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| INTRODUCTION

Accurate segmentation of an individual human head and the resulting volume conductor model has been known to improve EEG and MEG source analysis!'?l. However, comparison of some state-of-the-art
segmentation techniques and their effectiveness in source analysis, namely Multi-Atlas!" and Convolutional Neural Networks (CNN) ! segmentation, is lacking. We present a comparison between these
techniques to segment five tissue types using ground-truth (GT) data from BrainWeb™.

MATERIALS & METHODS

Multi-atlas segmentation pipeline 3D Convolutional Neural Network (3D CNN) segmentation pipeline

o Simulated atlas based on BrainWeb™ dataset. Real dataset obtained from MRBrainS challenge.t'™ ° 3D CNN trained to detect WM, GM, CSF, muscle and bone.

o> T1 MRI images used with corresponding ground truth for white matter (WM), grey matter (GM), o No registration required but all images in the atlas are resampled to the same voxel size.
cerebrospinal fluid (CSF), bone and muscle. o Normalization of the intensity to a zero-mean, unary-variance space.

o N4ITK™ used for intensity inhomogeneity correction. o Theano™ framework used as the base and graphical processing unit (GPU) used for faster

o 2 step registration, with a coarse affine transformation'® step followed by a non-rigid registration*!. parallelized computation.

o Top N atlases selected on the basis of their similarity with the target image (N=8). ° Pipeline inspired by the popular multi-scale 3D CNN pipeline ™! for lesions segmentation.

o Simultaneous truth and performance level estimation (STAPLE)!" used to decide on atlas consensus. o An extra pathway for a sub-sampled image is used. It is up-sampled at the classification layer.

o Normalized cross-correlation used for local consensus. o Final architecture 8 layers deep with a kernel of 3x3x3 voxels at every layer.

o Morphological operations used to remove noise and isolated voxels from the final segmentation. ° Feature Maps of size 30, 30, 40, 40, 40, 40, 50, 50 at every layer and receptive field of size 25°
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Fig. 1: Simplified multi-atlas segmentation pipeline Fig. 2: An example of a simplitied 4 layer deep CNN

Comparing head models of different segmentation methods

o 2000 source locations were randomly chosen inside the grey matter using a 1x1x1 mm grid. o Simulations with 97 EEG electrodes were performed using a FEM head model.
o Each source location has 3 orientations in the 3 cardinal directions. o SimBio[15] was used to generate leadfields for ground truth data and the 2 segmention approaches.
o Average distance between the sources was 4.13 mm. o Magnification factor (MAG) and Relative distance measurement (RDM) values were calculated for

the two segmentation techniques against the ground truth.
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o Dice score was used to
measure the efficacy of
the 3 algorithms to
detect 5 tissue classes
(WM, GM, CSF, muscle
and bone).
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Fig. 6: Difference of RDM (top) and MAG (bottom) between CNN

Fig. 5: Output of Multi-Atlas, Ground Truth and 3D CNN and MA visualised on the cortical surface (right) and volume (left)

[V CONCLUSIONS

The comparison of the segmentation techniques shows that 3D CNN outperforms multi-atlas based methods, especially in segmenting WM, GM and CSF. This can be attributed to the structural variability of
these three tissue classes across subjects which makes it a challenging problem for segmentation algorithms based on atlas consensus, such as the multi-atlas technique. The CNN's lead-field matrix values
were closest to those of the ground-truth which is in accordance with the segmentation results. The effect on source analysis will be investigated further.
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