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Abstract

Source imaging of electroencephalography (EEG) or magnetoencephalography (MEG) has
shown promising results in the identification of the epileptogenic zone for epilepsy surgery.
M/EEG source imaging requires the solution of the M/EEG inverse problem. Most of the ap-
proaches are, however, static approaches that ignore the temporal information in the recordings.
Dynamical inverse solutions that are based on state-space models consider this information and
use the Kalman filter to reconstruct the current density in the brain. The spatiotemporal Kalman
filter (STKF) was implemented to tackle the high-dimensional M/EEG inverse problem.

The aim of this thesis was to continue the algorithmic development of the STKF and its re-
gional variant, the regional STKF (RSTKF), and to investigate their applicability in the field of
epileptology using simulated and clinical EEG recordings of epileptic spikes and focal seizures.
The accuracy and spatial resolution of the STKF and the RSTKF were evaluated and com-
pared to those of LORETA (low resolution brain electromagnetic tomography), a standard static
method. The results were evaluated using visual inspection by an epileptologist, atlas labels, or
postoperative magnetic resonance images.

The grid choice and the definition of the Laplacian matrix influence the performance of the
STKEF. The best STKF results were obtained when a full-brain grid was used together with the
modified definition of the Laplacian matrix. Compared to LORETA, the results of the STKF
were more focal and closer to the target area. Additionally, moderate spike averaging improved
the results of the STKF. The STKF outperformed LORETA in case of low-resolution EEG data
with 9-45 electrodes. For high-resolution EEG data with 64 electrodes or more, an additional
dimensionality reduction step that is based on singular value decomposition was successfully
added to the STKF algorithm to stabilize and accelerate the STKF, and to suppress spurious
sources. In addition to that, STKF was applied, for the first time, to EEG recordings of a
focal seizure and it outperformed LORETA with respect to the accuracy and consistency of the
localization. For simultaneously-measured MEG-EEG recordings, the measurement model was
generalized in order to perform MEG-EEG fusion within the framework of source analysis.
MEG-EEG fusion produced more accurate and more stable results compared to the separate
analysis of MEG or EEG data. Finally, the dynamical model of the RSTKF was extended to
describe seven regions. The performance of the RSTKF was superior to that of LORETA and
STKE, especially when the depth of the source increased.

The STKF may find application in the localization of the epileptogenic zone from low-
resolution EEG data of focal seizures, non-averaged, or moderately averaged spikes, when the



source is superficial. For deeper sources, RSTKF may produce more accurate results.
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Zusammenfassung

Quellenbildgebung hat in der Elektroenzephalographie (EEG) und Magnetoenzephalographie
(MEG) vielversprechende Ergebnisse bei der Identifizierung epileptogener Zonen fiir die
Epilepsiechirurgie geliefert. Fiir die M/EEG-Quellenbildgebung ist eine Losung des inversen
Problems des M/EEGs notwendig. Die meisten Losungsansitze sind aber statisch und ignori-
eren die zeitliche Komponente in den Aufzeichnungen. Dynamische inverse Losungen, die auf
Zustandsraum-Modellen basieren, beriicksichtigen diese und nutzen das Kalman-Filter, um die
Quellstromdichte im Gehirn zu rekonstruieren. Das raumzeitliche oder spatiotemporale Kalman
Filter (STKF) wurde implementiert, um die Hochdimensionalitdt des inversen Problems des
M/EEGs beherrschbar zu machen.

Das Ziel dieser Arbeit war die algorithmische Weiterentwicklung des STKF und seiner re-
gionalen Variante (RSTKF) sowie die Untersuchung ihrer Anwendbarkeit in der Epileptologie
unter Verwendung simulierter und klinischer EEG-Aufzeichnungen von epileptischen Spikes
und fokalen Anfillen. Dabei wurden Genauigkeit und rdumliche Auflosung des STKF und
des RSTKF bewertet und mit denen von LORETA (low resolution brain electromagnetic to-
mography), einem statischen Standardverfahren, verglichen. Die Ergebnisse wurden von einem
Epileptologen visuell inspiziert sowie mittels Hirnatlas-Referenzregionen oder postoperativer
Kernspintomogramme bewertet.

Die Wahl des Gehirn-Rasters und die Definition der Laplace-Matrix beeinflussen die Leis-
tung des STKFs. Die besten STKF Ergebnisse wurden mit einem vollstdndigen Gehirn-Raster
und der modifizierten Definition der Laplace-Matrix gewonnen. Im Vergleich zu LORETA
waren diese fokaler und ndher am Zielbereich. Zusitzlich verbesserte die Mittelung einer mit-
telgroBen Anzahl von Spikes die Ergebnisse des STKF. Das STKF iibertraf LORETA im Falle
niedrigauflosender EEG-Daten mit 9-45 Elektroden. Bei hochauflosenden EEG-Daten mit 64
Elektroden oder mehr wurde ein zusétzlicher, auf Singuldrwertzerlegung basierender Dimen-
sionalitidtsreduktionsschritt erfolgreich zum STKF Algorithmus hinzugefiigt, um das STKF zu
stabilisieren, zu beschleunigen und storende Quellen zu unterdriicken. Dariiber hinaus wurde
das STKF zum ersten Mal auf EEG-Aufzeichnungen eines fokalen Anfalles angewendet und
schnitt dabei besser ab als LORETA, bezogen auf Genauigkeit und Konsistenz der Lokalisa-
tion. Bei simultan gemessenen MEG-EEG-Aufzeichnungen wurde das Messmodell general-
isiert, um eine MEG-EEG-Fusion im Rahmen der Quellenanalyse durchzufiihren. Diese pro-
duzierte genauere und stabilere Ergebnisse im Vergleich zur getrennten Analyse von MEG-
und EEG-Daten. SchlieBlich wurde das dynamische Modell des RSTKF von zwei auf sieben
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Regionen erweitert. Die Leistungsfihigkeit des RSTKF iibertraf die von LORETA und STKEF,
insbesondere mit Zunahme der Quellentiefe.

Das STKF konnte Anwendung finden bei der Lokalisierung der epileptogenen Zone aus
niedrigauflosenden EEG-Daten fokaler Anfille und nicht gemittelter oder moderat gemittelter

Spikes, wenn die Quelle oberflachlich ist. Bei tiefer liegenden Quellen konnte RSTKF genauere
Ergebnisse liefern.
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Chapter 1

Introduction

1.1 Motivation

Epilepsy is the second most common neurological disorder and is characterized mainly by the
occurrence of epileptic seizures [Cha94]. About two thirds of cases of epilepsy can be treated
using medication. The other one third of the cases displays resistance to pharmacological ther-
apy. In this group some patients can be treated by epilepsy surgery. If a single resectable focus is
successfully localized, there is a high probability that the patient will become seizure-free after-
wards. During the presurgical evaluation a set of diagnostic measures involving neuroimaging
modalities are used to localize the epileptogenic zone, the removal of which should lead to
seizure freedom. The localization of the generators of epilepsy in the brain and reconstruction
of sources and networks require neuroimaging methods with good spatial and temporal resolu-
tions. Non-invasive electrophysiological modalities such as electroencephalography (EEG) or
magnetoencephalography (MEG) measure the potential differences on the human scalp, in case
of EEG, or the magnetic fields near the head surface, in case of MEG. These two modalities
measure, with a high temporal resolution, the activity that is generated by the summation of the
postsynaptic currents or potentials of the pyramidal cortical cells, which are arranged in a favor-
able geometric position to produce a constructive summation of their potentials when enough
cells are simultaneously and synchronously active [dS13].

In the last 10 years there have been several studies that evaluated the accuracy of source
imaging of surface EEG and compared its results to postsurgical magnetic resonance images
(MRIs) and results from other invasive as well as non-invasive brain imaging modalities such
as positron emission tomography (PET) and single photon emission computed tomography
(SPECT). In [BLS™09] the accuracy of EEG source imaging was investigated using high-
resolution EEG (HR-EEG) recordings from 14 patients of epilepsy with large brain lesions.
Postsurgical MRIs were used to validate the results of source imaging. In 85% of the cases,
source imaging results were localized within the lesion. In [BSLT11] a prospective study
of 152 patients of epilepsy was conducted to compare the sensitivity and specificity of EEG
source imaging in case of low-resolution EEG (LR-EEG) to those of source imaging with high-
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resolution EEG. Additionally, the data were used to compare the accuracy of source imaging
when individual anatomy is used compared to the case of standard anatomy. Finally, EEG
source imaging was compared to PET, SPECT and MRI. The results showed that the combi-
nation of HR-EEG with individual anatomy had the highest values for sensitivity (84%) and
specificity (88%). Additionally, the comparison of these values with the sensitivity and speci-
ficity of MRI, PET or SPECT showed that EEG source imaging with HR-EEG and individual
anatomy outperformed each one of these modalities. Finally, [LPV ' 16] investigated the pre-
dictive values of source imaging with HR-EEG, MRI, PET and SPECT in the presurgical stage
using data from 190 patients of epilepsy. Source imaging with HR-EEG had the highest pre-
dictive value of postsurgical seizure freedom followed by MRI. When source imaging and MRI
agreed, the highest predictive value was reached. All of the above-mentioned studies point to
the advantages of EEG-based source imaging for the localization of the epileptogenic zone.

EEG systems are low-cost, mobile and widely available in clinics around the world. EEG
has an excellent temporal resolution (down to 1-0.05 ms) and a spatial sampling with electrode
caps that have up to 256 electrodes. 64, 128, or 256 electrodes are used in high-resolution or
high-density EEG. In low-density EEG, electrode montages with less than 64 electrodes are
used. Low-density EEG is still the norm in many clinics, research centers, gaming, and mobile
EEG. The measured signals have large amplitudes (uV to mV range), and the systems allow
experimental flexibility. MEG has been thought of as a replacement to and an improvement on
EEG, since MEG has a higher spatial resolution than EEG and is less influenced by volume
conduction effects. MEG systems, however, are costly to acquire and to maintain since they re-
quire a constant supply of liquid helium and a shielded room to perform the measurements. For
children, the distance between the sensors and the brain can be very large in certain head areas
due to the helmet design in MEG devices. Additionally, they are immobile, less flexible, and
sensitive to movement. This limits the applicability of MEG in comparison to EEG. Recently,
the complementarity of MEG and EEG has been more emphasized which led to research about
MEG-EEG fusion. For analyses on the sensor-level, the spatial resolution, especially for EEG,
is very limited and the volume conduction effect distorts the localization of interesting phenom-
ena and connectivity analyses. In order to increase the spatial resolution of EEG measurements,
source imaging is used. In this approach, the EEG inverse problem is solved and an estimate of
the current density in the whole brain is computed. The solution of the EEG inverse problem
enables a localization of the generators in addition to the reconstruction of the time courses of
activity. In a subsequent step, the time courses of activity of certain regions of interest (ROIs)
can be used to estimate connectivity among brain regions for network reconstruction.

In the first step of source imaging, the EEG data are read and preprcoessed. Artifact reduc-
tion, dimensionality reduction and re-referencing are performed in this stage. In the next step,
the EEG forward problem is solved to calculate the lead field matrix (LFM), which maps the
source locations to the sensors and includes information about the geometries and conductivi-
ties of the head tissues. If individual MRIs are available, realistic and individual head models
can be used. If the individual anatomy is not available, averaged MRIs are segmented to extract
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the geometries of the brain, skull and skin compartments. Standard conductivity values from
the literature are used for head modeling. Realistic head models can be numerically computed
using the boundary element (BE), finite element (FE) or finite difference (FD) methods. After
that, the EEG data and the lead field matrix are used in conjunction with an inverse method
to estimate the current density distribution in the brain. Finally, statistical analyses or network
reconstruction can be performed on the source imaging results.

The imaging of the brain from surface EEG data can be performed using any one of three
main approaches. In the first approach the surface EEG is assumed to be generated from a few
current dipoles in the brain whose locations, orientations and intensity are estimated. Since
these current dipoles can only represent the activity in a certain brain area, the exact location
and extension of the epileptogenic area cannot be easily delineated. In the second approach,
the so-called beamformer approach, the current density of every brain voxel is sequentially
reconstructed for one voxel at a time under the assumption of lack of correlation between the
voxels. This approach requires a good estimate of the data covariance from a long enough
segment of data and can face problems when the data includes strong correlations. In the final
approach, the distributed sources imaging approach, the current density vectors of all voxels
are simultaneously estimated. These methods need some constraints to obtain a unique solution
to the severely underdetermined EEG inverse problem. The accuracy of the solution depends
on the constraints and the mathematics of the method. Most of the methods in this approach
are static methods, i.e., they reconstruct the current density at a certain time point ignoring
the results of the previous time points. Standard methods in the field such as minimum norm
estimate (MNE) [Him84] and low-resolution electromagnetic brain tomography (LORETA)
[PMML94] belong to this category. For a review on EEG inverse methods, please refer to
[BMLO1, GCM ™08, JKM ™" 14]. The temporal information of the EEG recordings include useful
information about the locations of the sources and the interactions between them. A dynamical
source imaging method, such as the Kalman filter [Kal60], takes these temporal information
included in the measurements into account. The Kalman filter, mostly in its non-linear form, has
found many applications in inverse modeling especially in climate and ocean modeling [NP15].
There is still a great potential for this method to be applied in the field of brain modeling and
source imaging.

The spatiotemporal Kalman filter (STKF) [GYO™04b] is a modification of the traditional
Kalman filter that is especially developed to deal with the high dimensionality of the M/EEG
inverse problem. The advantage of the STKF approach is that it is based on a very flexible state
space model. A state space model has two equations that describe the spatiotemporal dynam-
ics in the brain and the measurement process respectively. The generalization of any one of
these equations can enable models with regional dynamics in the brain or fusion of MEG-EEG
recordings. State space modeling also permits the inclusion of the temporal information in the
EEG recordings into the solution of the EEG inverse problem. The Kalman filter estimates
the current density in the brain, which is the state variable in the state-space model. The other
model parameters in the state space model that describe the brain dynamics and measurement
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need to be estimated via maximum-likelihood. Maximum likelihood parameter estimation is
implemented here by minimizing the Akaike information criterion (AIC). So a parameter es-
timation phase to find the optimal model parameters precedes the current density estimation
when STKF is used.

The STKEF is based on a modified version of the original Kalman filter using a linear
state-space model with spatially and temporally constant parameters. The performance of the
method depends on the dynamical model and the accuracy of the results may be improved with
more accurate and more physiological dynamical models. This method was first published in
[GYO™04b]. After that it was further investigated in [BRK*09]. An important limitation of this
model is that it assumes spatial homogeneity of the brain. Furthermore, it does not adapt the
parameters in time. Additionally, there was no clarity about which factors influence the consis-
tency of localization, accuracy and spatial resolution of the STKF. The strengths and weaknesses
of the STKF, compared to the instantaneous methods, were not investigated in enough detail.

A further development of the model came with the state-space GARCH approach [GYO04a,
WGYOO06], where GARCH stands for generalized autoregressive conditional heteroskedastic-
ity. In this approach, a further step in the direction of time-varying parameters was taken.
Based on the authors’ experience, the dynamical noise variance parameter was judged to be the
most influential and, hence, it was adapted with time by means of its inclusion into the state
vector. The state-space GARCH approach was further developed for EEG source imaging in
[GOM™08].

First results on another generalization of the STKF resulted from the diploma thesis of
Philipp Stern [SteO8]. Here spatial heterogeneity of model parameters was introduced to the
STKF using only two brain regions and simulated and clinical EEG data were used to test the
idea.

Since both LORETA and STKF use spatial smoothness constraints, it has been useful to
compare their performance to deduce the additional advantages of temporal smoothness in the
STKF model. The standard model of the STKF was found to be superior to LORETA with
respect to localization of sources of alpha rhythms and epileptiform discharges in EEG record-
ings [GYO™04b, GOM™08]. Non-averaged segments of interest (for example, non-averaged
epileptiform discharges) were used in these analyses and there was no need to average similar
events.

1.2 Aim of the Thesis

This work aims at continuing the algorithmic development of the spatiotemporal Kalman fil-
ter (STKF) and testing new and generalized variants of this method to improve the accuracy
and spatial resolution of M/EEG source imaging. Additionally the application of the STKF
and its generalized variants in the field of epileptology can be improved by testing these meth-
ods using both simulated and clinical recordings with relevance to epileptology and presurgical
evaluation. The strengths and weaknesses of the STKF and its variants still need to be inves-
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tigated should the method find wider application in clinical brain research. The application of
non-linear Kalman filters is outside the scope of this thesis. We will constrain ourselves to the
development and investigation of the linear spatiotemporal Kalman filter and its variants.

STKEF-based solution of the inverse problem needs to be evaluated and compared to results
of other neuroimaging modalities and standard methods of M/EEG source reconstruction. The
results of a source imaging methods can be validated using various approaches. The first ap-
proach includes the comparison of the reconstructed sources with original source in simulated
EEG data. In another approach, the source reconstruction results can be compared with elec-
trocorticographic (ECoG) recordings in simultaneous EEG-ECoG data. Similarly, comparison
with stereotaxic depth electrode recordings in simultaneous EEG-depth electrode data is also
possible. Additionally, Comparison with structural MRI may be used. The reconstructed source
can be compared with the malformations or lesions in presurgical MRIs or the resected volume
from postsurgical MRI. Finally, EEG-functional MRI (fMRI) results (fMRI-based activation
maps) are also used to validate M/EEG source reconstruction. In this work the first and fourth
validation strategies will be used to evaluate the performance of the STKF.

In this work we will use state-of-the-art preprocessing and head modeling approaches. We
will not apply connectivity analyses and we will concentrate on developing and applying dy-
namical inverse methods based on Spatiotemporal Kalman filtering. We want to apply the STKF
to the analysis of epileptic spikes and focal seizures. First we will investigate the accuracy of
source imaging via STKF. Accuracy is defined here relative to a simulated source, resected
brain volume or a specific brain region. Additionally, we will comment on the spatial resolu-
tion of STKF results since most inverse methods produce smeared estimates of brain sources.
We are first interested in the effects of source space definition, source location, and area on
the accuracy of STKF results. Similarly, the effect of the number of EEG electrodes, high- or
low-resolution EEG, on accuracy and spatial resolution of STKF results will also be studied.
We will also study the effect of multimodal fusion (here: MEG-EEG fusion) on the accuracy of
STKEF results. For the case of high-resolution EEG with 64 electrodes or more, The effect of di-
mensionality reduction on the accuracy, spatial resolution and computational time of the STKF
will be investigated. Finally, we will continue the development of the generalized STKF from
[Ste08] with an extended model of regional brain dynamics in order to improve the accuracy
and spatial resolution of dynamical EEG source imaging.

1.3 The Contribution of this Thesis

The main contribution of this thesis is in the field on dynamical inverse modeling and improv-
ing the applicability of the spatiotemporal Kalman filter and its regional variant in the field
of epileptology. Despite the fact that the thesis is mostly concerned with EEG, an example of
MEG-EEG fusion will be presented. The thesis only tries to use and not develop state-of-the-art
methods in the preprocessing and forward modeling stages and it does not deal with connec-
tivity or network analysis. In the preprocessing step, we will work with either clean or cleaned
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segments. In the forward modeling step, we will use software packages that compute the head
models using implementations of the boundary element method and the finite element method.
Within the framework of this doctoral thesis, three master thesis were conducted and success-
fully finished [Alf14, Sarl4, Hab14]. In the forward modeling step, the STKF was used for
the first time in conjunction with state-of-the-art volume conductor models computed using the
boundary elements (BE) and the finite elements (FE) methods. Additionally, the definition of
the source space using 3D grids that discretize the brain’s gray matter or the whole brain plays
an important role in improving the accuracy of the STKF. An additional improvement in the
STKF’s accuracy can be obtained by using a modified definition of the Laplacian matrix that
corrects for the bias at the borders of the 3D grid [HHI " 15, Alf14].

In the inverse modeling stage, we constrained our efforts to the localization of single
sources. We have shown that, compared to instantaneous methods, the additional tempo-
ral smoothness constraints in the STKF improve the source imaging of focal seizure onset
[HSJ" 15, Sar14]. In addition to that, source imaging via STKF shows promising results when
low-density EEG data with 32 electrodes or less are used [HAFM™17a, Alf14]. In the case of
high-resolution EEG data, STKF has been applied for the first time on high-resolution EEG and
we have shown that the introduction of dimensionality reduction via singular value decomposi-
tion (SVD) speeds up the STKF, performs denoising, and improves the stability of the inverse
solution [HAFM™17b, Alf14]. Furthermore, the generalization of the measurement model to
include both EEG as well as MEG data allows for MEG-EEG fusion and improves source imag-
ing [HAW*13]. Some first results were previously obtained [Ste08] on the generalization of the
system model from a homogeneous brain to two distinct brain regions to allow for regional dy-
namics in the brain. The resulting regional STKF (RSTKF) was extended in this thesis to seven
brain regions and tested on both simulated and clinical EEG data.

Within the framework of this doctoral thesis, the author supervised the following master
theses:

1. A. Alfarawn, “Comparison of static and dynamic source imaging of epileptiform dis-
charges simulated using a neuronal population model,” master thesis, Digital Signal Pro-
cessing and System Theory , Christian-Albrechts-University of Kiel, 2014.

2. M. Sarabi, “EEG source imaging of epileptiform seizures using spatiotemporal Kalman
filtering,” master thesis, Digital Signal Processing and System Theory , Christian-
Albrechts-University of Kiel, 2014.

3. N. Habboush, “MEG-EEG fusion using spatiotemporal Kalman filtering with an empha-
sis on the correct localization of deep brain sources,” master thesis, Digital Signal Pro-
cessing and System Theory , Christian-Albrechts-University of Kiel, 2014.

The following first-author (in case [3]: shared first authorship) contributions resulted from
the author’s doctoral research and supervision of master students:
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1. Hamid, L.; Aydin, U.; Wolters, C.; Stephani, U.; Siniatchkin, M.; Galka, A., “MEG-EEG
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and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE ,
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Chapter 2

Theoretical Background

2.1 Preprocessing of M/EEG Data

In this thesis we use, for clinical data, clean segments, which include no artifacts, or already
cleaned ones after artifact suppression. Modern artifact suppression methods include, among
other methods, principal component analysis (PCA), independent component analysis (ICA),
wavelet transform, adaptive filtering, empirical mode decomposition (EMD), and state-space
modeling [UGZ15, IRY 16, SGHSG17]. For the preprocessing step in our analysis, a standard-
ization of the measurements is performed for each data channel as follows:

PRCIG R
c
where d,, (¢) represents a time series of length Nz, m, is the mean of the time series, and o is
the global standard deviation over all Ny channels and N7 time points. The aim of data normal-
ization is to enable the comparison of results across subjects and datasets. After that, for EEG
data, the measurements are re-referenced to the common average reference (CAR)[NSW197].
This is necessary to remove the effect of the reference electrode and approximate a reference-
free scenario prior to source localization. According to [PM99], the average-reference matrix
is calculated as follows: Lo 17
Ho1y - 01
y
where H is of dimension Ny x Ny, Iy, is the identitiy matrix of similar dimension, and lNy is a
vector of ones of dimension Ny x 1. The average-referenced EEG data, y,,,, is then obtained
using:
Yavr = Hy

Similarly, the result of the forward modeling step, the Ny x Nj-dimensional lead field matrix K
is transformed via average referencing as follows:

K. =HK
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where K, is the average-transformed lead field matrix. To prevent linear dependence among
the rows of the data or the lead field matrices, a single row is removed from each of these
matrices.

In the preprocessing step, it is often necessary to estimate the signal-to-noise ratio (SNR) of
the measurements. In this thesis we calculate the SNR for oscillatory activity as follows:

RM
SNR = 20log ( SS)

RMSy

where RM S5 1s the root mean square of the clean or cleaned desired signal. RMSy is the root
mean square of the measurement noise and is estimated from the measurements or is known
from the characteristics of the measurement equipment. For epileptic spikes, the SNR is calcu-
lated from the electrode with the strongest spike as in [OTFO07]:

A
SNR = 20log;, (ﬁ)
B

where A, is the peak-to-peak amplitude that is measured between the negative and positive
spike peaks. The spike interval is assumed to be 135 ms around the negative spike peak . Prior
to and after the spike interval, 150 ms are then used to estimate the RMS of the background
activity. In this thesis, we did not fix the spike interval to 135 ms but used the morphological
information that can be seen in Fig 2.1 to determine the spike interval. For averaged spikes
that were analyzed in this thesis, no post-spike intervals were available. Additionally, pre-
spike intervals were very short and were located at the beginning of the dataset. These reasons
motivated the decision to take the first 150 ms from each dataset with an averaged spike and
use it as the pre- and post-spike background intervals to estimate the RMS of the background
activity.

2.2 The M/EEG Inverse Problem

The possible locations of reconstructed dipoles may be described by a 3D regular grid with
N, grid points and a grid spacing or resolution g. The current density at each grid point may
be described using a triplet of current dipoles in each of the Cartesian axes x, y, and z. The
dimension of the current density vector j is N; which is equal to 3N,. With the help of the
lead field matrix of dimension Ny X N;, which results from the solution of the M/EEG forward
problem, surface electrical or magnetic activity can be computed from a given current density
distribution in the brain. The observation or measurement noise € is modeled to be zero-mean,
white, and Gaussian noise of dimension Ny, x 1. The N, x N,-dimensional covariance matrix of
the measurement noise is . The measurement process is assumed to be linear and is described

'In this thesis, except when explicitly mentioned, the negative spike peak in EEG datasets are plotted pointing
upwards.
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Figure 2.1: A non-averaged spike is shown with the pre-spike (in red), spike (in yellow),
and post-spike (in red) intervals. The valleys at the spike’s begin and end are used to
determine the spike interval. A, is the peak-to-peak amplitude in the spike interval.
The figure was inspired by [OTFO07].

by the following measurement equation:

y=Kj+e¢

In practice, the measurement noise covariance is estimated from the M/EEG data either as a
full matrix or as a diagonal one. The current density distribution is reconstructed from the ob-
servations and the computed lead field matrix via a source imaging algorithm. In this thesis
we will use a standard source imaging approach, low-resolution brain electromagnetic tomog-
raphy (LORETA) [PMML94], that reconstructs a unique current density distribution from the
data by imposing spatial smoothness as a constraint on the solution space. LORETA is a static
method that ignores the temporal information in the data and reconstructs the brain activity at a
single time point. In contrast to LORETA, we will use a dynamical source imaging approach,
the spatiotemporal Kalman filter (STKF) [GYO™04b], which is based on state-space modeling.
Current density reconstruction is performed via state estimation while the state-space model
parameters are estimated via maximum likelihood (ML). Since source imaging is transformed
into a state estimation problem, a dynamical model is used to describe the spatiotemporal evo-
lution of the hidden state, the brain’s current density, and this dynamical model is used to make
prediction about the value of the current density. These predictions will be optimally fused with
the information from the measurements to obtain accurate estimates of the current density.
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2.3 LORETA

”low resolution brain electromagnetic tomography” was implemented and published by R.
Pascual-Marqui in [PMML94]. The method uses Tikhonov regularization to impose spatial
smoothness constraints on the space of possible solutions. A unique solution that has maximum
spatial smoothness is found and all other solutions are penalized. The cost function is shown in
the equation below:

argmin (|ly — Kj||* + A2 | Lj||?)
J

A is the regularization parameter and it is estimated from the M/EEG data via Akaike
Bayesian information criterion (ABIC) [GYO™04b, YGO™04]. Other methods exist to estimate
the regularization parameter that are based on signal-to-noise ratio (SNR) estimation, truncated
singular value decomposition (TSVD), or generalized cross-validation (GCV) [GCM T 08].

The N; x N;-dimensional Laplacian matrix is calculated according to the classical definition

as follows: .

Q of dimension N, x N, is the neighborhood matrix for each 3D grid. It includes information
about the immediate neighbors of each voxel v in the 3D grid and it is computed using the
following equation:

Q. — { 1 if Vis aneighbor of v
L0 otherwise

The popular implementation of LORETA is based on the following equation:

A

j= (KTK+2A’LL) ' KTy

This implementation is, however, computationally expensive and requires many inversions
of a large matrix. The implementation that we use in this thesis was derived and used first in
[GYOT04b, YGO04]. Please refer to the detailed derivation in [Yam03]. In the alternative
equation, the estimate of the current density is obtained as follows:

A S;
i=L 'Vy .y diag [ ——— | UT
J NjxNy g(s%%—)ﬂ) y

where only the N; x N, submatrix of V is used in the above equation. The lead field matrix
is linearly transformed via the Laplacian matrix as shown below:

K=KL!

The transformed lead field matrix is now decomposed via singular value decomposition
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according to the equation:
K =USVT

Within an Empirical Bayesian framework, ABIC is used both for the estimation of the hy-
perparameters, here A and o, and for model comparison [GYO™04b]:

ABIC = 22" (6¢,1) + 2Ny,

where Ny, is the number of hyperparameters. The measurement noise variance is obtained
using the following equation:

, 1@ A2,
O, = — R}
s Nylzzllz—i_slzyl

y; 1s an element of the transformed vector y that is described in the equation below:
y=Uly
The final equation of ABIC for all time points in the data is as follows:

Noooa24 42
ABIC (0¢,A) = TNylogoy +T ) log =
=1

1

2.4 The Spatiotemporal Kalman Filter (STKF)

The use of the standard Kalman filter [Kal60] to solve the high-dimensional M/EEG in-
verse problem faces two problems. The first problem concerns the propagation of huge full-
rank covariance matrices. The second problem is parameter estimation that includes millions
of unknown parameters that need to be learned from the M/EEG data. Sparsity assump-
tions and strong constraints on the parameter matrices may make the problem more solv-
able. Reduced-rank Kalman filters, such as the ensemble Kalman filter [Eve94] or reduced-
rank square-root filters [VH97], are popular in the very high-dimensional problem of climate
modeling. The spatiotemporal Kalman filter (STKF) [GYO™04b] uses a partitioning appraoch
to solve the high-dimensional M/EEG inverse problem. In the following, the mathematical
theory of the STKF will be explained with the help of information that was adapted from
[GYO"04b, GOM 108, Ste08, BRKT09, HAW 13, Alf14, Sar14, Hab14, HSJ"15, HHJ " 15].
In the STKF approach, the Laplacian matrix L is used to decouple the fully-connected state-
space model into a partitioned system with strong connectivity only between each voxel and
its immediate neighbors. This allows for local low-dimensional Kalman filters at each voxel to
estimate the current density of that specific voxel, which is influenced only by the current densi-
ties of the neighboring voxels. This transformation is called spatial whitening and is performed
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on the current density vector j according to the equation:
Jr =Lj;

In the Laplacianized state-space model, the transformed lead field matrix K is obtained

according to the formula
K=KL .

The spatial whitening is a linear transformation and it can be reversed by left multiplication
of the stacked individual current density estimates for all voxels and time points with the inverse
of the Laplacian matrix as follows: A

Ji=L7"j
The global N; x N;-dimensional covariance matrix of the current density estimate can be simi-
larly recovered by reversing the spatial whitening transform using the inverse of the Laplacian
matrix on the matrix that is constructed from local filtered state covariance matrices for all
voxels. This process is described in the following equation:

_y -l p-IT

For each low-dimensional Kalman filter, the state dimension is Ny. In the case of epileptic
spikes, we used a first-order autoregressive model, or AR(1), for the dynamical model. This
resulted in a 3 x 1-dimensional state vector. In the description of the Kalman filter equations
below we will omit the tilde, although the equations describe the weakly-coupled state-space

model. The local dynamical model for voxel v and time 7 is described by the equation:

% 2 1 2
by =Arjv—1+ EBL Z Jop—1—1 1t
VEN(v)

where Ay is the local state-transition matrix that propagates the current density vector of voxel
v at time 7 — 1 to the next time point. The local input matrix B;, propagates the contributions of
the current density vectors of the neighboring voxels, averaged over the number of neighbors,
to the dynamics of voxel v forward in time. The white Gaussian dynamical noise 7, represents
the unmodeled phenomena that are not described by the deterministic part of the dynamical
models, i.e., by the matrices Ay and B;. 1, has zero mean and its covariance matrix is Xy .

The diagonal N x Ny-dimensional local state-space model matrices that are specific to the
dynamical model are described by the following equations [BRK™09]:

Ap=aily, B =0bl3, Iy =003

where a; is the state-space’s first autoregressive model parameter, which describes the voxel’s
own contribution to its dynamical development. The parameter b is the state-space model pa-
rameter that describes the coupling of voxel v to its immediate neighbors. The voxel-specific
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dynamical noise covariance matrix Xy describes the stochastic part of the dynamical model
through the parameter 62, which is among the most important state-space model parameters,
in practice [GYO04a, GOM ™08, Ste08, GWO10, Hab14]. All of these model parameters are
assumed to be constant in time and homogeneous in space. Additionally, they are assumed to
be the same for all three current dipoles at each voxel.

The global measurement noise covariance matrix X¢ of dimension Ny x N, is assumed to be
diagonal with equal noise power for all channels. It is described by the equation:

2
Zg - GE I]Vy

where 682 is the state-space model’s measurement-noise variance parameter, which is assumed
to be the same for all EEG electrodes or MEG sensors.

The measurement model of the state-space model can be expressed as
yr = Kjg: +&:.

If dynamical noise variance is fixed during the optimization process, it becomes possible to
assign this degree of freedom to the measurement equation by multiplying the observation ma-
trix, i.e., the lead field matrix with observation scaling parameters that can be then optimized.
In the case of EEG data, for example, the lead field matrix is multiplied by a scaling matrix of
dimension N, x N, according to the following equation:

K. :=S.K,

The scaling matrix has the state-space observation scaling parameter sy, on the main diagonal.
This is shown in the equation below:
Se = SyeINe

At time ¢ and voxel v, the prediction step of the Kalman filter begins with the Ny x 1-
dimensional local predicted state, which is calculated as follows:

2 0 1 2
Jver—1 = ALJv,z—l\t—l + EBL Z Jv—1)r—1
VEN(v)

where jv,tflltfl is the local filtered state of voxel v at time # — 1. The predicted state covariance
matrix at voxel v is described by the equation:

. — . T
EJv,t\t—l - ALZJv7t—l|t—1AL +XnL

where X ; (—1]i—1 is the local filtered state covariance matrix at time ¢ — 1.

The predicted state is then projected via the lead field matrix to the sensor space to build the
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predicted measurement y,,_; at time ¢ as follows:
Yejr—1= sz\t—l-

In the measurement update or correction step, the predicted state is corrected by the new
information from the measurement at time 7. The N, x 1-dimensional sensor-level innovation
or measurement prediction error ry; results from the difference between the predicted and the
actual measurement vectors at time ¢ according to the equation:

Yy:r =¥t = ¥rjr—1
The sensor-level innovation covariance matrix of dimension Ny, x Ny is then obtained from

Ly, = ZKijv,z\z—lKl +Ze,
v

where K, is N, x 3-dimensional and represents the voxel-specific lead field matrix.

The optimal local Kalman gain matrix G, of dimension Ny; X Ny is then computed from the
following equation:

GV,[’ = Z IK;I;ZI';II .

Jvitlt—
The Kalman gain matrix is now used to project the sensor-level innovation to the source level
and compute the Ny; x 1-dimensional local source-level prediction error rj,, as follows:

I‘jm - Gery?[.

The source-level prediction error is now used to correct the predicted state in order to com-
pute the filtered state j, ;, of dimension Ny X 1 as shown in the following equation:

jv,z\r = jv,z\tfl Ty,
The filtered state covariance matrix is calculated according to the equation

i = (v, — Gy K X

vilt wtlt—1"

The process is then repeated for the next time point, until all N7 samples are finished.

For the analysis of brain oscillations, we used an autoregressive model of order 2 as the
dynamical model. The state dimension Ny becomes 6. Instead of two separate equations for
the dynamical model, the AR(2) model is reformulated into a single AR(1) model using the
following equation:

j j 1 L Z j t—1r—1
— V.[— _
= AL [T By | Nt LM

jv,t jv,t—l 0 0
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where jw is the local prediction of the current density vector at time ¢ + 1. jvJ,l is the corre-
sponding quantity at time ¢.
The local state-transition matrix has an upper companion form as shown in the following

equation:
allz axl
AL = 143 243 ‘
Iz 0

The local input matrix By is written as follows:

Lo [0
"o ol

The local dynamical noise covariance matrix has a similar structure like that of the local
input matrix. It is written as shown in the following equation:

_ 6%13 0
-
2.5 The Regional Spatiotemporal Kalman Filter (RSTKF)

Wold decomposition [Wol38] shows that stationary processes can be decomposed into deter-
ministic and stochastic processes. The modeling of a time series may concentrate either on
improving the deterministic part of the model, while keeping the stochastic part simple, or on
improving the stochastic part, while keeping the deterministic part simple[Ozal2]. In M/EEG
source imaging via STKF, improving the deterministic model would require, e.g., the inclusion
of information from structural and functional connectivity research about brain connections in
the state-space’s dynamical model. The development of the stochastic part of the dynamical
model may include spatial or temporal adaptation of the dynamical noise variance parameter.
Since the human brain is modular and has the ability to allow several dynamical processes to be
simultaneously active in different brain regions, introducing spatial heterogeneity of the dynam-
ical noise variance into the STKF’s model with constant parameters may improve the modeling
of brain data. The idea of the regional STKF (RSTKF) is to define different brain regions in
the brain grid and assign to each one of them its own dynamical noise variance state-space
parameter. The parameters are then estimated from the M/EEG data and the current density
reconstruction may reveal improved results. An implementation of this idea using two regions
and some first results were obtained in the diploma thesis of Philipp Stern [Ste08]. The applica-
tion of this method in addition to the extension of its model to seven regions will be discussed
in chapter 5. Compared to the STKF, the dynamical noise covariance matrix of the RSTKF will
take the following form for an AR(1) model:
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G% (v) may take a value from a discrete set of regions r = 1...N,. For an AR(2) model, the

dynamical noise covariance matrix of the RSTKF is constructed as follows:

G% (v) Iz 0
ZUL = :
0 0

2.6 New Developments to the STKF Pipeline

2.6.1 MEG-EEG Fusion

Recordings from each modality in simultaneous MEG-EEG can be separately analyzed and
used for source reconstruction. Multimodal fusion via state-space modeling has an advantage,
since state-space models are very flexible ones. MEG-EEG fusion will be integrated within
the framework of source imaging, such that the different sensitivities of these modalities to
the orientations and depths of sources may be optimally used. The generalization of the mea-
surement equation to include sensors from another modality is explained in this section. The
N¢-dimensional joint vector of recordings y is formed by stacking the magnetic and electrical

Ym
Yr= .
Ye

The magnetic and electrical lead field matrices are similarly combined as shown in the

Ko
K, = .
T SK,

Please note that this model optimizes the observation scaling parameters and, thus, we need one

recordings together as follows:
equation below:

observation scaling parameter for each separate modality. The magnetic observation scaling
matrix of dimension N,, X N,, is constructed as shown in the equation below:

Sm — SymINm.
The N, x N.-dimensional electrical observation scaling matrix is also shown below:
Se — Sye INL) .

The observation noise vectors are also combined in the vector € :

Em
Er= .
f £,

The observation noise for MEG is white Gaussian with zero mean and covariance matrix X¢, .
For EEG, the observation noise is also white and Gaussian. It also has zero mean and a covari-
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ance matrix Xg,.
The combined MEG-EEG measurement noise covariance matrix of dimension Ny x Ny is

constructed as follows:
Ye, O
ng -
0 X

The N, X N,,-dimensional MEG measurement noise covariance matrix is diagonal and the
noise power is assumed to be equal over all MEG channels. It is modeled as shown in the
equation below:

ng = Ggmle.

The same applies to the N, x N,-dimensional EEG measurement noise covariance matrix which
is shown in the following equation:
de - GggINe .

2.6.2 Grid Choice and the Definition of the Laplacian Matrix

The grid definition is part of the forward solution. It needs to be specified whether a cortical
surface mesh or a 3D volumetric grid will be used. Additionally, the grid can include only
the brain’s gray matter or encompass the whole brain. The spacing of the grid needs to be
defined too. Except for the finite-element (FE) head model, all other head models that are used
in this thesis were boundary-element (BE) head models that were generated using the CURRY
software [Com11]. Regarding the definition of the Laplacian matrix, the explicit procedure for
the calculation of the modified Laplacian matrix was explained in [PM99] after a discussion
about the advantages and disadvantages of the classical definition of the Laplacian matrix. The
classical definition of the Laplacian matrix always uses six neighbors for each grid point. The
definition that uses the actual number of neighbors results in a singular Lalacian matrix. The
author of LORETA takes the average of both definitions and creates the modified definition
of the Laplacian matrix that results in a non-singular matrix and does not suppress the current
density at the grid borders [PM95].

The first step in calculating the Laplacian matrix according to the second definition is to
calculate the matrix [As];,

[A] _ 1/6 if”glf_gvH:u
2w 0 otherwise

where g is a point in 3D space on the source grid and u is the spacing or resolution of the 3D
grid. After that, matrix A is calculated according to the equation below:

1 . -
= ) )

In the equation below, a matrix, A, of dimension N; X N; results from Kronecker multiplication
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with a 3-dimensional identity matrix:
Ap=A10I3

The N; x Nj-dimensional modified Laplacian matrix is obtained from the equation:

6
Lmod = ; (AO _INj)

2.6.3 Dimensionality Reduction via Spatial Projection (SP)

Spatial projection [LLE™ 14], a dimensionality reduction approach, was implemented and used
in conjunction with the source imaging methods in the open source SPM8 toolbox [LMK ™ 11].
The use of dimensionality reduction approaches may help with problems of noise, numerical
stability, and long computational times [HDN14]. We decided to integrate spatial projection,
which is based on singular value decomposition, into the STKF algorithm, in order to decrease
the computational time and to solve the problem of numerical stability and ghost sources. Spa-
tial projection may be applied to the lead field matrix before or after spatial whitening. Before
spatial whitening, the original lead field matrix is used. Singular value decomposition is applied
on the matrix KKT as follows:

KK = USVT.

The matrix S has monotonically-decreasing singular values on the main diagonal. A threshold
value of 1.2 1077 is then applied in SPMS8 as a standard threshold value and only the w singular
values above this threshold value will be kept. After truncation of the S matrix, the left and
right matrices of singular vectors will be updated accordingly. Then the left matrix of singular
vectors, U, will be used to transform the lead field matrix into an N,, X N;-dimensional matrix,
K, as shown in the following equation:

K,, = UK.

Additionally, the M/EEG data is also transformed into an N,, X Ny-dimensional data, yjy),, as
follows:

Ysp = UTY-

The application of spatial projection prior to spatial whitening may not be very advantageous,
since another transformation, namely spatial whitening, follows spatial projection. Addition-
ally, since almost all of the STKF’s operations are in the weakly-coupled state-space, the prac-
tical lead field matrix for the STKF is the one after spatial whitening. Hence it may be better
to perform spatial projection after spatial whitening. After spatial whitening, the Laplacian-
ized lead field matrix K is used instead of the original lead field matrix in equation 2.6.3. The
optimal place for spatial projection in the STKF’s pipeline will be investigated in this thesis.
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Additionally, different threshold values will be used to understand the effect of the threshold on
spatial projection, when it is combined with the STKF.

2.7 Parameter Estimation Using Maximum Likelihood (ML)

Parameter estimation may be performed via maximum likelihood (ML). In order to penalize the
models with a high number of parameters, maximum likelihood is performed via minimization
of the Akaike information criterion (AIC) [Aka98]. AIC can be expressed by the following
equation:

AIC (QKF) =-2% (QKF) + 2NkF,

where Okr is the parameter vector that includes all state-space model parameter and Nk is the
number of parameters that are included in Ogr. . is the natural logarithm of the likelihood
function [GYO104b].

If it was decided that observation scaling parameters were to be used, the vector of state-
space model parameters for a simultaneously-measured MEG-EEG dataset, observation scaling
parameters, and an AR(2) dynamical model becomes:

2 2 T
eKF — [al7a27basygasym76£€765m7} .

Alternatively, the vector of state-space model parameters for a simultaneously-measured
MEG-EEG dataset, an AR(2) dynamical model, and a regional STKF with N, regions becomes:

T
o2 2 2
686768m7i| *

eKF: |:a17a2?b76n17 nNr7
The evaluation of AIC is performed here via STKEF, since the sensor-space innovations and
the innovation covariance matrix are needed to compute the AIC. This can be seen in the equa-

tion below:

T
AIC GKF Z 10g ‘er | + ryJTZry’tilry?t)
t=1

+TN log( )+2NKF

The STKF is called by an optimization algorithm to evaluate the AIC in its search for the set
of parameters that minimizes the AIC. A quasi-newton method, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, is mainly used for the optimization. The gradient and Hessian of the
cost function are numerically evaluated by MATLAB’s Optimization Toolbox (Mathworks, Nat-
ick, Massachusetts, USA). In order to decrease the probability of staying in a local minimum,
the Simplex algorithm is called, but less often so, during the optimization process [GOM™108].
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Chapter 3

Source Imaging of Simulated EEG Data
via the Spatiotemporal Kalman Filter

3.1 Motivation

In this chapter we would like to understand the different factors that influence the accuracy
and spatial resolution of the STKF. Since the current density distribution of real EEG record-
ings is not known, we will use simulated EEG data. Instead of simulating single dipoles,
we agreed with our cooperation partners at “the Epileptogenic Systems: Signals and Mod-
els” group, which is part of the Signal and Image Processing Laboratory of the Univer-
sity of Rennes I, to generate for us simulated EEG data using neuronal population models
[WBBCO00, WHB 05, CRBCW07], which are physiological brain models that belong to the
family of neural mass models. We used these data in the first part of this chapter to compare
the localization of averaged and non-averaged spikes, gray-matter and full-brain grids, classical
and modified Laplacian matrices. Additionally, we wanted to gain insights about the effects
of the source area and the number of electrodes on the performance of the STKF, compared to
that of LORETA. We hypothesize that full-brain grids will improve the accuracy and decrease
the variability of localization in both LORETA and STKF. Additionally we hypothesize that
the modified Laplacian matrix will improve the localization of superficial sources since it does
not force the current density distribution to be zero at the outer border of the grid. Finally
we hypothesize that the STKF will outperform LORETA, especially in model comparison and
low-resolution EEG, due to its additional temporal smoothness constraints.

In the second part of this chapter we try to suppress the redundancy in high-resolution EEG
via a dimensionality reduction approach, spatial projection, that is available in the SPM soft-
ware [LMK™11, LLE"14]. Information redundancy may lead to instabilities, especially for
dynamical inverse methods, and cause wrong localization and spurious sources. We will inves-
tigate first how to integrate spatial projection within the inverse modeling pipeline. After that
we will evaluate the improvement in the performance of the Kalman filter due to the application
of spatial projection. Finally we will investigate the effect of the threshold of spatial projection
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on the STKF results. We hypothesize that spatial projection will decrease computational time
and lead to stable and more accurate STKF results. Additionally we expect the choice of the
threshold to affect the accuracy of the STKF.

3.2 The Influence of Grid Choice, Laplacian Matrix, Num-
ber of Electrodes, and Source Area on the Performance
of the STKF

EEG source imaging results of the non-averaged spikes, which were generated from sources
with 10 cm? source area in the lateral frontal and lateral temporal regions, were published by
the author in [HAFM ™ 17a]. Only the analyses with full-brain grids and the modified Laplacian
matrix and low-resolution EEG datasets of non-averaged spikes were published.

3.2.1 Methods

The simulated EEG data were generated by our cooperation partners at “the Epileptogenic Sys-
tems: Signals and Models” group, which is part of the Signal and Image Processing Laboratory
of the University of Rennes I, using neuronal population models. They used the individual
anatomy from a T1-weighted MRI (1.25 x 1 mm?®). Three compartments comprising the scalp,
outer skull, and inner skull were segmented and meshed with 2440 triangles each. The conduc-
tivity values were set to 0.33 S/m, 0.0082 S/m, and 0.33 S/m for the scalp, outer skull, and inner
skull, respectively. The segmented cortex was discretized using a cortical mesh of 19626 points
and triangulated (ASA software, ANT Neuro, Enschede, the Netherlands). The dipoles were
placed in the center of each triangle and the dipole orientation were constrained to the normal
direction. After that, 400 s of brain dynamics was generated for different source locations and
source areas as described in [CRMB™10]. Model parameters were chosen such that epileptic
spikes were generated by the model and the resulting active cortical patches with a source area
of 5 cm? and brain dynamics were generated once from the frontal lobe and once from the
temporal lobe. In the former case, the patch was placed in the left lateral frontal region. The
center of the activity was localized in the left middle frontal gyrus. The activity may shift to
the superior frontal gyrus with the extension of the source area. The lateral frontal region is
relevant in the case of pediatric epilepsy patients. In the latter case, the patch was placed in the
lateral temporal region, which is not as common as mesial temporal lobe epilepsies in adults but
is still relevant in the case of adult patients of epilepsies. The center of activity was localized
in the left superior temporal gyrus. With the increase of the source area, the activity may shift
to the middle temporal gyrus. Outside these areas, the model parameters were chosen to gener-
ate normal background EEG activity [WBBCO0O0]. The above procedure was repeated in order
to generate brain dynamics from cortical patches with a source area of 10 cm?. The forward
problem was solved using the boundary element method as implemented in the OpenMEEG
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software [GPOC10] and the resulting LFM was multiplied with the brain dynamics to generate
four EEG datasets, from two locations and two source areas, using a layout of 128 EEG elec-
trodes. The electrode layout can be seen in Figure 3.1. The EEG data had a sampling frequency
of 250 Hz.

In the preprocessing step, the spikes in each dataset were marked based on the signal of
the electrode with the strongest spike. For the analysis of non-averaged spikes, a single strong
spike from each of the four datasets was selected using visual inspection. The non-averaged
spikes from the left lateral frontal and lateral temporal areas are shown in Fig 3.2 and Fig 3.4,
respectively. After taking the number of marked spikes in each dataset into consideration, we
chose to average 55 spikes in each dataset using CURRY7. The resulting average spikes from
the left lateral frontal and lateral temporal regions are displayed in Fig 3.3 and Fig 3.5. For
each source area and location, four new datasets were created from the original 128-electrode
dataset using standard electrode layouts that are shown in Fig 3.6. The electrodes with the
strongest averaged and non-averaged spikes in the resulting 40 datasets with different source
locations, areas, and electrode montages are shown in Table 3.4. After spike averaging, we
performed separate standardization and average-referencing for each dataset containing a single
non-averaged or average spike. Finally, the SNR of each spike was calculated as described in
section 2.1.

In the forward modeling step, the standard 3-compartment realistic head model from
CURRY7, that was computed using the boundary element method, was used to calculate the
LFM. The scalp, outer skull, and inner skull were described by 1065, 1305, and 2286 nodes, re-
spectively. The conductivity values of the aforementioned compartments were set to 0.33 S/m,
0.0042 S/m, and 0.33 S/m, respectively. We note here that the conductivity value for the skull
is different from the one used in simulating the EEG data. The brain was discretized using two
grids, each with 7 mm grid spacing. The gray-matter grid had 3997 grid points and the full-
brain grid had 5058 grid points. EEG source imaging via LORETA and STKF was performed
using three models. In the first one the gray-matter grid was used with the classical definition
of the Laplacian matrix. In the second model the full-brain grid was used with the classical
Laplacian matrix. The third model used the full-brain grid with the modified Laplacian matrix.
The dynamical model of the STKF was a first order autoregressive model. The summary of the
analysis pipeline is depicted in Fig 3.7. The source imaging results were visualized using the
Fieldtrip toolbox [OFMS11] by using linear transformations to match the grids generated by
CURRY7 from the standard Colin27 MRI to the same standard MRI in the coordinate system
used by Fieldtrip. Any changes in the figures or anatomical labels of the results, compared to
the author’s previous published work in [HAFM™17a, HAFM ™ 17b], can only be attributed to
continuous improvements in the visualization step. The evaluation of the results was performed
by comparing the anatomical labels of the maxima of the strongest source from each source
imaging result with the labels of the brain region that was used for the simulation. The anatom-
ical automatic labeling (AAL) atlas [TMLP"02] was used to find the anatomical labels. The
anatomical regions that correspond to the AAL labels are listed in Table 3.1, Table 3.2, and
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Table 3.3.
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Figure 3.1: The original 128-channel EEG electrode layout used for generating the
EEG datasets from the underlying simulated brain dynamics. The layout was visualized
using the Fieldtrip software [OFMSI11].

3.2.2 Results

THE SNR values of both averaged and non-averaged spikes for all electrode layouts, source
locations, and source areas are listed in Table 3.4. Regarding the source imaging results, we
will start with general observations about the performance of LORETA and STKF. First we
observe more lateral results when comparing STKF to LORETA or results from the modified
Laplacian to the classical Laplacian matrix. Additionally, STKF results are more focal than
those of LORETA. Increasing the number of electrodes leads to more lateral and focal results.
The size of the source area did not influence the extension of the estimated current density
distribution. Additionally, the AIC results of STKF are lower than those of LORETA. We also
observed that, for LORETA results, the ABIC values of the third model were lower than those
of the second model except in 5/8 cases when analyzing the 9-electrode datasets. For STKF
results, AIC results of the third model were always lower than those of the second model.

The analysis of the average spike from the left lateral frontal region and a source area of
5cm? via LORETA, as shown in Fig 3.8, resulted in sources in the lateral frontal region in
3/5 datasets for the first model. The use of the second model resulted in localizations in the
desired area in 2/5 datasets. When the third model was used, 3/5 datasets had sources in the
target area. Regarding the number of sources in the left lateral frontal area, STKF results,
which are summarized in Fig 3.9, were similar to those of LORETA except for the case of the
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AAL Atlas labels

corresponding anatom-
ical region

AAL Atlas
(cont.)

labels

corresponding anatom-
ical region (cont.)

Precentral L

left precentral gyrus

Parietal Sup L

left superior parietal
lobule

Precentral R

right precentral gyrus

Parietal Sup R

right superior parietal
lobule

Frontal Sup L

left superior frontal

gyrus

Parietal Inf L

left inferior
lobule

parietal

Frontal Sup R right superior frontal Parietal InfR right inferior parietal
gyrus lobule

Frontal Sup Orb L left superior frontal SupraMarginal L left supramarginal
gyrus, orbital part gyrus

Frontal Sup Orb R right superior frontal SupraMarginal R right  supramarginal
gyrus, orbital part gyrus

Frontal Mid L left middle frontal AngularL left angular gyrus
gyrus

Frontal Mid R right middle frontal Angular R right angular gyrus
gyrus

Frontal Mid Orb L left middle frontal PrecuneusL left precuneus
gyrus, orbital part

Frontal Mid Orb R right middle frontal Precuneus R right precuneus
gyrus, orbital part

Frontal Inf Oper L left inferior frontal Paracentral Lobule L left paracentral lobule
gyrus, pars opercularis

Frontal Inf Oper R right inferior frontal Paracentral Lobule R right paracentral lobule
gyrus, pars opercularis

Frontal Inf Tri L left inferior frontal Caudate L left caudate nucleus
gyrus, pars triangularis

Frontal Inf Tri R right inferior frontal Caudate R right caudate nucleus
gyrus, pars triangularis

Frontal Inf Orb L left inferior frontal Putamen L left putamen
gyrus, pars orbitalis

Frontal Inf Orb R right inferior frontal Putamen R right putamen
gyrus, pars orbitalis

Rolandic Oper L left Rolandic opercu- Pallidum L left globus pallidus
lum

Rolandic Oper R right Rolandic opercu- Pallidum R right globus pallidus
lum

Supp Motor Area L left supplementary mo- Thalamus L left thalamus

tor area

Table 3.1: Part one of the anatomical descriptions of the labels extracted from the
anatomical automatic labeling (AAL) atlas [TMLP"02]
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AAL Atlas labels corresponding anatom- AAL  Atlas labels corresponding anatom-
ical region (cont.) ical region (cont.)
Supp Motor Area R right  supplementary Thalamus R right thalamus
motor area
Olfactory L left olfactory cortex Heschl L left transverse tempo-
ral gyrus
Olfactory R right olfactory cortex Heschl R right transverse tempo-
ral gyrus
Frontal Sup Medial L left medial frontal Temporal Sup L left superior temporal
gyrus gyrus
Frontal Sup Medial R right medial frontal Temporal Sup R right superior temporal
gyrus gyrus
Frontal Med Orb L left medial or- Temporal Pole Sup L left superior temporal

bitofrontal cortex

pole

Frontal Med Orb R

right  medial or-
bitofrontal cortex

Temporal Pole Sup R

right superior temporal
pole

Rectus L left gyrus rectus Temporal Mid L left middle temporal
gyrus
Rectus R right gyrus rectus Temporal Mid R right middle temporal
gyrus
Insula L left insula Temporal Pole Mid L left middle temporal
pole
Insula R right insula Temporal Pole Mid R right middle temporal
pole
Cingulum Ant L left anterior cingulate Temporal Inf L left inferior temporal
gyrus gyrus
Cingulum Ant R right anterior cingulate Temporal Inf R right inferior temporal
gyrus gyrus
Cingulum Mid L left midcingulate area ~ Cerebelum Crusl L left crus I of cerebellar
hemisphere
Cingulum Mid R right midcingulate area  Cerebelum Crusl R right crus I of cerebel-
lar hemisphere
Cingulum Post L left posterior cingulate Cerebelum Crus2 L left crus II of cerebellar
gyrus hemisphere
Cingulum Post R right posterior cingu- Cerebelum Crus2 R right crus II of cerebel-
late gyrus lar hemisphere
Hippocampus L left hippocampus Cerebelum 3 L left lobule III of cere-
bellar hemisphere
Hippocampus R right hippocampus Cerebelum 3 R right lobule III of cere-
bellar hemisphere
ParaHippocampal L left parahippocampal Cerebelum 4 5 L left lobule IV, V of
gyrus cerebellar hemisphere

Table 3.2: Part two of the anatomical descriptions of the labels extracted from the
anatomical automatic labeling (AAL) atlas [TMLP"02]
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AAL Atlas labels corresponding anatom- AAL  Atlas labels corresponding anatom-
ical region (cont.) ical region (cont.)
ParaHippocampal R right parahippocampal Cerebelum4 5 R right lobule IV, V of
gyrus cerebellar
hemisphere
Amygdala L left amygdala Cerebelum 6 L left lobule VI of cere-
bellar hemisphere
Amygdala R right amygdala Cerebelum 6 R right lobule VI of cere-
bellar hemisphere
Calcarine L left calcarine sulcus Cerebelum 7b L left lobule VIIB of
cerebellar hemisphere
Calcarine R right calcarine sulcus Cerebelum 7b R right lobule VIIB of
cerebellar hemisphere
Cuneus L left cuneus Cerebelum 8 L left lobule VIII of cere-
bellar hemisphere
Cuneus R right cuneus Cerebelum 8 R right lobule VIII of
cerebellar hemisphere
Lingual L left lingual gyrus Cerebelum 9 L left lobule IX of cere-
bellar hemisphere
Lingual R right lingual gyrus Cerebelum 9 R right lobule IX of cere-
bellar hemisphere
Occipital Sup L left superior occipital Cerebelum 10 L left lobule X of cere-
gyrus bellar hemisphere
Occipital Sup R right superior occipital Cerebelum 10 R right lobule X of cere-
gyrus bellar hemisphere
Occipital Mid L left middle occipital Vermis 12 lobule I, IT of vermis
gyrus
Occipital Mid R right middle occipital Vermis 3 lobule III of vermis
gyrus
Occipital Inf L left inferior occipital Vermis 4 5 lobule IV, V of vermis
cortex
Occipital Inf R right inferior occipital Vermis 6 lobule VI of vermis
cortex
Fusiform L. left fusiform gyrus Vermis 7 lobule VII of vermis
Fusiform R right fusiform gyrus Vermis 8 lobule VIII of vermis
Postcentral L left postcentral gyrus Vermis 9 lobule IX of vermis
Postcentral R right postcentral gyrus ~ Vermis 10 lobule X of vermis

Table 3.3: Part three of the anatomical descriptions of the labels extracted from the
anatomical automatic labeling (AAL) atlas [TMLP"02]



3 SOURCE IMAGING OF SIMULATED EEG DATA VIA THE SPATIOTEMPORAL KALMAN
30 FILTER

-110.4 pv

. Source area 5 cm?

Figure 3.2: In this figure the non-averaged spikes selected from (a) the EEG dataset,
which was generated from the left lateral frontal source with 5 cm? source area, and (b)
the EEG dataset, which was generated from the left lateral frontal source with 10 cm?
source area, are shown. The EEG amplitudes at the spike peaks are shown next to the
peak points. In the left column the voltage maps (negative in red, positive in blue) of
the spike peaks of every data set are shown. The images were produced using CURRY?7.

Source area 5 cm?

Figure 3.3: In this figure the averaged spikes computed from (a) the EEG dataset,
which was generated from the left lateral frontal source with 5 cm?* source area, and
(b) the EEG dataset, which was generated from the left lateral frontal source with 10
cm? source area, are shown. The EEG amplitudes at the spike peaks are shown next to
the peak points. In the left column the voltage maps (negative in red, positive in blue) of

the spike peaks of every data set are shown. The images were produced using CURRY7.
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Figure 3.4: In this figure the non-averaged spikes selected from (a) the EEG dataset,
which was generated from the left lateral temporal source with 5 cm? source area, and
(b) the EEG dataset, which was generated from the left lateral temporal source with 10
cm? source area, are shown. The EEG amplitudes at the spike peaks are shown next to
the peak points. In the left column the voltage maps (negative in red, positive in blue) of

the spike peaks of every data set are shown. The images were produced using CURRY7.

® .

Figure 3.5: In this figure the averaged spikes computed from (a) the EEG dataset,
which was generated from the left lateral temporal source with 5 cm* source area, and
(b) the EEG dataset, which was generated from the left lateral temporal source with 10
cm? source area, are shown. The EEG amplitudes at the spike peaks are shown next to
the peak points. In the left column the voltage maps (negative in red, positive in blue) of

the spike peaks of every data set are shown. The images were produced using CURRY7.
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Figure 3.6: Four electrode layouts are shown here which were used to generate the
EEG datasets with 64, 32, 19, and 9 electrodes from the original 128-electrode dataset.
The layouts were visualized using the Fieldtrip Software [OFMSI1].
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Spikes 128-electrode  64-electrode 32-electrode 19-electrode 9-electrode
dataset dataset dataset dataset dataset

Frontal aver- F3 F3 F3 F3 Fpl

aged spike, 5 35.9498 36.2119 36.0597 36.1601 27.757

cm?  source

area

Frontal non- F3 F3 F3 F3 Fpl

averaged 20.6059 20.519 20.7022 20.6942 12.1869

spike, 5 cm?

source area

Frontal aver- F3 F3 F3 F3 C3

aged spike, 10  40.7889 40.8961 40.975 40.88 30.3707

cm?  source

area

Frontal non- F3 F3 F3 F3 C3

averaged 26.5522 26.4984 26.4877 26.7061 18.7764

spike, 10 cm?

source area

Temporal av- TTP7H CP5 TP7 T7 T7

eraged spike, 38.4502 39.5918 37.6187 36.7242 36.8527

5 cm? source

area

Temporal TTP7H TP7 TP7 T7 T7

non-averaged  15.9484 17.3833 17.2830 19.1365 17.0013

spike, 5 cm?

source area

Temporal av- TTP7H CP5 TP7 T7 T7

eraged spike, 37.0488 37.7073 37.4095 38.9171 39.0938

10 cm? source

area

Temporal CP5 CP5 TP7 P7 T7

non-averaged  22.5361 22.5282 18.0671 19.3726 16.5478

spike, 10 cm?
source area

Table 3.4: The dominant electrodes and SNR values (in dB) for both averaged and
non-averaged simulated spikes are shown for different electrode layouts, locations, and
source areas.
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Figure 3.7: An overview of the analysis pipeline is displayed which includes EEG pre-
processing, creation of EEG datasets with 64, 32, and 19 channels based on standard
electrode layouts, head modeling, source imaging via LORETA and STKF, and evalua-
tion based on an anatomical atlas. The images were produced using CURRY?7.

second model, where sources fell within the desired region in 3/5 datasets. Table 3.5 collects
the anatomical labels of the strongest sources, result evaluation and AIC values produced by
both LORETA and STKF.

The analysis of the non-averaged spike from the same region and with the same source
area via LORETA resulted in localizations in the left lateral frontal lobe in 3/5, 2/5, and 2/5
datasets for the first, second, and third model, respectively. These results are displayed in Fig
3.10. Analysis via STKEF, the results of which are visualized in Fig 3.11, produced sources in
the target area in 3/5, 1/5, and 1/5 datasets in the case of the first, second, and third models,
respectively. The anatomical labels of the strongest sources, result evaluation and AIC values
produced by both LORETA and STKEF are listed in Table 3.6. Regarding the case of the average
spike from the left lateral frontal region, all models produce left lateral frontal sources in 3/5
datasets. The source imaging results of LORETA are shown in Fig 3.12 and the STKEF results
are shown in a similar fashion in Fig 3.13. The anatomical labels of the strongest sources, result
evaluation and AIC values produced by both LORETA and STKEF are listed in Table 3.7.

A similar result can be observed in the case of the non-averaged spike except for the
LORETA result of the second model, where sources were within the desired region in 2/5
datasets. The summary of source imaging results is shown in Fig 3.14 for LORETA and in Fig
3.15 for STKF. The comparison for ABIC and AIC results of LORETA and STKF in addition
to the anatomical labels of the sources and the result evaluation are collected in Table 3.8.

The results of the average and non-averaged spikes from the left lateral temporal region are
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Figure 3.8: EEG source imaging results via LORETA of an averaged spike selected
from the EEG dataset, which was generated from the left lateral frontal source with
5 em? source area. LORETA results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and the clas-
sical Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid
and the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-,
and 9-electrode datasets are shown in columns 1-5 from the left, respectively. The re-
sults are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in MNI coordinates. The source imaging results were visualized
using the Fieldtrip software [OFMS11]



3 SOURCE IMAGING OF SIMULATED EEG DATA VIA THE SPATIOTEMPORAL KALMAN
36 FILTER

Figure 3.9: EEG source imaging results via STKF of an averaged spike selected from
the EEG dataset, which was generated from the left lateral frontal source with 5 cm?
source area. STKF results using a gray-matter 3D grid and the classical Laplacian ma-
trix are depicted in (a). Results using a full-brain 3D grid and the classical Laplacian
matrix are shown in (b). For the results shown in (c), a full-brain grid and the modified
Laplacian matrix were used. The results from the 128-, 64-, 32-,19-, and 9-electrode
datasets are shown in columns 1-5 from the left, respectively. The results are visualized
as axial MRI slices at each spike’s peak, and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown

in MNI coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMSI11]
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LORETA Re- 128 clectrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
sults
Gray-matter Frontal Mid L, Frontal MidL, FrontalMidL, Cerebellum 3 Vermis 3
grid and Frontal SupL  Frontal Sup L  Frontal SupLL. L, Cerebellum -DC-
classical -C- -C- -C- 45L 2660.4936
Laplacian -19949.5439 11287.4653 16382.1902 -DC-
matrix 13106.5898
Full-brain grid Frontal Mid L Frontal Mid L N\A N\A N\A
and classical -C- -C- -DC- -DC- -DC-
Laplacian -16372.4339 10255.8855 18341.3699 12488.6167 2501.2472
matrix
Full-brain grid Frontal Mid L Frontal Mid L  Frontal Mid L. N\A N\A
and modified -C- -C- -C- -DC- -DC-
Laplacian ma- -19972.9304 10196.2495 16257.3592 12101.601 2493.3177
trix
STKF 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
Results
Gray-matter Frontal Mid L, Frontal MidL, Frontal MidL, InsulaL Frontal Med
grid and Frontal SupL  Frontal SupL  Frontal SupL. -DC- Orb R, Frontal
classical -C- -C- -C- -6342.5415 Med Orb L
Laplacian -151117.2557  -54994.1306 -22308.4322 -DC-
matrix -3841.8797
Full-brain grid Frontal Mid L~ Frontal Mid L Frontal Mid L. N\A N\A
and classical -C- -C- -C- -DC- -DC-
Laplacian -122695.123 -44266.4632 -17563.9314 -4883.7989 -3282.4879
matrix
Full-brain grid Frontal Mid L Frontal Mid L  Frontal Mid L N\A N\A
and modified -C- -C- -C- -DC- -DC-
Laplacian ma- -123658.0525 -45930.1798 -19427.9677 -6655.6774 -3324.6273

trix

Table 3.5: EEG source imaging results of an averaged spike from an extended source
in the left lateral frontal region with a source area of 5 cm®>. LORETA and STKF
results of the spike with 128 electrodes, 64 electrodes, 32 electrodes, 19 electrodes,
and 9 electrodes are listed in the table. The results for different grids and Laplacian
matrices were visualized at the peak of each spike. For the maximum source activation,
anatomical labels from the AAL atlas are shown. If the maximum of the estimated
source activity falls within the simulated region, the result is concordant, -C-, with the
simulated region; if the maximum does not fall within the simulated region, the result
is disconcordant, -DC-, with the simulated region.
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Figure 3.10: EEG source imaging results via LORETA of a non-averaged spike se-
lected from the EEG dataset, which was generated from the left lateral frontal source
with 5 cm? source area. LORETA results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and the clas-
sical Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid
and the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-,
and 9-electrode datasets are shown in columns 1-5 from the left, respectively. The re-
sults are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in MNI coordinates. The source imaging results were visualized
using the Fieldtrip software [OFMS11]
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Figure 3.11: EEG source imaging results via STKF of a non-averaged spike selected
from the EEG dataset, which was generated from the left lateral frontal source with 5
cm? source area. STKF results using a gray-matter 3D grid and the classical Lapla-
cian matrix are depicted in (a). Results using a full-brain 3D grid and the classical
Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid and
the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-, and
9-electrode datasets are shown in columns 1-5 from the left, respectively. The results
are visualized as axial MRI slices at each spike’s peak, and the cursor is placed at the
maximum of the estimated current density. Additionally the z-coordinates of the axial
slices are shown in MNI coordinates. The source imaging results were visualized using
the Fieldtrip software [OFMSI1]. The results of the analyses with full-brain grids and
the modified Laplacian matrix were adapted from figures published by the author in in
[HAFM ™" 17b]
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LORETA Re- 128clectrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
sults
Gray-matter Frontal Mid L, Frontal Mid L, Frontal MidL, Frontal Sup Vermis4 5
grid and Frontal SupL  Frontal SupL  Frontal SupL  Medial L, -DC-
classical -C- -C- -C- Frontal Sup 4762.535
Laplacian 4568.3976 17110.0044 15732.7433 Medial R,
matrix Cingulum Ant

R

-DC-

11780.5786
Full-brain grid Frontal Mid L. Frontal Mid L N\A N\A N\A
and classical -C- -C- -DC- -DC- -DC-
Laplacian 10298.3761 19206.4251 16747.9842 11399.6198 4666.7449
matrix
Full-brain grid Frontal Mid L Frontal Mid L N\A N\A N\A
and modified -C- -C- -DC- -DC- -DC-
Laplacian ma- 8480.2076 17749.5825 15710.9669 11104.0304 4665.6518

trix

STKF 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes

Results

Gray-matter Frontal Mid L, Frontal MidL, FrontalMidL, InsulaL Frontal Med

grid and Frontal SupL  Frontal SupL  Frontal SupL.  -DC- Orb R, Frontal

classical -C- -C- -C- 850.162 Med Orb L

Laplacian -58838.4904 -15438.3166 -4444.9657 -DC-

matrix 866.1855

Full-brain grid Frontal Med Frontal Med Frontal MidL N\A Cingulum Ant

and classical Orb R Orb R, Frontal -C- -DC- L

Laplacian -DC- Med Orb L 979.9488 2833.1749 -DC-

matrix -38690.4475 -DC- 1357.3347

-6078.5028

Full-brain grid Frontal Sup Frontal Med Frontal MidL N\A Cingulum Ant

and modified Orb R, Rectus Orb R, Frontal -C- -DC- L

Laplacian ma- R Med Orb L -376.2588 1916.7781 -DC-

trix -DC- -DC- 1324.926
-39079.8578 -7274.2216

Table 3.6: EEG source imaging results of a non-averaged spike from an extended
source in the left lateral frontal region with a source area of 5 cm®>. LORETA and STKF
results of the spike with 128 electrodes, 64 electrodes, 32 electrodes, 19 electrodes,
and 9 electrodes are listed in the table. The results for different grids and Laplacian
matrices were visualized at the peak of each spike. For the maximum source activa-
tion, anatomical labels from the AAL atlas are shown. If the maximum of the estimated
source activity falls within the simulated region, the result is concordant, -C-, with the
simulated region; if the maximum does not fall within the simulated region, the result
is disconcordant, -DC-, with the simulated region.
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Figure 3.12: EEG source imaging results via LORETA of an averaged spike selected
from the EEG dataset, which was generated from the left lateral frontal source with
10 cm? source area. LORETA results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and the clas-
sical Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid
and the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-,
and 9-electrode datasets are shown in columns 1-5 from the left, respectively. The re-
sults are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in MNI coordinates. The source imaging results were visualized
using the Fieldtrip software [OFMS11]
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Figure 3.13: EEG source imaging results via STKF of an averaged spike selected from
the EEG dataset, which was generated from the left lateral frontal source with 10 cm?
source area. STKF results using a gray-matter 3D grid and the classical Laplacian ma-
trix are depicted in (a). Results using a full-brain 3D grid and the classical Laplacian
matrix are shown in (b). For the results shown in (c), a full-brain grid and the modified
Laplacian matrix were used. The results from the 128-, 64-, 32-,19-, and 9-electrode
datasets are shown in columns 1-5 from the left, respectively. The results are visualized
as axial MRI slices at each spike’s peak, and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown

in MNI coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMSI11]
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LORETA Re- 128 clectrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
sults
Gray-matter Frontal Mid L, Frontal Mid L, Frontal MidL,, Frontal Sup Cerebellum 4
grid and Frontal Sup L  Frontal Sup L  Frontal Sup L.  Medial L, 5L
classical -C- -C- -C- Frontal Sup -DC-
Laplacian -29139.7421 5885.4978 13663.1449 Medial R, 2626.7582
matrix Cingulum Ant

R

-DC-

11119.9447
Full-brain grid Frontal Mid L, Frontal MidL, Frontal MidL. N\A N\A
and classical Frontal Inf Tri Frontal Inf Tri -C- -DC- -DC-
Laplacian L L 14179.9941 10583.9752 2386.6016
matrix -C- -C-

-28515.9316 7076.6196

Full-brain grid Frontal Mid L, Frontal MidL, Frontal MidLL. N\A N\A
and modified Frontal Inf Tri Frontal Inf Tri -C- -DC- -DC-
Laplacian ma- L L 10851.3527 10284.9845 2385.0676

trix -C- -C-
-33800.2549 2556.8383

STKF 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
Results
Gray-matter Frontal Mid L, Frontal MidL, Frontal MidL, InsulaL L
grid and Frontal SupL  Frontal Inf Tri Frontal SupL.  -DC- -DC-
classical -C- L -C- -5000.4114 -3818.5442
Laplacian -179062.1253  -C- -28961.5328
matrix -73368.8901
Full-brain grid Frontal Mid L Frontal MidL, Frontal MidL. N\A N\A
and classical -C- Frontal Inf Tri -C- -DC- -DC-
Laplacian -147835.1268 L -26466.2838 -4137.7149 -3442.3585
matrix -C-

-64713.7624
Full-brain grid Frontal Mid L Frontal Mid L Frontal Mid L N\A N\A
and modified -C- -C- -C- -DC- -DC-
Laplacian ma- -149102.4819 -67111.3515 -29081.9115 -6013.3998 -3490.9693

trix

Table 3.7: EEG source imaging results of an averaged spike from an extended source
in the left lateral frontal region with a source area of 10 cm*. LORETA and STKF
results of the spike with 128 electrodes, 64 electrodes, 32 electrodes, 19 electrodes,
and 9 electrodes are listed in the table. The results for different grids and Laplacian
matrices were visualized at the peak of each spike. For the maximum source activation,
anatomical labels from the AAL atlas are shown. If the maximum of the estimated
source activity falls within the simulated region, the result is concordant, -C-, with the
simulated region; if the maximum does not fall within the simulated region, the result
is disconcordant, -DC-, with the simulated region.
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Figure 3.14: EEG source imaging results via LORETA of a non-averaged spike se-
lected from the EEG dataset, which was generated from the left lateral frontal source
with 10 cm? source area. LORETA results using a gray-matter 3D grid and the clas-
sical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and the
classical Laplacian matrix are shown in (b). For the results shown in (c), a full-brain
grid and the modified Laplacian matrix were used. The results from the 128-, 64-, 32-
,19-, and 9-electrode datasets are shown in columns 1-5 from the left, respectively. The
results are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in MNI coordinates. The source imaging results were visualized
using the Fieldtrip software [OFMSI11]. The figures concerning the analyses with full-
brain grids and the modified Laplacian matrix and the low-resolution EEG datasets
were adapted from figures published by the author in in [HAFM ™ 17al].
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Figure 3.15: EEG source imaging results via STKF of a non-averaged spike selected
from the EEG dataset, which was generated from the left lateral frontal source with 10
cm? source area. STKF results using a gray-matter 3D grid and the classical Lapla-
cian matrix are depicted in (a). Results using a full-brain 3D grid and the classical
Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid and
the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-, and
9-electrode datasets are shown in columns 1-5 from the left, respectively. The results
are visualized as axial MRI slices at each spike’s peak, and the cursor is placed at the
maximum of the estimated current density. Additionally the z-coordinates of the axial
slices are shown in MNI coordinates. The source imaging results were visualized using
the Fieldtrip software [OFMSI11]. The figures concerning the analyses with full-brain
grids and the modified Laplacian matrix and the low-resolution EEG datasets were
adapted from figures published by the author in in [HAFM*17a]
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LORETA Re- 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
sults
Gray-matter Frontal Mid L, Frontal MidL, FrontalMidL, Cerebellum 3 Vermis45
grid and Frontal SupL  Frontal Inf Tri Frontal Sup L. L, Cerebellum -DC-
classical -C- L -C- 45L 4706.5164
Laplacian 8807.2065 -C- 20855.055 -DC-
matrix 20201.9113 14424.2014
Full-brain grid Frontal MidL, Frontal MidL N \A N\A N\A
and classical Frontal Inf Tri -C- —DC — —DC — —DC —
Laplacian L 22160.9818 22848.1733 13966.7827 4570.0961
matrix -C-

13234.7786
Full-brain grid Frontal MidL, Frontal MidL, Frontal MidL N \A N\A
and modified Frontal Inf Tri Frontal Inf Tri -C- —DC — —DC—
Laplacian ma- L L 20903.3721 13721.0513 4570.6438
trix -C- -C-

10524.2753 19735.9085
STKF 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
Results
Gray-matter Frontal Mid L, Frontal MidL, FrontalMidL, InsulaL Frontal Med
grid and Frontal Sup L  Frontal Inf Tri Frontal Sup L  -DC- Orb R, Frontal
classical -C- L -C- 602.5023 Med Orb L
Laplacian -66252.1382 -C- -5846.2408 -DC-
matrix -16347.6497 499.8804
Full-brain grid Frontal Mid L Frontal Mid L, Frontal MidL N \A N \A
and classical -C- Frontal Inf Tri -C- —DC — —DC —
Laplacian -44812.8137 L 708.7411 2680.5676 1013.0905
matrix -C-

-6946.6311

Full-brain grid Frontal Mid L Frontal Mid L Frontal MidL N \A Cingulum Ant
and modified -C- -C- -C- —DC — L
Laplacian ma- -45199.7083 -8292.6244 -942.0896 1786.2139 -DC-
trix 975.6061

Table 3.8: EEG source imaging results of a non-averaged spike from an extended
source in the left lateral frontal region with a source area of 10 cm*. LORETA and
STKF results of the spike with 128 electrodes, 64 electrodes, 32 electrodes, 19 elec-

trodes, and 9 electrodes are listed in the table.

The results for different grids and

Laplacian matrices were visualized at the peak of each spike. For the maximum source
activation, anatomical labels from the AAL atlas are shown. If the maximum of the es-
timated source activity falls within the simulated region, the result is concordant, -C-,
with the simulated region; if the maximum does not fall within the simulated region, the
result is disconcordant, -DC-, with the simulated region.
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similar with respect to the number of sources in each model that was localized in the left lateral
temporal area. LORETA, the results of which for the average spike are shown in Fig 3.16 and
for the non-averaged spike are shown in Fig 3.18, in combination with the first, second, and
third models resulted in sources in the desired region for 2/5, 3/5, and 3/5 datasets, respectively.
The results of STKF are visualized in Fig 3.17 and in Fig 3.19. STKF showed left lateral
temporal sources in 2/5, 4/5, and 4/5 datasets for the first, second, and third model, respectively.
Anatomical labels, AIC values, and result evaluation are documented in Table 3.9 and in Table
3.10 for the average and non-averaged spikes, respectively.

The anatomical labels and AIC comparison results of the temporal spikes with a source area
of 10cm? are listed in Table 3.11 for the average spike. A similar table is shown in Table 3.12
for the non-averaged spike. The results of STKF are similar for both average and non-averaged
spikes with respect to the number of sources localized in the desired region. Fig 3.21 shows
the STKF results for the average spike in conjunction with all three models. Similarly Fig 3.23
summarizes the STKF results of all models for the single spike. STKF produced sources in the
target area in 1/5, 4/5, and 4/5 datasets for the first, second, and third models, respectively. EEG
source imaging of the average spike via LORETA, the results of which are shown in Fig 3.20,
together with the first, second, and third models estimated activity in the left lateral temporal
area in 1/5, 3/5, and 3/5 datasets. The analysis of the non-averaged spike via LORETA resulted
in reconstructed activity in the target area in 0/5, 2/5, and 2/5 datasets as can be seen in Fig 3.22.

3.2.3 Discussion

The results of the 128-electrode datasets for the average spike across all methods and models
were concordant with the simulated region. For the non-averaged spike the results were correct
except for one case by LORETA and two cases by STKFE. The STKF produced wrong results
in these two cases for the second and third models. The strongest sources were localized in
the wrong area and ghost sources were present. We suspect that, in this case, information
redundancy was responsible for the instability and wrong localization results. In the second part
of this chapter, we will test a solution to this problem with the STKF that uses a dimensionality
reduction approach based on singular value decomposition (SVD).The numerical problems may
have been made worse by the use of the real number of neighbors for each voxel in the STKF’s
prediction model instead of the more common number of six neighbors for each and every
voxel.

The results of the 64-electrode dataset in the lateral frontal area had correct localization
results except for the same two cases that caused the instability problem for the STKF with
the 128-electrode dataset. For the lateral temporal area, wrong results were found for the first
model with the spike generated by the source with 10cm? source area across both methods. This
may have been caused by the thin sampling of the gray-matter grid and the disadvantage of the
classical Laplacian matrix for lateral brain sources.

The results of the 32-electrode dataset with LORETA for the average spike were mostly
better than those of the non-averaged spike. STKF showed accurate sources for the left frontal
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Figure 3.16: EEG source imaging results via LORETA of an averaged spike selected
from the EEG dataset, which was generated from the left lateral temporal source with
5 cm? source area. LORETA results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and the clas-
sical Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid
and the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-,
and 9-electrode datasets are shown in columns 1-5 from the left, respectively. The re-
sults are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in MNI coordinates. The source imaging results were visualized
using the Fieldtrip software [OFMS11]
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Figure 3.17: EEG source imaging results via STKF of an averaged spike selected from
the EEG dataset, which was generated from the left lateral temporal source with 5 cm?
source area. STKF results using a gray-matter 3D grid and the classical Laplacian ma-
trix are depicted in (a). Results using a full-brain 3D grid and the classical Laplacian
matrix are shown in (b). For the results shown in (c), a full-brain grid and the modified
Laplacian matrix were used. The results from the 128-, 64-, 32-,19-, and 9-electrode
datasets are shown in columns 1-5 from the left, respectively. The results are visualized
as axial MRI slices at each spike’s peak, and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown

in MNI coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMSI11]
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LORETA Re- 128 c¢lectrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
sults

Gray-matter Temporal Sup Temporal Sup Cerebellum Cerebellum 4 Cerebellum 4
grid and L L, Temporal 4 5 L, Cere- 5SL 5L
classical -C- Mid L bellum 6 L, -DC- -DC-
Laplacian -33648.5165 -C- Fusiform L 11400.503 6403.9637
matrix 12210.994 -DC-
14952.5607

Full-brain grid Temporal Sup Temporal Sup Temporal Sup Heschl L Thalamus L
and classical L, Temporal L L -DC- -DC-
Laplacian Mid L -C- -C- 12184.5321 6482.9459
matrix -C- 20210.9965 16120.7339

-18928.6719
Full-brain grid Temporal Sup Temporal Sup Temporal Sup N\A Thalamus L
and modified L, Temporal L L -DC- -DC-
Laplacian ma- Mid L -C- -C- 10961.6683 6483.3364
trix -C- 19051.9671 15328.116

-20325.366

STKF 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
Results
Gray-matter Temporal Sup Temporal Sup Cerebellum 6 Cerebellum 4 Cerebellum 4
grid and L L, Temporal L 5 L, Fusiform 5L
classical -C- Mid L -DC- L -DC-
Laplacian -158830.7183  -C- -23105.6241 -DC- -2312.8463
matrix -59484.3757 -6615.05
Full-brain grid Temporal Sup Temporal Sup Temporal Mid Temporal Sup Heschl L
and classical L, Temporal L L L, Heschl L -DC-
Laplacian Mid L -C- -C- -C- -1616.8264
matrix -C- -47251.2364 -16931.194 -4768.3016

-133986.0331
Full-brain grid Temporal Sup Temporal Sup Temporal Mid Temporal Sup Heschl L
and modified L, Temporal L L L -DC-
Laplacian ma- Mid L -C- -C- -C- -1646.8075
trix -C- -48962.3283 -18493.6083 -6007.1941

-134933.3738

Table 3.9: EEG source imaging results of an averaged spike from an extended source
in the left lateral temporal region with a source area of 5 cm*>. LORETA and STKF
results of the spike with 128 electrodes, 64 electrodes, 32 electrodes, 19 electrodes,
and 9 electrodes are listed in the table. The results for different grids and Laplacian
matrices were visualized at the peak of each spike. For the maximum source activation,
anatomical labels from the AAL atlas are shown. If the maximum of the estimated
source activity falls within the simulated region, the result is concordant, -C-, with the
simulated region; if the maximum does not fall within the simulated region, the result
is disconcordant, -DC-, with the simulated region.
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128 electrodes

Figure 3.18: EEG source imaging results via LORETA of a non-averaged spike se-
lected from the EEG dataset, which was generated from the left lateral temporal source
with 5 cm?* source area. LORETA results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and the clas-
sical Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid
and the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-,
and 9-electrode datasets are shown in columns 1-5 from the left, respectively. The re-
sults are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in MNI coordinates. The source imaging results were visualized
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using the Fieldtrip software [OFMS11]
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Figure 3.19: EEG source imaging results via STKF of a non-averaged spike selected
from the EEG dataset, which was generated from the left lateral temporal source with
5 cm? source area. STKF results using a gray-matter 3D grid and the classical Lapla-
cian matrix are depicted in (a). Results using a full-brain 3D grid and the classical
Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid and
the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-, and
9-electrode datasets are shown in columns 1-5 from the left, respectively. The results
are visualized as axial MRI slices at each spike’s peak, and the cursor is placed at the
maximum of the estimated current density. Additionally the z-coordinates of the axial
slices are shown in MNI coordinates. The source imaging results were visualized using
the Fieldtrip software [OFMSI11]
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LORETA Re-
sults

128 electrodes

64 electrodes

32 electrodes

19 electrodes

9 electrodes

Gray-matter Temporal Sup Temporal Sup Cerebellum Cerebellum 4 Cerebellum 4
grid and L L, Temporal 4 5 L, Cere- 5L 5L
classical -C- Mid L bellum 6 L, -DC- -DC-
Laplacian 4610.3893 -C- Fusiform L 10618.4805 5551.0203
matrix 19029.7184 -DC-
16533.924

Full-brain grid Temporal Sup Temporal Sup Temporal Sup N\A Thalamus L
and classical L, Temporal L, Temporal L -DC- -DC-
Laplacian Mid L Mid L -C- 10887.3798 5647.4952
matrix -C- -C- 18006.3745

11976.0254 21946.3698
Full-brain grid Temporal Sup Temporal Sup Temporal Sup Insula L, Hes- Thalamus L
and modified L, Temporal L, Temporal L chlL -DC-
Laplacian ma- Mid L Mid L -C- -DC- 5647.8034
trix -C- -C- 16978.513 10489.614

10829.9756 20876.158
STKF 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
Results
Gray-matter Temporal Sup Temporal Sup Fusiform L Cerebellum 4 Cerebellum 4
grid and L L, Temporal -DC- 5 L, Fusiform 5L
classical -C- Mid L -4857.8154 L -DC-
Laplacian -54913.9711 -C- -DC- 753.0944
matrix -15391.8196 588.1541
Full-brain grid Temporal Sup Temporal Sup Temporal Mid Temporal Sup Putamen L,
and classical L, Temporal L, Temporal L L, Heschl L Pallidum L
Laplacian Mid L Mid L -C- -C- -DC-
matrix -C- -C- 1287.1017 2735.3889 1329.0395

-35919.3345 -5234.6978
Full-brain grid Temporal Sup Temporal Sup Temporal Mid Temporal Sup InsulaL
and modified L, Temporal L, Temporal L L -DC-
Laplacian ma- Mid L Mid L -C- -C- 1297.713
trix -C- -C- -172.9175 1932.3703

-36301.5329 -6503.461

Table 3.10:

trodes, and 9 electrodes are listed in the table.

EEG source imaging results of a non-averaged spike from an extended
source in the left lateral temporal region with a source area of 5 cm*. LORETA and
STKF results of the spike with 128 electrodes, 64 electrodes, 32 electrodes, 19 elec-

The results for different grids and

Laplacian matrices were visualized at the peak of each spike. For the maximum source
activation, anatomical labels from the AAL atlas are shown. If the maximum of the es-
timated source activity falls within the simulated region, the result is concordant, -C-,
with the simulated region, if the maximum does not fall within the simulated region, the
result is disconcordant, -DC-, with the simulated region.
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Figure 3.20: EEG source imaging results via LORETA of an averaged spike selected
from the EEG dataset, which was generated from the left lateral temporal source with
10 em? source area. LORETA results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and the clas-
sical Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid
and the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-,
and 9-electrode datasets are shown in columns 1-5 from the left, respectively. The re-
sults are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in MNI coordinates. The source imaging results were visualized
using the Fieldtrip software [OFMS11]
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Figure 3.21: EEG source imaging results via STKF of an averaged spike selected from
the EEG dataset, which was generated from the left lateral temporal source with 10
cm? source area. STKF results using a gray-matter 3D grid and the classical Lapla-
cian matrix are depicted in (a). Results using a full-brain 3D grid and the classical
Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid and
the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-, and
9-electrode datasets are shown in columns 1-5 from the left, respectively. The results
are visualized as axial MRI slices at each spike’s peak, and the cursor is placed at the
maximum of the estimated current density. Additionally the z-coordinates of the axial
slices are shown in MNI coordinates. The source imaging results were visualized using

the Fieldtrip software [OFMSI11]
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LORETA Re- 128clectrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
sults
Gray-matter Temporal Sup Supramarginal Cerebellum 6 Cerebellum 4 Cerebellum 4
grid and L, Temporal L L 5L 5L
classical Mid L -DC- -DC- -DC- -DC-
Laplacian -C- 8000.0068 13368.819 10861.8629 6093.9409
matrix -48394.7897
Full-brain grid Temporal Sup Temporal Sup Temporal Sup Heschl L Thalamus L
and classical L L L -DC- -DC-
Laplacian -C- -C- -C- 11620.431 6562.3066
matrix -34523.7982 19031.7098 14391.6222
Full-brain grid Temporal Sup Temporal Sup Temporal Sup N\A Thalamus L
and modified L, Temporal L L, Temporal -DC- -DC-
Laplacian ma- Mid L -C- Mid L 10496.0427 6562.6093
trix -C- 18171.785 -C-

-35198.4592 13445.7436
STKF 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
Results
Gray-matter Temporal Sup Supramarginal Cerebellum 6 Cerebellum 4 Cerebellum 4
grid and L, Temporal L L 5 L, Fusifoorm 5L
classical Mid L -DC- -DC- L -DC-
Laplacian -C- -72558.7959 -27746.9318 -DC- -3114.6007
matrix -189014.3159 -8944.1465
Full-brain grid Temporal Sup Temporal Sup Temporal Mid Temporal Sup N\A
and classical L L, Supra- L L, Heschl L -DC-
Laplacian -C- marginal L -C- -C- -2353.8784
matrix -164069.4727 -C- -22036.5176 -7304.5565

-59984.3882

Full-brain grid Temporal Sup Temporal Sup Temporal Mid Temporal Sup Insula L, Hes-
and modified L, Temporal L, Supra- L L, Heschl L chl L
Laplacian ma- Mid L marginal L -C- -C- -DC-
trix -C- -C- -23633.9804 -8505.0157 -2383.993

-165083.9879  -61545.6871

Table 3.11: EEG source imaging results of an averaged spike from an extended source
in the left lateral temporal region with a source area of 10 cm*. LORETA and STKF
results of the spike with 128 electrodes, 64 electrodes, 32 electrodes, 19 electrodes,
and 9 electrodes are listed in the table. The results for different grids and Laplacian
matrices were visualized at the peak of each spike. For the maximum source activation,
anatomical labels from the AAL atlas are shown. If the maximum of the estimated
source activity falls within the simulated region, the result is concordant, -C-, with the
simulated region; if the maximum does not fall within the simulated region, the result
is disconcordant, -DC-, with the simulated region.
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Figure 3.22: EEG source imaging results via LORETA of a non-averaged spike se-
lected from the EEG dataset, which was generated from the left lateral temporal source
with 10 cm? source area. LORETA results using a gray-matter 3D grid and the clas-
sical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and the
classical Laplacian matrix are shown in (b). For the results shown in (c), a full-brain
grid and the modified Laplacian matrix were used. The results from the 128-, 64-, 32-
,19-, and 9-electrode datasets are shown in columns 1-5 from the left, respectively. The
results are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in MNI coordinates. The source imaging results were visualized
using the Fieldtrip software [OFMSI1]. The figures concerning the analyses with full-
brain grids and the modified Laplacian matrix and the low-resolution EEG datasets
were adapted from figures published by the author in in [HAFM* 17a]
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Figure 3.23: EEG source imaging results via STKF of a non-averaged spike selected
from the EEG dataset, which was generated from the left lateral temporal source with
10 cm? source area. STKF results using a gray-matter 3D grid and the classical Lapla-
cian matrix are depicted in (a). Results using a full-brain 3D grid and the classical
Laplacian matrix are shown in (b). For the results shown in (c), a full-brain grid and
the modified Laplacian matrix were used. The results from the 128-, 64-, 32-,19-, and
9-electrode datasets are shown in columns 1-5 from the left, respectively. The results
are visualized as axial MRI slices at each spike’s peak, and the cursor is placed at the
maximum of the estimated current density. Additionally the z-coordinates of the axial
slices are shown in MNI coordinates. The source imaging results were visualized using
the Fieldtrip software [OFMS11]. The figures concerning the analyses with full-brain
grids and the modified Laplacian matrix and the low-resolution EEG datasets were
adapted from figures published by the author in in [HAFM* 17a]



3.2 THE INFLUENCE OF GRID CHOICE, LAPLACIAN MATRIX, NUMBER OF ELECTRODES,

AND SOURCE AREA ON THE PERFORMANCE OF THE STKF

59

LORETA Re- 128c¢lectrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
sults
Gray-matter Supramarginal Supramarginal Cerebellum 6 Cerebellum 4 Cerebellum 4
grid and L L L SL SL
classical -DC- -DC- -DC- -DC- -DC-
Laplacian 7779.6704 21732.1432 19629.9852 13486.8701 6708.5435
matrix
Full-brain grid Temporal Sup Temporal Sup N\A Hippocampus  Thalamus L
and classical L, Supra- L -DC- L -DC-
Laplacian marginal L -C- 21116.4223 -DC- 6825.9724
matrix -C- 26240.4157 13930.0653

16925.4685
Full-brain grid Temporal Sup Temporal Sup N\A N\A Thalamus L
and modified L, Supra- L, Supra- -DC- -DC- -DC-
Laplacian ma- marginal L marginal L 20142.2775 13468.7672 6826.3922
trix -C- -C-

15613.0316 25190.259
STKF 128 electrodes 64 electrodes 32 electrodes 19 electrodes 9 electrodes
Results
Gray-matter Temporal Sup Supramarginal Cerebellum 6 Cerebellum 4 Cerebellum 4
grid and L, Temporal L L 5L 5L
classical Mid L -DC- -DC- -DC- -DC-
Laplacian -C- -15503.3826 -4717.0806 1145.6556 1124.3325
matrix -62851.0645
Full-brain grid Temporal Sup Temporal Sup Temporal Mid Temporal Sup N\A
and classical L L, Supra- L L -DC-
Laplacian -C- marginal L -C- -C- 1736.6021
matrix -41368.239 -C- 2100.8592 3707.4609

-5423.1516
Full-brain grid Temporal Sup Temporal Sup Temporal Mid Temporal Sup Insula L, Hes-
and modified L L, Supra- L L chlL
Laplacian ma- -C- marginal L -C- -C- -DC-
trix -41833.4802 -C- 494.1835 2587.2983 1696.9468
-6727.2723

Table 3.12: EEG source imaging results of a non-averaged spike from an extended
source in the left lateral temporal region with a source area of 10 cm*>. LORETA and
STKF results of the spike with 128 electrodes, 64 electrodes, 32 electrodes, 19 elec-

trodes, and 9 electrodes are listed in the table.

The results for different grids and

Laplacian matrices were visualized at the peak of each spike. For the maximum source
activation, anatomical labels from the AAL atlas are shown. If the maximum of the es-
timated source activity falls within the simulated region, the result is concordant, -C-,
with the simulated region; if the maximum does not fall within the simulated region, the
result is disconcordant, -DC-, with the simulated region.
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region. For the left temporal spikes, the STKF results of the first model were wrong. STKF
starts to perform better than LORETA with the 32-electrode datasets. LORETA results becomes
less focal than those of STKF.

The results of the 19-channel EEG datasets in the lateral frontal lobe via STKF are mostly in
the white matter in the direct neighborhood of the gray matter of the target area. We expect that
imperfect matching of the analysis and visualization grids during the visualization process may
have caused these anatomical labels. LORETA results are further away from the target region
and the sources are strongly smeared. The performance of STKF in the left temporal area is
even better compared to LORETA.

In the case of the 9-electrode datasets, results of LORETA were always wrong, smeared and
shifted to the center of the brain. STKF managed to remain in the same hemisphere and lobe as
the target region.

Model comparison favored STKF over LORETA. The STKF outperforms LORETA in case
of low-resolution EEG data. This is interesting since many clinics and research centers pos-
sess large databases of 32- and 19-electrode data. Wearable EEG, smartphones, and gaming
applications may require an even smaller number of EEG electrodes. The results are promising
since we are only using a very simple dynamical model with non-adaptive parameters. Since
the performance of the Kalman filters improves with better dynamical models, we may have a
reliable dynamical inverse solutions that is suitable for low-resolution EEG.

The additional temporal constraints of the STKF and the modified definition of the Laplacian
matrix both help to improve the spatial resolution of the estimated brain sources and lead to
more focal sources. There is an unavoidable loss of spatial resolution when the number of
electrodes is decreased. Investment in better dynamical models of the STKF may help counter
this effect.

The count numbers of the sources that were within the desired area showed an improved
performance of both LORETA and STKF when the full-brain grid is combined with the modi-
fied definition of the Laplacian matrix. This was also revealed by model comparison, especially
for STKF. We have not investigated the combination of the modified Laplacian matrix with
gray-matter grids that have a higher resolution, which may solve the problem of thin regions.
The avoidance of the classical Laplacian matrix may prevent the bias due to the suppression
of activity on the inner and outer borders of the grid. The use of thick gray-matter grids may
prevent localizations in the white matter or CSF.

The hypotheses were mainly backed by the results. We did not expect spike averaging to
be beneficial to the performance of the STKEF, since averaging removes a large portion of the
interesting dynamics from the signal. Here we did not average hundreds of spikes, so moderate
averaging may still be preferable to the analysis of non-averaged spikes via STKF.

This study suffers from some limitations. First we have not quantified the simulated region
as a segmented volume and we have not used distance or overlap measures to evaluate the
performance of LORETA and STKF. Second we did not analyze multiple spikes from the same
area to investigate the consistency of the source analysis results. The analysis of average and
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non-averaged spikes in addition to the ones generated by sources with different source areas in
this study, however, may have been a small step in that direction. In the next chapter we will
analyze clinical spikes to try to confirm the results of this chapter using clinical EEG data.

In summary, in this part we investigated for the first time several factors that may influence
the performance of STKF, compared to that of LORETA, and studied the grid choice, the Lapla-
cian matrix, spike averaging, and the number of electrodes. The combination of full-brain grids
and the modified Laplacian matrix led to the best localization results, spatial resolution, and
AIC values. Additionally, STKF was found to be more robust to the reduction in the number
of electrodes than LORETA. This result may find applications in the analysis of low-resolution
EEG. Moderate spike averaging may improve the results of STKF over those of non-averaged
spikes.

3.3 Stabilization of the STKF and Reduction of Computa-
tional Time via Dimensionality Reduction

The EEG source imaging results of the non-averaged spikes, which were generated from
sources with 5 cm? source area in the lateral frontal region, were published by the author in
[HAFM™ 17b]. Only the analyses with full-brain grids and the modified Laplacian matrix were
published.

3.3.1 Methods

We perform two experiments in this part. In the first experiment we investigate how to inte-
grate the spatial projection step for the first time within the pipeline of the STKF. We aim at
suppressing information redundancy, thus stabilizing the STKF and improving the accuracy of
EEG source imaging via STKF. We will comment on any additional benefits of dimensional-
ity reduction via spatial projection regarding computational time and optimization. We would
like to answer the question whether we need to apply spatial projection on the LFM before the
spatial whitening transformation that is performed on the LFM using the Laplacian matrix or
after this transformation. For spatial transformation we will use the standard threshold value of
1.2 x 1077 that is used in the SPMS software [LMK*11, LLET14]. We apply these two sce-
narios to the 128-electrode preprocessed non-averaged spike from the left lateral frontal region
with a source area of Scm?. For comparison purposes, we use the results of the 64-electrode,
32-electrode, and 19-electrode datasets from the same spike. In the head modeling step, we use
the LFM that was generated for this dataset in section 3.2 of this chapter in addition with the
full-brain grid and the modified Laplacian matrix. An overview of the analysis procedure can
be seen in Fig 3.24. We are interested in comparing the results of pre-transformation, and post-
transformation spatial projection to each other and to the results of 64-electrode, 32-electrode,
and 19-electrode datasets with respect to the location of the strongest source and the presence
of spurious or ghost sources. Additionally, we count the number of optimization steps until the
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AIC value converges and the computational time (s) of a single call of the STKF. MATLAB
profiler was used to evaluate the computational time on a 64-bit Windows machine with MAT-
LAB R2011a. The machine had a RAM of 128 GB and the CPU was Intel Xeon E5-2640 v3
with 62.6 GHz.

In the second experiment, we apply post-transformation spatial projection to the 128-
electrode dataset using the following threshold values: 10716, 10=15 10714 10713, 10712,
10711,10719,107°, 1073, and 10~7. We are interested in the effect of the choice of the thresh-
old on the accuracy of EEG source imaging via STKF and on the presence of ghost sources.
The source imaging results were also visualized using the Fieldtrip toolbox [OFMS11]. Any
changes in the figures or anatomical labels of the results, compared to the author’s previous pub-
lished work in [HAFM ™ 17a, HAFM*17b], can only be attributed to continuous improvements
in the visualization step.

No Spatial
projection

128 electrodes

Spatial projection
before

32 electrodes Laplacianization

Source
localization Spatial projection
after
Laplacianization

19 electrodes

Standard BEM
head model

'!

Standard MRI AAL Atlas

Figure 3.24: A summary of the analysis pipeline is shown which includes EEG pre-
processing, head modeling, source imaging via STKF with and without spatial projec-

tion, and evaluation based on an anatomical atlas. The images were produced using
CURRY7.

3.3.2 Results

The results of the first experiment, compared to the results of STKF without spatial projec-
tion, are shown in Fig 3.25. The anatomical labels of each source are listed in Table 3.13.
Pre-transformation spatial projection, which resulted in 88 orthogonal channels, produced four
sources. The strongest of these sources was localized in the left lateral frontal region. The
other three sources were localized in the right frontal and right parietal regions. In contrast,
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post-transformation spatial projection, which resulted in 26 orthogonal channels, showed a sin-
gle source in the left lateral frontal region. For the purpose of comparison, the analysis of the
128-electrode dataset without spatial projection resulted in three sources. The strongest of these
sources was localized in the right frontal region. The second source was found in the left lateral
frontal region. The last source was located again in the right frontal region. The EEG source
imaging of the 64-electrode dataset produced two sources. The first source was estimated in
the mesial frontal region while the second source was estimated in the left lateral frontal region.
Each of the 32-electrode and 19-electrode datasets produced a single source either in the left lat-
eral frontal region, in the case of the former dataset, or in the white matter in the neighborhood
of the left lateral frontal area, in the case of the latter dataset.

The results of the comparison of the computational time of a single run of the STKF indicate
that the 19-electrode dataset took the lest amount of time followed by the 128-electrode dataset
with post-transformation spatial projection, the 32-electrode dataset, the 128-electrode dataset
with pre-transformation spatial projection, and the 128-electrode dataset without spatial projec-
tion. Regarding the parameter estimation step, the 19-electrode dataset required the smallest
number of optimization steps. The 128-electrode datasets with pre- and post-transformation
spatial projection in addition to the 32-electrode dataset required a slightly larger number of
optimization steps. The 128-electrode dataset without spatial projection required the largest
number of optimization steps. The results regarding the computational times and number of
optimization steps are summarized in Table 3.14.

The results of the second experiment are shown in Fig 3.26. The anatomical labels of the
strongest source and the resulting number of orthogonal channels are listed in Table 3.15. The
following threshold values resulted in a single source in the left lateral frontal area with no ghost
sources: 10719, 1072, 1078, and 10~7. Each of the threshold values of 10~1¢, 10~15, 10~14,
10713, 107'2, and 10~!! produced the strongest source in the right frontal, right frontal, right
frontal, left lateral frontal, right parietal, and left occipital regions, respectively. Additionally,
the analyses using the last six threshold values showed ghost sources in addition to the strongest
source.

3.3.3 Discussion

In this dataset, the use of high-resolution EEG with 128 and 64 electrodes to measure the activity
of a small region in the brain with a source area of 5cm?, a very small area, may have introduced
information redundancy due to the decrease of distance between measurement points and the
increase in regional correlations [LLE*14]. Additionally the small source area in combination
with more electrodes decreases the SNR of the desired signal and increases the unwanted be-
havior of algorithms due to the presence of more noise. We suppressed information redundancy
by using dimensionality reduction. In addition to redundancy removal, the application of di-
mensionality reduction, in the field of signal processing, may solve the issues caused by noise,
numerical instabilities, and large computation times [HDN14].

The results of the first experiment show that both pre- and post-transformation spatial pro-
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Figure 3.25: EEG source imaging results of a non-averaged spike, which was gener-
ated from the left lateral frontal source with 5 cm? source area. In the top row to the left
the results of the 128-electrode EEG dataset without spatial projection are shown. The
results of the 64-electrode dataset are shown in the middle row to the left. The recon-
structed sources from the 32- and 19-electrode datasets are shown in the bottom row to
the left. In the first two rows to the right the results of the 128-electrode EEG dataset
with pre-transformation spatial projection are shown. In the bottom row to the right
the reconstructed activity from the 128-electrode EEG dataset with post-transformation
spatial projection is displayed. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current density.
Additionally the z-coordinates of the axial slices are shown in MNI coordinates. The
source imaging results were visualized using the Fieldtrip software [OFMSI11]. The
figure was adapted from a previous publication by the author [HAFM ™ 17b]
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EEG Datasets First source Second source Third Source Fourth Source
128-electrode Frontal Sup Orb Frontal Mid L Frontal Sup R -
dataset R, Rectus R -C- -DC-
-DC-
128-electrode Frontal Mid L Supramarginal R, Frontal Inf Tri R, Frontal Sup R
dataset with pre- -C- Parietal Inf R Frontal Inf OrbR  -DC-
transformation -DC- -DC-
spatial projection
128-electrode Frontal Mid L - - -
dataset with post- -C-
transformation
spatial projection
64-electrode Frontal Med Orb Frontal Mid L - -
dataset L, Frontal Med -C-
Orb R
-DC-
32-electrode Frontal Mid L - - -
dataset -C-
19-electrode N\A - - -
dataset -DC-

Table 3.13: EEG Source Imaging results of a non-averaged spike from an extended
source in the left lateral frontal region with a source area of 5 cm®>. STKF results
of the spike with 128 electrodes without spatial projection, 128 electrodes with pre-
transformation spatial projection, 128 electrodes with post-transformation spatial pro-
Jjection, 64 electrodes, 32 electrodes, and 19 electrodes are listed in the table. For the
strongest source and other ghost sources, anatomical labels from the AAL atlas are
shown. If the maximum of the estimated source activity falls within the simulated re-
gion, the result is concordant, -C-, with the simulated region; if the maximum does not
fall within the simulated region, the result is disconcordant, -DC-, with the simulated
region. The table was adapted from a previous publication by the author [HAFM* 17b]
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Figure 3.26: EEG source imaging results of a non-averaged spike, which was gen-
erated from the left lateral frontal source with 5 cm?* source area. In the top row the
reconstructed activity from the 128-electrode EEG dataset with post-transformation
spatial projection with threshold values of 10716, 710715, 10714 10713, and 10712 is
displayed. In the bottom row the results from the same dataset with threshold values of
107110719 107°, 1078, and 10~ are shown. The results are visualized as axial MRI
slices at each spike’s peak, and the cursor is placed at the maximum of the estimated
current density. Additionally the z-coordinates of the axial slices are shown in MNI

coordinates. The source imaging results were visualized using the Fieldtrip software
[OFMSI11]

SOURCE IMAGING OF SIMULATED EEG DATA VIA THE SPATIOTEMPORAL KALMAN
FILTER
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EEG Datasets Number of optimization steps Computational time (s) of a sin-
until convergence gle STKF call
19-electrode dataset 28 84.339
128-electrode dataset with post- 34 86.609
transformation spatial projec-
tion
32-electrode dataset 34 92.838
128-electrode dataset with pre- 34 158.577
transformation spatial projec-
tion
128-electrode dataset 76 239.767

Table 3.14: Computational time (s) of a single STKF run and the number of opti-
mization steps till convergence of EEG source imaging results via STKF of a non-
averaged spike from an extended source in the left lateral frontal region with a source
area of 5 cm?. STKF results of the spike with 128 electrodes without spatial projection,
128 electrodes with pre-transformation spatial projection, 128 electrodes with post-
transformation spatial projection, 64 electrodes, 32 electrodes, and 19 electrodes are

listed in the table. The table was adapted from a previous publication by the author
[HAFM™17b]

jection applied to the 128-electrode dataset using the standard threshold value from SPMS
produced the strongest source in the left lateral frontal region. The results of the post-
transformation spatial projection were, however, without any ghost sources. Only the 128-
electrode dataset with post-transformation spatial projection, the 32-electrode datasets, and the
19-electrode dataset resulted in accurate source localization with no ghost sources. So we con-
clude that the application of post-transformation spatial projection to the 128-electrode dataset
solved the localization issues of both the 128-electrode and 64-electrode datasets. The applica-
tion of spatial projection to the spatially-whitened LFM seems more natural since it is the LFM
in the spatially-whitened state-space model. Additionally post spatial whitening, the spatially-
projected LEM will not be subjected to any further linear transformation. This makes the inter-
pretation and investigation of the transformed LFM easier. We conclude that spatial projection
should happen after spatial whitening within the pipeline of the STKF.

Additionally, the application of post-transformation spatial projection led to a reduction of
the computational time of a single STKF run by a factor of 2.7684. It is interesting to note
that this computational time is comparable to that of the 19-electrode dataset, which is under-
standable since the standard threshold resulted in 26 orthogonal channels. The reduction in the
number of necessary optimization steps until convergence by a factor of 2.2353 was similar for
both pre- and post-transformation spatial projection. The first hypothesis was supported by the
results of the first experiment if we choose to use post-transformation spatial projection.

The results of the second experiment showed that the standard threshold value produced
a current density distribution that was somewhere between the results of the 19-electrode and
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Threshold for spatial Number of channels Anatomical label of Presence of ghost
projection corresponding to the strongest source sources
threshold
1016 127 Frontal Sup Orb R, yes
Rectus R
-DC-
10°1 125 Frontal Sup Orb R, yes
Rectus R
-DC-
10-14 120 Frontal Sup Orb R, yes
Rectus R
-DC-
10°1 106 Frontal Mid L yes
-C-
10712 89 Parietal Inf R, Supra- yes
marginal R
-DC-
1071 71 Occipital Sup L, Cal- yes
carine L
-DC-
10710 56 Frontal Mid L no
-C-
10~° 44 Frontal Mid L, Frnotal no
Inf Tri L
-C-
10-8 34 Frontal Mid L no
-C-
1077 27 Frontal Mid L no
-C-

Table 3.15: EEG Source Imaging results of a non-averaged spike from an extended
source in the left lateral frontal region with a source area of 5 cm?. The table lists the
STKF results of the spike with 128 electrodes after applying post-transformation spatial
projection using threshold values 0f10*16, 1075, 10714, 10713, 10712, 10711, 10719,
1072, 1078, and 1077. The number of channels that resulted from each threshold value
is listed in the table. For the strongest source, anatomical labels from the AAL atlas
and result evaluation are shown. If the maximum of the estimated source activity falls
within the simulated region, the result is concordant, -C-, with the simulated region;
if the maximum does not fall within the simulated region, the result is disconcordant,
-DC-, with the simulated region.
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the 32-electrode datasets. A decrease in the threshold values until 10710, i.e., including more
singular values, improves the accuracy and spatial resolution of the results. Additional increases
in the threshold value results in a wrong localization of the strongest source in addition to
ghost sources. We expected this result since the standard threshold in SPM8 was not optimally
adapted to our 3D volumetric grids or LFMs. The decay of the singular values of the LFM needs
to be studied for each LFM before deciding for the threshold value. These results confirmed the
second hypothesis because the decrease of the threshold did improve the accuracy and spatial
resolution of the STKF compared to the results obtained using the standard threshold from
SPMS.

This study was performed only on simulated EEG data. In the future, the application of spa-
tial projection to the STKF analyses of clinical EEG, MEG and simultaneous MEG-EEG data
needs to be investigated. The study was also performed only on a BEM head model. The effects
of detailed state-of-the-art FEM models on the stability of STKF and the application of spatial
projection in conjunction with these head models will be studied in the future. Additionally,
further investigations into the choice of the optimal threshold need to be conducted.

To summarize, we have combined spatial projection for the first time with the STKF to sup-
press information redundancy, ghost sources, and improve the accuracy of EEG source imaging
via STKF in case of high-resolution EEG. First the optimal order of the STKF pipeline after the
introduction of spatial projection was studied and we found out that it should be performed after
spatial whitening. We also observed a reduction in the computational speed and the number of
optimization steps required in the state-space parameter estimation step. Finally, we observed
that a careful choice of the threshold of spatial projection can lead to improved accuracy and
spatial resolution of STKF results.
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Chapter 4

Source Imaging of Clinical EEG Data via
the Spatiotemporal Kalman Filter

4.1 Motivation

We have seen in the previous chapter that the use of full-brain grids may improve the accuracy
of both LORETA and STKF by avoiding very thin regions in the grid and spurious sources
that results from the division of a single source into multiple sources because of grid density.
Additional improvement of the localization accuracy may be obtained by the use of the modified
Laplacian matrix which avoids the disadvantage of the classical Laplacian matrix that forces the
current density to be zero at the borders of the grid. Finally the dynamical nature of the STKF
leads to more focal and accurate sources. These results were obtained using simulated spikes.

In the first part of this chapter we try to reproduce the above mentioned results using clinical
data of epileptic spikes from two patients of epilepsy. We hypothesize that the localization per-
formance of both LORETA and STKF will improve after using full-brain grids and the modified
Laplacian matrix. We also expect a superior performance of the STKF compared to LORETA
with respect to model comparison and source localization.

In the second part we perform a similar analysis to the one from the first part to localize
the onset of a focal seizure and investigate the effects of grid choice on the performance of
LORETA and STKF. We hypothesize that the introduction of full-brain grids will improve the
accuracy of both LORETA and STKF. Additionally, we expect STKF to produce more accurate
results due to the additional temporal smoothness constraints in its state-space model. We also
expect STKF to outperform LORETA in model comparison by showing smaller AIC values
compared to LORETA’s ABIC values.

In the final part we perform multimodal fusion by generalizing the STKF’s measurement
model measurement model in order to use simultaneous MEG-EEG measurements and compare
the localization results of the EEG-only, MEG-only and simultaneous MEG-EEG datasets. We
hypothesize that the combined information from both modalities, compared to the data from
each separate modality, will stabilize and improve the localization performance of the STKF.
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4.2 Source Imaging of Epileptiform Discharges via the Spa-
tiotemporal Kalman Filter

EEG Source imaging results via LORETA and STKF at the spike peaks from Patient 1 were
published by the author in [HHJ " 15].

4.2.1 Methods

Patient 1 is a male child who was diagnosed with drug-resistant temporal lobe epilepsy that
was caused by a focal cortical dysplasia (FCD) in the right temporal lobe. The preoperative
evaluation showed EEG activity in the right temporal lobe. After two operations, the outcome
was Engel class IIb [EJ93]. This outcome means that the patient suffered from only 20 % of the
original number of seizures that was registered before the operation.

Patient 2 is a teenage female patient suffering from hippocampal sclerosis in the left tem-
poral lobe which caused drug-resistent mesial temporal lobe epilepsy (TLE). The patient was
diagnosed according to the clinical guidelines in [Eng01]. During the preoperative evaluation,
the patient’s EEG showed interictal and ictal activity in the left temporal area. Hippocampal
sclerosis was detected using the patient’s MRI in addition to changes in caput hippocampi and
the amygdala. The patient was then operated and areas from the amygdala and hippocampus
were resected. The outcome of the operation was Engel Ib [EJ93] and it led to seizure-freedom.
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Figure 4.1: The time series of the dominant electrode showing five non-averaged
spikes, selected from the EEG recording of Patient 1. The cursor is located at each
spike’s peak. Additionally, the time (in ms) at each spike’s peak is shown to the left of
each respective peak. The EEG amplitudes at the spike peaks are shown to the right
of each peak point. In the right column the voltage maps (positive in red, negative in
blue) corresponding to the spike peaks are shown. The images were produced using
CURRY?7. The figure was inspired by the figures published by the author in [HHJT15]
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The presurgical EEG recordings of Patients 1 and 2 were performed with 40 electrodes and a
sampling frequency of 500 Hz using the Nikon Kohden System (http://www.nihonkohden.com).
The electrode layout is displayed in Fig 4.3. Power-supply artifacts were removed using a
Butterworth notch filter with a cut-off frequency of 50 Hz. The removal of drifts in the data was
performed using a high-pass Butterworth filter with a cut-off frequency of 0.53 Hz. The filters
were applied only in the forward direction. After that, five artifact-free EEG segments from each
patient’s recording were marked and visually selected, each of which contained a non-averaged
spike. The spike waveforms from Patient 1 are shown in Fig 4.1 and the waveforms from Patient
2 are shown in Fig 4.2 with markers and voltage maps at the spike peaks. The signals of the T8
electrode for Patient 1 and the T7 electrode for Patient 2 were used to mark the spike onset at
50 of the spike’s rise time. Each segment was then standardized and average-referenced before
source analysis. The SNR of each spike was calculated using the method described in section
2.1.

The preoperative MRIs of Patient 1 and Patient 2 were recorded in Kiel using a 3-Tesla
MR scanner (Philips Achieva; Philips, Best, The Netherlands). The T1-weighted MRIs of both
patients had a resolution of 0.8752 x 1 mm?>. Before the application of automatic segmentation
algorithms from CURRY7, both MRIs were preprocessed using SPM8 (Wellcome Trust Centre
for Neuroimaging, University College, London) in order to remove inhomogeneity artifacts that
negatively influence automatic segmentation. For each patient, a realistic and individual BEM
head model was computed in CURRY7. Both head models had inner skull, outer skull, and scalp
compartments with conductivity values of 0.33 S/m, 0.0042 S/m, and 0.33 S/m, respectively.
In the head model of Patient 1 the inner skull, outer skull, and scalp were meshed using 3168,
1931, and 1942 nodes, respectively. Two grids with 7 mm grid resolution were defined. A
slightly-thickened gray-matter grid was created with 3816 points and a full-brain grid was also
created with 4783 points. Similarly for Patient 2, the inner skull, outer skull, and scalp were
described by 1993, 1261, and 1503 nodes, respectively. After that, a slightly-thickened gray-
matter grid with 2667 grid points and a full-brain grid with 4208 points were defined. Both
grids had a resolution of 7 mm.

Source analysis was performed using LORETA and STKF on the data of Patient 1 and
Patient 2. The STKF’s dynamical model was chosen to be an autoregressive model of first
order. Three models were used for the analysis based on the grid choice and the definition of
the Laplacian matrix. The first model used a gray-matter grid while the other two models used a
full-brain grid. The first two models used the classical definition of the Laplacian matrix while
the third one used the modified definition of the Laplacian matrix. The whole procedure is
shown in Fig 4.4.

4.2.2 Results

We will start with the results from Patient 1’s data. The SNR values of the spikes considering
only the background activity of the signal from electrode T8 were 16.0755 dB, 12.966 dB,
16.2521 dB, 16.6015 dB, and 15.3805 dB, respectively. At the spikes’ onset points, LORETA
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Figure 4.2: The time series of the dominant electrode showing five non-averaged
spikes, selected from the EEG recording of Patient 2. The cursor is located at each
spike’s peak. Additionally, the time (in ms) at each spike’s peak is shown to the left of
each respective peak. The EEG amplitudes at the spike peaks are shown to the right
of each peak point. In the right column the voltage maps (positive in red, negative in
blue) corresponding to the spike peaks are shown. The images were produced using
CURRY?7.

Figure 4.3: The figure displays 39-channel EEG electrode layout used for recording
EEG datasets of Patient 1 and Patient 2. The layout was visualized using the Fieldtrip
Software [OFMS11].
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Figure 4.4: An overview of the analysis pipeline is shown which includes EEG prepro-
cessing, MRI preprocessing, individual head modeling, source imaging via LORETA
and STKF, and evaluation by an expert epileptologist. The images were produced using
CURRY?7.

Individual MRI

showed sources in the right hemisphere in 2/5 spikes using the first model. The results of the
second model were similar to the first one. Using the third model, LORETA produced sources
in the right hemisphere in 3/5 spikes. EEG source imaging results of LORETA at the spikes’
onset points are shown in Fig 4.5. EEG source imaging via STKF showed localization results
in the right hemisphere in 3/5 spikes for the first model. The application of the second model
resulted in activity in the right hemisphere in 4/5 cases. Finally, the third model showed right-
hemispheric sources in 3/5 spikes. STKF results at the spikes’ onsets are displayed in Fig 4.6.

At the spikes’ peaks, LORETA resulted in sources in the right hemisphere for 5/5 spikes
using the first and third models. The second model resulted in right-hemispheric sources in 4/5
spikes. These results are summarized in Fig 4.7. The application of STKF with the first model
at the spikes’ peaks estimated the sources in the right hemisphere in 4/5 spikes. The application
of the second and third models showed the sources in the right hemisphere for all spikes. The
results of STKF are shown in Fig 4.8. Sources from the first model were the most focal ones
for both LORETA and STKF. The sources from the second and third models were closer to the
target area and more focal in STKF results compared to those of LORETA.

The ABIC results of LORETA and AIC results of STKF are summarized and listed in Table
4.1 and Table 4.2. STKEF results had consistently lower AIC compared to LORETA’s ABIC
values. Additionally, the use of the modified Laplacian matrix resulted in lower ABIC or AIC
values compared to the use of the classical Laplacian matrix.

For Patient 2, the SNR values of the spikes computed using the background activity of the
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(a) LORETA Results at the Spike‘s Onset (b) Structural
MRI
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Figure 4.5: (a) Results of EEG source imaging via LORETA of 5 non-averaged spikes
from the EEG recordings of Patient 1. LORETA results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (2). For the results shown in (3), a full-
brain grid and the modified Laplacian matrix were used. From left to right the results
of Spikes 1-5 are shown in columns 1-5, respectively. The results are visualized as axial
MRI slices at each spike’s onset,which is defined as 50% of the spike’s rise time, and
the cursor is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in Montreal Neurological Institute (MNI)
coordinates. In (b) The location and the extent of the FCD on a coronal slice from
the patient’s preoperative T2-weighted MRI is shown and marked with a yellow circle
(top). Additionally in (b), the centers of the yellow cursor mark the detected FCD
on an axial slice after morphometric Huppertz MRI analysis [HGF05] (middle) and
the FCD on the brain’s cortical surface after morphometric Huppertz MRI analysis
[HGF'05] (bottom). The source imaging results were visualized using the Fieldtrip
software [OFMS11]. The figure was adapted from the figures published by the author
in [HHJT15]
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(a) STKF Results at the Spike‘s Onset (b) Structural
MRI
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Figure 4.6: (a) Results of EEG source imaging via STKF of 5 non-averaged spikes
from the EEG recordings of Patient 1. STKF results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (2). For the results shown in (3), a full-
brain grid and the modified Laplacian matrix were used. From left to right the results
of Spikes 1-5 are shown in columns 1-5, respectively. The results are visualized as axial
MRI slices at each spike’s onset,which is defined as 50% of the spike’s rise time, and
the cursor is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in Montreal Neurological Institute (MNI)
coordinates. In (b) The location and the extent of the FCD on a coronal slice from
the patient’s preoperative T2-weighted MRI is shown and marked with a yellow circle
(top). Additionally in (b), the centers of the yellow cursor mark the detected FCD
on an axial slice after morphometric Huppertz MRI analysis [HGF05] (middle) and
the FCD on the brain’s cortical surface after morphometric Huppertz MRI analysis
[HGF'05] (bottom). The source imaging results were visualized using the Fieldtrip

software [OFMS11]. The figure was adapted from the figures published by the author
in [HHJ"15]
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(a) LORETA Results at the Spike‘s Peak (b) Structural
MRI
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Figure 4.7: (a) Results of EEG source imaging via LORETA of 5 non-averaged spikes
from the EEG recordings of Patient 1. LORETA results using a gray-matter 3D grid
and the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D
grid and the classical Laplacian matrix are shown in (2). For the results shown in (3),
a full-brain grid and the modified Laplacian matrix were used. From left to right the
results of Spikes 1-5 are shown in columns 1-5, respectively. The results are visualized
as axial MRI slices at each spike’s peak and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown
in Montreal Neurological Institute (MNI) coordinates. In (b) The location and the
extent of the FCD on a coronal slice from the patient’s preoperative T2-weighted MRI
is shown and marked with a yellow circle (top). Additionally in (b), the centers of the
yellow cursor mark the detected FCD on an axial slice after morphometric Huppertz
MRI analysis [HGF*05] (middle) and the FCD on the brain’s cortical surface after
morphometric Huppertz MRI analysis [HGF'05] (bottom). The source imaging results
were visualized using the Fieldtrip software [OFMSI11]. The figure was adapted from
the figures published by the author in [HHJT15]
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(a) STKF Results at the Spike‘s Peak (b) Structural
MRI
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Figure 4.8: (a) Results of EEG source imaging via STKF of 5 non-averaged spikes
from the EEG recordings of Patient 1. STKF results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (2). For the results shown in (3), a
full-brain grid and the modified Laplacian matrix were used. From left to right the
results of Spikes 1-5 are shown in columns 1-5, respectively. The results are visualized
as axial MRI slices at each spike’s peak and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown
in Montreal Neurological Institute (MNI) coordinates. In (b) The location and the
extent of the FCD on a coronal slice from the patient’s preoperative T2-weighted MRI
is shown and marked with a yellow circle (top). Additionally in (b), the centers of the
vellow cursor mark the detected FCD on an axial slice after morphometric Huppertz
MRI analysis [HGF05] (middle) and the FCD on the brain’s cortical surface after
morphometric Huppertz MRI analysis [HGF05] (bottom). The source imaging results
were visualized using the Fieldtrip software [OFMS11]. The figure was adapted from
the figures published by the author in [HHJ'15]
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Datasets

Spike 1

Spike 2

Spike 3

Spike 4

Spike 5

Gray-matter
grid, classical
Laplacian
matrix

17329.3666

37091.9908

16407.0575

20149.3177

13568.5419

Full-brain
grid, classical
Laplacian
matrix

18015.3764

39764.8359

17457.8974

20660.0842

14317.6504

Full-brain
grid, modified
Laplacian
matrix

15274.8085

33641.2593

12852.1926

15440.6389

9965.6777

Table 4.1: The table lists ABIC values resulting from EEG source imaging via LORETA
of five non-averaged spikes from Patient 1. The first analysis was performed using a
gray-matter grid and the classical Laplacian matrix. The second analysis was per-
formed using a full-brain grid and the classical Laplacian matrix. The third analysis
was performed using using a full-brain grid and the modified Laplacian matrix.

Datasets

Spike 1

Spike 2

Spike 3

Spike 4

Spike 5

Gray-matter
grid, classical
Laplacian
matrix

7332.4385

4071.8944

1616.5824

6222.8869

-2578.3523

Full-brain
grid, classical
Laplacian
matrix

11701.7231

14726.2873

7059.5908

11710.1292

3482.3567

Full-brain
grid, modified
Laplacian
matrix

8375.7396

9779.5817

3491.0327

7117.8335

-70.4493

Table 4.2: The table lists AIC values resulting from EEG source imaging via STKF of
five non-averaged spikes from Patient 1. The first analysis was performed using a gray-
matter grid and the classical Laplacian matrix. The second analysis was performed
using a full-brain grid and the classical Laplacian matrix. The third analysis was

performed using using a full-brain grid and the modified Laplacian matrix.
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Datasets Spike 1 Spike 2 Spike 3 Spike 4 Spike 5

Gray-matter 30860.0509 20605.4178 26023.2922 29466.0151 39716.214
grid, classical

Laplacian

matrix

Full-brain 32354.2004 22137.9289 26796.3081 30935.2978 40728.2336
grid, classical

Laplacian

matrix

Full-brain 19752.4203 11018.88 15202.7629 16054.2245 22380.4173
grid, modified

Laplacian

matrix

Table 4.3: The table lists ABIC values resulting from EEG source imaging via LORETA
of five non-averaged spikes from Patient 2. The first analysis was performed using a
gray-matter grid and the classical Laplacian matrix. The second analysis was per-
formed using a full-brain grid and the classical Laplacian matrix. The third analysis
was performed using using a full-brain grid and the modified Laplacian matrix.

dominant electrode T7 were 18.5746 dB, 17.1866 dB, 21.1336 dB, 19.9886 dB, and 9.0586
dB, respectively. The EEG source imaging results of Patient 2’s spikes via LORETA at the
onset of each spikes are shown in Fig 4.9. The application of the first, second, and third models
resulted in sources in the left hemisphere in 2/5, 1/5, and 4/5 spikes, respectively. The STKF
results at the spikes’ onset points after applying the first, second, and third models resulted in
left-hemispheric sources in 3/5, 1/5, and 5/5 spikes, respectively. These results are summarized
and plotted in Fig 4.10.

At the spikes’ peaks, results of LORETA are shown in Fig 4.11 while the results of STKF
are summarized in Fig 4.12. Both LORETA and STKF show sources in the left hemisphere in
5/5 spikes. Compared to LORETA, STKF produces more consistent and more focal sources.
Additionally, STKF sources were closer to the target area than those produced by LORETA.

The ABIC results of LORETA are listed in Table 4.3 while the AIC results of STKF are
shown in Table 4.4. STKF’s AIC results are always lower than ABIC values of LORETA.
Additionally, the lowest ABIC or AIC values were obtained when the modified Laplacian matrix
was used and not the classical Laplacian matrix.

4.2.3 Discussion

Both hypotheses were confirmed by the source reconstruction of EEG data from Patients 1 and
2. For Patient 1, the LORETA results benefited more from the combined use of the full-grid with
the modified Laplacian than from the full-grid with the classical Laplacian matrix. STKF results
using the full grid with the classical or modified Laplacian were comparable or better than those
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(a) LORETA Results at the Spike‘s Onset (b) Post-
Operative
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Figure 4.9: (a) Results of EEG source imaging via LORETA of 5 non-averaged spikes
Jrom the EEG recordings of Patient 2. LORETA results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (2). For the results shown in (3), a full-
brain grid and the modified Laplacian matrix were used. From left to right the results
of Spikes 1-5 are shown in columns 1-5, respectively. The results are visualized as axial
MRI slices at each spike’s onset,which is defined as 50% of the spike’s rise time, and
the cursor is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in Montreal Neurological Institute (MNI)
coordinates. (b) The location and the extent of the resected region in two axial slices

from the patient’s postoperative MRI. The source imaging results were visualized using
the Fieldtrip software [OFMSI11]
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(a) STKF Results at the Spike‘s Onset (b) Post-
Operative
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Figure 4.10: (a) Results of EEG source imaging via STKF of 5 non-averaged spikes
from the EEG recordings of Patient 2. STKF results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (2). For the results shown in (3), a full-
brain grid and the modified Laplacian matrix were used. From left to right the results
of Spikes 1-5 are shown in columns 1-5, respectively. The results are visualized as axial
MRI slices at each spike’s onset,which is defined as 50% of the spike’s rise time, and
the cursor is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in Montreal Neurological Institute (MNI)
coordinates. (b) The location and the extent of the resected region in two axial slices
from the patient’s postoperative MRI. The source imaging results were visualized using
the Fieldtrip software [OFMSI11]
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(a) LORETA Results at the Spike‘s Peak (b) Post-
Operative
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Figure 4.11: (a) Results of EEG source imaging via LORETA of 5 non-averaged spikes
from the EEG recordings of Patient 2. LORETA results using a gray-matter 3D grid
and the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D
grid and the classical Laplacian matrix are shown in (2). For the results shown in (3),
a full-brain grid and the modified Laplacian matrix were used. From left to right the
results of Spikes 1-5 are shown in columns 1-5, respectively. The results are visualized
as axial MRI slices at each spike’s peak and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown
in Montreal Neurological Institute (MNI) coordinates. (b) The location and the extent
of the resected region in two axial slices from the patient’s postoperative MRI. The
source imaging results were visualized using the Fieldtrip software [OFMSI11]



4.2 SOURCE IMAGING OF EPILEPTIFORM DISCHARGES VIA THE SPATIOTEMPORAL
KALMAN FILTER 85

(a) STKF Results at the Spike‘s Peak (b) Post-
Operative
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Figure 4.12: (a) Results of EEG source imaging via STKF of 5 non-averaged spikes
from the EEG recordings of Patient 2. STKF results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (2). For the results shown in (3), a
full-brain grid and the modified Laplacian matrix were used. From left to right the
results of Spikes 1-5 are shown in columns 1-5, respectively. The results are visualized
as axial MRI slices at each spike’s peak and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown
in Montreal Neurological Institute (MNI) coordinates. (b) The location and the extent
of the resected region in two axial slices from the patient’s postoperative MRI. The
source imaging results were visualized using the Fieldtrip software [OFMS11]
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Datasets Spike 1 Spike 2 Spike 3 Spike 4 Spike 5

Gray-matter 1557.5862 -3417.7676 -1386.9827 -2223.1803 5733.7182
grid, classical

Laplacian

matrix

Full-brain 10180.1116 3901.8276 5902.2392 5253.6733 13466.4633
grid, classical

Laplacian

matrix

Full-brain 1528.2345 -3250.4733 -1987.9493 -471.274 3690.7039
grid, modified

Laplacian

matrix

Table 4.4: The table lists AIC values resulting from EEG source imaging via STKF of
five non-averaged spikes from Patient 2. The first analysis was performed using a gray-
matter grid and the classical Laplacian matrix. The second analysis was performed
using a full-brain grid and the classical Laplacian matrix. The third analysis was
performed using using a full-brain grid and the modified Laplacian matrix.

using the gray-matter grid. In general, STKF produced comparable or better results than those
of LORETA. Additionally, sources estimated by STKF were more focal and closer to the lateral
temporal region than the sources estimated by LORETA. Statistical model comparison favored
the STKEF, since the AIC values were consistently lower than LORETA’s ABIC. Additionally,
model comparison showed that the use of the full-brain grid with the modified Laplacian matrix
explained the data better since it resulted in the lowest ABIC or AIC values compared to the
case of the full-brain grid and the classical Laplacian matrix.

For Patient 2 at the spikes’ onsets, the combination of full-brain grid and modified Laplacian
matrix outperformed the other two models. Additionally, STKF showed better results than
those of LORETA for the first and third models. STKEF, using the second and third models at
the spikes’ peaks, is more consistent and has better spatial resolution compared to LORETA.
Statistical model comparison showed again the STKF described the data better than LORETA.
The results of model comparison regarding the choice of the Laplacian matrix are similar to
those that were obtained using EEG data from Patient 1.

In evaluating the results we preferred to use the information about the hemisphere in which
the source was located in order to get more general results about the effects of the grid choice,
Laplacian matrix, and source imaging method. For Patient 1, being in the right hemisphere
almost always meant being close to or within the target area in the right lateral temporal lobe,
since the source was superficial. Using the real epileptogenic zone for Patient 2 would make all
results disconcordant with the resected volume in the amygdalo-hippocampal complex, since
the source is small and deep in the brain. The simplified evaluation model helps us, however,
to see the gradual improvement in the localization. The onset points seem to have a very small
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SNR which leads to variability in the reconstructed source locations. The concept of the onset
points is used more often in conjunction with averaged spikes with much higher SNR than non-
averaged spikes. For non-averaged spikes it is often not clear how to define the onset point.
Here we defined it based on the signal from the dominant electrode. The results at the peak
seem to be more accurate and more consistent.

The study suffered from some limitations. The use of a larger group of patients and more
spikes from each patient would improve the evaluation of the performance of LORETA and
STKF with the different grids and Laplacian matrices. Additionally, the use of postoperative
MRIs to segment the lesion and quantify the distance of the reconstructed current density dis-
tribution to the resected volume would give a better idea about the accuracy of each method.
Finally, we may improve the accuracy and spatial resolution of the STKF further if we permit
multiple regions in the brain to have their own dynamics within the state-space model. This
model will be used on the five spikes from Patient 2 in Chapter 5.

In summary we applied the STKF and LORETA to non-averaged epileptic spikes from
the EEG recordings of two patients with temporal lobe epilepsy. We aimed at studying the
influence of grid choice and Laplacian matrix. the introduction of full-grids alone did not help
improve the accuracy of localization. Only when the full-grid was combined with the modified
Laplacian matrix did the results start to improve. This was also backed by model comparison,
Additionally, STKF benefited from its dynamical nature and showed improved accuracy, spatial
resolution, and consistency of localization, compared to LORETA. STKF also outperformed
LORETA in model comparison.

4.3 Source Imaging of Focal Seizure Onset via the Spatiotem-
poral Kalman Filter

The analyses with gray-matter and full-brain grids in conjunction with the classical Laplacian
matrix were produced in the master thesis of Masoud Sarabi [Sar14] under the author’s super-
vision. The author published the results of this section in [HSJ*15].

4.3.1 Methods

The focal seizure was registered in EEG recordings of Patient 3, who is a teenage male patient
of epilepsy. In this patient’s case, a large FCD that extended over the left temporal, parietal,
and occipital regions was the cause of drug-resistant epilepsy. The EEG recording of Patient 3
was performed with 45 electrodes and a sampling frequency of 500 Hz using the Nikon Kohden
System (http://www.nihonkohden.com). The electrode layout can be seen in Fig 4.13. A slow
and high-amplitude oscillation was noticed in the frontal channels as the seizure began. In the
same time, channels P9 and PO7 showed a low-amplitude and fast oscillation that was typical
of the temporal, parietal, and occipital electrodes. The oscillation from channel P9 is displayed
in Fig 4.14 with a labeling of the first oscillatory 6 peaks. Since we wanted to emphasize the
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latter type of oscillation in the beta band, we used a low-pass Butterworth filter with a cut-off
frequency of 35 Hz. This led also to the removal of power-supply artifacts. The removal of
drifts in the data was performed using a high-pass Butterworth filter with a cut-off frequency of
1 Hz. The filters were applied only in the forward direction. After that, a single focal seizure
from Patient 3 was marked and selected. Finally, the EEG data was then standardized and
average-referenced before source analysis.

The patient’s preoperative T1-weighted MRI (1 mm?) was recorded in Kiel using a 3-Tesla
MR scanner (Philips Achieva; Philips, Best, The Netherlands). The RF inhomogeneity arti-
facts were suppressed using SPM8 (Wellcome Trust Centre for Neuroimaging, University Col-
lege, London). The segmentation and meshing of the individual MRI were performed using
CURRY7. After that, a realistic head model that included the scalp, outer skull, and inner skull
compartments was computed using the boundary element method. The conductivities of the
aforementioned compartments were set to 0.33 S/m, 0.0042 S/m, and 0.33 S/m, respectively.
For the source space, a slightly thickened gray-matter volumetric grid with 1917 grid points and
7 mm grid spacing was generated first. In addition to that, a full-brain grid with 7 mm reso-
lution and 3290 points was generated. In the inverse modeling step, EEG source imaging was
performed first via LORETA using three analysis models. In the first model a gray-matter grid
and the classical Laplacian matrix were used. In the second model a full-brain grid was used
along with the classical Laplacian matrix. These models were also used for source imaging via
STKEF. The dynamical model of the STKF was an autoregressive model of second order, since
we are interested in the localization of a brain oscillation.

Figure 4.13: The figure displays 45-channel EEG electrode layout used for record-
ing EEG dataset of Patient 3. The layout was visualized using the Fieldtrip Software
[OFMS11].
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Figure 4.14: This figure shows the six peaks from the seizure onset phase that were used
to visualize the EEG source imaging results. The time series of the P9 electrode was
used for visualization. The figure was adapted from the figures supervised or published
by the author in [Sarl4, HSJ"15]

4.3.2 Results

EEG source imaging via LORETA using the gray-matter grid produced sources that were in
different regions, mostly in the frontal region, in the left and also the right hemispheres. The
sources were localized in the left hemisphere in 4/6 cases. The use of the full-brain grid slightly
improved the consistency of the localization across the six peaks, since now the sources were
localized in the left hemisphere in 5/6 cases. The results of LORETA are visualized in Fig 4.15.
The resulting ABIC values are listed in Table 4.5.

The application of STKF to the seizure EEG data in conjunction with the gray-matter grid
produced consistent localization across all oscillatory peaks. The reconstructed sources were all
localized in the left fronto-temporal region. The use of the full-brain grid resulted in consistent
locations of sources in the left temporal lobe for the second model. The sources were localized
in the left hemisphere in 6/6 cases for all three models. The results of STKF are visualized in
Fig 4.16 and the resulting AIC values are listed in Table 4.5. The AIC values of the STKF were
always smaller than the ABIC results of LORETA.

4.3.3 Discussion

The evaluation of the source imaging results of LORETA showed that the sources were always
localized outside the FCD. Additionally, we observed a variability in the localization of the
seizure onset. The use of the full-brain grid slightly decreased the variability but did not improve
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Figure 4.15: Results of EEG source imaging via LORETA of a single focal seizure
from the EEG recordings of Patient 3. LORETA results using a gray-matter 3D grid
and the classical Laplacian matrix are depicted in (a). Results using a full-brain 3D
grid and the classical Laplacian matrix are shown in (b). From left to right the results
of seizure peaks 1-6 are shown in columns 1-6, respectively. The results are visualized
as axial MRI slices at each seizure peak and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown
in Montreal Neurological Institute (MNI) coordinates. (c) The location and the extent of
the FCD on a coronal (top) and an axial (bottom) slice from the patient’s preoperative
T2-weighted MRI are shown and marked with red squares. The source imaging results
were visualized using the Fieldtrip software [OFMSI11]. The figure was adapted from
the figures supervised or published by the author in [Sarl4, HSJ"15]
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Figure 4.16: Results of EEG source imaging via STKF of a single focal seizure from
the EEG recordings of Patient 3. STKF results using a gray-matter 3D grid and the
classical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). From left to right the results of seizure
peaks 1-6 are shown in columns 1-6, respectively. The results are visualized as axial
MRI slices at each seizure peak and the cursor is placed at the maximum of the esti-
mated current density. Additionally the z-coordinates of the axial slices are shown in
Montreal Neurological Institute (MNI) coordinates. (c) The location and the extent of
the FCD on a coronal (top) and an axial (bottom) slice from the patient’s preoperative
T2-weighted MRI are shown and marked with red squares. The source imaging results
were visualized using the Fieldtrip software [OFMSI11]. The figure was adapted from
the figures supervised or published by the author in [Sarl4, HSJ'15]
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Datasets ABIC values of LORETA Re- AIC values of STKF Results
sults
Gray-matter grid, 14135.1657 -28378.8322
classical Laplacian matrix
Full-brain grid, 13306.4868 -19264.8368

classical Laplacian matrix

Table 4.5: The table lists ABIC and AIC values resulting from EEG source imaging via
LORETA and STKF of the focal seizure from Patient 3. The first analysis was performed
using a gray-matter grid and the classical Laplacian matrix. The second analysis was
performed using a full-brain grid and the classical Laplacian matrix.

the accuracy of the localization. We may interpret the assignment of the sources to the frontal
lobe by LORETA to the bias introduced by the presence of the stronger oscillations in the frontal
electrodes. The variability may have also resulted from the lack of temporal smoothness in the
constraints used by LORETA. The slight improvement in consistency of localization after the
use of full-brain grids may partially confirm the first hypothesis.

The STKEF results were all consistently localized in the left hemisphere. The variability of
localization was not observed here. The fronto-temporal source that was shown by the results of
the gray-matter grid was outside the FCD and it may have been caused by the presence of thin
regions due to spatial sampling of the grid and by the bias introduced by the use of the classical
Laplacian matrix that forces the activity at the borders of the grid to be zero. The results of the
second model were inside the FCD and this improvement in accuracy may have been the result
of the use of full-brain grids in addition to the temporal smoothness constraints of the STKF
that are imposed by the dynamical AR(2) model. The STKF results confirm both hypotheses.

We would like to mention some of the limitations of the study. Since this is a proof-of-
concept study, we used only a single focal seizure. The consistency and accuracy of the STKF
can be better studied within the framework of a larger study that includes multiple subjects with
several focal seizure per subject. The oscillatory seizure pattern here was successfully analyzed
by the linear STKF. The investigation of more complex focal seizure patterns may require the
application of non-linear Kalman filters such as the extended [SSM62, McE66] or unscented
Kalman filters [JUDWO95]. The former works well in the presence of weak non-linearities while
the latter is used in the case of strong non-linear behavior [Sch12].

To summarize, this is the first application of the STKF to the localization of the onset of a
focal seizure. The STKF results were compared to those of LORETA. STKF produced correct
results only when a full-brain grid was used. STKF outperformed LORETA, probably due to
the dynamical nature of the STKF, with respect to the accuracy and consistency of localization
for all six oscillatory peaks.
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4.4 MEG-EEG Fusion via the Spatiotemporal Kalman Filter

The results in this section were published by the author in [HAW T 13].

4.4.1 Methods

The spikes were extracted from the recordings of Patient 4, a teenage female patient with drug-
resistant mesial temporal lobe epilepsy. The source of the epilepsy is an FCD in the left temporal
lobe. Evaluation of EEG recordings showed left fronto-temporal activity in interictal EEG and
left frontal activity in ictal EEG. PET recordings show a deactivation in the left mesial temporal
area.

Our cooperation partners from the “Institute for Biomagnetism and Biosignalanalysis™ at the
University of Miinster recorded 500 s of simultaneous MEG-EEG at a sampling frequency of 1.2
KHz. The recording was made using a 275-sensor CTF MEG device (CTF, MEG International
Services Limited, Coquitlam, Canada). A 74-electrode EEG was recorded simultaneously with
the MEG within the shielded chamber. The layouts of the MEG sensors and EEG electrodes are
displayed in Fig 4.17.

Three kinds of MRIs (T1-weighted MRI, T2-weighted MRI, and DT-MRI) were registered
using a 3.0 Tesla machine (Gyroscan Intera/Achieva 3.0T (Philips, Best, NL)). The T1-weighted
and T2-weighted MRIs had resolutions of (1.17 x 1.04 x 1.04 mm?®) and (1.17 x 1.17 x
1.17 mm?), respectively. The DT-MRI had a resolution of (1.875 x 1.875 x 1.875 mm?). In
the first step the T2-weighted MRI was coregistered to the T1-weighted MRI and the betsurf
tool [JPST05] from the FSL software [JBBT12] was used to segment the scalp, outer skull,
and inner skull. The FAST tool [ZBSO01] also from FSL was then used to extract the brain’s
white matter, CSF, and gray matter. The spongy skull bone is detected using threshold-based
segmentation of the T2-weighted image followed with constraints from a morphologically-
transformed skull overlay. The recording and processing of DT-MRI are explained in detail
in [AVK " 14, AVD"15]. The conductivity tensors that describe the anisotropy of the gray- and
white matter was extracted from the ST-MRI after preprocessing and coregistration to the T2-
weighted MRI. Finally, SimBio-VGRID [C100] is used to compute a 6-compartment hexahe-
dral mesh with white- and gray-matter anisotropy and adaptation of geometry. SimBio [C100]
was used to compute the magnetic and electrical LFMs with conductivity values of 0.43 S/m,
0.007 S/m, 0.025 S/m, 0.14 S/m, 0.33 S/m, and 1.79 S/mm for scalp, compact skull bone,
spongy skull bone, white matter, gray matter and CSF, respectively. The conductivity of the
skull was adapted to the patient’s anatomy using skull conductivity estimation from additional
simultaneous measurements of sensory evoked fields and potentials.

The simultaneous MEG-EEG recordings were preprocessed and the spikes were marked by
expert epileptologists. For the analysis, we chose a spike that was visible in both MEG and EEG.
The chosen spike was strongest in the MEG MLT21 channel and in the EEG FT9 electrode as
can be seen in Fig 4.18 !. Please note that the peak of the MEG spike at Tj; precedes that

'In this figure, the negative spike peak in the EEG dataset is plotted pointing downwards.
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of the EEG spike at 7z by 20 ms. Additionally, the stronger distortion of surface EEG by
volume conduction makes the EEG spike look more smeared compared to the MEG spike. We
then reduced the number of channels to 64 MEG and 64 EEG channels, and then standardized
the data from each modality. The EEG data was then average-referenced. The SNR values
of the MEG and EEG spikes were calculated according to the procedure explained in section
2.1. The 64-channel MEG, 64-channel EEG, and the 128-channel simultaneous MEG-EEG
datasets were analyzed using STKF with an autoregressive model as the dynamical model. The
source space was defined using a gray-matter grid with 4.5648 mm resolution and the classical
Laplacian matrix was used. The results were visualized at the peak 7y of the MEG spike and
at the peak Tg of the EEG spike. An overview of the MEG-EEG source imaging procedure is
available in Fig 4.20. The results were visualized using the Fieldtrip Software [OFMS11].
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Figure 4.17: (a)The figure displays the 64-channel MEG sensor layout that was used
to select 64 out of 271 MEG channels from Patient 4’s recordings. In (b) the 64-
channel electrode layout that was used to select 64 out of 74 EEG channels from Pa-
tient 4’s recordings is shown. The layouts were visualized using the Fieldtrip software
[OFMS11].

4.4.2 Results

For the MEG spike, the SNR value when only the background signal of sensor MLT21 is taken
into account is 20.9987 dB. The SNR value of the EEG spike at electrode FT9 is 15.6855 dB.
The source imaging results via STKF of MEG-only, EEG-only, and MEG-EEG datasets are
shown in Fig 4.21. Using the EEG-only dataset, we can see that at the MEG peak Tjs, STKF
finds the source in the right occipital lobe. At the EEG peak Tg, STKF estimates the source in
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Epileptic Spikes in Simultaneous MEG-EEG
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Figure 4.18: The epileptic spikes from the time series of MEG channel MLT21 (in red)
and EEG channel FT9 (in blue) are shown. Ty marks the peak of the MEG spike and

Tg marks the peak point of the EEG spike. The figure was adapted from a publication
by the author [HAW ™ 13].

Figure 4.19: The figure shows the 6-compartment calibrated finite element head model
that was generated from Patient 4’s structural T1-weighted, T2-weighted and DTI MRI
recordings. The colors red, blue, and green indicate right to left, superior to inferior,
and anterior to posterior directions, respectively.
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Figure 4.20: A summary of the analysis pipeline is presented which includes MEG-
EEG preprocessing, MRI preprocessing, finite element individual head modeling,
source imaging via STKF, and evaluation based by an expert epileptologist. The images
were produced using CURRY7.

the left lateral temporal lobe. The results of the MEG-only dataset at the MEG peak T, show
a single source in the left lateral temporal lobe. At the EEG peak T, the source was localized
in the left cerebellum. Using the MEG-EEG dataset, STKF found the source in the left lateral
temporal lobe at both peaks.

If we concentrate only at the expected area in the left lateral frontal area we find a weak
activation from the EEG-only dataset at the MEG peak T, that does not appear as the strongest
source. The same can be said for the result from the MEG-only dataset at the EEG peak Tf.

4.4.3 Discussion

In this study, MEG-EEG fusion was performed in the forward as well as in the inverse modeling
steps. In the forward model a 6-compartment anisotropic FEM head model with calibrated skull
conductivity was computed to account for the different sensitivities of MEG and EEG to the
human skull. In the inverse step, the measurement model of the state-space model that underlies
the STKF was generalized to describe both MEG and EEG. The results show improved accuracy
and consistency of the STKF when the simultaneous MEG-EEG dataset was analyzed, since this
means that information from both modalities were available to the STKF. Since MEG is more
sensitive to dipoles with a dominant tangential orientation and EEG is more sensitive to dipoles
with a dominant radial orientation, MEG and EEG are complementary and MEG-EEG fusion
would provide a more complete picture of the underlying current density distribution in the
brain. The results support our hypothesis.
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MEG Simultaneous MEG-EEG

Figure 4.21: Results of EEG source imaging via STKF of a non-averaged epileptic
spike from the simultaneous MEG-EEG recordings of Patient 4. In the top row, STKF
results are shown at the MEG peak Ty;. STKF results at the EEG peak Tg are shown
in the bottom row. From left to right the results of EEG, MEG and simultaneous MEG-
EEG are shown, respectively. The results are visualized as axial MRI slices at each
spike’s peak and the cursor is placed at the maximum of the estimated current density.
Additionally the z-coordinates of the axial slices are shown in Montreal Neurologi-
cal Institute (MNI) coordinates. The source imaging results were visualized using the
Fieldtrip software [OFMS11]. The figure was adapted from a publication by the author
[HAWT13].
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In this study only a single epileptic spike was analyzed. A large-scale study involving
multiple subjects is required in order to study the consistency of the STKF’s results in MEG-
EEG fusion. Additionally, we only used 64 channels from each modality. In the future the
inclusion of more channels may help to further improve the accuracy of STKF. The results from
the gray-matter grid may be even further improved by using a full-brain grid. The combination
of the full-brain grid with the modified definition of the Laplacian matrix may bring even better
results. Finally, temporally- or spatially-adaptive dynamical models may outperform the current
AR(1) dynamical model with constant parameters.

In summary, this is the first application of the STKF to simultaneous MEG-EEG. This has
been done by generalizing the measurement equation from the state-space model. Additionally,
a state-of-the-art 6-compartment anisotropic FEM head model with calibrated skull conductivity
was used to improve forward modeling of simultaneous MEG-EEG data.The source imaging
results of the MEG-EEG dataset were more accurate than those of the MEG-only or EEG-only
datasets. This may have been the case due to the complementarity of MEG and EEG recordings.



Chapter 5

Source Imaging of Simulated and Clinical
EEG Data via the Regional
Spatiotemporal Kalman Filter

5.1 Motivation

The STKEF is limited by the decision to keep its state-space model parameters constant in time
and in space. The first experiments with spatially-heterogeneous parameters were performed
within the framework of the diploma thesis of Philipp Stern [Ste08]. In this diploma thesis, he
implemented the first regional STKF (RSTKF). In order to test the new algorithm, two regions
were defined in the brain. The first region included the left and right thalami while the second
region included the rest of the brain’s gray matter. He chose to use region-specific dynamical
noise variance parameters, since this parameter was found, in practice, to be more important
for state-space modeling of EEG data. The cerebellum was excluded from the source space. In
his thesis, Philipp Stern used a standard 3-spheres head model and a gray-matter grid. He also
used the classical Laplacian matrix throughout the thesis. He first worked on simulated EEG
data from a rotating dipole in the thalamus. Stern hypothesized that the stochastic change of the
orientation uses the fact that the EEG is highly sensitive to the dipole orientation. The dynamical
nature of the Kalman filter would then assume a deep source with a changing orientation rather
than a cortical patch that spans the whole cortex.

RSTKEF was successful in localizing the thalamic source while LORETA and STKEF failed in
this task. Compared to the rest of the brain, the optimization step resulted in a larger dynamical
noise variance in the thalamus. In the rest of the thesis he also tested simulated EEG data
where a cortical and a thalamic source were simultaneously active, which led to a masking of
the activity of the deeper source. In this case, prior separation of the activity of both sources
using frequency-domain filtering was enough to obtain accurate results via the RSTKF. He
also analyzed two clinical EEG datasets. In the first dataset he tried to localize a thalamic
source from the EEG recordings of a opiate-dependent patient undergoing rapid detoxification.
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RSTKF was successful in localizing the thalamic source, which was believed to be the only
active source in the brain. The second dataset was an EEG recording of sleep spindles. In
this case, the thalamic source was found after multiple processing stages including regional
definition, frequency-domain filtering to exclude masking effects, and an initial grid search
followed by quasi-Newton BFGS optimization.

In the above-mentioned thesis, the author limited the RSTKF to two regions. No individual
or realistic head models were used by the author. He also did not investigate the effects of the
grid choice or the Laplacian matrix on the RSTKF. Additionally, the applicability of the new
method to epileptology was not investigated.

In this work, we wanted to apply the RSTKF to simulated as well as clinical EEG data of
epileptic spikes. We also wanted to increase the number of regions from two to seven and check
whether this negatively influences the optimization process, since we don’t perform the opti-
mization in two stages namely, a global optimization and then a regional one. We also wanted
to investigate the applicability of the RSTKF to the localization of other interesting subcorti-
cal regions such as the putamen or the amygdalo-hippocampal complex. In contrast to Philipp
Stern’s thesis, we use realistic head models and different grids that include the cerebellum and
the white matter. We also decided to constrain our investigation to the localization of single
sources. A subset of the results of this chapter that is related to the analysis of the simulated
EEG from the thalamic source was produced in the master thesis of Nawar Habboush [Hab14],
which was supervised by the author within the framework of this doctoral thesis. The results
of this chapter were submitted by the author as a journal paper to PLOS ONE and the paper is
currently under review.

We hypothesize that RSTKF will perform similarly to STKF and LORETA with respect to
cortical sources. With increasing depth of sources, we expect RSTKF to become more accurate.
We also expect RSTKF to show improved accuracy, consistency of localization, and spatial
resolution in case of small lesions such as hippocampal sclerosis. Finally, we expect a better
performance of RSTKF in statistical model comparison compared to that of STKF or LORETA.

5.2 Methods

5.2.1 Simulated EEG Data

In this section two experiments were performed. In the first experiment, three simulated EEG
datasets were generated from rotating dipoles that were placed in the frontal lobe, putamen, and
thalamus, respectively. The increase in the depth of the sources was used to test the localization
performance of LORETA, STKF, and RSTKF(7), which denotes a 7-region RSTKF. In the
second experiment, the simulated EEG datasets from a rotating dipole in the thalamic source
was used to test the localization performance of RSTKF with two to seven regions.

The source dynamics in the brain were generated with a frequency of 4.8 Hz and a sampling
frequency of 256 Hz using an autoregressive model of second order. This signal was used to
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simulate a single dipole first in the left frontal lobe, then in the left putamen, and finally in the
left thalamus, respectively. The source orientation varied stochastically in the plane around the
line extending between the left and right ears. An example of a rotating dipole and its source
dynamics is shown in Fig 5.1.

The LFM was computed from the standard realistic BEM head model from the Neuroscan
Curry software (Compumedics Neuroscan, version 7.0). The three-compartment head model
includes the skin, outer skull, and inner skull compartments which were triangulated using
1504, 2681, and 3858 nodes, respectively. Their conductivity values were set to 0.33 S/m,
0.0042 S/m, and 0.33 S/m, respectively. The brain was discretized using a volumetric grid with
a grid resolution of 5 mm. The electrode positions were described by the layout depicted in 5.2.

The three simulated EEG datasets were then generated by the multiplication of the brain
signals with the resulting LFM and the subsequent addition of -80 dB white Gaussian measure-
ment noise. The resulting SNR values of the EEG datasets from the sources in the frontal lobe,
putamen, and thalamus were 45.77 dB, 44.05 dB, and 42.62 dB, respectively. The simulated
EEG data sets are shown in Fig 5.3.
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Figure 5.1: (a) An example of the simulated rotating current dipole in the thalamus
and (b) the x-, y- and z-components in addition to the modulus of the thalamic source
current density (LA /mm?).

In the preprocessing step, standardization of data was performed to zero mean and unit vari-
ance. Additionally, the data was re-referenced to the common average reference. In the inverse
modeling step, we performed EEG source imaging in the first experiment via LORETA, STKEF,
and RSTKF(7). The simulated EEG datasets from the sources in the frontal lobe, putamen, and
thalamus were used for the analysis. In the second experiment, the EEG dataset from the tha-
lamic source was analyzed via LORETA and RSTKF(2-7). No five-region model was used in
this experiment. An autoregressive model of second order was used for the dynamical models
of STKF and RSTKF. The standard BEM head model from CURRY7 was also used here. An

1400
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Figure 5.2: The 32-channel EEG electrode layout used for generating the simulated
EEG datasets. The layout was visualized using the Fieldtrip Software [OFMSI1].

overview of the source imaging pipeline is shown in Fig 5.4.

The source grid points needed to be grouped into different regions based on the Talairach
Atlas from CURRY7. We started with a similar model like the one used in Philipp Stern’s thesis
[Ste08]. The thalamus was distinguished from the rest of the brain in the two-region model. In
the three-region model, the rest of the brain was divided into left and right hemispheres in
addition to the thalamic area. The hippocampus was added in the four-region model. The
cerebellum and the putamen were included in the six-region model and, finally, the seventh
region was chosen to be the caudate nucleus in the seven-region model. We did not divide the
subcortical structures into left and right regions. The choice of the thalamus, hippocampus,
putamen, and caudate nucleus was based on [ABY 107, AMFDI12, Ste08]. The cerebellum was
modeled because of its connectivity with the cortex and its participation in the areas of language
and attention [MI16].

The grid spacing differed in the different RSTKF analyses. The grid resolution in the inverse
modeling step was never set to 5 mm to avoid inverse crime where the same model is used for
both simulation and source reconstruction. The classical 7 mm resolution was used for the
six- and seven-region analyses. The four-region model was analyzed using a grid with 6 mm
resolution. Finally, 14 mm resolution was used for the two- and three-region models. This
variability in the grid resolution resulted from considerations about computational time. After
that, we experimented with the grid resolution to model longitudinal brain regions such as the
hippocampus, since they were discontinuously sampled or did not have enough grid points when
a coarse grid resolution was used. We finally settled on 7 mm resolution with additional dilation
and smoothing of the small and longitudinal subcortical structures.

In order to be able to compare the localization and ABIC and AIC results of LORETA
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Figure 5.3: The simulated 32-channel EEG data sets from a single rotating dipole in
(a) the frontal lobe, (b) putamen, and (c) thalamus. For each dataset, the oscillatory
peaks that were used to visualize the source imaging results are shown using cursors
and arrows. The EEG amplitudes at the oscillatory peaks are shown next to the peak
points. In the right column the voltage maps of the largest negative peaks of every data
set are shown. The images were produced using CURRY7.
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and RSTKF(2-7), the six- and seven-region models were computed out-of-sample because they
were optimized using another interval from the dataset compared to the other four models.

&8

Atlas-based
definition of reglons

)

Suffabé .EEG Source

localization

Standard BEM
head model

=)

Standard MRI AAL Atlas

Figure 5.4: A summary of the analysis pipeline is shown which includes EEG prepro-
cessing, head modeling, division of brain grid into regions based on atlas information,
source imaging, and evaluation based on an anatomical atlas. The images were pro-
duced using CURRY7.

5.2.2 C(linical EEG Data

We have seen in section 4.2 that neither LORETA nor STKF were successful in demonstrating
good accuracy and spatial resolution using EEG recordings from Patient 2, since the resected
area was small and deep. In this section we decided to test the new RSTKF method using
the same data from Patient 2 and compare the results to those of LORETA and STKF. In the
preprocessing step, the data were also standardized and re-referenced to the common average
reference. Unlike the analyses in 4.2, we used here the standard 3-compartment BEM head
model from CURRY7, since it was easier to perform the regional grouping of grid points into
regions using the standard head. Additionally, we also used a full-brain grid with 7 mm grid
resolution in addition to the classical Laplacian matrix.

The 7-region model was used here for RSTKF and it included the thalamus, the amygdalo-
hippocampal complex, the putamen, the caudate nucleus, the cerebellum, and the remainder
of the brain which was divided into left and right hemispheres. No left and right distinctions
were used for the subcortical areas. Since we used a grid resolution of 7 mm, we needed to use
dilation and smoothing to make sure that every subcortical region was correctly meshed.
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Method Euclidean distance (in Euclidean distance (in Euclidean distance (in
mm) between the simu- mm) between the simu- mm) between the simu-
lated and reconstructed lated and reconstructed lated and reconstructed
sources in the frontal sources in the putamen sources in the thalamus
lobe

LORETA 12.8062 20.8327 25.7099

STKF 15.2971 20.3224 24.5967

RSTKF 12.8062 16.0935 11.3578

Table 5.1: Euclidean distances (in mm) between the maxima of the simulated and the
maxima of the sources reconstructed via LORETA, STKF, and RSTKF.

The results of LORETA, STKF, and RSTKF(7) were evaluated using visual inspection,
since the post-surgical resection as seen in the patient’s MRI is available, and atlas labels of
the maxima of the reconstructed activity using the anatomical automatic labeling (AAL) atlas
[TMLP"02]. The anatomical descriptions of the AAL labels are listed in Table 3.1, Table 3.2,
and Table 3.3.

5.3 Results

5.3.1 Simulated EEG Data

For all simulated datasets, the optimization step did not become slow near convergence or fall
in a local minimum very early in the optimization process. For the EEG dataset from the frontal
lobe, LORETA localized the source in the white matter near the gray matter in the left frontal
area. LORETA localized the source from the putamen in the white matter. The thalamic source
was localized by LORETA in the left putamen. STKF localized the frontal source in the white
matter in the left frontal region. The source from the putamen was localized by STKF in the
white matter. STKF localized the source from the thalamus in the left putamen. RSTKF(7)
localized the frontal source in the white matter near the gray matter in the left frontal area. The
source from the putamen was localized in the left putamen. The thalamic source was localized
in the left thalamus.

The lowest AIC values were produced by RSTKF(7) followed by STKF. ABIC values of
LORETA were the highest. The distances between the simulated and the maxima of the recon-
structed current density distributions are listed in Table 5.1. The source imaging results of these
analyses can be seen in Fig 5.5 and the resulting anatomical labels, AIC values and evaluation
are listed in Table 5.2. The regional dynamical noise standard deviations are listed in Table
5.3. We observe here that the dynamical noise variance parameter of the simulated region had
a higher value as a result of the optimization step compared to the dynamical noise variances of
the other six regions.

EEG source imaging results from the second experiment can be seen in Fig 5.5. The anatom-
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Datasets Anatomical labels of Anatomical labels of Anatomical labels of
LORETA result STKEF result RSTKEF result
7-region grid, EEG N\A N\A N\A
from the source in the -DC- -DC- -DC-
frontal lobe 8877.9711 2242.2276 1678.4294
7-region grid, EEG N\A N\A Putamen L
from the source in the -DC- -DC- -C-
putamen 6077.9396 2588.3301 2434.9579
7-region grid, EEG PutamenL Putamen L Thalamus L
from the source in the -DC- -DC- -C-
thalamus -3015.4937 -7506.8781 -7584.5813

Table 5.2: EEG source imaging results via LORETA, STKF, and RSTKF of three simu-
lated EEG datasets generated from sources in the frontal lobe, putamen, and thalamus,
respectively. For the maximum source activation, anatomical labels from the AAL atlas
are shown. If the maximum of the estimated source activity falls within the simulated
region, the result is concordant, -C-, with the simulated region; if the maximum does not
fall within the simulated region, the result is disconcordant, -DC-, with the simulated

region.

Regions Frontal lobe Putamen Thalamus
Thalamus -14.456 -17.087 -5.019
Hippocampus -15.091 -17.378 -39.974
Cerebellum -17.637 -5.491 -49.723
Putamen -17.432 -4.972 -39.867
Caudate nucleus -14.393 -21.835 -5.916
Cortex left -3.988 -5.699 -7.373
Cortex right -8.506 -19.946 -7.656

Table 5.3: The table shows the RSTKF’s regional dynamical noise standard deviations
estimated from the simulated EEG dataset from the sources in the frontal lobe, putamen,
and thalamus. For each value, the natural logarithm of the standard deviation is shown.
The number of regions was set to seven in the analyses.
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ical labels and the evaluation are shown in Table 5.4.The regional dynamical noise standard
deviations that resulted from the parameter estimation step are listed in Table 5.6. The thalamus
was correctly localized by RSTKF with two to seven regions. While RSTKF(4) localized the
source maximum in the right thalamus, all other models localized the source maxima in the left
thalamus. The AIC values of RSTKF were always lower than the ABIC results of LORETA.
These values are listed in Table 5.5. Additionally, the regional dynamical noise variance of the
thalamus was always higher than the dynamical noise variances of the other regions.
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Figure 5.5: (a) The first row shows the locations of the simulated dipoles in the left
frontal lobe (left), left putamen (center) and thalamus (right). In the second row the
EEG source imaging results of LORETA for the sources in the frontal lobe, putamen,
and thalamus are displayed. In the third row the EEG source imaging results of STKF
for the sources in the frontal lobe, putamen, and thalamus are displayed. In the bottom
row the EEG source imaging results of the RSTKF(7) for the sources in the frontal lobe,
putamen, and thalamus are shown. (b) EEG source imaging results of the RSTKF(i),
where i = 2,,7, for the simulated thalamic source. The results are visualized as axial
MRI slices, and the cursor is placed at the maximum of the estimated current density.
Additionally the z-coordinates of the axial slices are shown in Montreal Neurologi-
cal Institute (MNI) coordinates. The source imaging results were visualized using the
Fieldtrip software [OFMSI1].
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Datasets Anatomical labels of RSTKF result
2-region grid, EEG from the thalamic source Thalamus L
2-region grid, EEG from the thalamic source :F(Ijl_alamus L
4-region grid, EEG from the thalamic source :Fcljl_alamus R
6-region grid, EEG from the thalamic source :F(Ijl_alamus L
7-region grid, EEG from the thalamic source :I‘(Ijl_alamus L
-C-

Table 5.4: EEG source imaging results via RSTKF of the simulated EEG dataset from
the thalamic source. For the maximum source activation, anatomical labels from the
AAL atlas are shown. If the maximum of the estimated source activity falls within
the simulated region, the result is concordant, -C-, with the simulated region, if the
maximum does not fall within the simulated region, the result is disconcordant, -DC-,
with the simulated region.

Datasets ABIC values of LORETA result AIC values of RSTKF result
2-region grid, EEG from the -2812.5595 -7854.0669

thalamic source

3-region grid, EEG from the -2812.5595 -7825.7634

thalamic source

4-region grid, EEG from the -2515.0444 -7680.7137

thalamic source

6-region grid, EEG from the -3015.4937 -7589.3317

thalamic source

7-region grid, EEG from the -3015.4937 -7584.5813

thalamic source

Table 5.5: The table lists ABIC and AIC values resulting from EEG source imaging via
LORETA and RSTKF of the simulated EEG dataset from the thalamic source. ABIC
values of LORETA vary because more than one grid was used for the analysis with
different number of regions. The number of regions was varied from 2 to 7 in the
analyses.
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Regions 2 regions 3 regions 4 regions 6 regions
Thalamus -4.684 -4.486 -5.638 -5.284
Hippocampus - - -15.084 -37.666
Cerebellum - - - -6.797
Putamen - - - -6.630
Caudate nucleus - - - -

Cortex left -23.500 -14.703 -9.948 -7.351
Cortex right -23.500 -14.534 -8.607 -7.559

Table 5.6: The table shows the RSTKF'’s regional dynamical noise standard deviations
estimated from the simulated EEG dataset generated from the thalamic source. For
each value, the natural logarithm of the standard deviation is shown. The number of
regions was varied from two to six in the analyses.

5.3.2 C(linical EEG Data

The source reconstruction results via LORETA, STKF, and RSTKEF at onset of the five spikes
from Patient 2 are shown in Fig 5.6. The anatomical labels of the source maxima, the AIC
results, and the evaluation of the accuracy of LORETA, STKF, RSTKEF are listed in Table 5.7.
The regional dynamical noise standard deviations that resulted from the parameter estimation
step are listed in Table 5.9. At spike onset, LORETA localized the source in the right cal-
carine, white matter, white matter, middle temporal region, and in the left cerebellum, for the
five spikes, respectively. STKF produced localizations for spikes 1, 2, 4, and 5 in the middle
temporal region. The onset of spike 3 was localized in the left inferior triangular frontal region.
RSTKEF localized the sources in the left amygdalo-hippocampal complex for spikes 1, 3, 4, and
5. The onset of spike 2 was localized in the left hippocampus.

At the spike peak the EEG source imaging results of LORETA, STKF, and RSTKF are
displayed in Fig 5.7. The anatomical labels of the source maxima, AIC values, and evaluation
of accuracy of LORETA, STKF, and RSTKEF are listed in Table 5.8. LORETA localized the
sources of the first and fifth spikes in the white matter. The sources of the second and fourth
spikes were found in the left middle temporal region by LORETA. The result of spike 3 was
estimated in the left inferior temporal region. STKF produced localizations for the second spike
in the left middle temporal region. The source of the fourth spike was localized by STKF
in the left inferior temporal region. The sources for the first, third and fifth spikes were all
estimated in the white matter. RSTKF localized the source maxima at the spike peaks in the
left amygdalo-hippocampal complex for all five spikes. The lowest AIC values were shown
by RSTKF(7). The AIC results of STKF were higher and ABIC results of LORETA were
even higher. The amygdalo-hippocampal complex had the highest dynamical noise variance
parameters compared to those of the other regions for all five spikes. The optimization process
for the clinical spikes finished without slow convergence or early local minima.



5 SOURCE IMAGING OF SIMULATED AND CLINICAL EEG DATA VIA THE REGIONAL
110 SPATIOTEMPORAL KALMAN FILTER

a) Results at the Spike‘s Onset Post-
(a) P
Operative

Spike 1 Splke 2 Spike 3 Spi]\e 4 Spike 5
.:‘\ /"L ’“/]'L\I ‘P»
B (1A%
SJAL 1T ‘1( <
Al
N e “ "

Figure 5.6: (a) EEG source imaging results of 5 non-averaged spikes using LORETA
(top row), STKF (middle row) and RSTKF (bottom row). The results are visualized as
axial MRI slices at each spike’s onset,which is defined as 50% of the spike’s rise time,
and the cursor is placed at the maximum of the estimated current density. Additionally
the z-coordinates of the axial slices are shown in Montreal Neurological Institute (MNI)
coordinates. (b) The location and the extent of the resected region in two axial slices
Jfrom the patient’s postoperative MRI. The source imaging results were visualized using
the Fieldtrip software [OFMSI11]
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Figure 5.7: (a) EEG source imaging results of 5 non-averaged spikes using LORETA
(top row), STKF (middle row) and RSTKF (bottom row). The results are visualized as
axial MRI slices at each spike’s peak, and the cursor is placed at the maximum of the
estimated current density. Additionally the z-coordinates of the axial slices are shown
in MNI coordinates. (b) The location and the extent of the resected region in two axial
slices from the patient’s postoperative MRI. The source imaging results were visualized
using the Fieldtrip software [OFMSI11]
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Datasets Anatomical labels of Anatomical labels of Anatomical labels of
LORETA result STKEF result RSTKEF result
Spike 1 onset Calcarine R Temporal Mid L Amygdala L, Hip-
-DC- -DC- pocampus L
18667.6483 -993.0394 -C-
-4735.7374
Spike 2 onset N\A Temporal Mid L Hippocampus L
-DC- -DC- -C-
9392.563 -6822.979 -9206.4559
Spike 3 onset N\A Frontal Inf Tri L Amygdala L, Hip-
-DC- -DC- pocampus L
14457.6143 -3778.4027 -C-
-5381.7106
Spike 4 onset Temporal Mid L Temporal Mid L Amygdala L, Hip-
-DC- -DC- pocampus L
13791.1576 -4129.7397 -C-
-6875.335
Spike 5 onset Cerebellum 6 L, Cere- Temporal Mid L Amygdala L, Hip-
bellum Crus 1 L -DC- pocampus L
-DC- -0.97601 -C-
20987.8525 -2488.1555

Table 5.7: EEG source imaging results of five non-averaged spikes selected from the
EEG recording of Patient 2. The epileptic focus lies in the amygdalo-hippocampal area.
The results were visualized at the spikesa onsets defined as 50% of the spike’s rise time.
For the maximum source activation, anatomical labels from the AAL atlas are shown. If
the maximum of the estimated source activity falls within the resected region, the result
is concordant, -C-, with the resected region; if the maximum does not fall within the
resected region, the result is disconcordant, -DC-, with the resected region.
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Datasets Anatomical labels of Anatomical labels of Anatomical labels of
LORETA result STKEF result RSTKEF result
Spike 1 peak N\A N\A Amygdala L, Hip-
-DC- -DC- pocampus L
18667.6483 -993.0394 -C-
-4735.7374
Spike 2 peak Temporal Mid L Temporal Mid L Amygdala L, Hip-
-DC- -DC- pocampus L
9392.563 -6822.979 -C-
-9206.4559
Spike 3 peak Temporal Inf L N\A Amygdala L, Hip-
-DC- -DC- pocampus L
14457.6143 -3778.4027 -C-
-5381.7106
Spike 4 peak Temporal Mid L Temporal Inf L Amygdala L, Hip-
-DC- -DC- pocampus L
13791.1576 -4129.7397 -C-
-6875.335
Spike 5 peak N\A N\A Amygdala L, Hip-
-DC- -DC- pocampus L
20987.8525 -0.97601 -C-
-2488.1555

Table 5.8: EEG source imaging results of five non-averaged spikes selected from the
EEG recording of Patient 2. The epileptic focus lies in the amygdalo-hippocampal area.
The results were visualized at the spikesd peaks. For the maximum source activation,
anatomical labels from the AAL atlas are shown. If the maximum of the estimated
source activity falls within the resected region, the result is concordant, -C-, with the
resected region; if the maximum does not fall within the resected region, the result is
disconcordant, -DC-, with the resected region.



5 SOURCE IMAGING OF SIMULATED AND CLINICAL EEG DATA VIA THE REGIONAL

114 SPATIOTEMPORAL KALMAN FILTER
Regions Spike 1 Spike 2 Spike 3 Spike 4 Spike 5
Thalamus -16.709 -35.204 -13.555 -25.246 -28.605
Amygdalo- -2.787 -3.443 -3.281 -3.385 -3.010
hippocampal
complex
Cerebellum -3.432 -4.569 -4.420 -4.357 -4.157
Putamen -21.059 -19.277 -17.383 -28.641 -15.765
Caudate -16.638 -16.316 -18.224 -25.500 -24.884
nucleus
Cortex left -5.450 -5.881 -5.357 -5.837 -5.447
Cortex right -5.548 -6.162 -5.647 -5.988 -5.605

Table 5.9: The table shows the RSTKF'’s regional dynamical noise standard deviations
estimated from the clinical EEG data of five epileptic spikes. For each value, the natural
logarithm of the standard deviation is shown. The number of regions was set to seven
during the analyses.

5.4 Discussion

In order to better describe regional dynamics and functional specialization in the brain, a gen-
eralization of the STKF was first introduced in [Ste08] and then further developed within the
framework of this thesis. Simulated EEG datasets were first used to test the performance of
RSTKF and compare it to that of STKF and LORETA. RSTKF had similar results to those of
LORETA and STKF in the case of the frontal source. In the case of the sources in the putamen
and thalamus, only RSTKF was successful in accurately localizing these sources. The dis-
tances between the simulated and reconstructed sources via LORETA and STKF grew larger,
as the depth of the sources increased. The results of the simulated data confirmed our first two
hypotheses. The application of RSTKF to the localization of five non-averaged spikes from
Patient 2 and the comparison of the results to those of LORETA and STKF demonstrated that,
for all spikes, RSTKF localized the source in the amygdalo-hippocampal complex. Unlike
LORETA and STKF, RSTKF was both accurate and more focal at the spikes’ onset and peak
time points. Since we are dealing with a small lesion here, both accuracy and spatial resolution
are needed in the inverse solution. The third hypothesis was confirmed by the results of the
clinical spikes analysis. The final hypothesis was laos confirmed for both simulated and clin-
ical EEG datasets, since RSTKF resulted in the smallest AIC values while LORETA showed
the highest ABIC values. The number of EEG channels used for the imaging of simulated and
clinical EEG data was smaller than 64. This makes the analyses in this chapter fall under the
category of low-resolution EEG analyses. We would like to point out that RSTKF performed
well even when the data had less than 64 channels. Additionally, we did not need the routine
practice of spike averaging to obtain accurate results via RSTKE, since the use of non-averaged
spikes was enough to obtain accurate localization results. Although the SNR value of simulated
EEG was unrealistically high in this chapter, the RSTKF performed equally well when it was



5.4 DISCUSSION 115

applied to the clinical spikes in this study that had realistic SNR.

The RSTKF has some advantages compared to other methods. First, RSTKF is used in con-
junction with a standard head model that uses a 3D volumetric grid with a moderate number of
grid points (3000-5000). No cortical meshes with a large number of points or a constraint on
the dipole orientations are used by the RSTKF. Additionally, no special modeling of deep brain
structures, as is the case of the deep brain activity (DBA) model [ABY 07, AMFD12], or ex-
clusion of the cerebellum, as is used in the CARTOOL software [BMM11], are needed. RSTKF
seems much less affected by the grid choice and the choice of the Laplacian matrix, compared
to LORETA and STKF. Compared to the popular time- or frequency domain beamformers, such
as linearly-constrained minimum variance (LCMV) [VVVDYS97] and dynamic imaging of co-
herent sources (DICS) [GKH"01], RSTKF does not need large segments of recordings that are
needed to estimate the data’s covariance or cross-spectral density matrix. Finally, RSTKF is
a dynamical inverse solution which distinguishes the method from other approaches based on
hierarchical Bayesian modeling (HBM) [LPBW12] and maximum entropy on the mean

This study suffers from some limitations. First the analyses were performed using a standard
head model. In the future we intend to use the individual MRI and use a coregistered atlas
to create the regional definitions. We only used 7 regions in this study. The definitions of
more regions may be beneficial for explorative analyses in resting-state and task-related EEG
recordings. The introduction of more regions may lead to problems in the optimization stage
and this in turn would necessitate the use of better optimization methods. We used here dilation
and smoothing since the grid spacing was 7 mm. This can be avoided if a grid resolution of
5 mm will be used. Finally, a group analysis with more subjects and more epochs per subject
would give a better idea about the variability of the localization accuracy and consistency of
RSTKEF. The consistency of spike localization in this chapter may be a first confirmation for the
lack of or small variability of localization of RSTKFE.

In summary, we presented a generalization of the STKF with spatially-heterogeneous state-
space model parameters and compared it to both LORETA and STKF using simulated and
clinical EEG datasets. RSTKF outperformed both LORETA and STKF with respect to accuracy,
consistency of localization, and spatial resolution. The results are promising since the method
was able to localize deep sources and activity from small lesions, worked with low-resolution
EEG data, and performed well with non-averaged spikes. The method may find application in
the field of epileptology, especially in the source imaging of small lesions in mesial frontal and
mesial temporal lobe epilepsies.
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Chapter 6

Conclusions

6.1 Summary

Drug-resistant epilepsy may be treated by surgery in case of the correct identification of a single
epilepsy generator in the brain. For that purpose, different neuroimaging modalities are used
to localize the epileptogenic zone in the brain. Electroencephalography (EEG) and magnetoen-
cephalography (MEG) are electrophysiological measures that have a high temporal resolution
and are non-invasive. EEG is currently more in widespread use due to its cost effectiveness,
mobility, and flexible usage without the need for shielding or cooling. New MEG sensors such
as the optically-pumped magnetometers (OPM) operate in room temperature and may be placed
on or closer to the human scalp compared to the standard superconducting quantum interference
device (SQUID) MEG sensors. Although both EEG and MEG show a high temporal resolu-
tion, they have a low spatial resolution, since they measure the current density in the brain only
indirectly. The presence of multiple head tissues with varying conductivity profiles leads to
the distortion of the surface potentials or fields by volume conduction. The effect of volume
conduction may be significantly suppressed by solving the M/EEG inverse problem to estimate
the current density in the brain from measured M/EEG measurements and the solution of the
M/EEG forward problem. Multiple studies have shown that EEG source imaging has compara-
ble, or better, sensitivity and specificity in localizing the epileptogenic zone, compared to other
non-invasive neuroimaging modalities [BLST09, BSL*11, LPV'16].

Distributed source methods are some of the most common methods that are used to solve the
M/EEG inverse problem. These methods need to use a-priori information to solve the heavily
underdetermined M/EEG inverse problem. The type of priors used by each method determines
the performance and meaningfulness of the results of source reconstruction produced by that re-
spective method. Some of the most common distributed source methods include minimum norm
estimate (MNE) [Him84], which uses minimum energy as a constraint, and low-resolution elec-
tromagnetic brain tomography (LORETA) [PMMLO94], which uses spatial smoothness as a con-
straint. The majority of the methods in this category are static or instantaneous inverse methods,
i.e., they neglect the temporal information in the M/EEG time series and localize the sources at
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a single time point. In contrast to these methods, a dynamical inverse solution takes the time-
series aspect of the M/EEG measurements into account when reconstructing the current density
in the brain. Different strategies may be used to impose temporal smoothness constraints on the
inverse solution. State-space modeling is a very flexible and powerful modeling tool to incorpo-
rate temporal smoothness constraints by having an explicit dynamical model, in addition to the
measurement model, that describes the spatiotemporal evolution of the hidden variable, here the
brain’s current density, which is indirectly measured by M/EEG. Assuming the availability of a
state-space model, a time-varying estimate of the hidden state is obtained via the Kalman filter
[Kal60]. For medium and high-dimensional inverse problems, the use of the standard Kalman
filter may become infeasible and reduced-rank versions or other modifications of the standard
Kalman filter are used instead.

A modified version of the standard Kalman filter, called the spatiotemporal Kalman filter
(STKF), which was suited to the high-dimensional M/EEG inverse problem, was suggested in
[GYO™04b]. In this algorithm, the fully-coupled state-space model is transformed via a linear
transformation, the so-called spatial whitening transformation, into a weakly-coupled state-
space model where only nearest-neighbor interactions are preserved. Local low-dimensional
Kalman filters are then used at each voxel in the brain to estimate the local current density in
the transformed state-space. At the end of the estimation process, the results are transformed
back into the fully-coupled state-space model. Before state estimation is performed via the
STKE, state-space model parameters are estimated via maximum likelihood (ML). Maximum
likelihood estimation is performed via direct minimization of the Akaike information criterion
(AIC). Additionally, AIC is also used for model comparison to evaluate how well the mea-
surements are described by each inverse solution. One limitation of the STKF approach is the
limitation of the state-space model parameters to be time-invariant and spatially-homogeneous.

One generalization of the STKF, the STKF with state-space generalized autoregressive
conditional heteroskedasticity (GARCH) [GYO04a, WGYOO06], may alleviate the above-
mentioned limitation of the STKF. In this approach a spatiotemporal adaptation of the dy-
namical noise variance state-space model parameter was implemented in order to improve the
accuracy, spatial resolution, and reconstruction of time courses in the brain. This generaliza-
tion of the STKF is meant to improve the modeling of non-stationary data. The new algorithm
was applied in [GOM™'08] on a clinical dataset containing a non-averaged epileptic spike and
it outperformed LORETA in statistical model comparison, accuracy, spatial resolution, and re-
construction of dipole time courses. The algorithm suffers currently from numerical instability
due to the high dimensionality of the M/EEG inverse problem.

Another solution to the limited nature of the model with temporally- and spatially- constant
parameters is the regional STKF (RSTKF) that was first implemented in [Ste08]. In this algo-
rithm, the dynamical noise variance parameter is defined individually for each brain region. The
author in [Ste08] used only two brain regions that included both thalami, as the first region, and
the rest of the brain as a second region. The method outperformed both LORETA and STKF in
the localization of deep brain sources from simulated as well as clinical EEG data of sleep spin-
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dles and bursts. Additionally, model comparison showed the superiority of the novel algorithm
to both LORETA and STKF.

Prior to the work presented here, the above-mentioned dynamical inverse methods were not
investigated in detail regarding the factors that influence the accuracy, spatial resolution, and
reconstruction of time courses in the brain. Additionally, they were not applied in conjunction
with individual and realistic head models. No comparison of the performance of the algorithms
in high-resolution EEG to that in low-resolution EEG was made. In addition to that, they
were not applied to epileptic seizures or simultaneous MEG-EEG data. No dimensionality
reduction approaches were used together with these methods to denoise the data or reduce the
computational time.

The aim of this thesis was to improve the applicability of the STKF and the RSTKF in
the field of epileptology and to continue the algorithmic development of the STKF and its
regional variant, the RSTKEF, by using state-of-the-art simulation models, realistic head models,
and clinical recordings of epileptic spikes and seizures. The evaluation of the source imaging
results was performed using postoperative MRIs, brain atlases, results of other neuroimaging
modalities, and visual inspection by expert epileptologists.

Within the framework of this thesis, we aimed at improving the inverse-modeling step only.
We did not use STKF with state-space GARCH in our analyses. Additionally, we decided to
constrain ourselves to single-source scenarios. We mostly used EEG recordings for the analysis.
Comparisons with other source imaging methods were limited only to LORETA, since it uses
spatial smoothness constraints. Since the STKF uses temporal smoothness in addition to spatial
smoothness constraints, the comparison with LORETA allows for the evaluation of the benefits
of the additional temporal smoothness constraints.

The effects of grid choice and the definition of the Laplacian matrix on the performance of
STKF were first investigated, for the first time, in chapter 3 using EEG data simulated via state-
of-the-art neuronal population models [WBBC00, WHB 05, CRBCW07, CRMB " 10] and real-
istic boundary-element (BE) head models. The neuronal population models allow for modeling
the effects of excitation, inhibition, and connectivity among neuronal groups to generate nor-
mal background data, epileptic spikes, and different seizure patterns. The STKF results were
compared to those of LORETA using model comparison, accuracy, and spatial resolution. The
use of full-brain grids, instead of gray-matter ones, in conjunction with the modified definition
of the Laplacian matrix, instead of the classical ones which assumes six neighbors for each
voxel, produced the best accuracy and spatial resolution for STKF. In chapter 4 the same issue
was investigated in section 4.2 using clinical EEG data from two epilepsy patients. Again the
best results were obtained using a combination of a full-brain grid with the modified Laplacian
matrix. This combination was found superior to the one with a full-brain grid and the classi-
cal Laplacian matrix by AIC model comparison for both simulated and clinical EEG data of
spikes. In section 4.3 the effect of grid choice was investigated using an EEG recording of a
focal seizure. The use of the full-brain grid produced the best localization results. The analyses
via RSTKEF in chapter 5 did not seem to be influenced by the grid choice or the definition of the
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Laplacian matrix. This may indicate that the RSTKF is more robust to these factors than the
STKFE.

The question whether non-averaged or averaged spikes should be used in conjunction with
the STKF was investigated in chapter 3. Spike averaging may be beneficial for improving the
SNR. This, however, may lead to the suppression of interesting dynamics in the signal. Because
of that we hypothesized that the STKF would work better with non-averaged spikes. The results
of the investigation showed that moderate spike averaging (55 spikes in this thesis) improved
the results of STKF and did not lead to a complete suppression of the signal dynamics in the
pre- and post-spike periods. So STKF may be used together with non-averaged spikes or those
that result from moderate averaging.

Most of the analyses in this thesis were performed using low-resolution EEG data, i.e.,
recordings with fewer than 64 electrodes. The reduction in the number of electrodes produced
a more widespread activation and a shift towards the center of the brain. STKF was found to
be more robust to this effect than LORETA. STKF results were more focal and closer to the
original source than those of LORETA. The results do not only apply to the simulated spikes
from chapter 3 . They also apply to the analyses of clinical spikes from section 4.2 as well as
focal seizures in section 4.3 in chapter 4. We would like to mention here that STKF results were
obtained with a very simple dynamical model. The improvements in the dynamical model may
still improve STKF results with low-resolution EEG data. These results may have applications
in EEG monitoring, wearable EEG, gaming and smartphone applications, and newborn EEG
analyses. Additionally, large databases of 19-32 channel EEG recordings are available across
the world in clinics and research centers.

When applying the STKF to two simulated high-resolution EEG datasets in chapter 3, insta-
bilities that may have been caused by information redundancy led to incorrect localization and
the appearance of spurious sources. In addition to that, the computational times of the STKF
become much longer in case of high-resolution EEG data. Within the framework of this thesis,
we used a dimensionality reduction approach, spatial projection [LLE™ 14], that is based on
singular value decomposition (SVD). This method was implemented in the SPM open-source
toolbox and we wanted to integrate it, for the first time, within the STKF pipeline. In order to
use the method in conjunction with our STKF, we needed to solve two problems. The first prob-
lem was about deciding whether to apply spatial projection before or after the spatial whitening
transform. The second problem was about the choice of the threshold value for SVD trunca-
tion. The application of spatial projection gave the best results when it was performed after the
spatial whitening transformation. Additionally, additional improvements in the accuracy and
spatial resolution were obtained when the standard threshold value used in the SPM software
was decreased down to a certain value. The application of spatial projection led to the suppres-
sion of spurious sources. The computational time of the STKF and the number of optimization
steps required in the parameter estimation stage were both reduced due to the application of
spatial projection.

In chapter 4, multimodal fusion of simultaneously-measured MEG-EEG was performed,
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for the first time, within the framework of source reconstruction via STKF in section 4.4. We
generalized the measurement model of our state-space model to describe the data, lead field
matrices, and measurement noises of simultaneously-measured MEG and EEG time series. For
the M/EEG forward problem, we used a state-of-the-art six-compartment anisotropic finite-
element (FE) head model whose skull conductivity was especially calibrated to account for
the different sensitivities of MEG and EEG to the human skull’s conductivity. In the inverse
problem the STKF was applied on MEG-only, EEG-only, and on simultaneously-measured
MEG-EEG datasets and the sources were localized at the spike peaks from MEG and EEG.
The MEG-EEG datasets produced sources that were always in the expected area at both spike
peaks. The use of MEG-only and EEG-only datasets produced accurate results only at the MEG
peak, for the former datasets, and at the EEG peak, for the latter dataset, respectively. The
complementary nature of simultaneous MEG-EEG may have contributed to the improvement
in the STKF results when the generalized measurement model was used.

The regional STKF (RSTKF) was implemented by generalizing the dynamical model of the
STKF’s state-space model to include region-specific dynamical noise variances. In chapter 5
we increased the number of regions from two to seven and tested the RSTKF’s performance on
simulated EEG data. Additionally, we applied the RSTKEF, for the first time, to epileptic spikes
and compared its performance to that of LORETA and STKFE. The RSTKF produced more
accurate and consistent results, compared to those of LORETA and STKEF, with increasing depth
of sources. Additionally, its spatial resolution was better than that of the other two methods.
Model comparison also favored RSTKF to LORETA and STKF. Similarly to STKF, RSTKF
performed well in case of low-resolution EEG data and non-averaged epileptic spikes. Unlike
STKE, the generalized algorithm was more suited to localize the epileptogenic zone when it has
a smaller area or is identical with a subcortical brain structure. RSTKF may find application in
the localization of epileptic generators that cause mesial frontal or mesial temporal epilepsies.

In summary, the performances of the STKF and RSTKF were investigated, mainly, for EEG
generated from a single active source. The advantages of these methods, which are based on
state-space modeling, were evaluated in comparison to LORETA, a well-established source
imaging approach. For lateral brain sources, the STKF performed well, despite its simple
dynamical model, the non-adaptive nature of the state-space model parameters, and the low-
resolution EEG data. The brain grid and the Laplacian matrix need to be chosen with care.
Among the different grids and definition of the Laplacian matrix that were used in this thesis,
the combination of a full-brain grid and the modified definition of the Laplacian matrix led to
the best STKF results. AIC model comparison may inform the choice of the Laplacian matrix
when using the STKF. The additional temporal smoothness constraints, in the case of the STKF,
improved the accuracy and consistency of the source reconstruction for epileptic spikes and fo-
cal seizures. STKF was mostly tested with low-resolution EEG data with up to 45 electrodes
and was found to be more robust to the small number of electrodes than LORETA. Dimension-
ality reduction via spatial projection, which is based on singular value decomposition, was suc-
cessfully combined with the STKF and has stabilized the STKF, suppressed spurious sources,
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and decreased the computational time. The use of STKF to analyze high-resolution EEG with
64-256 electrodes may be performed together with spatial projection. The acquisition of low-
resolution EEG is still popular and practical in clinics, research centers, wearable EEG, and
newborn monitoring. The reduction in SNR due to the use of non-averaged spikes did not lead
to a significant performance drop for the STKF, although moderate spike averaging did lead
to better STKF results. For simultaneously-measured MEG and EEG time series, MEG-EEG
fusion via STKF is recommended over separate EEG or MEG analyses. For deep brain sources,
the RSTKF is recommended because of its superiority in terms of accuracy, consistency, and
spatial resolution. The STKF may find application in the analysis of spikes or focal seizures
from lateral temporal or extratemporal sources. Deeper sources in mesial temporal or mesial
frontal epilepsies may need a generalized version of the STKF such as the RSTKF.

6.2 Future Work

The investigations in this thesis were performed as a proof-of-concept. No large-scale group
study, which involves multiple patients with several EEG segments, of epileptic spikes or focal
seizures, per patient, was performed. Statistical validation of the STKF, or any of its gener-
alized versions, requires this kind of study and using, in a similar fashion to [BSL*11], the
overlap of the reconstructed current density distribution with the segmented resected volume
from postsurgical MRIs. Additionally, it could also be evaluated whether the maximum of
the reconstructed current density distribution always falls within the resected volume or not.
This kind of evaluation has been used in the last few years to evaluate source imaging results
[WWYT11, YWBT11, LYW 12]. These measures may also be used with simulated M/EEG
data.

The use of full-brain grids has been shown to be an important factor in the STKF algorithm.
Full-brain grids include white matter and CSF, which do not include any brain sources. Addi-
tionally, the use of full-brain grids will allow for source shifting outside the gray-matter, thus
preventing the use of atlas comparisons. If we assume that the reason for the superior perfor-
mance obtained when full-brain grids were used was the absence of thinly-sampled regions,
since thin-sampling led to the shifting of the sources to other densely-sampled regions, then we
may suggest the use of densely-sampled gray-matter grids. The performance of the STKF with
this kind of grids still needs to be investigated. The modified definition of the Laplacian matrix
solved the other problem of shifting sources, which was caused by the classical definition of the
Laplacian matrix. This definition resulted in very low or zero current density at the borders of
the grid. The modified definition of the Laplacian matrix was also, consistently for the STKEF,
favored by AIC model comparison. Other definitions of the Laplacian matrix that involve more
than the six immediate neighbors on the X, y, and z axes may be investigated and selected via
model comparison.

For each voxel, after spatial whitening, only the connections to the six immediate neighbors
on the X, y, and z axes are retained. Since long-range connections also exist in the human cortex,
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structural information from DT-MRI may be used to include this information in the STKF’s
dynamical model. We assume that the absence of these connections in the current dynamical
model of the STKF does not lead to wrong results. The inclusion of these connections may
still help in modeling, e.g., propagation of epileptic activity during the occurrence of spikes or
seizures more accurately. The effects of the anatomical complexity of the head model on STKF
were not investigated here. A spherical model may, e.g., be compared with a 3-compartment
realistic boundary-element model and with a 3-7 compartment realistic model based on finite
elements or finite differences.

The dynamical nature of the RSTKF made it more robust to the small number of electrodes
in this thesis, compared to LORETA. The robustness of the STKF to the presence of common
artifacts such as eye-blink, eye-movement, muscle, and movement artifacts can also be investi-
gated in a future study. Additionally, we get an idea in this thesis about the performance of the
STKF and the RSTKF with different SNR values. A future study may apply STKF or RSTKF
to data with very low SNR values, e.g., 0-8 dB.

The promising results of STKF in MEG-EEG fusion may encourage more studies regarding
dimensionality reduction, since the total number of MEG and EEG sensors in simultaneous
measurements is usually larger than 300. Additionally, MEG-EEG fusion may be combined
with the generalized version of the STKEF, e.g., the RSTKEF, since they have improved dynamical
models. The application of the STKF, or any of its variants, to high-resolution EEG or MEG
needs further investigations to discover the advantages and possible problems that may result
from the larger number of sensors.

For the RSTKF, CURRY7 offers the possibility of individual atlas generation for each indi-
vidual MRI. This may allow for more accuracy, especially when the patient’s anatomy strongly
deviates from standard MRIs. Additionally, the addition of more regions to the RSTKF may be
necessary to improve its applicability to cognitive brain research. The inclusion of more brain
areas may create problems for the optimization algorithms. New and powerful optimization
methods for global optimization can be tested in a future study.

This thesis covered M/EEG source imaging in case of a single active source. The assumption
of multiple active sources is reasonable, especially in case of seizures, and the ability of a source
imaging method to separate two sources at a small distance from each other is an important
parameter in source imaging. An interesting question can be the possibility of detecting a deep
source in the presence of one or more active superficial sources. Additional preprocessing steps
that involve frequency-domain filtering or blind source separation may be necessary to separate
the contributions of each source if the RSTKEF fails to detect all the active sources.

Finally, the implementation of square-root versions of the STKF may improve numerical
stability of the linear STKF by preserving the positive-definite characteristic of the STKF’s
covariance matrices. We have not implemented non-linear variants of the STKF. A future study
may check whether certain seizure dynamics may benefit from the implementation of a state-
space model with a non-linear dynamical model for the purpose of source imaging.
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In this figure the averaged spikes computed from (a) the EEG dataset, which
was generated from the left lateral temporal source with 5 cm? source area, and
(b) the EEG dataset, which was generated from the left lateral temporal source
with 10 cm? source area, are shown. The EEG amplitudes at the spike peaks are
shown next to the peak points. In the left column the voltage maps (negative in
red, positive in blue) of the spike peaks of every data set are shown. The images
were produced using CURRY7. . . .. .. .. ... ... ... ... .....

Four electrode layouts are shown here which were used to generate the EEG
datasets with 64, 32, 19, and 9 electrodes from the original 128-electrode
dataset. The layouts were visualized using the Fieldtrip Software [OFMS11].

An overview of the analysis pipeline is displayed which includes EEG pre-
processing, creation of EEG datasets with 64, 32, and 19 channels based on
standard electrode layouts, head modeling, source imaging via LORETA and
STKE, and evaluation based on an anatomical atlas. The images were produced
using CURRY7. . . . . . . . . e

EEG source imaging results via LORETA of an averaged spike selected from
the EEG dataset, which was generated from the left lateral frontal source with 5
cm? source area. LORETA results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (¢), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMSI1] . . . . . . . . . . . e

EEG source imaging results via STKF of an averaged spike selected from the
EEG dataset, which was generated from the left lateral frontal source with 5
cm? source area. STKF results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (c), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip

software [OFMS11] . . . . . . . . . . .
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3.10

3.11

3.12

EEG source imaging results via LORETA of a non-averaged spike selected from
the EEG dataset, which was generated from the left lateral frontal source with 5
cm? source area. LORETA results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (c), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11] . . . . . . . . . .

EEG source imaging results via STKF of a non-averaged spike selected from
the EEG dataset, which was generated from the left lateral frontal source with
5 cm? source area. STKF results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (c), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11]. The results of the analyses with full-brain grids and the
modified Laplacian matrix were adapted from figures published by the author
inin [HAFM™T17b] . . . . . . . ..

EEG source imaging results via LORETA of an averaged spike selected from
the EEG dataset, which was generated from the left lateral frontal source with
10 cm? source area. LORETA results using a gray-matter 3D grid and the clas-
sical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (b). For the results shown in
(c), a full-brain grid and the modified Laplacian matrix were used. The results
from the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5
from the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11] . . . . . . . . . . .
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3.14

3.15

EEG source imaging results via STKF of an averaged spike selected from the
EEG dataset, which was generated from the left lateral frontal source with 10
cm? source area. STKF results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (c), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip

software [OFMS11] . . . . . . . . . . .

EEG source imaging results via LORETA of a non-averaged spike selected from
the EEG dataset, which was generated from the left lateral frontal source with
10 cm? source area. LORETA results using a gray-matter 3D grid and the clas-
sical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (b). For the results shown in
(c), a full-brain grid and the modified Laplacian matrix were used. The results
from the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-
5 from the left, respectively. The results are visualized as axial MRI slices at
each spike’s peak, and the cursor is placed at the maximum of the estimated
current density. Additionally the z-coordinates of the axial slices are shown in
MNI coordinates. The source imaging results were visualized using the Field-
trip software [OFMS11]. The figures concerning the analyses with full-brain
grids and the modified Laplacian matrix and the low-resolution EEG datasets
were adapted from figures published by the author in in [HAFM ™ 17a]. . . . . .

EEG source imaging results via STKF of a non-averaged spike selected from
the EEG dataset, which was generated from the left lateral frontal source with
10 cm? source area. STKF results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (c), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11]. The figures concerning the analyses with full-brain grids
and the modified Laplacian matrix and the low-resolution EEG datasets were
adapted from figures published by the author in in [HAFM™*17a] . . . . . . ..
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3.16

3.17

3.18

EEG source imaging results via LORETA of an averaged spike selected from
the EEG dataset, which was generated from the left lateral temporal source
with 5 cm? source area. LORETA results using a gray-matter 3D grid and the
classical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (b). For the results shown in
(c), a full-brain grid and the modified Laplacian matrix were used. The results
from the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5
from the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11] . . . . . . . . . .

EEG source imaging results via STKF of an averaged spike selected from the
EEG dataset, which was generated from the left lateral temporal source with 5
cm? source area. STKF results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (¢), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11] . . . . . . . . . . .

EEG source imaging results via LORETA of a non-averaged spike selected from
the EEG dataset, which was generated from the left lateral temporal source
with 5 cm? source area. LORETA results using a gray-matter 3D grid and the
classical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (b). For the results shown in
(c), a full-brain grid and the modified Laplacian matrix were used. The results
from the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5
from the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMSI11] . . . . . . . . . . .
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EEG source imaging results via STKF of a non-averaged spike selected from
the EEG dataset, which was generated from the left lateral temporal source with
5 cm? source area. STKF results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (c), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11] . . . . . . . . . . . .

EEG source imaging results via LORETA of an averaged spike selected from
the EEG dataset, which was generated from the left lateral temporal source
with 10 cm? source area. LORETA results using a gray-matter 3D grid and the
classical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (b). For the results shown in
(c), a full-brain grid and the modified Laplacian matrix were used. The results
from the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5
from the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11] . . . . . . . . . . . . . .

EEG source imaging results via STKF of an averaged spike selected from the
EEG dataset, which was generated from the left lateral temporal source with 10
cm? source area. STKF results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (c), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip

software [OFMS11] . . . . . . . . . . .
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3.23

3.24

EEG source imaging results via LORETA of a non-averaged spike selected from
the EEG dataset, which was generated from the left lateral temporal source
with 10 cm? source area. LORETA results using a gray-matter 3D grid and the
classical Laplacian matrix are depicted in (a). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (b). For the results shown in
(c), a full-brain grid and the modified Laplacian matrix were used. The results
from the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5
from the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11]. The figures concerning the analyses with full-brain grids
and the modified Laplacian matrix and the low-resolution EEG datasets were
adapted from figures published by the author in in [HAFM*17a] . . . . .. ..

EEG source imaging results via STKF of a non-averaged spike selected from
the EEG dataset, which was generated from the left lateral temporal source with
10 cm? source area. STKF results using a gray-matter 3D grid and the classical
Laplacian matrix are depicted in (a). Results using a full-brain 3D grid and
the classical Laplacian matrix are shown in (b). For the results shown in (c), a
full-brain grid and the modified Laplacian matrix were used. The results from
the 128-, 64-, 32-,19-, and 9-electrode datasets are shown in columns 1-5 from
the left, respectively. The results are visualized as axial MRI slices at each
spike’s peak, and the cursor is placed at the maximum of the estimated current
density. Additionally the z-coordinates of the axial slices are shown in MNI
coordinates. The source imaging results were visualized using the Fieldtrip
software [OFMS11]. The figures concerning the analyses with full-brain grids
and the modified Laplacian matrix and the low-resolution EEG datasets were
adapted from figures published by the author in in [HAFM*17a] . . . . . . ..

A summary of the analysis pipeline is shown which includes EEG preprocess-
ing, head modeling, source imaging via STKF with and without spatial projec-
tion, and evaluation based on an anatomical atlas. The images were produced
using CURRY7. . . . . . . .
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4.1

4.2

EEG source imaging results of a non-averaged spike, which was generated from
the left lateral frontal source with 5 cm? source area. In the top row to the
left the results of the 128-electrode EEG dataset without spatial projection are
shown. The results of the 64-electrode dataset are shown in the middle row to
the left. The reconstructed sources from the 32- and 19-electrode datasets are
shown in the bottom row to the left. In the first two rows to the right the results
of the 128-electrode EEG dataset with pre-transformation spatial projection are
shown. In the bottom row to the right the reconstructed activity from the 128-
electrode EEG dataset with post-transformation spatial projection is displayed.
The results are visualized as axial MRI slices at each spike’s peak, and the
cursor is placed at the maximum of the estimated current density. Additionally
the z-coordinates of the axial slices are shown in MNI coordinates. The source
imaging results were visualized using the Fieldtrip software [OFMS11]. The
figure was adapted from a previous publication by the author [HAFM*17b] . .

EEG source imaging results of a non-averaged spike, which was generated from
the left lateral frontal source with 5 cm? source area. In the top row the recon-
structed activity from the 128-electrode EEG dataset with post-transformation
spatial projection with threshold values of 1071, 101, 10~14, 1013, and
10712 is displayed. In the bottom row the results from the same dataset with
threshold values of 10711, 10719, 10~2, 1078, and 107 are shown. The results
are visualized as axial MRI slices at each spike’s peak, and the cursor is placed
at the maximum of the estimated current density. Additionally the z-coordinates
of the axial slices are shown in MNI coordinates. The source imaging results
were visualized using the Fieldtrip software [OFMSI1] . . . . ... ... ...

The time series of the dominant electrode showing five non-averaged spikes,
selected from the EEG recording of Patient 1. The cursor is located at each
spike’s peak. Additionally, the time (in ms) at each spike’s peak is shown to
the left of each respective peak. The EEG amplitudes at the spike peaks are
shown to the right of each peak point. In the right column the voltage maps
(positive in red, negative in blue) corresponding to the spike peaks are shown.
The images were produced using CURRY7. The figure was inspired by the
figures published by the author in [HHJ*15] . . . . . .. ... ... ......

The time series of the dominant electrode showing five non-averaged spikes,
selected from the EEG recording of Patient 2. The cursor is located at each
spike’s peak. Additionally, the time (in ms) at each spike’s peak is shown to the
left of each respective peak. The EEG amplitudes at the spike peaks are shown
to the right of each peak point. In the right column the voltage maps (positive in
red, negative in blue) corresponding to the spike peaks are shown. The images
were produced using CURRY7. . . . ... .. ... ... ... ... .. ...
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4.3

4.4

4.5

The figure displays 39-channel EEG electrode layout used for recording EEG
datasets of Patient 1 and Patient 2. The layout was visualized using the Fieldtrip
Software [OFMSTI]. . . . . . . .. o o

An overview of the analysis pipeline is shown which includes EEG prepro-
cessing, MRI preprocessing, individual head modeling, source imaging via
LORETA and STKE, and evaluation by an expert epileptologist. The images
were produced using CURRY7. . . .. ... ... ... ... .. .. .....

(a) Results of EEG source imaging via LORETA of 5 non-averaged spikes from
the EEG recordings of Patient 1. LORETA results using a gray-matter 3D grid
and the classical Laplacian matrix are depicted in (1). Results using a full-brain
3D grid and the classical Laplacian matrix are shown in (2). For the results
shown in (3), a full-brain grid and the modified Laplacian matrix were used.
From left to right the results of Spikes 1-5 are shown in columns 1-5, respec-
tively. The results are visualized as axial MRI slices at each spike’s onset,which
is defined as 50% of the spike’s rise time, and the cursor is placed at the max-
imum of the estimated current density. Additionally the z-coordinates of the
axial slices are shown in Montreal Neurological Institute (MNI) coordinates. In
(b) The location and the extent of the FCD on a coronal slice from the patient’s
preoperative T2-weighted MRI is shown and marked with a yellow circle (top).
Additionally in (b), the centers of the yellow cursor mark the detected FCD on
an axial slice after morphometric Huppertz MRI analysis [HGF™05] (middle)
and the FCD on the brain’s cortical surface after morphometric Huppertz MRI
analysis [HGF"05] (bottom). The source imaging results were visualized us-
ing the Fieldtrip software [OFMS11]. The figure was adapted from the figures
published by the authorin [HHJ"15] . . . . . ... .. ... ... .......
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(a) Results of EEG source imaging via STKF of 5 non-averaged spikes from
the EEG recordings of Patient 1. STKF results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D
grid and the classical Laplacian matrix are shown in (2). For the results shown
in (3), a full-brain grid and the modified Laplacian matrix were used. From left
to right the results of Spikes 1-5 are shown in columns 1-5, respectively. The
results are visualized as axial MRI slices at each spike’s onset,which is defined
as 50% of the spike’s rise time, and the cursor is placed at the maximum of
the estimated current density. Additionally the z-coordinates of the axial slices
are shown in Montreal Neurological Institute (MNI) coordinates. In (b) The
location and the extent of the FCD on a coronal slice from the patient’s pre-
operative T2-weighted MRI is shown and marked with a yellow circle (top).
Additionally in (b), the centers of the yellow cursor mark the detected FCD on
an axial slice after morphometric Huppertz MRI analysis [HGF05] (middle)
and the FCD on the brain’s cortical surface after morphometric Huppertz MRI
analysis [HGF"05] (bottom). The source imaging results were visualized us-
ing the Fieldtrip software [OFMS11]. The figure was adapted from the figures
published by the authorin [HHIT15] . . . . . . ... ... .. ... ......

(a) Results of EEG source imaging via LORETA of 5 non-averaged spikes from
the EEG recordings of Patient 1. LORETA results using a gray-matter 3D grid
and the classical Laplacian matrix are depicted in (1). Results using a full-brain
3D grid and the classical Laplacian matrix are shown in (2). For the results
shown in (3), a full-brain grid and the modified Laplacian matrix were used.
From left to right the results of Spikes 1-5 are shown in columns 1-5, respec-
tively. The results are visualized as axial MRI slices at each spike’s peak and
the cursor is placed at the maximum of the estimated current density. Addition-
ally the z-coordinates of the axial slices are shown in Montreal Neurological
Institute (MNI) coordinates. In (b) The location and the extent of the FCD on
a coronal slice from the patient’s preoperative T2-weighted MRI is shown and
marked with a yellow circle (top). Additionally in (b), the centers of the yellow
cursor mark the detected FCD on an axial slice after morphometric Huppertz
MRI analysis [HGF"05] (middle) and the FCD on the brain’s cortical surface
after morphometric Huppertz MRI analysis [HGF105] (bottom). The source
imaging results were visualized using the Fieldtrip software [OFMS11]. The
figure was adapted from the figures published by the author in [HHJT15] . . . .
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4.8

4.9

(a) Results of EEG source imaging via STKF of 5 non-averaged spikes from
the EEG recordings of Patient 1. STKF results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D
grid and the classical Laplacian matrix are shown in (2). For the results shown
in (3), a full-brain grid and the modified Laplacian matrix were used. From left
to right the results of Spikes 1-5 are shown in columns 1-5, respectively. The
results are visualized as axial MRI slices at each spike’s peak and the cursor
is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in Montreal Neurological Institute
(MNI) coordinates. In (b) The location and the extent of the FCD on a coronal
slice from the patient’s preoperative T2-weighted MRI is shown and marked
with a yellow circle (top). Additionally in (b), the centers of the yellow cur-
sor mark the detected FCD on an axial slice after morphometric Huppertz MRI
analysis [HGF"05] (middle) and the FCD on the brain’s cortical surface after
morphometric Huppertz MRI analysis [HGF105] (bottom). The source imag-
ing results were visualized using the Fieldtrip software [OFMS11]. The figure
was adapted from the figures published by the author in [HHJT15] . . . . . ..

(a) Results of EEG source imaging via LORETA of 5 non-averaged spikes from
the EEG recordings of Patient 2. LORETA results using a gray-matter 3D grid
and the classical Laplacian matrix are depicted in (1). Results using a full-
brain 3D grid and the classical Laplacian matrix are shown in (2). For the
results shown in (3), a full-brain grid and the modified Laplacian matrix were
used. From left to right the results of Spikes 1-5 are shown in columns 1-
5, respectively. The results are visualized as axial MRI slices at each spike’s
onset,which is defined as 50% of the spike’s rise time, and the cursor is placed at
the maximum of the estimated current density. Additionally the z-coordinates of
the axial slices are shown in Montreal Neurological Institute (MNI) coordinates.
(b) The location and the extent of the resected region in two axial slices from the
patient’s postoperative MRI. The source imaging results were visualized using
the Fieldtrip software [OFMS11] . . . . . .. ... ... ... ... ......
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(a) Results of EEG source imaging via STKF of 5 non-averaged spikes from the
EEG recordings of Patient 2. STKF results using a gray-matter 3D grid and the
classical Laplacian matrix are depicted in (1). Results using a full-brain 3D grid
and the classical Laplacian matrix are shown in (2). For the results shown in (3),
a full-brain grid and the modified Laplacian matrix were used. From left to right
the results of Spikes 1-5 are shown in columns 1-5, respectively. The results are
visualized as axial MRI slices at each spike’s onset,which is defined as 50% of
the spike’s rise time, and the cursor is placed at the maximum of the estimated
current density. Additionally the z-coordinates of the axial slices are shown in
Montreal Neurological Institute (MNI) coordinates. (b) The location and the
extent of the resected region in two axial slices from the patient’s postoperative
MRI. The source imaging results were visualized using the Fieldtrip software
[OFEMSI1] . . . o

(a) Results of EEG source imaging via LORETA of 5 non-averaged spikes from
the EEG recordings of Patient 2. LORETA results using a gray-matter 3D grid
and the classical Laplacian matrix are depicted in (1). Results using a full-brain
3D grid and the classical Laplacian matrix are shown in (2). For the results
shown in (3), a full-brain grid and the modified Laplacian matrix were used.
From left to right the results of Spikes 1-5 are shown in columns 1-5, respec-
tively. The results are visualized as axial MRI slices at each spike’s peak and the
cursor is placed at the maximum of the estimated current density. Additionally
the z-coordinates of the axial slices are shown in Montreal Neurological Insti-
tute (MNI) coordinates. (b) The location and the extent of the resected region
in two axial slices from the patient’s postoperative MRI. The source imaging
results were visualized using the Fieldtrip software [OFMS11] . . . ... . ..

(a) Results of EEG source imaging via STKF of 5 non-averaged spikes from
the EEG recordings of Patient 2. STKF results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (1). Results using a full-brain 3D
grid and the classical Laplacian matrix are shown in (2). For the results shown
in (3), a full-brain grid and the modified Laplacian matrix were used. From left
to right the results of Spikes 1-5 are shown in columns 1-5, respectively. The
results are visualized as axial MRI slices at each spike’s peak and the cursor
is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in Montreal Neurological Institute
(MNI) coordinates. (b) The location and the extent of the resected region in two
axial slices from the patient’s postoperative MRI. The source imaging results
were visualized using the Fieldtrip software [OFMSI1] . . . . ... ... ...

The figure displays 45-channel EEG electrode layout used for recording EEG
dataset of Patient 3. The layout was visualized using the Fieldtrip Software
[OFMSII]. . . .o e
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4.14

4.15

4.16

4.17
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This figure shows the six peaks from the seizure onset phase that were used to
visualize the EEG source imaging results. The time series of the P9 electrode
was used for visualization. The figure was adapted from the figures supervised
or published by the author in [Sar14, HSJ"15] . . . . . ... . ... ... ...

Results of EEG source imaging via LORETA of a single focal seizure from the
EEG recordings of Patient 3. LORETA results using a gray-matter 3D grid and
the classical Laplacian matrix are depicted in (a). Results using a full-brain
3D grid and the classical Laplacian matrix are shown in (b). From left to right
the results of seizure peaks 1-6 are shown in columns 1-6, respectively. The
results are visualized as axial MRI slices at each seizure peak and the cursor
is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in Montreal Neurological Institute
(MNI) coordinates. (c) The location and the extent of the FCD on a coronal
(top) and an axial (bottom) slice from the patient’s preoperative T2-weighted
MRI are shown and marked with red squares. The source imaging results were
visualized using the Fieldtrip software [OFMS11]. The figure was adapted from
the figures supervised or published by the author in [Sar14, HSJT15] . . . . . .
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lamic source. The results are visualized as axial MRI slices, and the cursor
is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in Montreal Neurological Institute
(MNI) coordinates. The source imaging results were visualized using the Field-
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(a) EEG source imaging results of 5 non-averaged spikes using LORETA (top
row), STKF (middle row) and RSTKF (bottom row). The results are visualized
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