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Abstract—  The primary somatosensory cortex remains one 
of the most investigated brain areas. However, there is still an 
absence of an integrated methodology to describe the early 
temporal alterations in the primary somatosensory network. 
Source analysis based on combined Electro-(EEG) and 
Magneto- (MEG) Encephalography (EMEG) has been recently 
shown to outperform the one's based on single modality EEG 
or MEG. The study and potential of combined EMEG form the 
goal of the current study, which investigates the time-variant 
connectivity of the primary somatosensory network. A subject-
individualized pipeline combines a functional source 
separation approach with the effective connectivity analysis of 
different spatiotemporal source patterns using a realistic and 
skull-conductivity calibrated head model. Three-time windows 
are chosen for each modality EEG, MEG, and EMEG to 
highlight the thalamocortical and corticocortical interactions. 
The results show that EMEG is promising in suppressing a so-
called connectivity ‘leakage’ effect when later components 
seem to influence earlier components, just due to too similar 
leadfields. Our current results support the notion that EMEG 
is superior in suppressing the spurious flows within a network 
of very rapid alterations. 
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I. INTRODUCTION 
Electro- (EEG) and magnetoencephalography (MEG) 

are measurement modalities that offer temporal resolution in 
the (sub-)millisecond range and thereby allow to non-
invasively study network connectivity in the human brain. 
The primary somatosensory cortex (SI) is a well-
investigated network that can offer high Signal-to-Noise 
Ratio (SNR)  somatosensory evoked potentials (SEP) in 
EEG or fields (SEF) in MEG [1]. Most often, electrical 
stimulation at the median nerve is applied for eliciting 
SEP/SEF. The first component arrives at 14 ms post 
stimulus in the thalamic region, (P14). A first cortical 
component can be observed at 20 ms (P20/N20), localized 
in Brodmann area 3b in the primary somatosensory cortex 
(SI). A next component at 30 ms (N30/P30) has opposite 
polarity with regard to the P20/N20 and a third can be found 
at 45 ms (P45/N45) [1]. An emerging question is whether 
the combination of EEG and MEG can outperform single 
modality EEG or MEG in source and connectivity analysis 
of these early thalamocortical connections. 

Due to the complementary character of EEG and MEG 
in theory [2] and in practice [3], a combination of both, 
EMEG, can enable more robust source reconstructions than 
the single modalities [3, 4]. While MEG source analysis is 
mainly not influenced by the inter-individual skull 

conductivity variations, the EEG is most sensitive to it [3, 4, 
5]. In our work, in order to individualize the head volume 
conductor model and thereby enable a combined EEG and 
MEG analysis, we will use a calibration procedure, where 
individual skull conductivity is estimated within the source 
analysis of the SEP/SEF P20/N20 component [3, 4],  and we 
will individually model white matter conductivity 
anisotropy using diffusion tensor Magnetic Resonance 
Imaging (DTI) data [6]. Thereby, we can exploit the 
complementary characteristics of EEG and MEG for 
investigating the time-variant alterations in the primary 
somatosensory network. 

The early SEP/SEF responses are temporally close to 
each other, and a decomposition technique might be 
necessary before attempting to reconstruct the time-variant 
primary somatosensory network. Functional source 
separation (FSS) is a method that has been applied in SEP 
[7] and SEF [8] responses separately and has led to different 
yet statistically relevant functional sources – FS. In the 
present study, we will make use of the FSS algorithm for the 
distinction of primary somatosensory components from 
combined SEP/SEF as well as single modality SEP or SEF 
data. In terms of source reconstruction, we use the 
standardized LOw-Resolution brain Electromagnetic 
TomogrAphy – sLORETA, which was shown to not suffer 
from depth bias in single source reconstruction scenarios   
[9]. 

In this study, we will attempt to investigate network 
alterations in the primary somatosensory network. However, 
due to the close proximity of the sources in SI, we have to 
be aware of connectivity leakages between the reconstructed 
source nodes of the early transient components [10]. A 
leakage effect may lead to implausible connections within a 
network. The focus will thus be on testing the ability of 
EMEG in better suppressing leakage effects when compared 
to single modality EEG or MEG investigations. As a 
connectivity estimator, we employ the Generalized 
Orthogonalized Partial Directed Coherence – GOPDC, 
which can diminish the co-variability due to spatial 
smearing [11]. In combination with surrogate analysis, 
having the goal not to lose the most informative network 
connections [12], we compare side-by-side the derived 
networks from EEG, MEG, and EMEG. 

In summary, the current study provides a subject-
specific pipeline that builds a modular scheme based on 
advanced methods as follows: (1) FSS to isolate the 
functional components; (2) given the individually skull 
conductivity calibrated realistic head model of the 
participant, source analysis of the back-projected EEG, 
MEG and EMEG data is performed based on Finite Element 
Method (FEM) forward modeling and the sLORETA 



 

inverse approach; (3) connectivity analysis is applied to the 
reconstructed source waveforms using time-varying 
GOPDC. 

The description of methods and data is illustrated in 
Section II. The results of the study are presented in Section 
III, followed by a discussion and the outlook in Section IV. 

II. PARTICIPANT AND METHODS 

A. Experimental setup and Preprocessing 
A  healthy volunteer (32 years old) underwent a median 

nerve stimulation at the right wrist. The stimulus strength 
was adjusted until a clear movement of the thumb was 
observed. The inter-stimulus interval (ISI) was 400 ms with a 
random deviation of 50 ms to avoid habituation. We used a 
pulse duration of 0.5 ms. The entire measurement session 
was ten minutes long and resulted in 1,198 trials. 
Simultaneous EEG/MEG was acquired with a sampling 
frequency of 1200 Hz. The EEG system consisted of 80 
electrodes, and the MEG system (VMS MedTech Ltd) was 
comprised of 275 first order axial gradiometers. A 3 T 
MAGNETOM MRI (Siemens Medical Solutions) was used 
to measure T1w-, T2w- and diffusion-weighted MR images 
of 1 mm and 1.9 mm resolution, respectively.  

The preprocessing was implemented with the high-level 
FieldTrip toolbox in MATLAB [13]. In particular, a band-
pass filter of 20-250 Hz and a Notch filter suppressing the 
(harmonics of) power line noise of 50 Hz were applied. The 
window of each trial was defined as the time interval from -
100 to 200 ms, with the stimulus trigger at 0 ms and the 
stimulus artifact peak at 5 ms.  

B. Functional Source Separation and Source Analysis 
The FSS isolates each component separately, starting 

each time from the observed data X and returns the 
functional source (FS) with the corresponding functional 
property [7, 8]. The cost function used by the algorithm is 
defined as 𝐹𝐹 =  𝐽𝐽 +  λ𝑅𝑅𝐹𝐹𝐹𝐹 , where J is the kurtosis being 
used in the independent component analysis (ICA), 𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 is 
the a priori information and λ is chosen to maximize the 
influence of the RFS while minimizing the computational 
time. The prior knowledge for the 𝑘𝑘𝑡𝑡ℎ  component was 
computed as: 

𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = � |𝐸𝐸𝐸𝐸(𝑡𝑡)|
𝑡𝑡𝑘𝑘 + Δ2𝑡𝑡𝑘𝑘 

𝑡𝑡𝑘𝑘 − Δ1𝑡𝑡𝑘𝑘 

−  � |𝐸𝐸𝐸𝐸(𝑡𝑡)|
β

α
 (1) 

where the EA (i.e., the evoked activity) is determined by 
averaging signal trials of the corresponding source FSk (k = 
14, 20, 30 and 45), 𝑡𝑡𝐹𝐹 is the time point with the maximum 
activation, the Δ1𝑡𝑡𝐹𝐹  and Δ2𝑡𝑡𝐹𝐹  denoted the 50% of this 
maximum activation around 𝑡𝑡𝐹𝐹 and the second term denoted 
the baseline (no response). The simulated annealing 
algorithm is employed to find the global optimum of the cost 
function F, starting from an initial random vector 𝑤𝑤𝑖𝑖𝑖𝑖  until it 
is converged to an optimal 𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡 . The parameters we use set 
as follows: λ is set at 1𝑒𝑒5 for EEG and 1𝑒𝑒3 for MEG; for SA 
the cooling factor is set to 0.8, the initial temperature at 1, 
stop temperature at 1𝑒𝑒−16 and max iteration at 300. 
 Source localization was performed on the back-projected 
FSs of each modality (EEG, MEG, and EMEG) for every 
time instant, using the sLORETA algorithm on a skull-
conductivity calibrated and white-matter anisotropic realistic 
head model including six tissue compartments (scalp, skull 

compacta and spongiosa, cerebrospinal fluid (CSF), gray and 
white matter) [3, 4]. The source waveforms were produced 
by taking the average power of 100 samples in the source 
space with the maximum power. FEM forward simulations 
were applied through the SimBio toolbox 
(https://www.mrt.uni-jena.de/simbio/index.php/Main_Page). 
The conductivities were 0.43 S/m for the scalp, 0.0083 S/m 
for skull compacta, 0.031 S/m for skull spongiosa, 1.79 S/m 
for CSF and 0.33 for gray matter and anisotropic white 
matter conductivity was modeled based on the the dMRI data 
[6]. The source space followed the gray matter folding and 
the sources fulfilled the St. Venant condition [3]. The total 
number was 17618 source points. 

C. Source Connectivity Analysis 
 We modeled the effective source connectivity between 
the components of the somatosensory network by using the 
time-varying generalized orthogonalized partial directed 
coherence (tv-GOPDC) [11]. The connectivity analysis was 
applied for the source waveforms of each modality. A 
window of 10 ms was selected and an overlap between the 
previous and the next window (sliding window) of less than 
1 ms. Each window was fitted to a multivariable model in 
order to bring out the causalities between the signals in the 
coefficients matrix A, which was calculated using the ARfit 
toolbox [14]. The tv-GOPDC flows were calculated by 
computing the mean of frequency values, whose outcome 
was placed at the middle time point of the sliding window. 
Finally, we assessed the resulting flows through a statistical 
evaluation for the survival of the significant flows. An 
empirical distribution of 300 surrogate data was estimated 
from which a threshold was determined at 90% of the 
distribution. A flow was determined as significant if it was 
higher than the aforementioned statistical threshold.  

III. RESULTS 
The averaged SEP/SEF across all trials are presented in 

Fig. 1 together with the topographies at the latencies of 
interest. Clear dipolar patterns occurred for the components 
P20/N20, N30/P30 and P45/N45 for both EEG and MEG 
while the P14 had a dipolar pattern with large distance 
between poles, pointing to the higher depth of the 
underlying source. When comparing the topographies 
between EEG and MEG, we observe that the EEG scalp 
topography is less focal and always perpendicular to the 
MEG one. Furthermore, the MEG is not able to detect the 
P14 component. 

Fig. 2 illustrates the evoked activities for each modality 
together with the scalp topographies of the back-projected 
𝐹𝐹𝐹𝐹𝐹𝐹  at the respective time peaks (dashed lines). We 
abbreviated it as EAk where k denotes the corresponding 
functional component of interest (P14, P20/N20, N30/P30 
and P45/N45). Each EAk showed an enhancement around the 
peak of the FSk of interest (dashed lines) of the functional 
components. 

A similar pattern was observed in the source waveforms 
(Fig. 3) after the application of source analysis for each 
modality (EEG, MEG and EMEG). Furthermore, the EMEG 
waveforms of the common components for EEG and MEG 
preserved higher power than the single modalities (EEG or 
MEG). In addition, the maximum power of the sLORETA 
reconstructions is shown on the T1-MRI for the Thalamic 
component and for the SI components, which were 
distributed in the area 3b of the primary somatosensory 



 

 
Fig. 1.  The averaged SEP (upper row) and SEF (lower row) responses with 
the topographies of their functional components at the corresponding peaks. 
Red lines indicate the latency of every depicted scalp topography. 

cortex. We could observe that EMEG was able to localize 
the P14 closer to the thalamus than EEG alone. All other 
components were localized in or close to area 3b for all 
modalities, with EEG localizations being slightly deeper. 
 The time-varying connectivity analysis was performed on 
the source waveforms, separately for each modality. Three 
time windows were selected to point out the effective 
connectivity of: 𝑃𝑃14 → 3𝑏𝑏, 3𝑏𝑏 → 𝑃𝑃45/N45 and 𝑃𝑃45/N45 → 
3𝑏𝑏. The area 3b was reflected by the averaged activation 
across the P20 and N30 components with average peak at 30  

 
Fig. 2.  The evoked activities for every functional component of EEG (upper 
row) and MEG (lower row). The topographies of the back-projected 𝐹𝐹𝐹𝐹𝐹𝐹 (k 
= 14, 20, 30 and 45) were illustrated at the corresponding peaks (dashed 
lines) of their functional components. The horizontal axis shows the time in 
ms and the vertical axis (note the different scaling) represents the absolute 
amplitude of the evoked activities. 

 
Fig. 3.  The source waveforms for each modality EEG, MEG and EMEG 
with the maximum power of the sLORETA reconstructions visualized on the 
T1 MRI  (coronal view for the Thalamic component and axial view for the 
SI components) with their specific time peaks (dashed lines). The horizontal 
axes show the time in ms and the vertical axes (note the different scalings) 
show the power of the source waveforms. 

 
ms. These windows (Fig. 4) represented the maximum 
influence of the first component to the second one, around 
the peak of the former for a range of ± 5 𝑚𝑚𝑚𝑚. Quite similar 
patterns were highlighted among the three modalities for 
every time window. However, EMEG reduced the spurious 
flow from P45/N45 to 3b for the first time window (Fig. 4, 
first column) in comparison with EEG from 0.13 (EEG) 
down to 0.08 (EMEG). Furthermore, EMEG strengthened 
the possible flow in the later time-window (Fig.4, right 
column) from P45/N45 to 3b when compared to the EEG 
from 0.07 (EEG) to 0.12 (EMEG). 

 

 



 

 
 

 
Fig. 4.  The causality graphs of each modality for three specific time windows. For these windows, the maximum influence of the P14, 3b and P45/N45 was 
represented at a range of ± 5 𝑚𝑚𝑚𝑚 around their peaks to the 3b, P45/N45 and 3b, respectively. The forward flow was represented with blue and the backward 
with red. Additionally, the MEG was not able to detect activities from P14. For this reason it was not interacting with the other components. Only the flows that 
survived the statistical evaluations were presented. 

IV. DISCUSSION AND OUTLOOK 
 In the present subject-specific study, we proposed a 
pipeline for connectivity analysis of early somatosensory 
evoked responses using a modular sequence of novel 
techniques, such as the functional source separation, the use 
of individual and calibrated head models and the combined 
EEG and MEG source analysis. We used the separation 
algorithm, FSS, to decompose the somatosensory evoked 
responses into functionally independent components. The 
realistic head model used in source localization comprised 
six compartments, involving skin, skull compacta, skull 
spongiosa, CSF, gray and white matter, including the brain 
anisotropy and calibrated skull conductivities. Our study 
indicates that, while the main problem of decomposing the 
single components with quite similar spatial topography is 
nearly identical in EMEG or single modality EEG or MEG, 
the combined EMEG uses the complementary information of 
both modalities and reduces the most probably spurious flow 
from the later cortical P45 component to the earlier 3b 
component in the early time-window of the most probably 
mainly thalamo-cortical flow. Thereby, the EMEG is 
considered superior in source analysis compared to the single 
EEG or MEG, see also [4]. Finally, the tv-GOPDC can 
detect a  dynamic response of the brain in the somatosensory 
experiment even if the network has rapid alternations. 
 Our EMEG source network brought together the 
complementarity of EEG and MEG [2] for modeling the 
rapid alterations within the somatosensory network at very 
early time instants. Comparing with previous attempts, the 
authors in [8] achieved to enhance the somatosensory 
functional source responses by applying FSS on SEF 
responses. Later, study [7] utilized the FSS method for the 
decomposition of the early SEP components, but their source 
estimations were based on simplified head models of 
standard tissue conductivity and thereby, the proposed results 
might be influenced due to the vulnerability of the electric 
potentials to tissue conductivity changes [3, 4, 5]. In the 
present work, we showed that FSS was able to derive 

components for all types of measurement modalities. The 
source reconstructions were accurately estimated in 
Brodmann area 3b and near to the thalamus by using an 
individually calibrated realistic head volume conductor 
model.  
 With regard to the resulting causal networks, we could 
observe the directed connections between the investigated 
components. The present results show that EEG was able to 
detect also the deep thalamic source, while MEG was 
insensitive to it [3]. However, the EEG-only based network 
reconstructions contained a higher connectivity leakage [10] 
in the thalomocortical connections, which were alleviated 
when we combined SEP and SEF in the EMEG. The EMEG-
based network reconstructions will additionally allow more 
precise source localizations, due to the MEG mm accurate 
localization properties for lateral and mainly tangentially-
oriented SI sources and the therefore much lower sensitivity 
of the MEG SI source reconstructions to individual tissue 
conductivities [3, 4].   
 Due to the low number of subjects (single subject study), 
the present functional source separated components and the 
revealed source network results cannot be generalized to 
other subjects, we therefore would need to run a group-study, 
as planned in our future investigations. In [15], for example, 
it was shown that in 10 out of 12 subjects, the thalamus did 
not contribute to the peak of the P20 component, while in 2 
out of 12, there was still an overlaid activity. Network 
connectivity might thus also have inter-individual 
differences.        
 To conclude, in this work we developed an integrated 
approach for the design of a novel pipeline that should 
improve the reconstruction of causalities in neural networks. 
Limitations are network components of nearly the same  
origin and nearly the same (or inverted) orientation. The 
advantages of the proposed pipeline can be seen in using the 
complementarity of EEG and MEG, focusing on specific 
subject characteristic and in better revealing close temporal 
causalities of components by suppressing spurious 
interaction activities. However, leakages on the connection 



 

of nodes occurred in all modalities, they were reduced, but 
not eliminated, by the use of  EMEG. Even though further 
experiments are needed as described above, our study 
supports the notion that network connectivity investigations 
can profit from the use of EMEG and source reconstructions 
that are based on individually skull-conductivity calibrated 
realistic FEM head models. 
 This study was based on the recently defended diploma 
thesis at the Technical University of Crete [16]. 
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