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Abstract

For accurate EEG forward solutions, it is necessary to apply numerical methods

that allow to take into account the realistic geometry of the subject’s head. A

commonly used method to solve this task is the finite element method (FEM).

Different approaches have been developed to obtain EEG forward solutions for

dipolar sources with the FEM. The St. Venant approach is frequently applied,

since its high numerical accuracy and stability as well as its computational

efficiency was demonstrated in multiple comparison studies. In this manuscript,

we propose a variation of the St. Venant approach, the multipole approach, to

improve the numerical accuracy of the St. Venant approach even further and

to allow for the simulation of additional source scenarios, such as quadrupolar

sources. Exploiting the multipole expansion of electric fields, we demonstrate

that the newly proposed multipole approach achieves even higher numerical

accuracies than the St. Venant approach in both multi-layer sphere and realistic

head models. Additionally, we exemplarily show that the multipole approach

allows to not only simulate dipolar but also quadrupolar sources.
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1. Introduction

Electroencephalography (EEG) is a frequently used tool to observe brain

activity in both neuroscience and clinical applications, since it provides a unique

time resolution in the millisecond range. In many of these applications, it is

desirable to perform EEG source analysis, i.e., to reconstruct the active brain5

areas evoking a measured signal. To achieve this reconstruction it is necessary

to simulate the EEG signal that is generated by activity in a certain region of

the brain. This task is called the EEG forward problem (Brette and Destexhe,

2012).

The EEG forward problem can only be solved analytically in simple geome-10

tries, such as multi-layer sphere models (de Munck et al., 1988; de Munck and

Peters, 1993). To realistically model the subject’s head, the use of numerical

techniques such as boundary element methods (BEM, Gramfort et al. 2010),

finite volume methods (FVM, Cook and Koles 2006), finite difference meth-

ods (FDM, Vatta et al. 2009; Montes-Restrepo et al. 2014), or finite element15

methods (FEM, Wolters et al. 2007a) is necessary. For all these techniques, the

major challenge is to deal with the strong singularity caused by the assumption

of a dipolar source to represent brain activity, as it is common in EEG source

analysis (de Munck et al., 1988; Hämäläinen et al., 1993; Sarvas, 1987).

Two classes of approaches to solve this problem when applying FEM exist:20

In the subtraction approach (Wolters et al., 2007b; Engwer et al., 2017), the

dipolar source is subtracted from the original equation by using the analytical

solution for an infinite, homogeneous volume conductor. Subsequently, a cor-

rection potential that accounts for the inhomogeneous conductivity distribution

within the head is computed, and the EEG forward solution is obtained by sum-25

ming up analytical solution and correction potential. In the direct approaches,

such as St. Venant (Buchner et al., 1997), partial integration (Yan et al., 1991),

and Whitney approach (Tanzer et al., 2005; Pursiainen et al., 2011), the dipole
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source is approximated by a discrete distribution of current sinks and sources

placed on the vertices of the finite element mesh. Each of the approaches follows30

a different assumption to select these vertices and to determine the strength of

the sinks and sources.

Whereas all of these approaches lead to accurate EEG forward simulations,

comparison studies between subtraction and direct approaches have shown that

the direct approaches have a much lower computational complexity (Bauer et al.,35

2015; Lew et al., 2009). Thus, a multitude of EEG forward solutions, as needed

in many EEG source analysis approaches, can be obtained in a much shorter

time. Among the direct approaches, the St. Venant approach was shown to lead

to the most accurate results for sources with arbitrary positions and directions

in simulation studies in both spherical and realistic head models. As a result,40

the St. Venant approach has been chosen as forward approach in a variety of

simulation (e.g., Güllmar et al. 2010; Cho et al. 2015) and experimental studies

(e.g., Aydin et al. 2014; Rullmann et al. 2009).

In this study, we propose to modify the formulation of the St. Venant

approach based on the multipole expansion of electric fields. This new formula-45

tion leads to reduced numerical errors especially for eccentric sources, whereas

the computational effort remains nearly unchanged. Furthermore, it allows to

model quadrupolar sources, which is an important advantage over existing FEM

approaches, since recent studies have shown that the inclusion of higher order

sources may improve source localization for both EEG (Riera et al., 2012) and50

MEG (Jerbi et al., 2004, 2002; Mosher et al., 1999; Nolte and Curio, 1997). Be-

sides, quadrupolar sources also occur in the diagnosis of spinal chord disorders

(Tomori et al., 2010; Sumiya et al., 2017; Ishii et al., 2012).

2. Theory

Assuming the quasi-static approximation of Maxwell’s equations (Brette and

Destexhe, 2012), the EEG forward problem consists in finding the electric po-
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tential u(x) that solves the Poisson equation

∇ · (σ∇u) = ∇ · jp in Ω, (1)

σ∇u · n = 0 on ∂Ω, (2)

where Ω is the head domain, σ(x) the conductivity distribution of Ω, and jp(x)55

models the electric activity in the brain. In EEG source analysis, a common

model for jp is the current dipole, jp(x) = mδx0
(x). The current dipole de-

scribes an infinitesimally small current flow at location x0 with direction m.

The current direction m is called the electric dipole moment.

Given a discretization Th of Ω, commonly into tetra- or hexahedra in the60

3d case, the FEM for equation (1) can be easily derived (Wolters et al., 2007b;

Braess, 2007). However, for the choice of a current dipole as source model, the

right-hand side f = ∇ · jp = ∇ ·mδx0 is singular, and therefore needs special

attention to avoid numerical inaccuracies.

The function f represents the sources and sinks of the current dipole with65

moment m at position x0 and is singular due to the limit case taken in the

derivation of the current dipole. In the St. Venant approach (Buchner et al.,

1997), the idea is to discretize f using a distribution of sources and sinks placed

on certain vertices of the FE mesh that matches certain moments of the dipole

source. We propose to refine the St. Venant approach by introducing a different70

definition of these moments, more specifically of the moments of second order

and higher, based on the multipole expansion of electric fields that is well-known

from physics (Jackson, 1999).

The basic assumption is identical for the St. Venant and the multipole

approaches. First, the positions at which the electrical monopoles are placed75

are selected. To do so, the vertex x1 of the discretization Th closest to the source

position x0 is determined as well as all vertices x2, . . . ,xn that belong to mesh

elements that contain x1. Thus, the number of vertices is 27 for hexahedral

meshes, whereas it is mesh dependent for tetrahedral meshes (commonly larger

than 10 in our experiments). To achieve an approximation of the field of the80

dipole source through this monopole distribution, the strength qi of sources

4



and sinks at positions xi are determined so that the moments of this discrete

distribution match those of the original current distribution jp.

The zeroth moment of the monopole distribution defined by sources and

sinks qi at positions xi, ρ =
∑n
i=1 qiδxi

, is the sum of charges:

M =

n∑
i=1

qi. (3)

This sum has to be zero for a dipolar source, as there are no monopole contri-

butions to the electric field.85

The first moment of the monopole distribution reads

p =

n∑
i=1

(xi − x0)qi =

n∑
i=1

∆xiqi, (4)

and corresponds to the dipole moment. These moments are defined identically

for the multipole and the St. Venant approaches.

2.1. The St. Venant approach

For the St. Venant approach, the second order moment is defined as (Buch-

ner et al., 1997)90

Qk =

n∑
i=1

qi ((∆xi)k)
2
, k = 1, 2, 3. (5)

Thus, the St. Venant approach has seven parameters to describe the dipole

source when using a second-order approximation, one from (3), three from (4),

and three from (5). It is easy to see that this definition does not correspond to

the second moment of the multipole expansion of electric fields that is known

from physics (Jackson, 1999). This not only prevents the simulation of higher95

order sources, such as quadrupoles, but might also lead to numerical inaccuracies

for dipole sources, since the higher-order contributions to the electric fields

are not correctly suppressed. We therefore propose to modify the St. Venant

approach by using the actual moments resulting from the multipole expansion.
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2.2. The multipole approach100

For the multipole approach, we define the second order moment according to

the multipole expansion of the electrostatic potential. The multipole expansion

is based on a Taylor expansion of the electric field evoked by a charge distribution

ρ. In general, the electric potential u evoked by a charge distribution ρ can be

computed as105

u(x) =
1

4πε0

∫
ρ(x′)

‖x− x′‖2
d3x′. (6)

Performing a Taylor expansion of the term 1
‖x−x′‖2 around the origin, the

electric potential can be expressed as an expansion series:

u(x) =
1

4πε0

 1

‖x‖2

∫
ρ(x′)d3x′︸ ︷︷ ︸
monopole

+
∑
i

xi
‖x‖32

∫
x′iρ(x′)d3x′︸ ︷︷ ︸
dipole

+
∑
i,j

1

2

xixj
‖x‖52

∫
(3x′ix

′
j − ‖x′‖2δi,j)ρ(x′)d3x′︸ ︷︷ ︸

quadrupole

+ . . .

 . (7)

We only spell out the terms up to the second order at this point. For a

detailed derivation of the multipole expansion see, for example, Jackson (1999).

Inserting our discrete source distribution, ρ =
∑n
i=1 qiδxi , in (7), we find that

the zeroth (monopole) and first (dipole) moments coincide with the definitions

in equations (3) and (4), respectively, whereas the second moments do not. The

second moment of the multipole expansion is the quadrupole moment and can

be defined as a tensor

Qk,l =

n∑
i=1

qi
(
3(∆xi)k(∆xi)l − (‖∆xi‖2)2δk,l

)
, k, l = 1, 2, 3, (8)

where a subscript index k indicates the k-th entry of the vector (∆xi). δk,l is110

the Kronecker delta, i.e., δk,l = 1 if k = l and 0 otherwise, and ‖ · ‖2 stands for

the Euclidean norm, i.e., (‖∆xi‖2)2 =
∑3
l=1(∆xi)

2
l .
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Since Q is a symmetric tensor with six independent components, this adds

three additional parameters to describe the dipole source compared to (5), re-

sulting in 10 determined parameters for the multipole approach.115

Introducing higher order moments is straight-forward when following the

definition of the multipole expansion.

2.3. Calculation of the monopole loads

We only derive the calculation of the monopole loads for the multipole ap-

proach here. First, we scale with a suitable reference length aref , chosen larger120

than twice the element edge length so that ∆xi/a
ref < 1 for all i = 1, . . . , n,

and indicate the scaled variables (e.g., distances and moments) with a bar (e.g.,

∆x̄i, M̄ , p̄, Q̄k,l).

With this definition of the moments, we can express the qi through a system

of linear equations:125



M̄

(p̄)1

(p̄)2

(p̄)3

Q̄1,1

Q̄2,2

Q̄3,3

Q̄1,2

...


t̄

=



1 . . . 1

(∆x̄1)1 . . . (∆x̄n)1

(∆x̄2)1 . . . (∆x̄n)2

(∆x̄3)1 . . . (∆x̄n)3

3 (∆x̄1)
2
1 − ‖∆x̄1‖22 . . . 3 (∆x̄n)

2
1 − ‖∆x̄n‖22

3 (∆x̄1)
2
2 − ‖∆x̄1‖22 . . . 3 (∆x̄n)

2
2 − ‖∆x̄n‖22

3 (∆x̄1)
2
3 − ‖∆x̄1‖22 . . . 3 (∆x̄n)

2
3 − ‖∆x̄n‖22

3 (∆x̄1)1 (∆x̄1)2 . . . 3 (∆x̄n)1 (∆x̄n)2

...
. . .

...


X̄

·


q1

q2

...

qn


q

(9)

For a dipolar source, we can easily calculate the left-hand side entries, where

we have M̄ = 0, p̄ = m/aref , and Q̄k,l = 0.

The derivation of a linear system to calculate the qi for the St. Venant

approach is identical to that of (9). The entries representing the quadrupole

moment, Qk,l, as defined in (8), have to be replaced by the second-order mo-130

ments of the St. Venant approach, Qk, as defined in (5).
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Since the number of degrees of freedom n is in general larger than the number

of determined parameters on the left-hand side in (9), no unique solution exists.

To select a solution with minimal energy, which is a physiologically plausible

approach, we define a regularization matrix W̄ by (W̄ )(m,s) = (‖∆x̄m‖2)
r/2

δm,s

for r = 1 or r = 2 to solve (9). Now, the vector q is the result of minimizing the

functional

Fλ(q) = ‖t̄− X̄q‖22 + λ‖W̄ q‖22 (10)

with X̄j and t̄j defined as in (9). The first term measures the difference between

the original dipole moment and our approximation, whereas the second term

penalizes loads of large absolute value |qi|. Thereby, spatially high-frequent,

unphysiological sources with large absolute values that do not contribute to135

the far-field, so-called blind sources, are avoided (Louis, 2013). Furthermore,

this additional term ensures the uniqueness of the solution of minimizing Fλ.

Increasing the number of known parameters on the left-hand side of (9), as

done when introducing the multipole approach, might help to further increase

the numerical stability of the equation system.140

Differentiation with respect to the qi yields the solution of the minimization

problem: (
X̄T X̄ + λW̄T W̄

)
q = X̄T t̄, (11)

and as result for the vector q,

q =
(
X̄T X̄ + λW̄T W̄

)−1 · X̄T t̄. (12)

The choice r = 2 for the regularization matrix results in a spatial concentration

of loads around the dipole node, since large products ∆x̄iqi are penalized. The

parameter λ should be chosen as small as possible in order to approximate the

desired moments accurately, but large enough to avoid indetermination of the

linear system.145

We define the parameters following the common choices for the St. Venant

approach (see Vorwerk et al. 2018; Pursiainen et al. 2016; Lew et al. 2009;

Wolters et al. 2007c; Buchner et al. 1997). We include the moments up to the
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second-order in (9) and define aref = 20 mm, r = 2 and λ = 10−6. These pa-

rameters are fixed for both St. Venant and multipole approach and all evaluated150

tetrahedral and hexahedral models.

3. Methods

3.1. Implementation

We implemented the multipole approach in FieldTrip-SimBio

(http://fieldtriptoolbox.org, Vorwerk et al. 2018), based on the already existing155

implementation of the St. Venant approach. Since it was shown in previous

studies that placing monopoles in multiple conductive compartments leads to

less accurate results for sources that are close to compartment interfaces, i.e.,

the gray matter/CSF surface in our study, we chose to exclude all monopole

positions that are not in the same conductive compartment as the source, i.e.,160

not in the gray matter compartment, for both the St. Venant and the multipole

approach following the ideas of Medani et al. (2015).

3.2. Evaluation

We evaluated the numerical accuracy of the multipole approach in compar-

ison to the St. Venant approach in both spherical and realistic head models.165

Therefore, we generated four-layer tetrahedral and hexahedral sphere models

distinguishing the conductive compartments brain, cerebrospinal fluid (CSF),

skull, and skin. The tetrahedral models were generated using TetGen

(http://wias-berlin.de/software/tetgen/, Si 2004), where we additionally im-

posed a quality (qc) and volume constraint (vc) to improve the mesh quality.170

The quality constraint determines the maximum of the ratio between the cir-

cumscribed ball and the shortest edge of a tetrahedron. A low value of the

quality constraint enforces the construction of well-shaped tetrahedra, the min-

imal achievable value is about 0.612 (for a regular tetrahedron). Furthermore,

to obtain a uniformly high mesh resolution we applied a volume constraint of175

1.0, limiting the maximal volume of each tetrahedron to 1 mm3. The hexahe-

dral model 4layer sphere hex was generated using FieldTrip-SimBio, where a
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Figure 1: Visualization of models 4layer sphere tet (left), 4layer sphere hex (middle), and

6layer realistic (right).

node-shift of 0.49, which is the highest value that guarantees that all hexahedra

remain convex, was applied to better resolve the sphere geometry (Camacho

et al., 1997; Wolters et al., 2007c). The data of the spherical meshes can be180

found in Tables 1 and 2.

Table 1: Sphere model

Medium Brain CSF Skull Skin

4-layer Radius [mm] 78 80 86 92

Conductivity [S/m] 0.33 1.79 0.01 0.43

Table 2: Parameters of the sphere models

Model nodes elements qc vc [mm3] node shift

4layer sphere tet 801,633 4,985,234 1.0 1.12 -

4layer sphere hex 3,342,701 3,262,312 - - 0.49

We distributed sources at radii between 2 and 77 mm in 1 mm steps. For each

radius, we randomly generated 125 source positions and determined radial and

tangential dipole orientations. Thereby, we can obtain statistical distributions

of the numerical errors at each radius for varying positions of the source relative185
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to the FE mesh.

Instead of the radius, we indicate the eccentricity of the source locations, i.e.,

the quotient of the radius of the source position and the brain/CSF interface

(78 mm) in percent, in our evaluation. The eccentricity of the most superficial

sources in our study is 98.72%. The numerical accuracies at high eccentricities190

are most relevant in practice, as sources in realistic head models are commonly

placed in the gray matter compartment closely to the gray matter/CSF inter-

face. The forward solutions were evaluated at 522 regularly distributed electrode

positions on the surface of the models. To calculate the numerical error, we used

the analytical solution derived by de Munck and Peters (1993) as reference.195

To evaluate the accuracy of the multipole approach in a more realistic sce-

nario, we compared the multipole and the St. Venant approaches in a realistic

six-layer tetrahedral head model distinguishing white matter, gray matter, CSF,

skull compacta, skull spongiosa, and skin (see Vorwerk et al. 2014). For the com-

parison, we generated two versions of this head model with different resolutions,200

i.e., different amounts of mesh vertices and elements, whereas the geometry of

the compartment interfaces remained unchanged. Again, the two models were

generated using TetGen. The model 6layer realistic consisted of 984,569 vertices

and 6,107,561 elements and the model 6layer realistic hr consisted of 2,159,337

vertices and 13,636,294 elements. We distributed 129,640 sources regularly on205

the gray/white matter interface and shifted them into the gray matter, until the

node closest to the source position exclusively belonged to gray matter elements.

The EEG forward solution was evaluated at 80 electrode positions on the head

surface (74 electrodes according to 10-10 system and 6 EOG channels).

In both models, we computed forward solutions for the multipole and the210

St. Venant approach. For the realistic head model, no exact analytical solution

that could be used as reference solution exists. Therefore, a numerical solution

obtained in the high-resolution model 6layer realistic hr was used as reference

solution. To avoid a bias of our reference solution towards one or the other

approach, we created a reference solution by taking the mean of the multipole215

and the St. Venant solution in model 6layer realistic hr and computed the
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errors of the multipole and the St. Venant solution in model 6layer realistic in

comparison to this reference solution.

In all experiments, we used RDM (minimal error 0, maximal error 2) (Meijs

et al., 1989) and lnMAG (minimal error 0, maximal error ±∞) (Güllmar et al.,

2010) as error measures:

RDM(unum, uref ) =

∥∥∥∥ unum

‖unum‖2
− uref

‖uref‖2

∥∥∥∥
2

lnMAG(unum, uref ) = ln

(
‖unum‖2
‖uref‖2

) (13)

unum and uref denote the numerical and reference solution at the electrode

positions, respectively. uref is the result of the analytical solution derived by220

de Munck and Peters (1993) in the sphere models and the reference solution

derived from the mean of the multipole and St. Venant solution in the high-

resolution realistic head model.

The RDM measures changes in the signal topography and the lnMAG mea-

sures changes in the overall signal magnitude in comparison to the reference225

solution. In terms of EEG source analysis, the RDM relates to errors in recon-

structed source location and orientation, whereas the lnMAG relates to errors in

reconstructed source magnitude. Dannhauer et al. (2011) showed that a higher

RDM correlates with a less accurate source localization. Thus, a low RDM

is of high importance for almost all applications of EEG source analysis. The230

lnMAG is only of relevance, if the strength of different reconstructed sources

is compared. In such scenarios, a small variance of the lnMAG (across all ec-

centricities) might be even more important than small absolute values of the

lnMAG.

4. Results235

4.1. Sphere model studies

Firstly, we evaluated the multipole approach in comparison to the St. Venant

approach in both hexahedral and tetrahedral sphere models. Table 3 shows the
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computation times of a single FE right-hand side for both approaches. We

find no significant difference in computation times between multipole and St.240

Venant approach with an increase of less than 1% in both the tetrahedral and

the hexahedral model.

Table 3: Computation times for a single right-hand side

Model St. Venant Multipole

4layer sphere tet 69.6 ms 70.1 ms

4layer sphere hex 82.7 ms 83.0 ms

Figure 2 depicts the numerical accuracies of the multipole and the St. Venant

approach in model 4layer sphere tet as box-and-whisker plots, i.e., for each ec-

centricity the black horizontal bar marks the median, the box spans from lower245

quartile to upper quartile and the whiskers mark minimum and maximum of

the error over all sources. For all source positions, the multipole approach leads

to smaller RDM and lnMAG errors than the St. Venant approach. We find that

especially at the highest eccentricities, the multipole approach leads to smaller

errors than the St. Venant approach. A high accuracy at high eccentricities is250

especially important in practice, since these source positions correspond to the

scenario of a source being placed in the gray matter compartment close to the

gray matter/CSF interface, as it commonly occurs in realistic head models.

The RDMs for the multipole approach are below 0.015 for all source positions

and orientations, whereas the RDMs for the St. Venant approach are up to 0.03255

at highest eccentricities. Both the St. Venant and the multipole approach show

increasing RDMs with higher eccentricity, but the increase of the RDM for the

multipole approach is less strong. Furthermore, the increase of the maximal

RDM for the multipole approach is continuous, whereas the maximal errors for

the St. Venant approach increase discontinuously, demonstrating the increased260

stability achieved by employing the multipole approach.

The multipole approach leads to smaller absolute values and variance of the
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Figure 2: RDM (top row) and lnMAG (bottom row) for radial (left column) and tangential

(right column) source orientations for model 4layer sphere tet. For a better readability, the

boxes for St. Venant and multipole approach at the same eccentricity are slightly shifted

toward a lower and higher eccentricity, respectively.

lnMAG at all eccentricities. The lnMAG errors for the multipole approach admit

maximal absolute values below 0.005 and 0.002 for radial and tangential sources,

respectively, whereas the maximal absolute values for the St. Venant approach265

exceed 0.015 and 0.01, respectively. The variance of the lnMAG is smaller

for the multipole approach at all eccentricities. Furthermore, the variance of

the lnMAG only slightly increases with higher eccentricity for the multipole

approach, whereas the variance increases stronger for the St. Venant approach.

The range between minimal and maximal lnMAG over all eccentricities is less270

than 0.015 and 0.007 for the multipole approach and radial and tangential source

orientation, respectively, but more than 0.025 and 0.015 for the St. Venant

approach.

For the hexahedral sphere model, the improvements gained through the mul-
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Figure 3: RDM (top row) and lnMAG (bottom row) for radial (left column) and tangential

(right column) source orientations for model 4layer sphere hex. For a better readability, the

boxes for St. Venant and multipole approach at the same eccentricity are slightly shifted

toward a lower and higher eccentricity, respectively.

tipole approach are less clear than in the tetrahedral head model. A small im-275

provement with regard to the RDM is observable at low eccentricities for both

radial and tangential sources. However, the errors at these eccentricities are

already very low for both St. Venant and multipole approach. For the high-

est eccentricity, the RDM for both the St. Venant and the multipole approach

clearly increases, probably due to the inaccurate representation of the compart-280

ment interfaces in the hexahedral models. The RDM errors for St. Venant

and multipole approach for tangential sources are almost equal, but the multi-

pole approach leads to smaller RDM errors for highly eccentric radial sources.

Small RDM errors for these source positions are important in practice, because

sources are commonly placed close to the gray matter/CSF interface, i.e., the285

cortex surface, and with an orientation normal to the cortex surface, which cor-

15



49

50

52

53

50 52 54

54

51y 
[m

m
]

49 5351
x [mm]

Figure 4: Dipole distribution used for visualizations in Figure 5 overlaid on a slice through

mesh 4layer sphere hex in the z = 0.0 mm plane. Red cones represent dipole positions,

black lines represent boundaries of mesh elements. White background represents gray matter

elements, light gray background CSF elements, and dark gray background skull elements.

Dipoles are placed in the z = 0.5 mm plane, which goes through the center of the hexahedral

elements.

responds to a radial orientation in the sphere model. Also with regard to the

lnMAG, both approaches perform essentially identical for all eccentricities but

the highest one. For radial sources, the lnMAG for the multipole approach at

the highest eccentricity varies strongly compared to lower eccentricities, a be-290

havior that is disadvantageous if the source strength of different reconstructed

sources has to be compared. The lnMAG for the St. Venant approach shows

less variation. For tangential sources, the multipole approach leads to a slight

improvement in lnMAG at the highest eccentricity.

To further demonstrate the improved numerical stability achieved by using295

the multipole instead of the St. Venant approach, we evaluated the dependency

of the numerical errors on the position of the dipole source relative to the mesh

elements. For the axis-aligned hexahedral sphere mesh 4layer sphere hex with

center in the origin, i.e., all edges of hexahedra for which no node-shift was

applied are parallel to either the x-, y-, or z-axis of the Cartesian coordinate300

system, we placed tangential dipoles in the z = 0.5 mm plane. The z = 0.5 mm

plane is parallel to the edges in x- and y-directions and goes through the centers
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Figure 5: RDM (top row) and lnMAG (bottom row) for multipole (left column) and St.

Venant (right column) approach for tangential dipoles in model 4layer sphere hex. Dipoles

are placed in the z = 0.5 mm plane and (x, y) ∈ [48.95 mm, 54.05 mm] x [48.95 mm, 54.05 mm]

on a grid with a width of 0.1 mm. Dark gray lines visualize the boundaries of the hexahedral

mesh elements.

of the elements it cuts. The dipoles are distributed on a grid with a resolution

of 0.1 mm in an area of 5.1 x 5.1 mm. The dipole configuration is visualized in

Figure 4. Through the dense sampling of the dipole positions, it is possible to305

visualize the dependency of the numerical errors on the position of the dipole

inside the grid element. The minimal eccentricity of the sources is 89.75% in the

bottom left corner, the maximal eccentricity is 98.00% in the top right corner.

Figure 5 shows the distributions of RDM and lnMAG for both multipole

and St. Venant approach for this source distribution. Besides the numerical310

errors, we also visualize the boundaries of the mesh elements (gray lines) to be

able to estimate the position of the dipole source relative to the mesh element.
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Figure 6: Cumulative relative frequencies of RDM (left) and lnMAG (right) in realistic head

model.

For the multipole approach, we find a smooth distribution of the errors that

increases continuously with the eccentricity (from bottom left to top right). In

contrast, for the St. Venant approach we find that the errors clearly depend315

on the position of the dipole inside the element. Both RDM and lnMAG jump

when the node of the FE grid closest to the dipole position changes. Therefore,

in practical applications, a careful selection of the dipole position (commonly

directly on the nodes of the FE mesh) is advisable to achieve optimal numerical

accuracies for the St. Venant approach, whereas such precautions do not seem320

to be necessary for the multipole approach.

4.2. Realistic head model studies

To estimate the accuracy of St. Venant and multipole approach in a more

realistic scenarios, we calculated forward solutions in a realistic head model.

Figure 6 displays the cumulative relative frequency for RDM and lnMAG com-325

pared to the reference solution in the realistic head model. The cumulative

relative frequency indicates the fraction of sources for which RDM and lnMAG,

respectively, lie below a certain value, i.e., the y-value of the curve indicates

which fraction of sources has an error smaller than the x-value. Accordingly,

the rise of the curve should be as steep as possible for both the RDM and ln-330

MAG and furthermore as close as possible to the x=0 line for the lnMAG. The

results in the realistic (tetrahedral) head model (Fig. 6) are in line with the

results of the sphere study. Both with regard to RDM and lnMAG, the mul-

18



tipole approach leads to smaller errors than the St. Venant approach (visible

through a steeper curve for the RDM and a curve more closely centered around335

the zero-line for the lnMAG).

To demonstrate the possibility of simulating quadrupolar sources using the

multipole approach, we generated a scenario as illustrated in Figure 7a. This

scenario, a “linear quadrupole”, represents distributed activity on both sides of

a gyrus (gray arrows), which can approximately be represented by two dipolar340

sources orthogonal to the cortex surface with opposite signs, one for each side

of the gyrus (black and red arrows m and −m in Figure 7a). In our idealized

scenario of symmetric brain activity with equal source strength on both sides

of the gyrus, there would be no resulting EEG signal when simulated as two

dipole sources at the same position, since the EEG signals of the two sources345

are exactly the inverse of each other and cancel out.

However, this source scenario has a non-zero quadrupole moment. The

quadrupole moment of such a (unit) source in an orthonormal coordinate sys-

tem with the dipole direction m as the first basis vector is diagonal, Q =

diag(4,−2,−2), and can be simulated using the multipole approach.350

In practice, it is not realistic that the activity on the two sides of the gyrus

(black and red arrows) exactly cancels out, so that a residual dipole moment in

addition to the quadrupole moment can be expected. Nevertheless, a scenario

as depicted in Figure 7a cannot be optimally reconstructed when a source space

consisting of only dipolar sources is used for source analysis. The multipole355

approach allows to easily expand the source space with quadrupolar sources to

better explain complex, yet not unrealistic, source scenarios in which quadrupo-

lar sources occur.

Figures 7b, c show the resulting EEG patterns for a dipolar source with

moment m and a quadrupolar source with moment Q, respectively. Three360

poles (one positive, two negative) are visible when performing a simulation of

a superficial, perfectly tangential linear quadrupole in a sphere model with full

sensor coverage. Since in our simulation of the quadrupolar source in a realistic

head model the source is neither perfectly tangential nor full sensor coverage is
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Figure 7: Schematic illustration of a scenario that creates a quadrupolar source consisting of

two dipoles with opposite dipole moments (a) - distributed neural activity on both sides of

the gyrus (gray arrows) leads to overall dipole moments m and −m (black and red arrows),

so that the net dipole moment is zero, but a quadrupole moment Q remains. Topoplot of

dipolar (b) and quadrupolar (c) source in the somatosensory cortex, simulated in the realistic

head model for 10-10 EEG cap. Please observe the difference in color bar range in Subfigures

b and c.

given, only one clearly positive and one clearly negative pole are visible within365

the coverage of the EEG cap. The maximal voltage measured at the head surface

for the quadrupolar source is only 4% of the maximum for the dipole source.

5. Discussion

The multipole approach proposed in this study improves the numerical ac-

curacy and stability of FEM EEG forward solutions for both tetrahedral and370

hexahedral finite element meshes and achieves a constantly high accuracy in

both spherical and realistic head models. The multipole approach therefore

simplifies the use of the FEM in EEG source analysis, as there is no more need

to strictly control the placement of sources to achieve optimal numerical accu-

racies, be it with regard to the position of the dipole source relative to the mesh375

element (see Figure 5) or with regard to the distance to the gray matter/CSF

interface (see Figures 2, 3). Additionally, the multipole approach allows the

modeling of quadrupolar sources (see Figure 7), which can be advantageous not

only in MEG and EEG source localization (Jerbi et al., 2004, 2002; Mosher

et al., 1999; Nolte and Curio, 1997; Riera et al., 2012), but also in the diagnosis380
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of spinal cord disorders where quadrupolar patterns occur (Tomori et al., 2010;

Sumiya et al., 2017; Ishii et al., 2012).

The accuracy, speed, and numerical stability of the St. Venant approach

for arbitrary source positions and orientations has been shown in many studies

for different spherical and realistic head models, for example in Bauer et al.385

(2015); Lew et al. (2009) and Vorwerk et al. (2012). In these studies, the St.

Venant approach performs superior to other approaches based on the classical

continuous Galerkin (CG)-FEM and also when compared to BEM approaches.

From our results it can be concluded that the multipole approach outperforms

the St. Venant approach in both spherical and realistic tetrahedral head models390

and therefore most other approaches based on CG-FEM. At the same time, the

multipole approach did not lead to a significant increase of computation times

in comparison to the St. Venant approach (see Table 3).

In the hexahedral sphere model, the differences between St. Venant and

multipole approach are less clear. The numerical errors at high eccentricities395

for both approaches are clearly increased compared to the tetrahedral model,

because of the less accurate representation of the compartment boundaries in the

hexahedral mesh. An improvement of the numerical accuracy for the multipole

approach can be seen only for the topography error RDM for highly eccentric

radial sources, which correspond to sources close to the cortex surface with400

an orientation normal to this surface in realistic head models. This kind of

sources appears in many practical applications and a high numerical accuracy

for these sources is therefore important. For the same sources, we also find a

greater and more variable magnitude error for the multipole approach than for

the St. Venant approach. However, this error is less relevant in most practical405

applications.

Figure 5 demonstrates the increased numerical stability achieved by the mul-

tipole approach. This property allows for a placement of sources without taking

into account the position relative to the mesh elements, as it is necessary for

the St. Venant approach due to the discontinuous distribution of the numerical410

errors. Thereby, the generation of source spaces for inverse analysis is simplified,
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as additional preprocessing steps controlling the position of the source relative

to the mesh element can be omitted.

In a recent study, Miinalainen et al. (2019) introduced a novel approach for

EEG forward modeling expanding previous work implementing H(div)-conforming415

source models (Pursiainen et al., 2016, 2011). This approach achieves a higher

accuracy than the St. Venant approach at highest eccentricities in spherical

head models. However, no numerical errors in a realistic head model have been

evaluated so far. Performing a comparison of this approach with the multipole

approach, especially in realistic head models, should be a future goal.420

For now, the cropping method applied for both St. Venant and multipole

approaches to remove monopoles outside the source compartment is very simple,

as it removes all invalid nodes from the computed point cloud, in line with the

approach introduced by Medani et al. (2015). Though performing well in our

study, this might result in removing too many nodes in more complex geometries425

and leaving equation (9) underdetermined. Therefore, future studies should

investigate algorithms that are also able to include new (valid) nodes in the

linear system (9) in a second step to prevent an underdetermined linear system.

The ability of the multipole approach to simulate quadrupolar sources has

only briefly been demonstrated in this manuscript. Aiming for an application in430

practice, a thorough evaluation of the accuracy that is achieved for quadrupolar

sources is necessary, both in comparison to an analytical solution in sphere

models and to the subtraction method for the simulation of quadrupolar sources

presented in Beltrachini (2018).

6. Conclusion435

We have introduced the multipole approach for EEG forward solutions and

demonstrated that it outperforms the established St. Venant approach for dipo-

lar sources in spherical and realistic head models. The implementation of the

multipole approach based on existing implementations of the St. Venant ap-

proach, such as in FieldTrip, is straight-forward. Therefore, it is a future goal440
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to make the multipole approach available for an application in practice. Whereas

the modeling of quadrupolar sources might be of great use in a variety of appli-

cations, further evaluations of the numerical accuracy are necessary before an

application in practice can be recommended.
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Ü. Aydin, J. Vorwerk, P. Küpper, M. Heers, H. Kugel, A. Galka, L. Hamid,

J. Wellmer, C. Kellinghaus, S. Rampp, C. Wolters, Combining EEG and515

MEG for the reconstruction of epileptic activity using a calibrated realistic

volume conductor model, PLOS ONE 9 (3) (2014) e93154.

25



M. Rullmann, A. Anwander, M. Dannhauer, S. Warfield, F. Duffy, C. Wolters,

EEG source analysis of epileptiform activity using a 1mm anisotropic hexa-

hedra finite element head model, NeuroImage 44 (2) (2009) 399–410.520

J. J. Riera, T. Ogawa, T. Goto, A. Sumiyoshi, H. Nonaka, A. Evans,

H. Miyakawa, R. Kawashima, Pitfalls in the dipolar model for the neocor-

tical EEG sources, Journal of neurophysiology 108 (4) (2012) 956–975.

K. Jerbi, S. Baillet, J. Mosher, G. Nolte, L. Garnero, R. Leahy, Localization of

realistic cortical activity in MEG using current multipoles, NeuroImage 22 (2)525

(2004) 779–793.

K. Jerbi, J. Mosher, S. Baillet, R. Leahy, On MEG forward modelling using

multipolar expansions, Physics in Medicine & Biology 47 (4) (2002) 523.

J. C. Mosher, R. M. Leahy, D. W. Shattuck, S. Baillet, MEG source imaging

using multipolar expansions, in: Biennial International Conference on Infor-530

mation Processing in Medical Imaging, Springer, 15–28, 1999.

G. Nolte, G. Curio, On the calculation of magnetic fields based on multipole

modeling of focal biological current sources, Biophysical journal 73 (3) (1997)

1253–1262.

M. Tomori, S. Kawabata, S. Tomizawa, S. Ishii, M. Enomoto, Y. Adachi,535

T. Sato, K. Shinomiya, A. Okawa, Diagnosis of incomplete conduction block

of spinal cord from skin surface using spinal cord evoked magnetic fields,

Journal of Orthopaedic Science 15 (3) (2010) 371–380.

S. Sumiya, S. Kawabata, Y. Hoshino, Y. Adachi, K. Sekihara, S. Tomizawa,

M. Tomori, S. Ishii, K. Sakaki, D. Ukegawa, et al., Magnetospinography540

visualizes electrophysiological activity in the cervical spinal cord, Scientific

Reports 7 (1) (2017) 2192.

S. Ishii, S. Kawabata, S. Tomizawa, M. Tomori, K. Sakaki, K. Shinomiya,

K. Sekihara, T. Sato, Y. Adachi, A. Okawa, Conductive neuromagnetic fields

26



in the lumbar spinal canal, Clinical Neurophysiology 123 (8) (2012) 1656–545

1661.

D. Braess, Finite elements: theory, fast solvers and applications in solid me-

chanics., Cambridge University Press, 2007.

J. D. Jackson, Classical electrodynamics, John Wiley & Sons, New York, NY,

3rd ed. edn., ISBN 978-0-471-30932-1, 1999.550

A. K. Louis, Inverse und schlecht gestellte Probleme, Springer-Verlag, 2013.

J. Vorwerk, R. Oostenveld, M. C. Piastra, L. Magyari, C. H. Wolters, The

FieldTrip-SimBio pipeline for EEG forward solutions, Biomedical engineering

online 17 (1) (2018) 37.

S. Pursiainen, J. Vorwerk, C. H. Wolters, Electroencephalography (EEG) for-555

ward modeling via H (div) finite element sources with focal interpolation,

Physics in Medicine & Biology 61 (24) (2016) 8502.

C. Wolters, A. Anwander, G. Berti, U. Hartmann, Geometry-adapted hexahe-

dral meshes improve accuracy of finite element method based EEG source

analysis., IEEE Transactions on Biomedical Engineering 54 (8) (2007c) 1446–560

1453.

T. Medani, D. Lautru, D. Schwartz, Z. Ren, G. Sou, FEM method for the EEG

forward problem and improvement based on modification of the saint venant’s

method, Progress In Electromagnetics Research 153 (2015) 11–22.

H. Si, TetGen: A quality tetrahedral mesh generator and three-dimensional de-565

launay triangulator, V1.3, user’s manual, Tech. Rep. 9, Weierstrass Institute

for Applied Analysis and Stochastics, http://tetgen.berlios.de, 2004.

D. Camacho, R. Hopper, G. Lin, B. Myers, An improved method for finite

element mesh generation of geometrically complex structures with application

to the skullbase, Journal of Biomechanics 30 (10) (1997) 1067–1070.570

27



J. Vorwerk, J.-H. Cho, S. Rampp, H. Hamer, T. Knösche, C. Wolters, A Guide-
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