, the synthetic304

source is regarded as a numerical reference point and should not be confused with the actual activity305

(ground truth). Figures 5, 6, 8, and 9 visualize the reconstructed activity on the white matter surface306

(i.e. on the inner surface of the grey matter) in the vicinity of the ROI. Each distribution shows the307

activity in the direction of the outward-pointing surface normal.308

3.1.2. MAP estimation309

The MAP estimates obtained for the 3b area are shown in Figures 5, 8 and 9. The CG-HBM310

estimates obtained using 1200 epochs generally localize the activity in the sulcal wall with the311

difference in position and orientation being less than 0.4 mm and 10.4 degrees. In the 1 mm case,312

they were a maximum 3.8 mm and 14.4 degrees, respectively. MEG provided slightly more focal313

reconstructions than EEG, and the IG hyperprior led to more focal outcomes than G for three out of the314

four reconstructions. As shown by Table 2, the 1 mm FE mesh resolution yielded a greater similarity315

between the MAP estimates obtained with both the measured and synthetic data than the 2 mm mesh316



Version November 18, 2020 submitted to Journal Not Specified 14 of 22

did. In the 2 mm case, the reconstructions were less intense and more spread out than those obtained317

with the 1 mm mesh. The estimates obtained with 300 and 100 epochs (Figure 8), i.e., with +6 dB and318

+10 dB noise levels, show that the distinguishability of the 3b activity decreases as the noise increases319

as; the activity is clearly visible in the +6 dB case but barely detectable with +10 dB noise. The estimates320

obtained with MNE and MCE (Figure 9) show a clear difference in the 3b area, suggesting that the321

stronger tendency of the MCE to find a focal estimate, results in a clearer source distinction than with322

MNE, while the peak of both estimates is less intense than with the CG-HBM estimates.323

3.1.3. CM estimation324

Figures 6 and 8 illustrate the CM estimates obtained for the spherical ROI together with the325

corresponding marginal densities (histograms) for the volumetric mass center of the posterior. Overall,326

CM had a higher maximum intensity in a mutual comparison to MAP for both real and synthetic data.327

This is particularly clear for the estimates with the elevated measurement noise (Figure 8). however,328

the location of the maximum was virtually the same. The marginal densities obtained show that, in the329

case of 1200 epochs, the maximum length of the 90 % credibility interval for the marginal posterior’s330

mass center, conditional to the subjectively selected parameters, was in the range 0.9–1.4 and 1.2–2.3331

mm respectively for the 1 and 2 mm FE mesh resolutions,thus matching the targeted range. The mutual332

differences in the median, for each coordinate direction, were less than 0.2 and 1.1 mm, respectively. As333

with the MAP, the spread of the CM obtained with the 2 mm FE mesh resolution varied more between334

the different reconstructions than in the case of the 1 mm mesh, while the maximal intensity of the CM335

was observed to vary less than that of the MAP. The marginal densities are clearly more spread out in336

the case of the elevated noise (Figure 8), i.e., with 300 and 100 epochs.337

3.1.4. Thalamic component338

The results for reconstructing the thalamic activity in the case of the sparse source space can be339

found in Figures 7, 8 and 9. Overall, compared to the estimates obtained for the 3b area, the thalamic340

activity is less well-localized in its a priori expected location, which we expect to be primarily the341

ventral posterolateral nucleus [13] of the left thalamus contralateral to the stimulation side. This can be342

observed in the form of a greater variation between the estimates obtained for the thalamic component343

compared to the 3b source localization. Some of these estimates were spread over the brainstem as well344

as the thalamic area [42,44]. Based on Figure 7, EEG has a greater tendency to find the deep activity345

than MEG. The CM estimate obtained with IG hyperprior is similar for both EEG and MEG, suggesting346

that the posterior exploration technique (here MAP or CM) had a significant effect on detecting deep347

fluctuations. As was the case for the 3b area, the reconstruction quality seems diminished when the348

noise level is elevated (Figure 8). Nevertheless, the thalamic component was distinguishable with each349

noise level. Regarding the MNE and MCE estimates, MNE localized the deep activity, while MCE led350

to a strongly suppressed reconstruction (Figure 9).351

3.2. Subject (II) and (III)352

The results obtained for subjects (II) and (III) are visualized in Figure 10 in the case of the P20/N20353

component and the EEG data. The results obtained show that the parameters used for subject (I) result354

in a largely appropriate reconstruction around the cortical (Brodmann 3b) and thalamic areas. The355

results are somewhat less focal than in the case of subject (I), obviously due to the measurement or356

head model creation process, while the activity is found with a uniform parameter choice for (I)–(III).357

4. Discussion358

In this proof-of-concept study, we proposed an approach to parametrize the conditionally359

Gaussian hierarchical Bayesian model (CG-HBM) [5,6] and applied it to invert the P20/N20 response360

of the median nerve somatosensory evoked potentials and fields (SEP and SEF). We introduced an361

approach for parameter selection and analyzed its performance in source localization tests. The activity362
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corresponding to the P20/N20 response was detected in the Brodmann area 3b and in the thalamus363

[13,14,42,43,45] using both a dense and sparse source space [11], respectively. The source localization364

experiments were performed using the Zeffiro interface (ZI) software tool [29].365

In our approach, the shape and scale parameter determining the hyperprior and, thereby, also366

the conditionally Gaussian prior of the CG-HBM, were chosen based on optimization and a priori367

knowledge of the prior-over-measurement signal-to-noise ratio (PM-SNR), respectively. The shape368

parameter value β = 3 was found to be close-to-optimal to minimize the posterior differences between369

the gamma (G) and inverse gamma (IG) hyperprior (Appendix A). PM-SNR is a model specific constant370

which determines the scale parameter θ0 given the dimension and noise level of the forward model.371

The noise can consist of both a known and latent component. In this study, PM-SNR varied between372

0 dB and 30 dB depending on the assumption of the latent errors; the greater the errors, the higher373

the PM-SNR, i.e., the stronger the prior. As potential factors causing latent noise, we recognized (1)374

the forward modeling inaccuracies related to the measured data, e.g., the potential deviations of the375

conductivity distribution [36], which are absent for the simulated data, and also (2) the performance376

differences between the IAS and CM posterior estimation method. The value range applied in this377

study is in agreement with the Brainstorm software’s default MNE regularization value [20], which we378

estimated to match a PM-SNR of 10 dB with respect to EEG data.379

The range proposed here is also supported by our recent studies [29] and [12]. In the first of380

these, IAS was shown to reconstruct a cortical epileptic (gyral) activity in EEG with both the G and IG381

hyperpriors, when the PM-SNR was set to 20 dB (following from θ0 = 1E-12, σ = 0.03, N = 100000).382

In the other study, a scale parameter range from 1E-10 to 1E-8 was found to be applicable for IAS383

MAP estimation of numerically simulated deep activity with the IG hyperprior and a sparse source384

space (N from 100 to 400), converting to PM-SNR of 30 dB and 20 dB for θ0 = 1E-8, N = 100 and385

θ0 = 1E-10, N = 400, respectively.386

The results obtained suggest that PM-SNR might also be applicable with elevated measurement387

noise levels, i.e., fewer averaged epochs, as both the 3b and thalamic activity components were found388

to be detectable in the cases of +6 dB and +10 dB noise. This result cannot be generalized, as the389

distinguishability of the responses is not obvious with fewer than the recommended minimum number390

of averaged epochs, which is 1000-4000 for SEPs [7–9] regarding the investigated 20 ms latency. A391

lower number of averaged trials can, nevertheless, be relevant in other EEG and MEG applications. For392

example, in [29], the reconstructions obtained with CG-HBM correspond to 58 averaged epileptiform393

discharges.394

Comparing the performance of IAS obtained with the proposed settings and with those395

corresponding to MNE and MCE suggests that the present parametrization of CG-HBM can be396

related to, and also explain the performance of, classical regularization approaches. MNE was shown397

to find the thalamic activity with the selected PM-SNR, while it led to a visually less focal estimate398

in the 3b area than CG-HBM. In the case of β = 1.5, MCE was observed to result in a suppressed399

deep activity, suggesting that the choice β = 3 is advantageous with respect to MAP estimation with400

a G hyperprior. In particular, it seems that with β = 3 both the G and IG hyperpriors can find the401

deep source, supporting our approach of selecting β so that it minimizes the difference between the402

hyperpriors. This difference is obvious, when β = 1.5, that is, when the posterior maximizer of the403

prior variance θ will be zero for G and θ0/3 for IG (see Equation A1), suggesting that any weakly404

distinguishable (close-to-zero) fluctuations, especially the deep ones, will be suppressed by G.405

The estimates obtained for the deep part varied more than those for the 3b area. This was406

expected, since the accuracy of both EEG and MEG is known to be limited with regard to far-field407

activity. Indeed, it has only recently been proposed that localization of the deep sources is feasible408

based on non-invasive measurements [46,47]. In order to obtain an appropriate reconstruction for the409

thalamus, we applied a sparse source space as it, has recently been suggested that this can improve the410

detectability of the deep components [11]. Based on the results, it is obvious that the method applied411

in the posterior exploration has a major effect on the deep part of the reconstruction. As indicated412
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by the numerical results of [5], the CM provided a more focal estimate for the thalamic activity than413

MAP in the case of MEG, which in turn is generally regarded as having less advantageous modality414

for depth-localization than EEG [10].415

While the activity of the thalamus is generally known to overlap with that of the 3b area [13,14,43],416

there is less exact knowledge about the deep response network compared to that of the cortical one,417

and its activity varies subject-wise. For example, in [43], the activity corresponding to the P20/N20418

peak was exclusively limited to the 3b area in ten subjects, while the thalamus was only found to be419

additionally activated in two subjects. In contrast, the somatosensory 3b component, i.e., the first420

cortical contribution in the median nerve SEP/SEF, is known to be well-localized in the posterior wall421

of the sulcus, while the gyral components will be visible a few milliseconds after 20 ms [13,42,48]. To422

obtain the best possible source localization outcome for both the superficial and deep areas, CG-HBM423

can be adapted to utilize multiple source space densities in finding a single reconstruction. An example424

of such a method is the recently proposed randomized multiresolution scanning (RAMUS) algorithm425

[12] which finds a reconstruction without imposing any restrictions regarding active brain areas or the426

source depth. The present restrictions (ROIs) have been introduced, as here our focus is on CG-HBM427

as a superclass of methods rather than on the individual reconstruction techniques originating from it.428

That is why we have here restricted the number of moving parameters, other than the ones describing429

the statistical model.430

Based on the present results, especially the position difference with respect to the mass center,431

it seems that a source localization accuracy of around 4 mm could be achieved in the 3b area. This432

coincides with the maximal spatial accuracy found for the MEG, i.e., 2-4 mm for the superficial areas433

[38,39], and even surpasses that of EEG, whose accuracy for superior locations was estimated to be on434

average about 9 mm [14,40,41]. A significant factor affecting the accuracy of EEG is the uncertainty435

related to the conductivity distribution [36,49]. However, taking into account the total estimated 32-116436

mm2 areal spread of the estimates obtained for the 3b area, the accuracy found here does not exceed437

the suggested maximal accuracy limits.The spread of the estimates arises from the current numerical438

framework as the maximal achievable focality without a potential numerical bias. The relationship439

between the estimates found and the actual physiological spread of the source is not evaluated here440

and would necessitate further work.441

As suggested by the present results, CG-HBM might be advantageous as a statistical model for442

obtaining robust sampling-based inverse estimates. When the parameters are chosen appropriately,443

the sampler-based approach seems to provide a robust technique for estimating the marginal posterior444

and the CM, giving information about the posterior distribution, shape and structure. Here, it allowed445

us to adapt it according to the underlying numerical model and geometry, whereas the IAS MAP446

estimation technique alone did not completely reveal the posterior shape, thereby increasing the risk447

of obtaining, e.g., overly focal estimates. It also seems that estimating the CM via a sampling approach448

and defining a ROI for the sampler is beneficial with respect to the distinguishability of the activity449

obtained. Since the IAS MAP estimation technique can be associated with many classical regularization450

methods, including MNE and MCE [5], sampling-based CG-HBM can also be seen as a potential way451

to enhance the outcome obtained with these classical methods.452

The present forward simulation approach was found to perform adequately with both 1 and453

2 mm resolution. Agreeing with the existing knowledge of physiologically accurate volumetric454

head modeling and forward simulation [23,50], the FE mesh resolution of 1 mm was observed to be455

advantageous for obtaining a satisfactorily consistent reconstruction quality. The present GPU-based456

approach to the forward simulation was found to be essential in order to achieve a suitably short457

computation time for the 1 mm mesh generation and lead field matrix evaluation processes with our458

ZI implementation. The approach of finding the reconstruction using Cartesian source orientations459

was found to be suitable in the present modeling context, since it allows slight orientation changes460

during the source localization process, thereby, resulting in a smooth posterior distribution. However,461

ZI also allows the normal orientations for cortical areas (Section 2.2.2) to be applied directly, as the462
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differences between the directly normal and the present normally-projected reconstructions seem to be463

minor.464

As the present results mainly provide a proof-of-concept for a potentially applicable465

parametrization together with rough estimates for the parameter ranges, more work will need to be466

done to optimize the outcome of CG-HBM for a given subject and dataset. Therefore, an important467

objective of any future work will be to apply the present hyperprior parametrization technique468

for more datasets, e.g., including temporal correlations and combined E/MEG data, (see [12] for469

preliminary numerical simulation results, and subjects), in order to learn more about the practical470

localization capability of the CG-HBM. Potential directions for the development of mathematical471

method include, e.g., incorporating physiological knowledge to the hyperprior [51,52] and/or the472

source space which can be adapted to the properties of the active neural tissue: e.g., many brain473

structures have the primary current density of approximately 1 nAm/mm2 when active [64]. The474

development of source localization techniques for the multiple resolution levels [12], e.g., a full MCMC475

sampler implementation, provides a further potential application for the current parametrization476

approach. Finally, while our present focus is on CG-HBM and the corresponding reconstruction477

methods, i.e., IAS, MCMC sampling, MCE, and MNE, further research would be necessary to relate478

the performance of CG-HBM with that of the most promising alternative methods that do not belong479

to the CG-HBM superclass, such as the beamformer techniques [53–55].480
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Appendix A Shape parameter optimization490

Figure A1. Left: The i-th component of the conditional posterior p(θi | xi) optimized with respect to
the shape parameter β so that θ̃(G)

i,max
≈ c θ̃(IG)

i,max
close to the point of linearization x2

i = αθ0/(β− 1) with
some constant c (Section A). The gray curves correspond to IG and the black ones to G hyperprior.
The solid, dashed and dash-dotted curves have been obtained with α = 100, α = 10 and α = 1000,
respectively. In each case the scale parameter is θ0 = 1. The maximizers match approximately, i.e.,
c ≈ 1, when α = 100 (solid) and the optimizer is β ≈ 3. Center: The relative scale deviation |c− 1|/c
w.r.t. c = 1 as a function of the optimizer β, vanishing when β ≈ 3. Right: The optimizer β as the
function of α.

In HBM, the i-th entry x, is assumed to have an independent zero mean Gaussian distribution491

with variance θi determined by the G or the IG hyperprior. Given a shape and scale parameter β ≥ 3/2492

and θ0 > 0, the G and IG are maximized at the points θ(G)

i,max
= (β− 1)θ0 and θ(IG)

i,max
= θ0/(β + 1) and493

the mean is at θ(G)

i,mean
= βθ0 and θ(IG)

i,mean
= θ0/(β− 1), respectively. Assuming that θ � β � 1/θ0, the494

magnitude of these follows essentially from that of θ0. That is, the scale parameter sets the initial495

informativeness of the prior or the initial sensitivity of the hypermodel to localized brain activity.496
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Generally, the smaller the value, the less informative is the prior, whose effect is slighter than the497

likelihood.498

Given the i-th entry xi, the maximizer of the joint prior p(θ, x) and of the conditional posterior
p(θ | x) w.r.t. θ, independent of the measurements y [5], is of the form

θ̃(G)

i,max
=

1
2

θ0(β− 3
2
) +

1
2

θ0

√
(β− 3

2
)2 +

2x2
i

θ0
and θ̃(IG)

i,max
=

1
β + 3

2
(θ0 +

x2
i

2
). (A1)

In order to obtain comparable results with G and IG hyperprior and, thereby, to avoid any
depth-localization bias of the G hyperprior [5,12], we optimize β so that the corresponding conditional
posterior distributions are locally equally sensitive to the increment of x2

i . That is, we optimize
the shape parameter so that θ̃(G)

i,max
≈ c θ̃(IG)

i,max
locally with some constant c corresponding to a given

x2
i . We require that, following from the form θ̃(IG)

i,max
(s, β) = ν + νs, ν = θ0/(β + 3/2), s = x2

i /(2θ0),
there is a match between the zeroth and first-order coefficient of the first-order Taylor polynomial
F(s, β) ≈ F(s0, β) + ∂F(s0,β)

∂s (s− s0) with F(s, β) = θ̃(G)

i,max
(s, β), resulting in the equation

F(s0, β)− ∂F(s0, β)

∂s
(s0 + 1) = 0 (A2)

with respect to β. Furthermore, we set the point of linearization proportional to the mean of the IG499

hyperprior, i.e., s0 = α/[2(β− 1)] or x2
i = α θ(IG)

i,mean
. That is, x2

i is assumed to be proportional to the500

expected variance of the conditional Gaussian prior. We make this choice, since a zero-mean Gaussian501

density is invariant with respect to a scale proportional to its variance.502

Figure (A1) illustrates the results obtained by solving the equation (A2) numerically with respect503

to β for each integer α from α = 1 to α = 1000. For α = 100, the solution and the corresponding scaling504

constant satisfy β ≈ 3 and c ≈ 1, meaning that θ(IG)

i,mean
≈ θ(G)

i,mean
at the point of linearization. For this505

match, we interpret β = 3 as a close-to-optimal shape parameter value to minimize the differences506

between the G and IG hyperprior. As can be observed from Figure (A1), an IG hyperprior generally507

leads to a heavier-tailed conditional posterior distribution than G at the point of linearization, meaning508

that, in principle, it allows a higher probability for outliers such as focal activity spots.509

Appendix B Effect of the Shape parameter510

The effect of the shape parameter on the hyperprior is visualized in Figure A2. The weight of the511

tail is the greater the smaller the shape parameter which is shown by the interdecile range (the interval512

between 10 and 90 % quantile).

Figure A2. The effect of the shape parameter on the IG (left) and G (right) hyperprior. The black (solid),
shows the hyperprior density p(θ) for β = 3 and θ0 = 1E-12 (see Table 1). The blue (dashed) and
red (dotted) curves correspond to the same expectation E(θ) with β = 2 and β = 4, respectively. The
weight of the tail is the greater the smaller the shape parameter. This is shown by the colored interdecile
range (IDR), i.e., the interval between 10 and 90 % quantile, which is presented here with respect to
E(θ). The colors correspond to those of the curves.
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