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3D Convolutional Neural Network trainned to detect WM, GM, CSF, Muscle and Bone

No registraion required but  all images in the database are resampled to the same voxel size

Normalizatio of the intensity to a zero-mean, unary-variance space.

Theano[14] framework used and GPU is used for faster computation
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The comparison of the segmentation techniques shows that 3D CNN outperforms multi-atlas based methods, especially in segmenting WM, GM and CSF. This can be attributed to the structural variability of 
these three tissue classes across subjects which makes it a challenging problem for segmentation algorithms based on atlas consensus, such as the multi-atlas technique. The CNN's lead-field matrix values 
were closest to those of the ground-truth which is in accordance with the segmentation results. The effect on source analysis will be investigated further.  

Fig. 1: Simplified multi-atlas segmentation pipeline

Accurate segmentation of an individual human head and the resulting volume conductor model has been known to improve EEG and MEG source analysis [1][2]. However, comparison of some state-of-the-art 
segmentation techniques and their effectiveness in source analysis, namely Multi-Atlas[11] and Convolutional Neural Networks (CNN) [13] segmentation, is lacking. We present a comparison between these 
techniques to segment five tissue types using ground-truth (GT) data from BrainWeb[9].
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Fig. 2: An example of a simplified 4 layer deep CNN

￮ 2000 source locations were randomly chosen inside the grey matter using a  1x1x1 mm grid.
￮ Each source location has 3 orientations in the 3 cardinal directions.
￮ Average distance between the sources was 4.13 mm.

 

￮ Simulations with 97 EEG electrodes were performed using a FEM head model. 
￮ SimBio[15] was used to generate leadfields for ground truth data and the 2 segmention approaches. 
￮ Magnification factor (MAG) and Relative distance measurement (RDM) values were calculated for 
   the two segmentation techniques against the ground truth.

Fig. 4: A graph comparing Dice scores of 3
               techniques for 5 tissue classes

￮ Three algorithms, namely 
   STAPLE, local consensus 
   using localized normalized
   cross correlation (LNCC), 
   and 3D CNN were tested.
￮ For validation, 5 images
   were randomly selected 
   as test images. 
￮ Top 8 Atlases were 
   chosen for  STAPLE and 
   LNCC using normalized 
   mutual information (NMI).
￮ LNCC parameters for 
   classifier and kernel size 
   were tuned using 3 
   training images.
￮ Dice score was used to 
   measure the efficacy of
   the 3 algorithms to
   detect 5 tissue classes
   (WM, GM, CSF, muscle 
   and bone).
 Fig. 5: Output of Multi-Atlas, Ground Truth and 3D CNN Fig. 6: Difference of RDM (top) and MAG (bottom) between CNN 

and MA visualised on the cortical surface (right) and volume (left)

Multi-atlas Ground Truth 3D CNN

￮ Mean values of 
the RDM and 
MAG for 
computing lead-
field matrices 
were  0.0857, 
0.9828 and 
0.2051, 0.9492 for 
CNN and multi-
atlas respectively.

￮ Surface and 
volume 
visualization of 
differnce of MAG 
and RDM values  
between CNN 
and MA shows  
CNN values 
being closer to 
the ground truth 
data.
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Multi-atlas segmentation pipeline 3D Convolutional Neural Network (3D CNN) segmentation pipeline

Comparing head models of different segmentation methods

￮ Simulated atlas based on BrainWeb[9] dataset. Real dataset obtained from MRBrainS challenge.[10]

￮ T1 MRI images used with corresponding ground truth for white matter (WM), grey matter (GM),
    cerebrospinal fluid (CSF), bone and muscle.
￮ N4ITK[12] used for intensity inhomogeneity correction.
￮ 2 step registration, with a coarse affine transformation[3] step followed by a non-rigid registration[4]. 
￮ Top N atlases selected on the basis of their similarity with the target image (N=8).
￮ Simultaneous truth and performance level estimation (STAPLE)[11] used to decide on atlas consensus.
￮ Normalized cross-correlation used for local consensus.
￮ Morphological operations used to remove noise and isolated voxels from the final segmentation.

 

   

  
 

   

￮ 3D CNN trained to detect WM, GM, CSF, muscle and bone.
￮ No registration required but all images in the atlas are resampled to the same voxel size.
￮ Normalization of the intensity to a zero-mean, unary-variance space.
￮ Theano[14] framework used as the base and graphical processing unit (GPU) used for faster
   parallelized  computation.
￮ Pipeline inspired by the popular multi-scale 3D CNN pipeline [13] for lesions segmentation.
￮ An extra pathway for a sub-sampled image is used. It is up-sampled at the classification layer. 
￮ Final architecture 8 layers deep with a kernel of 3x3x3 voxels at every layer.
￮ Feature Maps of size 30, 30, 40, 40, 40, 40, 50, 50 at every layer and receptive field of size 253  

 

   


