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Abstract

Brain activity imaging using Electroencephalography (EEG) is a vital aspect of
cognitive science and neurology. However, the reliability of brain activity localiza-
tion based on EEG data has been a hard endeavor so far. In this dissertation we
propose a new, reliable mathematical algorithm for this purpose.
First, we will provide an overview over the biological background of methodology
in cognitive science. To localize brain activity from EEG data, we need to solve an
elliptic partial differential equation (PDE) with a mathematical dipole as a right–
hand side. For this, we use Finite Element Methods (FEM). However, FE cannot
discretize a mathematical dipole. We solve this issue with regularization.
Secondly, we list contemporary regularization approaches. The most successful
one – the Venant Approach – has so far lacked a mathematical and theoretical
foundation. This dissertation is expanding that approach both theoretically and
practically.
Thirdly, we formulate a new approach using the idea of the Venant Approach. It
originates from the idea to substitute the mathematical dipole with a distribution
of monopoles. Monopoles are placed exactly on FE nodes, using the corresponding
monopole loads as FE values.
The substitution of a mathematical dipole with a monopole distribution results in
a new PDE. With assumptions for both monopole loads and electrical conductivity
in the PDE, we prove that there is a unique solution for the PDE’s ultra weak
formulation using the duality method.
We can derive a more intuitive way to compute monopoles with the help of multipole
expansion. This involves expanding the potential of the mathematical dipole and
the potential of the monopole distribution, and comparing the different terms. This
new approach is called Multipole Approach.
For the Multipole Approach, we can give an error bound with an error decay in
direction of the boundary for a small sphere of unique conductivity around the
dipole location.
Fourthly and finally, we employ the most popular approaches, together with the
new Multiple Approach in numerical computations. First, we test with unique
conductivity in 2D. Second, we employ the approaches on spherical models with
different layers of distinct conductivity in 3D. Finally, we compute a goal function
scan on one 3D spherical model.
We study the Multipole Approach in different configurations and find the optimal
one. In this optimal case, the new approach outperforms the contemporary ap-
proaches effortlessly.
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1 Introduction

In the neurophilosophic discipline of naturalism the view has emerged that we
humans are essentially a carbon based machine. In this context the prevalent
opinion is that the neural nervous system is responsible for exerting all control over
the human body [8], in which the brain acts as the most relevant control center of
the nervous system.
The strongest argument for this idea is the sheer number of neurons: The human
brain contains the vast majority of all neurons in the body. Since neurons are
widely understood to be the source of complexity, we can limit our scope to this
area.
Historically, the brain was studied by comparing head injuries to changes within the
human nature. Famously, the personality of railroad worker Phineas Gage turned
from very friendly to aggressive after suffering a head injury caused by an explosion
[25].
However, the approach of studying injured or disordered brains is inherently limited.
Our brain is segmented into different functional areas. Due to Neuroplasticity,
neighbouring areas can partially replace missing functions. Additionally, injury of
certain brain areas do not lead to change in behavior or personality [10]. Due to
these limitations, cognitive science shifted towards studying healthy brains [29].
This approach led us to a deeper understanding of the function of individual brain
areas.
One method to study brain activity involves the method of Electroencephalography
(EEG). This approach exploits the electrochemical processes in active brain regions,
recording electric field changes on the scalp. [59]
This EEG activity can be modeled by a Partial Differential Equation (PDE) [33].
Deducing the location of brain activity involves solving an inverse problem for this
PDE. Solvers of this Inverse Problem rely on quick and efficient algorithms to solve
the Forward Problem [34, 66, 65].
This thesis will improve one of such algorithms and is st as structured as follows.
Chapter 1 gives an overview over the brain’s localized structure. We introduce the
mathematical model which describes the biological processes and we will present
the central problem of this thesis, i.e. solving the EEG forward problem with
Finite Element Methods (FEM). In Chapter 2 we provide a broad overview over
previously established algorithms to solve the central problem. In Chapter 3, we
dedicate ourselves to improve one of the already existing algorithms vastly, including
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1 Introduction

mathematical analysis. Subsequently, in Chapter 4 we demonstrate experimental
results, and come to a conclusion in Chapter 5.

1.1 A short summary of the functionality of the brain from
a mathematician’s perspective

The facts and mechanisms presented here are broad and are usually included in
most basic neuroscience courses. Therefore, they can be researched in most basic
textbooks such as for example [49, 78, 30, 25]

Figure 1.1: A neuron, scale bar: 100µm [42]. This neuron was made visible with
a fluorescence staining method. With the help of this method, it be-
comes obvious that this neuron has a structure similar to a tree. The
almond-shaped part at the top of the “roots” contains the cell core called
soma. The neuron connects to other neurons via the “stem” and the
“branches”, which together are called axon. With the axon, a neuron
can send information to its connected neurons. The information is then
received by their so called dendrites. We can see the dendrites of the
initial neuron as the “roots” in this picture.

The brain consists of 86±8 billion highly interconnected neurons that form strongly
clustered and subclustered structures1. Each cluster has its own unique responsi-
bility in processing information and controlling the body.

1Brain Science is speaking about areas instead of clusters. However, since the neurons in an area
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1.1 A short summary of the functionality of the brain from a mathematician’s perspective

The layout of the clusters and subclusters is not arbitrary. Instead, they show
very similar patters in different humans. The only factor introducing a strong
difference is a person’s handedness (left–handed people have a different layout than
right–handed people for example [4]). Thus identification of task responsibility of
clusters and subclusters is not only possible in general, but also for every individual
person.

Figure 1.2: Cytoarchitectonics of human brain according to Brodmann, picture
from [17].

The most fundamental cluster structure is shared by virtually all humans and can
be discovered by analyzing cortical tissue samples. Korbinian Brodmann examined
such samples around 1910 under a microscope. On this base he was able to assemble
a map of the cortex describing 52 distinct neuronal clusters [16]. These clusters
usually appear in specific locations for every individual human, making Brodmann’s
map a useful general guide for brain organization.
In the years after Brodmann’s discovery, suspicion arose that these different clus-

are clustered around each other, the word cluster illustrates what happens more accurately.
Therefore, we choose to use this terminology
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1 Introduction

ter types were responsible for distinct and specialized tasks. Several decades later,
this suspicion was confirmed. The new field of cognitive science – functional neu-
roanatomy – was established to conduct research about the functions of specific
neuronal clusters.
The established procedure for conducting this research required the test subjects to
undergo conscious brain surgery. Then, a small electric current was sent through
specific locations of the brain surface and the personal experiences of the experi-
mental subject’s response was recorded. Thus, one was able to approximate each
cluster’s tasks.
With time and more advanced methods, functional neuroanatomy researchers have
developed a deeper and more refined understanding of the brain’s architecture.
Nowadays the cortical map comprises 100 distinct clusters and subclusters. How-
ever, this project is not yet complete and more research has to be done.
Modern research is aided by two characteristics of the brain’s clusters: Firstly, two
distinct clusters do not process the same information and secondly, each and every
cluster and subcluster is only involved in a handful of specific tasks.
Therefore, by observing the activity in certain cluster during a wide range of states
of the human body and mind we can deduct its functional role. This strong division
of responsibilities allows different clusters to work together and accomplish a more
complicated cognitive process.

middle temporal
 gyrus

"black"

"cat- 
shape"

primary visual
cortex

secondary visual
cortex

 

V4

V3

 

Figure 1.3: Example 1, areas active while identifying the visual stimulus of a black
cat.

Example 1. Suppose there would be a black cat sitting in front of a person.
The eyes of the person resolve the light patterns into electrical impulses. This visual
data is sent to a large cluster in the back of the of the brain, called primary visual
cortex (V1).
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1.1 A short summary of the functionality of the brain from a mathematician’s perspective

The V1 will then apply a series of filtering and shape detection functions. After-
wards, it will send the information to the secondary visual cortex (V2), located in
a broad ring around the V1.
V2 disassembles the data into shape and color information and sends these data
streams to the clusters V3 and V4. V3 is located in the upper front of the V2 while
V4 can be found on the lower rear of the brain.
V4 is a cluster which can be compared to a general library of shapes. In our
example, the visual data from V2 activates the subcluster for the shape of a cat. V3
is responsible for determining the color of an object. Again, in our example, the
subcluster, which represents the color black, will be activated by the visual data.
The activity of V3 and V4 also activates another cluster, the middle temporal gyrus
(located in the middle of the lower part of the brain). This area receives both shape
and color information, which are combined and in turn lead the the activation of a
new subcluster. In our example this subcluster represents the generic visual image
of a black cat. This is then the moment that the person has a conscious realization
that the object in the visual field is, in fact, a real cat.
Although this whole process happens very quickly and without conscious control, there
are imaging techniques which can observe this sequential activities. In principle, if
the role and location of each of a person’s subclusters were completely known, we
could identify the cat in front of this person without having any interaction with the
person apart from scanning their brain.

++ +
+ +

-
-

-- -

Figure 1.4: [23] The neurons undergo an electrochemical process, which includes
electrons moving along the axon, such that an electric field is created.

The biggest obstacle for the research in functional neuroanatomy is that the brain
does not process information sequentially. Instead, a large number of processes
are active simultaneously all the time. Even when considering only sensory input,
we see, hear, smell, taste, feel and think at the same time. The respective data
streams produced by all these processes merge together into a chaotic and seemingly
arbitrary pattern of activity that spans the whole brain.
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1 Introduction

Traditionally, this problem is mitigated by repeating the same experiment for multi-
ple instances and with very little content variation. While the experiment is running
as much brain activity as possible is recorded. If the experiment is well designed,
the brain activity not related to the experiment will be random. Combining the
information from all the individual runs then lets this random activity cancel itself
out. Ideally, the important and experiment–related activity remains. This is called
an evoked responses experiment.

Figure 1.5: The EEG consists of an array of electodes, designed to capture electric
fields from human scalps. This picture shows the buddhist monk Barry
Kerzin meditating with an EEG on his head, picture from [48].

Two common devices for capturing neuronal activity are the Electroencephalograph
(EEG) and the Magnetoencephalograph (MEG). They are based on measuring elec-
trical fields and magnetic fields, respectively.
The process which helps the EEG and the MEG to be able to detect brain activity
involves an electro–chemical process within active neurons. Every active neuron
will emit an electric and a magnetic field. Neurons in a cluster are aligned such
that the emitted fields will add to each other (called synchronization). This builds
an electric and a magnetic field, which is strong enough to survive to the outside.
Thus, it can be captured by an EEG or an MEG. Since MEG is a comparably rare
technique, we will focus on EEG–based approaches.
The EEG consists of an array of conducting electrodes attached to a cap. This cap is
connected to an amplifier and a digitizer, which is connected to a computer. When
worn by a test subject, the electrodes make electrical contact with the scalp. The
EEG then captures electric field changes on the scalp in quick succession, typically
several thousand times per second. The recordings are digitized and sent to the
computer for storage and analysis.

12



1.1 A short summary of the functionality of the brain from a mathematician’s perspective

Figure 1.6: The electric field will get deformed on the way from the source to outside
of the head. Especially the skull will dampen it enormously, original
content.

Provided that the experimental design was successful in excluding non–task activity,
directly deducing from the recorded information would only lead to a very rough
localization of brain activity. The cause for this problem is that the EEG can only
capture the electric field on the top of the human scalp. Active neuronal clusters
usually produce an electric field, which would be – in principle – measurable with
a simple pair of electrodes inside the head. However, when the electric field finally
reaches the scalp, it has already been heavily distorted by the isolating skull layer.
This means that the electric field gets dampened and squished and will be deformed
when it reaches the sensor positions. Thus, localization of the source might not be
so easy.
Therefore, we need a model for the conductivity in every point within the head.
Usually those head models are made by using an MRI scan of the person’s head.
The images from the MRI are then converted into such a model by a software like
BESA, Freesurfer or FSL.
To now compute the location of brain activity with the help of this head model
and designed studies, we need a good and reliable algorithm. This algorithm will
be the focus of the following chapters and the main focus of this dissertation.

13



1 Introduction

Figure 1.7: The head of the participant will first be scanned with an MRI which
results in a grayscale image. Then this image will be transformed into
a computer–readable head model with layers. On the left–hand side
we can see a so–called T1–weighted image of a slice of a head. On the
right–hand side we can see a piece of the transformed head model with
several layers in different colors. The images were given to me without
any restrictions from Dominic Portain of the Max Planck Institute for
Human Cognitive and Brain Sciences and display his head.

14



2 How to model biological processes in
the mathematical world

We start off by describing a mathematical model for the electric and magnetic fields
– and like almost every time connected electric and magnetic fields are described,
the starting points are the famous Maxwell equations [50].

Figure 2.1: James Clerk Maxwell, 1831-1879, via [77].

These equations are a set of partial differential equations which – together with the
Lorentz force law – are the base formulas of electrodynamics. They describe the
relation between electric and magnetic fields and thus can be used in this context.
We do not need to use these equations in their original form, as it is possible to
simplify them [85, 33, 72, 15].
We have two preliminaries to consider:

1. The domain When we want to solve a mathematical formula, we need a
domain on which we want to solve. In our case, we call the domain Ω ⊂ R3.
This domain is – in the context of the application – a representation of the
head.

15



2 How to model biological processes in the mathematical world

2. The electric conductivity For every point in our domain, we can define
the electric conductivity tensor σ(x) : Ω → R3×3. We can assume that σ(x)
is symmetric, positive and bounded [85]. Moreover σ(x) ∈ L∞(Ω), where
L∞(Ω) is the Lebesgue space for p = ∞ [3, 28] with

L∞(Ω) = {f : Ω → R|f is Lebesgue measurable and essentially bounded}.

Definition 1. (Preliminarities for the EEG inverse problem)
Let Ω ⊂ R3 be an open domain and ∂Ω := Ω̄ \ Ω be the border of Ω. Let ∂Ω be
Lipschitz boundary [14]. Let σ(x) : Ω → R3×3 be a positive, symmetric and bounded
function on Ω. Let Xsens ⊂ ∂Ω be a set of m discrete points on the border of Ω.

Then we can define the EEG inverse problem.

Problem 1. (The EEG inverse problem)
Let Ω, σ and Xsens be like in Definition 1. Let the scalar potential be u : Ω → R.
Find the neuronal activity J : Ω → R which fulfills that

∇ · (σ∇u) = J in Ω

σ∇u · n = 0on ∂Ω.
(2.0.1)

Let u|Xsens := usens be given.

To solve this problem we have to overcome certain pitfalls until we reach the problem
we actually want to solve.
First, this is an inverse problem. As opposed to forward problems, inverse problems
are usually more complicated to solve.
However, the forward solutions of (2.0.1) are linear with regard to the neuronal
activity, which can be exploited to compute inverse solutions.
Inverse solvers like MNE, LORETA, sLORETA and HBM [34, 66, 65, 47] do exactly
this. Using those, we mostly solve the inverse problem as follows:

1. In the first step, we place numerous different dipole locations in the brain
area. Then we compute the forward solutions at those locations for the unit
vectors as moments. The solutions get saved mostly within a so–called lead
field matrix and can be computed within an offline step. This is convenient
since this is the part with significant computational costs.

2. In the second step, the algorithm then cleverly computes the most fitting con-
stellation of brain activity locations among those already computed solutions.
The algorithm therefore uses the lead field matrix and the measured values
from the sensors usens.

16



The existing solvers differ most during the second step, but they all need a good,
quick and smooth forward problem solver.
It therefore makes sense for us to optimize the computations for the forward prob-
lem.

Problem 2. (The EEG Forward problem)
Let Ω ∈ R3 and σ(x) : Ω → R3×3 be like Definition 1. The EEG forward problem is
to find the scalar potential u : Ω → R which solves the equation

∇ · (σ∇u) = J in Ω

σ∇u · n = 0on ∂Ω.
(2.0.2)

where J is the model for the given neuronal activity in the brain.

Realistically, the left–hand side of (2.0.2) portrays the flow of the electrical field.
The right–hand side portrays the influence on this flow by neuronal activity.
In 1988, de Munck, van Dijk, and Spekreijse, showed [57] that the model of a
mathematical dipole is sufficient as a model for the right hand side. In contrast
to a mathematical dipole, the biological electrical source has a physical extend
and is no point singularity. However, the neurons in a subcluster are aligned in
such a way that using a mathematical dipole as a model for this is an appropriate
approximation. Until now, this has been working well in practical applications.
The mathematical dipole is a point source with a location and a direction and can be
described mathematically as a directional derivative of a Dirac delta distribution,
which can be written sloppily as

δy(x) :=

{
∞, x = y

0, otherwise.

Let x0 be the location of the dipole and its direction, the so–called moment
−→
M ∈ R3.

Then the dipole is

J(x) = ∇ · (
−→
M δx0(x)). (2.0.3)

Other possible models for the right hand side exist, such as the Feynman Dipole
[62], which is composed of two monopoles of opposite, but same absolute strength
with a small distance to each other:

JFey(x) = (qδx+(x)− qδx−(x)),

where x+ ∈ Ω and x− ∈ Ω are the locations of the source, respective sink.

17



2 How to model biological processes in the mathematical world

Both dipole models are not in L2(Ω), which is the Lebesgue space for p = 2 [3, 28],
with

L2(Ω) := {f : Ω → R|f is Lebesgue measurable and
(∫

Ω
|f |2

)1/2

≤ ∞}

This usually is a problem for standard FEM theory. We will later see how to work
around this.

2.1 From mathematical theory to computer solvable
problems – a short overview of the FEM theory

Like with many problems arising from real world applications, we cannot compute
a solution for the EEG forward problem analytically simply because it does not
exist in the sense of an analytical formula.
Therefore, an approximation to the real solution can be satisfactory, provided the
approximation fulfills certain criteria – like having a good error bound.
The still most often used approach is a three or four compartment Boundary Ele-
ment Method (BEM) approach [40, 75]. In BEM, most often nested compartments
of isotropic conductivity are assumed, but newest investigations showed that BEM
can also offer more flexibility, e.g. with regard to junctions [74, 41]. However, BEM
have shortcomings, namely that they have difficulties with the anisotropy within
the white matter compartment and with modeling the folded brain surface. There-
fore, the usage of FEM can be beneficial to bypass those specific shortcomings of
BEM altogether.
FEM do not have any requirements for the different electrical conducting layers
and are suitable for anisotropic conductivity. However, applying FEM to the
EEG/MEG forward problem also requires tricks, which are already commonly ap-
plied.

2.1.1 Finite Element Methods

We only want to provide a short overview of the fundamentals of FEM. For a deeper
understanding of general FEM good text books are available such as for example
[20, 14, 27, 63, 12, 13].
For the purpose of this chapter we consider a general linear elliptic equation. We
will discuss the differences to the EEG forward problem (2.0.2) and the arising
difficulties for the FE Ansatz in the end.

Problem 3. Testproblem
Let Ω be an open domain and σ : Ω → R be positive and bounded. Find u : Ω → R

18



2.1 From mathematical theory to computer solvable problems – a short overview of the FEM theory

which solves
∇ · (σ∇u) = f in Ω

σ∇u · n = 0on ∂Ω.
(2.1.1)

for f ∈ L2(Ω).

The next step is to weaken the idea of a solution. This idea is realized with a
variational formulation.
FE spaces are often defined in the context of Sobolev Spaces [3, 28]. This theory is
based on the idea of weak derivatives. Let L1

loc(Ω) be the space of locally summable
functions [28].

Definition 2. weak derivative,([28], (5.2.1))
Suppose u, v ∈ L1

loc(Ω) and α = (α1, . . . , αn) is a multi–index of order |α| =
α1 + . . .+ αn = k. We say that v is the αth-weak partial derivative of u, written

Dαu =
∂α1

∂xα1
1

. . .
∂αn

∂xαn
1

u = v, (2.1.2)

provided ∫
Ω
uDαφdx = (−1)|α|

∫
Ω
vφdx (2.1.3)

for all test fuctions φ ∈ C∞
c (Ω).

Here, C∞
c (Ω) is the space of all infinitely differentiable functions with compact

support in Ω.
A Sobolev Space is then defined as

Definition 3. Sobolev Space, ([28],(5.2.2))
The Sobolev Space W k,p(Ω) consists of all locally summable functions f : Ω → R,
such that for each multi–index α with α < k, Dαf exists in the weak sense, and
belongs to Lp(Ω).

Remark 1. ([28],(5.2.2)(i))
We can use the notion Hk(Ω) =W k,2(Ω).

We use the Standard Sobolev Space H1(Ω).
We define a test space V as a subset of this Sobolev Space with

V := {v ∈ H1(Ω)|∇ · (σ∇v) ∈ H1
0 (Ω) and σ∇v · n = 0 on ∂Ω}.

This test space is only used for theoretical purposes. We can show that by using
this test space we have nice properties for the EEG/MEG forward problem. Later,
for experimental purposes, we will use a test space with fewer constrains.
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2 How to model biological processes in the mathematical world

Let v ∈ V . To obtain a variational formulation of (2.1.1) we then multiply both
sides of the first equation of (2.1.1) with v and integrate over Ω.
On the left hand side we use Green’s Formula [20] and the natural boundary data
to acquire ∫

Ω
∇ · (σ∇u)vdx =

∫
Ω
σ∇u∇vdx−

∫
Ω
σ∇u · ndx

=

∫
Ω
σ∇u∇vdx.

This is a bilinear form. If we use the σ(x) of assumptions 1, we can assume that it
is positive, symmetrical and bounded. Therefore, we obtain a bounded, and thus,
continuous and coercive linear form [14].
For the right–hand side we get

〈f, v〉 =
∫
Ω
fvdx

which yields a linear functional, if f ∈ L2(Ω).
The next step is then to solve the variational formulation instead of the original
problem (2.1.1). For theoretical purposes, the solution u should be the element of
H−1(Ω) which is the dual to the space H1

0 (Ω) := {f ∈ H1(Ω)|f |∂Ω = 0} [3, 28].
This function space is rather big and it might seem to be unnecessarily big at first
glance. However, we will in further theoretical analysis see that this is required.
For now we just want to find a u ∈ H−1(Ω) which fulfills

∫
Ω
σ∇u∇vdx =

∫
Ω
fvdx

for any v ∈ V .
Due to the Neumann Boundary Conditions, this problem does not have a unique
solution. If a solution exists, it is unique up to a constant.
To ameliorate this, we introduce a function η ∈ H1

0 (Ω) with
∫
Ω ηdx = 1 and want

u to fulfill
∫
Ω η u dx = 0.

The variational formulation will give us the so–called weak solution

Problem 4. Find u ∈ {v ∈ H−1(Ω)|
∫
Ω ηvdx = 0}, such that∫

Ω
σ∇u∇vdx =

∫
Ω
fvdx for any v ∈ V.

This problem 4 can be understood as a problem with a bilinear form
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2.1 From mathematical theory to computer solvable problems – a short overview of the FEM theory

a(u, v) =

∫
Ω
σ∇u∇vdx for u ∈ {v ∈ H−1(Ω)|

∫
Ω
ηvdx = 0}, v ∈ V (2.1.4)

on the left–hand side and a functional

l(v) =

∫
Ω
fvdx (2.1.5)

on the right–hand side. We can conclude with [13] that every solution of the original
forward problem (2.1.1) is a solution of problem 4 as well. Therefore, one solves
only problem 4.
Nevertheless, we know from the Lax-Milgram-Lemma [20] or also called Lax-Milgram-
Theorem [14] that there exists a solution and is unique if f ∈ L2(Ω) (which then
means that the solution is in H1(Ω)).

Theorem 1. (Lax-Milgram ([14],(2.7.7)))
Given a Hilbert space (V, (·, )̇), a continuous and coercive bilinear form a(·, ·) and
a continuous linear functional F ∈ V ′, there exists a unique u ∈ V such that

a(u, v) = F (v) for all v ∈ V.

Originally, we wanted to find a solution within the space {v ∈ H−1(Ω)|
∫
Ω ηv dx =

0}. Since an analytical solution does not exist within this space, we need an ap-
proximation.

Figure 2.2: Sketch of an exemplary discretization of a small 2D portion of a head
model.

Therefore, we define a sequence of discretizations of the domain Ω as Ωh1 ,Ωh2 , . . .
with hexahedra or tetrahedra. We can create Ωhn+1 from Ωhn by refining all hexa-
hedra or tetrahedra uniformly. hn (n ∈ N) is the indicator of the elements’ diameter
in the discretization and hn → 0 for n→ ∞. On each discretization we then define
the FE space X(Ωhn), n ∈ N. On each of those n ∈ N discretizations we then can
solve 2.1.4 and thus get a solution uhn ∈ X(Ωhn), n ∈ N.
Now we call the process Finite Element Method to compute the approximations
uhn ∈ X(Ωh) with uhn → u for hn → 0. We can conclude this due to theorems
which embed Sobolev Spaces into each other [28].
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2 How to model biological processes in the mathematical world

Unfortunately, we can not employ this scheme directly to the EEG forward problem
since the right–hand side is too complicated.
The model for the neuronal activity (2.0.3) is a mathematical dipole, which means
that J(x) /∈ L2(Ω). Therefore, we cannot do a variational formulation as described
above. We need a regularization first, such that FE Methods becomes possible.

2.2 Established methods for the regularization of the
EEG/MEG forward problem

Different methods are already in use for regularizing the dipolar right–hand side to
make it suitable for FEM – each with its own drawbacks.
Here, we shall concentrate on the most popular methods, namely the Subtraction
Approach, the Partial Integration Approach and the Blurred Dipole Approach. Re-
cently, the Blurred Dipole Approach was called the Venant Approach or St. Venant
Approach.
Admittedly, there are other interesting methods that are not used as often, such as
discretizations with spline interpolation [39].

2.2.1 Subtraction
The Subtraction Approach is the best performing and mathematically best under-
stood approach [44, 85, 88, 26].
For uniform conductivity, problem 2 has an analytical solution.
Let σ0 = σ(x0) be the constant conductivity around the dipole at location x0 ∈ Ω
which fulfills that σ(x) = σ0 for x ∈ Br0(x0). x ∈ Br0(x0) is the ball of radius
r0 ∈ R+ around the dipole location x0. For Ω ⊂ R3 the function

u0(x) =
1

4 ∗ π ∗ √σ0
· 〈M,σ−1

0 (x0 − x)〉
〈σ−1

0 (x− x0), (x− x0)〉3/2

fulfills that

∇ · (σ∇u0) = J in Br0(x0).

Therefore, within Br0(x0), we can split the solution u of (2.0.2) into

u = u0 + ucorr.

Then we can subtract the solution u0 from the whole problem (2.0.2) (hence the
name) and get a partial differential equation for ucorr, which is

∇ · (σ∇ucorr) = ∇ · ((σ0 − σ)∇u0) in Ω

〈σ∇ucorr, n〉 = −〈σ∇u0, n〉 on ∂Ω
(2.2.1)
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2.2 Established methods for the regularization of the EEG/MEG forward problem

Since σ0 = σ(x) for all elements in Br0(x0), the right–hand side vanishes at the
critical points and therefore the partial differential equation can be solved for ucorr
with standard FE Solvers.
After computing ucorr, we compute the wanted solution u by adding u0 to ucorr.
This approach is very accurate, since it only depends on the approximation which
we compute in 2.2.1.
The new right–hand side fulfills that ∇ · ((σ0 − σ)∇u0) ∈ L2(Ω), so standard FE
theory will guarantee good approximation results.
Also, the convergence rate on simple volume conductor models with uniform con-
ductivity for this approach is quadratic for linear FE, which is the best convergence
rate one can expect [88].
Even if those theoretical results are very promising, the Subtraction Approach has
disadvantages when used in practice.
One drawback is that the smaller the radius r0 gets, the less regularization can
be achieved [44]. However, the biological structures in the brain allow layers of
differing electrical conductivity in areas where neurons are located. Therefore, this
method might be less accurate by design.
The major disadvantage of this approach is that it generates many entries in the FE
Matrices. This will lead to rather long computational times. Thus, the approach
is not practical for computations on finer grids, as will be necessary for the EEG
forward problem.
Therefore, in practice one chooses approaches which have a lower computational
time than the Subtraction Approach.

2.2.2 Partial Integration
The Partial Integration Approach is a direct approach using integration by parts
[79, 70].
In this approach we use the standard FE approach to get a weak formulation and
multiply both sides of (2.0.2) with the FE Basis Functions and integrate.
We thus obtain ∫

Ω
∇ · (σ(x)∇u)ϕi dx =

∫
Ω
∇ · (

−→
M δx0(x))ϕi dx.

There we can integrate, use Green’s Theorem and apply the boundary conditions,
which yields ∫

Ω
σ(x)∇u∇ϕi dx =

∫
Ω
(
−→
M δx0(x))∇ϕi dx.

For the right–hand side we can then observe that∫
Ω
(
−→
M δx0(x))∇ϕi dx = 〈M,∇ϕi(x0)〉.
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2 How to model biological processes in the mathematical world

We can use this identity as the discretization of the right–hand side and have

(fh)i =

{
〈M,∇ϕi(x0)〉, if x0 ∈ supp(ϕi)
0, else .

The weak formulation of this ansatz has a unique solution in Lq(Ω) for 1 ≤ q < 3
2

under the condition that the electric conductivity fulfills the condition that σ(x) ∈
W 1,∞(Br0(x0)) [79]1.
In experiments this ansatz will lead to rather sparse right–hand sides, because there
are just 4 FE nodal functions for tetrahedral meshes where the dipole lies in the
support. This means computational costs are rather low.
This ansatz has linear convergence rates for uniform conductivity, which we will
later on see in experiments and is suitable for Adaptive Finite Elements, but mostly
in 2D [70].

2.2.3 The original Blurred Dipole

The Blurred Dipole was first described by [18] under the name of Blurred Dipole
Approach but was renamed and is currently better known under the name Venant
Approach or St Venant Approach [43, 86, 87, 53]. The basic idea is to substitute the
dipolar right–hand side with a distribution of monopoles. Since this dissertation is
dedicated to improving this ansatz, a deeper explanation is given in Chapter 3.
The idea to use different monopoles to describe another load combination is not
new. In the theory of elasticity the Principle of Saint Venant does exactly this [71].
It says: Statically equivalent loads have very similar effects and become more and
more alike the further away from the sources the observer is. It is commonly used
in the context of electrostatics in the context of PDEs [54, 46].
Let there be n ∈ N monopole locations, which we will name x1, . . . , xn. Those
positions are chosen dependent on the FE grid. x1 is the node nearest to the dipole
location x0. x2, . . . , xn are those nodes connected to x1 sharing either an edge or a
face or a volume.
Then for each monopole we assign a strength q1, . . . , qn. Those numbers q1, . . . , qn
are computed with a linear system of equations.
For each dimension l = 1, 2, 3 the q1, . . . , qn have to fulfill the conditions

l(T )j =

n∑
i=1

((xi − x0)j)
lqi, j = 1, 2, 3

where l(T )j is defined as 0T =
−→
0 ,1T =

−→
M and 2T =

−→
0 .

1W 1,∞(Br0(x0)) is a Sobolev Space defined along [28]

24



2.2 Established methods for the regularization of the EEG/MEG forward problem

Then a Tikhonov-regularization is done as is common in solving inverse problems
[45]. By doing this, a penalty term is added to ensure stability. This penalty term
has the form

λ2

∥∥∥∥∥∥
diag(|x1,1|, · · · , |xn,1|)
diag(|x1,2|, · · · , |xn,2|)
diag(|x1,3|, · · · , |xn,3|)

 · −→q

∥∥∥∥∥∥
2

2

→ min

for a certain λ ∈ R, which can be chosen arbitrarily.
The conditions and the penalty term together can be solved with common linear
equation solvers.
In [81] we can find a more detailed explanation of this approach. It is often consid-
ered to be a very good source modeling approach for the EEG and MEG forward
problem [43, 86, 87].
The Venant Approach was used in some forward and inverse studies [84, 19, 22, 82,
51]. Here, the approach had to deal with artifacts, but yielded the best results.
The main part of this dissertation is dedicated to deducting the approach from the
very first step and to improving the algorithm.
We will prove that the PDE with the new right–hand side has a unique solution
in certain function spaces and will improve the computations of the q1, . . . , qn such
that those artifacts vanish.
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3 Everything looks the same from far
away - The Principle of Saint Venant
and the multipole expansion

So far, one of the best regularizations used in practice – the blurred dipole – centers
around the idea that from far away there are several possible sources which can emit
an electric field similar enough to the one emited by a mathematical dipole source.
The idea to substitute the mathematical dipole with a monopole distribution is
a better approximation of the reality than the mathematical dipole. The mathe-
matical dipole is a model which is used because it proved to be good enough [57]
– however, there is no mathematical dipole in the brain. Instead, there are ac-
tive neurons organized within clusters which all undergo electrochemical processes.
Thus, a monopole distribution could be an appropriate way to adapt the dipole to
the biological process.
We begin by repeating the problem we are working on.
Problem 2. (The EEG Forward problem, repetition)
Let Ω ∈ R3 and σ(x) : Ω → R3×3 be like Definition 1. The EEG forward problem is
to find the scalar potential u : Ω → R which solves the equation

∇ · (σ∇u) = J in Ω

σ∇u · n = 0on ∂Ω.

where there exists a x0 ∈ Ω and a
−→
M such that

J(x) = ∇ · (
−→
M δx0(x)).

For the purpose of this chapter, we put the dipole into a fixed location.

Assumption 1. Let the dipole location be the origin:

x0 =

0
0
0


Remark 2. Of course, we cannot always assume that the dipole is located at the
origin, since this is also dependent on the coordinate system we choose. However,
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3 The Principle of Saint Venant and the multipole expansion

in case that the location of the dipole is not the origin, we could transform the
coordinates such that the dipole is in the origin of the newly chosen coordinate
system.

We then choose a number of monopoles.

Assumption 2. Let n ∈ N be fixed. Let x1, . . . , xn ∈ Ω be fixed. Additionally, we
have q1, . . . , qn ∈ R.

The model of the activity caused by this monopole distribution can then be de-
scribed by

Jmonopoles(x) =
n∑
i=1

qiδxi(x). (3.0.1)

Substituting J with the Jmonopoles yields the new problem.
The idea to use multipole expansion to represent point charges is not new. In
the context of atomistic modeling and simulation methods this method is called
Optimal Point Charge Approximation [5, 37].
In the context of solving the EEG/MEG forward problem, however, this approach
is new. Therefore, we will call it Multipole Approach to distinguish it from the
already existing Venant/Blurred Dipole Approach.

Problem 5. (The Multipole forward problem)
Let Ω ∈ R3 and σ(x) : Ω → R3×3 be like Definition 1. Find the scalar potential
u : Ω → R which solves the equation

∇ · (σ∇u) =
n∑
i=1

qi δxi(x) in Ω

σ∇u · n = 0 on ∂Ω.
(3.0.2)

There are several questions to answer before we can start to solve the problem using
FEM.

1. Solution: Does a (weak) solution to Problem 5 exist? Is the solution unique?
And in which function spaces does the solution lie?

2. Computation: How should one choose n ∈ N, x1, . . . , xn ∈ Ω and how
should we compute the q1, . . . , qn ∈ R?

3. Accuracy: How good is the substitution of using a monopole distribution
instead of a mathematical dipole?

Whereas the answer to [Solution] is independent of the choice of the monopole
locations, we can only deduct the [Accuracy], if we know how to do the [Com-
putation].
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3.1 Existence and uniqueness of a solution for the Principle of Saint Venant

3.1 Existence and uniqueness of a solution for the Principle
of Saint Venant

Before we get to the explanation on how to choose the monopoles, it is important
to prove the existence and the uniqueness of a solution for this problem.
The final goal is to do FE. Therefore, the interesting question is whether this
solution exists in such a way that we can approximate it with FE.
The answer to this lies in the (ultra-)weak solution for the problem, which we will
see later.
Let the following condition hold for the weights of the monopole distribution:

Assumption 3. Let q1, . . . , qn fulfil

n∑
i=1

qi = 0.

This condition will ensure the compatibility condition of the Neumann Problem
later on.
Let there be a subdomain B ⊂ Ω, which fulfills the weak cone property [2] and⋃n
i=1Bri(xi) = B ( Ω. Additionally we assume that Bri ∩Brj = ∅ for i 6= j

To simplify, let

Bi := Bri(xi). (3.1.1)

Consider the linear space

X := {ψk ∈ H1(Ω) | ψk ∈ H3(B) ∩ C0(B) and 〈(σ∇ψk), n〉 = 0 on ∂Ω} (3.1.2)

with constant σ on ∂Ω (H1(Ω),H3(B), C0(B) according to [28]). Our goal will be
that this space is a test space for the FE. So far it has not been motivated, but
we will need these properties of the space later on. Therefore, it is already defined
here.
As a first step we bring the equation (3.0.2) into a(n ultra–)weak formulation and
multiply both sides by ϕ ∈ X and integrate over Ω. Then we apply the Gauss–
Green Theorem [28] for integration twice. The border integrals vanish both times,∫
∂Ω(σ∇u) n ϕ dx = 0 because of the definition of problem (3.0.2) and

∫
∂Ω(σ∇ϕ) ·
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3 The Principle of Saint Venant and the multipole expansion

n · udx = 0 because of the definition of X. So we get that∫
Ω
∇ · (σ∇u) ϕ dx = −

∫
Ω
σ ∇u ∇ϕ dx+

∫
∂Ω

(σ∇u) n ϕ dx

= −
∫
Ω
σ ∇u ∇ϕ dx

=

∫
Ω
u ∇ · (σ∇ϕ) dx+

∫
∂Ω

(σ∇ϕ) n u dx

=

∫
Ω
u ∇ · (σ∇ϕ) dx.

On the right–hand side we multiply with ϕ ∈ X as well and integrate over Ω to
obtain

∫
Ω

n∑
i=1

qi δxi(x)ϕ(x)dx =

n∑
i=1

qiϕ(xi)

because the integrals are finite and ϕ ∈ C0(Bri(xi)) for all i ∈ {1, . . . , n}.
Since the problem (3.0.2) has pure Neumann data, the solution cannot be unique.
This is fixed with a third condition.
We introduce a function η ∈ H1

0 (Ω) with
∫
Ω ηdx = 1 and want u to fulfill

∫
Ω η u dx =

0.
The (ultra) weak formulation is then to find a u ∈ H−1(Ω), such that

〈u,∇ · (σ∇ϕ)〉 =
n∑
i=1

qiϕ(xi)

〈η, u〉 = 0.

(3.1.3)

Theorem 2. Let assumption 3 hold. Then there exists a solution u of (3.1.3).
Moreover, u ∈ Lq(Ω) for 1 ≤ q ≤ 2.

The proof is analogous to the proof of existence and uniqueness of the solution
of the subtraction approach [79]. The idea remains the same, namely to use the
duality method. We will construct a dual problem and proof that the solution of the
dual problem has the required traits. However, since we have a different problem,
we have to use slightly different sources in standard literature to verify our claims.

Proof. Our first step is to generate a sequence of functions whose limit is the Dirac
Delta Distribution. Therefore, let δik ∈ C∞

0 (Bi) (Bi as defined in (3.1.1)), δik ≥ 0,∫
Ω δikdx = 1 and

∫
Ω δikψkdx → ψ(xi) for ψ ∈ C∞

0 (Ω)([28]), i = 1, ..., n and k ∈ N
and supp δik+1

( supp δik .
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3.1 Existence and uniqueness of a solution for the Principle of Saint Venant

Consider the new elliptic Neumann problem: Find uk ∈ H1(Ω) such that

∇ · (σ∇uk) =
n∑
i=1

qi δik(x) in Ω

σ∇uk · n = 0 on ∂Ω,∫
Ω
ukηdx = 0.

(3.1.4)

This problem is well–posed and it fulfills the compatibility condition [28], which is∫
Ω

n∑
i=1

qiδikdx =
n∑
i=1

qi

∫
Ω
δikdx =

n∑
i=1

qi =︸︷︷︸
Assumption 3

0.

Therefore, a solution exists [28] and we use H1(Ω) functions for the weak ansatz.
We then have ∫

Ω
uk ∇ · (σ∇ϕ)dx =

n∑
i=1

qiϕ(xi).

The proof uses the uk–duality product, which is comprised of the product with the
dual to uk, which we call ψk.
Therefore we define a new problem (why exactly this problem will be seen later
on). Let ψ ∈ H1

0 (Ω). Then find ϕ̂ which solves the problem

∇ · (σ∇ϕ̂) = ψk − η

∫
Ω
ψkdx in Ω

〈σ∇ϕ̂, n〉 = 0 on ∂Ω,∫
Ω
ϕ̂dx = 0.

(3.1.5)

The solution ϕ̂ exists and is unique, because (3.1.5) fulfills the compatibility con-
dition [28]∫

Ω
ψkdx−

(∫
Ω
ψkdx

)
η =

∫
Ω
ψkdx−

(∫
Ω
ψkdx

)∫
Ω
ηdx = 0 =

∫
∂Ω

0dx.

If ϕ̂ ∈ X, then it is a sufficient test function for the original problem (3.1.4).
ϕ̂ ∈ H1(Ω) is given. 〈σ∇ϕ̂, n〉 = 0, because of the definition of the problem.
The only remaining problem is to show that ϕ̂ ∈ H3(B). We will show this, with
the help of established theorems.(∫

Ω ψkdx− (
∫
Ω ψkdx)η

)
∈ H1(Ω) and under the assumption that σ ∈ C2(Bi) for

all i we can conclude with [28, 6.3.1, Thm 2] that ϕ̂ ∈ H3(Bi).
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3 The Principle of Saint Venant and the multipole expansion

Since for all i Bi fulfills the weak cone property, H3(Bi) is embedded into C0(Bi)
and thus ϕ̂ ∈ C0(Bi) [2, 1].
Hence, ϕ̂ fulfills all properties for X.
The next step is to get an estimate for ‖ϕ̂‖C0(B).
B =

⋂n
i=1Bi and

⋂n
i=1Bi = ∅, therefore ‖ϕ̂‖C0(B) =

∑n
i=1 ‖ϕ̂‖C0(Bi).

For each Bi we can apply the embedding estimate and get that

‖ϕ̂‖C0(Bi) ≤ C‖ϕ̂‖H3(Bi)

We further can use the estimation of [28, 6.3.1, Thm 2] and assess

‖ϕ̂‖H3(Bi) ≤ C̃

(∥∥∥∥ψk − η

∫
Ω
ψkdx

∥∥∥∥
H1(Bi)

+ ‖ϕ̂‖L2(Bi)

)
.

For the last part we estimate

‖ϕ̂‖2L2(Bi)
≤ C‖∇ϕ̂‖2L2(Bi)

due to the Poincaré inequality.
Further we evaluate

‖∇ϕ̂‖2L2(Bi)
=

1

β

(∫
Ω
σ∇ϕ̂∇ϕ̂dx

)
=

1

β

(∫
Ω

(
ψk − (

∫
Ω
ψkdx)ηdx

)
ϕ̂

)
≤
∥∥∥∥ψk − η

∫
Ω
ψkdx

∥∥∥∥
L2(Ω)

· ‖ϕ̂‖L2(Ω)

≤
∥∥∥∥ψk − η

∫
Ω
ψkdx

∥∥∥∥
H1(Ω)

· ‖ϕ̂‖L2(Ω)

⇒ ‖ϕ̂‖L2(Ω) ≤
∥∥∥∥ψk − ∫

Ω
ψkdx

∥∥∥∥
H1(Ω)

.

So we really only have to get an estimate for ‖ψk−(
∫
Ω ψkdx)η‖H1(Bi) ≤ ‖ψ‖H1(Bi)+

‖(
∫
Ω ψ)η‖H1(Bi). This is done with

‖ψk − (

∫
Ω
ψkdx)η‖H1(Bi) ≤ ‖ψ‖H1(Bi) + ‖(

∫
Ω
ψkdx)η‖H1(Bi)

≤ ‖ψ‖H1(Bi) +

∣∣∣∣(∫
Ω
ψkdx)

∣∣∣∣ ‖η‖H1(Bi)

≤ ‖ψ‖H1(Bi) + C‖ψ‖L2(Bi)

≤ ‖ψ‖H1(Bi) + C̃‖ψ‖H1(Bi),
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3.1 Existence and uniqueness of a solution for the Principle of Saint Venant

for constants C, C̃, which do not depend on ϕ or ψ.
Therefore we can conclude that

‖ϕ̂‖C0(Bi) ≤ Ci‖ψ‖H1(Ω). (3.1.6)

Because it is true for every i = 1, . . . , n, it also holds for the sum and we yield

‖ϕ̂‖C0(B) ≤ C‖ψ‖H1(Ω) (3.1.7)

for a constant C.
Then we can compute the duality product |〈uk, ψk〉|. Since [28, Thm.5.9.1 (iii)] it
is the same as the L2 product, i.e.

|〈uk, ψk〉| =
∣∣∣∣∫

Ω
uk ψkdx

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫
Ω
uk ψkdx−

(∫
Ω
ψkdx

)∫
Ω
uk η︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∫
Ω
uk

(
ψk − η

∫
Ω
ψkdx

)
dx

∣∣∣∣
Because uk is a test function for the 2nd equation we can transform the last line to∣∣∣∣∫

Ω
uk

(
ψk − η

∫
Ω
ψkdx

)
dx

∣∣∣∣ = ∣∣∣∣∫
Ω
uk∇ · (σ∇ϕ̂)dx

∣∣∣∣
Further ϕ̂ is a test function for the 2nd equation such that∣∣∣∣∫

Ω
uk∇ · (σ∇ϕ̂)dx

∣∣∣∣ = ∫
Ω

n∑
i=1

qiδik ϕ̂dx.

We choose k such that supp δik ⊂ B for all i and have∫
Ω

n∑
i=1

qiδik ϕ̂dx ≤
n∑
i=1

|qi|‖ϕ̂‖C0(Bi)

∫
Ω
δikdx︸ ︷︷ ︸
=1

≤ C‖ϕ̂‖C0(B)

n∑
i=1

|qi|

Finally we apply the estimate (3.1.7) from above and get that

C‖ϕ̂‖C0(B)

n∑
i=1

|qi| ≤ c0

(
n∑
i=1

|qi|

)
‖ψ‖H1(Ω).
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3 The Principle of Saint Venant and the multipole expansion

This means that uk is bounded in the H−1–norm with

‖uk‖H−1(Ω) = sup
ψ∈H1

0 (Ω)

|〈uk, ψk〉|
‖ψ‖H1(Ω)

≤ c0

(
n∑
i=1

|qi|

)
.

This holds for all k ∈ N, which gives a bounded sequence in H−1(Ω).
H−1(Ω) has a weak*-topology ([3], C∞

0 is separable and dense in H1 is C∞ com-
pleted with theH1-norm) and therefore, we can assume the existence of a weak*-convergent
subsequence in H−1(Ω), which we also call uk.
Let u ∈ H−1 be the limit of uk.
Then∫

Ω
uk∇ · (σ∇ϕ̂)dx = 〈uk,∇ · (σ∇ϕ̂)〉⇀∗ 〈u,∇ · (σ∇ϕ̂)〉∫

Ω

n∑
i=1

qiδikϕdx ⇀∗
n∑
i=1

qiϕ(xi) because ϕ̂ ∈ C0(B)

for any ϕ̂ ∈ X.
Additionally,

0 =

∫
Ω
uk ηdx = 〈uk, η〉⇀∗ 〈u, η〉.

Since u satisfies every condition of (3.1.4), it has to be a solution.
The last step is now to repeat this proof and assume that ψ ∈ Lp(Ω) for a certain
p.
Since we have the weak cone property of B, we know that W 2,p(B) is embedded in
C0(B) for p ≥ 2. Therefore ϕ ∈ W 2,p(B) means that the estimate (3.1.7) changes
to

‖ϕ̂‖C0(Bi) ≤ c0‖ψ‖L(Bi).

This then leads to the estimate

|〈uk, ψk〉| =
∣∣∣∣∫

Ω
uk ψkdx

∣∣∣∣
≤

n∑
i=1

|qi|‖ϕ̂‖C0(Bi)

∫
Ω
δikdx︸ ︷︷ ︸
=1

≤ c0

(
n∑
i=1

|qi|

)
‖ψ‖Lp(Ω)
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3.1 Existence and uniqueness of a solution for the Principle of Saint Venant

and thus

‖uk‖Lq(Ω) = sup
ψ∈Lp(Ω)

|〈uk, ψk〉|
‖ψ‖Lp(Ω)

≤ c0

(
n∑
i=1

|qi|

)
for q with 1

p +
1
q = 1. Now the argument with the limits is repeated like above.

Theorem 3. Let assumption 3 hold. Then the solution u ∈ Lq of theorem 2 is
unique.

Proof. Any solution u ∈ Lq of theorem 2 fulfills the duality product

|〈u, ψ〉| =
∣∣∣∣∫

Ω
u ψdx

∣∣∣∣
≤

n∑
i=1

|qi|‖ϕ̂‖C0(Ω)

∫
Ω
δikdx︸ ︷︷ ︸
=1

≤ c0

(
n∑
i=1

|qi|

)
‖ψ‖Lp(Ω)

for a ψ ∈ H1
0 (Ω).

Therefore, we obtain the a-priori estimate

‖u‖Lq(Ω) = sup
ψ∈Lp(Ω)

|〈u, ψ〉|
‖ψ‖Lp(Ω)

≤ c0

(
n∑
i=1

|qi|

)
.

Now let u1 and u2 be two solutions. Set Φ(x) = u1(x)− u2(x).
Then Φ also fulfills the pure Neumann conditions and∫

Ω
Φ∇ · (σ∇ϕ)dx = 0 for all ϕ ∈ X.

We then obtain

‖Φ‖H−1(Ω) ≤ c0

n∑
i=1

|qi − qi| = 0

and therefore Φ = 0 in Lq(Ω).

This proof only shows that there exists a weak solution of the problem 3.0.2, which
is unique. It does not say anything about how good the new approximation is in
regard to the old problem (2.0.2). It neither gives an error bound nor does it say
anything about a solution of the old problem. For an error bound one has to know
how to choose the monopoles and how the strengths of the monopoles should be
computed. So that is our next step.
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3 The Principle of Saint Venant and the multipole expansion

Remark 3. Theorem 2 and theorem 3 are independent of the choice of the monopoles.
They are valid for the Venant Approach as well as the new approach.

3.2 Choice of the monopole locations

So far, we just assumed some random number of monopoles and monopole locations.
What we want to do is to place monopoles onto FE nodes. It makes sense to use
the FE next to the dipole location x0.
In the context of the Venant Approach, the nodes are chosen as follows:
x1 is the node nearest to the dipole location x0. x2, . . . , xn are those nodes connected
to x1 with either an edge or a face or a volume.
Here, n is not fixed and completely dependent on the FE grid.
Secondly, one could define a n ∈ N and compute those FE nodes which are the n
closest to the dipole location.
Thirdly, one could mix both heuristics.
We will see different strategies for the Multipole Approach later in the chapter 4.
Using this, the right–hand side - the monopole distribution - can then be discretized
as

Jh =

n∑
i=1

(Jh)i · ϕi(x),

with

(Jh)j =

{
qj , if xj ∈ {x1, . . . , xn}
0, else.

The missing information is the qi, . . . , qn ∈ R.
The Venant Approach [18] described in chapter 2.2.3 provides one way to compute
those.
We use a new way to compute this monopole distribution. We start at the potential
of the dipole and the monopole distribution and use common multipole expansion
to compare those. By doing this, we are able to describe an algorithm for the com-
putation of the monopole loads qi, . . . , qn corresponding to the locations x1, . . . , xn.

3.3 Multipole expansion to compute the strengths of the
monopoles

The original problem was to compute udip for the mathematical dipole and solve
the equation
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3.3 Multipole expansion to compute the strengths of the monopoles

∇ · (σ∇udip) =∇ · (
−→
M δx0(x)) in Ω

σ∇udip · n = 0 on ∂Ω.

for udip ∈ L2(Ω), compare (2.0.2).
Instead we now want to compute umon for the monopole problem and solve

∇ · (σ∇umon) =
n∑
i=1

qi δxi(x) in Ω

σ∇umon · n = 0 on ∂Ω.
for umon.
The u symbolizes the electric potential. In the first equation udip is the electric
potential of the dipole and in the second equation umon is the electric potential of
a monopole distribution.
Those potentials should be the same. To ensure this, we use Multipole expansion
to expand the dipole potential and the monopole distribution potential.
For this, we require the assumption

Assumption 4. Let R+. Let x1, . . . , xn, x+, x− ∈ Ωh fulfill that a small ball around
the origin with radius δ ∈ R>0 exists such that x1, . . . , xn ∈ Bδ(0) := {x ∈ Ωh |
|x| < δ} and a σ0 ∈ R+ such that

σ(x) = σ0 for all x ∈ Bδ(0). (3.3.1)

We define δ0 as the maximal δ ∈ R such that (3.3.1) holds.

We will also need the definition

Definition 4. For the expansion of the monopole distribution we define

δ1 := inf {δ ∈ R | δ0 ≥ δ1 > max{|x1|, . . . , |xn|}} . (3.3.2)

For error estimation it is important that δ1 > max{|x1|, . . . , |xn|}.
We define σ(x) := σ0 ∈ R>0 as in assumption 4. Let the dipole location be the
origin of the coordinate system.
The potentials are not in the function space L2(Ω) – neither at the location of the
dipole, nor at the locations of the monopoles, so we are not able to use this norm.
But we are not interested in the fact that the error in the potentials is minimal
at those locations. We are only interested in the fact that the error at the EEG’s
sensor positions is minimal.
As explained before, we cannot make error estimations for the case of homogeneous
conductivity but we are able to estimate the error on the surface of the small
same-conductivity ball around the dipole location.
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3 The Principle of Saint Venant and the multipole expansion

So we choose the norm

‖v‖∗ := ‖v‖L2(Bδ0
(0)\Bδ1

(0)). (3.3.3)

The potential of the dipole, which is also the solution of 2, can be represented by
the fundamental solution

ΦD(x) =
1

4πσ0
· 〈
−→
M,x〉
|x|3

. (3.3.4)

This potential is a pure dipole potential and cannot be expanded further. Every
moment except the dipole moment is zero.
The potential of the monopole distribution is

ΦM(x) =
1

4 · σ0π
·
n∑
i=1

qi
‖x− xi‖2

. (3.3.5)

For this potential we use multipole expansion to make it easy to compare with the
dipole potential.
Multipole expansion transforms the potential of the monopole distribution into an
infinite sum, where every summand is the respective higher order moment [31].
We then can conclude with the definitions of the scalar product and the l2-Norm,
that

1

‖x− xi‖2
= (|x|2 + |xi|2 − 2〈xi, x〉)−1/2

= |x|
(
1 +

|xi|2

|x|2
− 〈2 · xi, x〉

|x|2

)−1/2

for all i ∈ {1, . . . , n}.
With the last factor we have used the Taylor expansion with the simplified function
(1 + y)−1/2, where we substituted |xi|2

|x|2 − 〈2·xi,x〉
|x|2 with y.

This Taylor expansion can be used only for y < 1, which means that |x| � |xi|
must hold.
Inserting and re-substituting gives the expression

ΦM(x) =
1

4πσ0

∞∑
l=1

n∑
i=1

qi · |xi|l

|x|l+1
Pl(cos(θi)), (3.3.6)

where Pl(x) are the Legendre Polynomials of order l ∈ N and θi is the angle between
the position vectors of the evaluation point x and the monopole location xi.
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3.3 Multipole expansion to compute the strengths of the monopoles

Ideally, we would then want to compute the strength of the monopole distribution
in such a way that the potentials are the same.
This would mean to solve the problem

Problem 6. Given are the monopole locations x1, . . . , xn and the dipole potential
ΦD. Compute q1, . . . , qn such that

‖ΦD − ΦM‖∗ = min
(q̃1,...,q̃n)

∥∥∥∥∥ 1

4πσ0
· 〈
−→
M,x〉
|x|3

− 1

4πσ0

∞∑
l=1

n∑
i=1

q̃i · |xi|l

|x|l+1
Pl(cos(θi))

∥∥∥∥∥
∗

.

We can minimize the norm with the help of comparing the coefficients of both
expansions.
Unfortunately, this would require solving an infinite sum of equations.

3.3.1 A computational algorithm

To compute the loads qi with a computable algorithm, we have to reduce the prob-
lem to a finite number of sums.
The dipole potential contains only the second order term – every other term is equal
to zero. Terms within the monopole expansion decay with at least 1

δl0
. Hence, the

decision to cut the potential of the monopoles after the third term seems reasonable.
What remains is to compute q1, . . . , qn fulfilling∥∥∥∥∥ΦD(x)− 1

4πσ0

2∑
l=0

n∑
i=1

qi · |xi|l

|x|l+1
Pl(cos(θi))

∥∥∥∥∥
∗

→ min.

Let Φ̃M (x) := 1
4πσ0

∑2
l=0

∑n
i=1

qi·|xi|l
|x|l+1 Pl(cos(θi)). With the definition of the scalar

product we acquire

Φ̃M(x) =
1

4πσ0|x|

n∑
i=1

qi

+
1

4πσ0|x|2

〈
n∑
i=1

qi · xi,
x

|x|

〉

+
1

4πσ02|x|3

〈
x

|x|
,

∑n
i=1 qi

(
3xi ⊗ xi − |xi|2 I3×3

)
2

x

|x|

〉
.
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3 The Principle of Saint Venant and the multipole expansion

If one then compares both potentials, one has to fulfill the following conditions:

0 =
1

4πσ0|x|

n∑
i=1

qi

1

4πσ0

〈
−→
M,x〉
|x|3

=
1

4πσ0|x|2

〈
n∑
i=1

qixi,
x

|x|

〉

0 =
1

4πσ02|x|3

〈
x

|x|
,

∑n
i=1 qi

(
3xi ⊗ xi − |xi|2I3×3

)
2

· x
|x|

〉
.

(3.3.7)

These conditions should hold for all x ∈ Ω, so they are transformed into equations
independent of x, namely

0 =
m∑
i=1

qi

−→
M =

m∑
i=1

qixi

03x3 =

m∑
i=1

qi
2

(
3xi ⊗ xi − |xi|2I3×3

)
(3.3.8)

We can interpret these conditions as linear equations of q1, . . . , qn and thus we get
a matrix V and vectors −→q and −→

t such that



0
−→
M1−→
M2−→
M3

0

...

0


︸ ︷︷ ︸

=:
−→
t

=



1 1 . . . 1
x11 x21 . . . xn1
x12 x22 . . . xn2
x13 x23 . . . xn3

3 · x121 − |x1|2 3 · x221 − |x2|2 . . . 3 · xn21 − |xn|2
3 · x122 − |x1|2 3 · x222 − |x2|2 . . . 3 · xn22 − |xn|2
3 · x123 − |x1|2 3 · x223 − |x2|2 . . . 3 · xn23 − |xn|2
3 · x11 · x12 3 · x21 · x22 . . . 3 · xn1 · xn2
3 · x11 · x13 3 · x21 · x23 . . . 3 · xn1 · xn3
3 · x13 · x12 3 · x23 · x22 . . . 3 · xn3 · xn2


︸ ︷︷ ︸

=:V

·



q1
q2

...

...

qn


︸ ︷︷ ︸
=:−→q

. (3.3.9)

Computing the −→q now means to minimize the functional

F (−→q ) = ‖V · −→q −−→
t ‖22 → min. (3.3.10)
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3.3 Multipole expansion to compute the strengths of the monopoles

Solving this alone might lead to problems. If there happen to be fewer monopole
locations than multipole conditions, the system would be underdetermined and
would provide rather unstable results.
We would like to have stable results in the sense of regularization theory. That
means that high spatial frequency components in the q-vector should be penalized
to obtain low energy solutions.
To ensure such results a 1 > λ > 0 and W ∈ R3n×n is chosen with

W =

diag(|x1,1|, · · · , |xn,1|)
diag(|x1,2|, · · · , |xn,2|)
diag(|x1,3|, · · · , |xn,3|)

 . (3.3.11)

This is added within a penalty term λ2‖W · −→q ‖22 which should be minimized addi-
tionally.
It ensures stability and a certain degree of smoothness for the monopoles. Monopole
locations farther away will get assigned smaller strength values.
With the added penalty term, we compute the strength of the monopoles while
minimizing the functional

Fλ(
−→q ) = ||−→t − V · −→q ||22 + λ||W · −→q ||22 (3.3.12)

for −→q .
λ can be chosen arbitrarily. It indicates how much the q1, . . . , qn will be smoothed
and is needed for good results. The bigger λ gets, the less important the multipole
conditions will become. In experiments later on it is shown that a λ in the range
of 10−4 to 10−10 is a good choice, although there are cases where a bigger λ should
be chosen.
The functional itself can be solved with a lot of different methods like the QR-
algorithm or the minimum norm estimate.

Remark 4. The Venant Approach and the Multipole Approach share the first four
conditions

0 =
m∑
i=1

qi and

−→
M =

m∑
i=1

qixi.

(3.3.13)

Remark 5. If x0 6=

0
0
0

, then for computational purposes we can use x1 −

x0, . . . , xn − x0 in the computations.
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3 The Principle of Saint Venant and the multipole expansion

3.4 Error estimation for the Multipole Approach
It remains to answer the last question from earlier:
[Accuracy]: How good is the substitution of using a monopole distribution instead
of a mathematical dipole?
For answering this question, we can give an error bound.

Theorem 4. Let assumptions 3 and 4 hold, x1, . . . , xn be the monopole locations,
and q1, . . . , qn fulfill the conditions

−→
M =

m∑
i=1

qixi

03x3 =

m∑
i=1

qi
2

(
3xi ⊗ xi − |xi|2I3×3

)
.

Then the error between the potential of the monopole distribution ΦM (x) and the
potential of the dipole ΦD(x) is

‖ΦD(x)− ΦM (x)‖∗ ≤ C
1

δ0

(
1

1− |xmax|
δ0

)

with C ∈ R and C = C(σ0, n, qmax,Ω).

Proof. The error we want to evaluate is

‖ΦD(x)− ΦM (x)‖∗,

but we actually didn’t compute ΦM , but rather Φ̃M . So we add and subtract Φ̃M
and estimate with the help of the triangle inequality:

‖ΦD(x)− ΦM (x)‖∗ = ‖ΦD(x)− Φ̃M + Φ̃M − ΦM (x)‖∗
≤ ‖ΦD(x)− Φ̃M‖∗ + ‖ΦM (x)− Φ̃M‖∗.

Thus, the error can be estimated by the sum of two others: the approximation error
and the model error.
We can not control the model error ‖ΦM (x) − Φ̃M (x)‖∗. It only depends on the
choice of the model for the brain activity.
The approximation error can be written as

‖ΦD(x)− Φ̃M‖∗ =

∥∥∥∥∥ 1

4πσ0

〈
−→
M,x〉
|x|3

− 1

4πσ0

3∑
l=1

n∑
i=1

qi|xi|l

|x|l+1
Pl(cos(θi))

∥∥∥∥∥
∗
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3.4 Error estimation for the Multipole Approach

And since the error at a point is only determined by the difference of the moments
we evaluate

‖ΦD(x)− Φ̃M (x)‖∗ =

∥∥∥∥∥ 1

4πσ0

〈
−→
M,x〉
|x|3

− 1

4πσ0

3∑
l=1

n∑
i=1

qi|xi|l

|x|l+1
Pl(cos(θi))

∥∥∥∥∥
∗

≤ C(Ω) min−→q ∈Rn
‖−→t − V · −→q ‖22 + λ2‖W · −→q ‖22.

This is an error we can minimize by the choice of the algorithm to compute the
−→q = (q1, . . . , qn). Thus, we can theoretically ensure that it is smaller then the
model error ‖ΦM (x)− Φ̃M (x)‖∗.

Because we obtain Φ̃(x) through truncation of Φ(x) after the first three summands,
we get that

‖ΦM (x)− Φ̃M (x)‖∗ =

∥∥∥∥∥∥∥∥∥
1

4πσ0︸ ︷︷ ︸
=:C(σ0)

∞∑
l=3

n∑
i=1

qi|xi|l

|x|l+1
Pl(cos θi)

∥∥∥∥∥∥∥∥∥
∗

We then make use of the fact that the inner sum is finite and that Legendre Poly-
nomials are bounded on the interval [−1, 1] by the value 1 to get

C(σ0)

∥∥∥∥∥
∞∑
l=3

n∑
i=1

qi|xi|l

|x|l+1
Pl(cos θi)

∥∥∥∥∥
∗

≤ C(σ0)

∥∥∥∥∥
∞∑
l=3

n · qmax|xmax|l

|x|l+1

∥∥∥∥∥
∗

.

Further we can combine all constants and yield

C(σ0) ·

∥∥∥∥∥
∞∑
l=3

n · qmax|xmax|l

|x|l+1

∥∥∥∥∥
∗

≤ C(σ0, n, qmax)

∥∥∥∥∥
∞∑
l=3

|xmax|l

|x|l+1

∥∥∥∥∥
∗

.

Now we exploit that x ∈ Bδ0(x0) such that
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3 The Principle of Saint Venant and the multipole expansion

C(σ0, n, qmax)

∥∥∥∥∥
∞∑
l=1

|xmax|l

|x|l+1

∥∥∥∥∥
∗

≤ C(Ω, n, qmax)

∥∥∥∥∥
∞∑
l=3

|xmax|l

δl+1
0

∥∥∥∥∥
∗

≤ C(σ0, n, qmax,Ω)
1

δ0

∞∑
l=3

|xmax|l

δl0

≤ C(σ0, n, qmax,Ω)
1

δ0

∞∑
l=1

|xmax|l

δl0

≤ C(σ0, n, qmax,Ω)
1

δ0

(
1

1− |xmax|
δ0

)
.

In an EEG forward problem setting we will have conductivity jumps which might
have an error propagation not covered by this estimate. Therefore, the computation
of this kind of error for numerical experiments does not make sense.
Nevertheless, the estimate helps us to understand the Multipole Approach more
deeply.
It shows that the size of error decreases when the difference between |xmax| and δ0
increases. By definition: |xmax|

δ0
< 1 – if the area of uniform conductivity is bigger,

this fraction is much smaller.
If we compute on uniform conductivity, this implication is especially relevant. The
estimator is maximal at the border of B|xmax|(x0) (if |xmax| ≈ δ0) and decreases
towards the border of the domain we compute on, where the sensors are located (if
|xmax|
< < δ0).

This is convenient for us, since we are interested in a minimal error at the sensor
locations.
For cases which do not include uniform conductivity but several layers, we can
achieve a big difference between |xmax| and δ0 by ensuring the grid we compute on
fulfills the following:

• Firstly, the area of the monopole distribution should be as small as possible.

• Secondly, the area of uniform conductivity should be as big as possible.

From a FEM perspective, we cannot control the area of uniform conductivity. This
is determined by the different electrically conducting layers of the head and the
location of the brain activity within those layers.
However, we can control the area of the monopole distribution by choosing the grid
resolution. Since we place the monopoles onto FE nodes, a fine grid resolution
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3.4 Error estimation for the Multipole Approach

around the dipole will ensure that all monopoles are placed in a very small area.
A coarse grid resolution widens the area where monopoles are placed and such
decreases the distance to the next conductivity jump. In this case a more refined
grid in that area seems to be a better choice.

45





4 Numerical experiments

The Multipole Approach is eventually intended to be used in live applications for
EEG source reconstruction. To show its suitability for this purpose, we need to
compare numerical results of the Multipole Approach with the results of other con-
temporary approaches.
In this chapter, we will continuously make the following assumptions:

Assumption 5. Let Ωh be a triangulation of the domain Ω, where the EEG forward
problem should be solved. Let m ∈ N be the number of FE nodes and let that also
be the number of degrees of freedom. Let nMultipole ∈ N be the number of computed
Monopoles for the Multipole Approach and let nV enant be the number of computed
monopoles for the Venant Approach.

This assumption is relatively strict, since that means that we are restricted to using
linear FE basis functions. However, the application of CG-Methods using a linear
basis is common, so this does not pose a problem.

Remark 6. The Multipole Approach and the Venant Approach are very simi-
lar. They stem from the same idea to substitute the dipole with a distribution of
monopoles. They differ in the computation of the monopoles. Superficially, the
Multipole Approach appears to be more computationally expensive since it requires
solving a system of 10 ∗ nMultipole equations plus penalty term, while the Venant
Approach only requires solving 7 ∗ nV enant equations plus penalty term. However,
for one FE step we require the solution of a secondary system containing m2 equa-
tions, which usually dwarfs the primary equation system by orders of magnitude
(nMultipole, nV enant << m) and nMultipole, nV enant ∈ [1, 20]. Therefore, the dif-
ferences in computational load between these two approaches can be neglected in
practice.
We will later see that nMultipole differs from nV enant.

We concentrate on comparing the accuracy of the Multipole Approach with the
other contemporary approaches.
Therefore, we will examine the Multipole Approach in four different settings, all
designed to test different aspects.

1. First, we test how well every approach resolves the mathematical dipole.
These computations can be done in 2D. For this purpose, we establish a
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regularly spaced 2D grid of vertices and assign a uniform conductivity. In
this setting, we know the analytical solution (meaning we can compute the
best approximation with regard to the energy norm just by interpolating the
analytic solution as well). For convenience, we prescribe Dirichlet boundary
conditions. We place a dipole, compute the forward solutions, and compare
the accuracy to the analytic solution. This procedure should give us a good
impression of how well a dipole can be approximated with the different ap-
proaches.

2. Second, we compare the forward solutions of the Multipole Approach, the
Venant Approach, and the Partial Integration Approach on 3D sphere models.
We know from De Munck and Peters [58] that the pointwise solution for this
type of model can be precisely calculated with a series expansion. Therefore,
sphere models offer the possibility to test the approaches with layers of varying
electric conductivity. Additionally, we need to prescribe the original Neumann
boundary conditions. This kind of numerical computation illustrates just how
precise the approach is in forward computations.

3. Third, we compute a so–called goal function scan on the forward solutions of
the Venant Approach and the Multipole Approach on a path of the previously
used 3D sphere models. This procedure can be understood as a brute force
inverse solution search routine. Thus, the numerical results can demonstrate
how well the approach will do in non-manual inverse computations, without
actually having to use a suitable inverse solver.

4. Fourth, we have an overview about possible pitfalls with the Multipole Ap-
proach. We shed light on how parameter choices influence the forward solu-
tion, and propose a heuristic setting for yielding agreeable results.

5. Fifth and last, we revisit the numerical experiments in 3D and the goal func-
tion scan in the context of different error measures.

The Multipole Approach, Venant Approach and Partial Integration Approach are
implemented into the C++ library UG4 [80, 68] within the plugin konnekfem. The
FE grids were generated using the software library ProMesh [67]. Additionally, we
use the matlab library fieldtrip [64] to compute the De Munck and Peters Sphere
solution [58]. More details about our usage of the UG4 plugin konnekfem, as well
as the multipole routines for fieldtrip, can be found in the appendix.
For the Multipole Approach and the Venant Approach we use monopole locations
fulfilling the so called Venant Condition exclusively [51]. This is the case if all
monopole locations are located within one sphere layer.
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In the 2D computations, we measure the accuracy with an L2 error on a certain
area within the grid. This area is contained in various triangles located at the
border of the domain.
For the 3D computations, we calculate the discrete values of the FE solution at
m different sensor positions usens. We measure the accuracy by calculating the l2
error to the reference values of a De Munck and Peters sphere solution uDM. This
error is defined by

l2(usens, uDM) := ‖usens − uDM‖2.

In other research, two different error measures are commonly used: the (discrete)
RDM (short for Relative Difference Measure) and the (discrete) MAG (short for
Magnitude Error) [52]. Those errors are equivalent to the discrete l2 error. Due
to the equivalence, we limit our primary experiments to measuring the absolute
discrete l2 error. Computations for alternative error measures can be found in last
section of this chapter.
The graphics for the analysis of the results are plotted with the python library
matplotlib [35].
We can distinguish between several types of plots. To image the differences between
the Multipole Approach and the other contemporary approaches we use violin plots
with categorical axis. Here, a linear and a logarithmic scaled axis would either
place the violins too close or too remote to each other, such that the plots could
not highlight the differences as efficiently.
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4 Numerical experiments

4.1 Experiments with uniform conductivity in 2D
The first experiments are intended to determine the resolution of the dipole ap-
proximation. For this purpose, our domain is a 2cm × 2cm 2D square grid with
uniform conductivity.
We place the dipole onto the Finite Element node in the middle of the grid and
choose a homogeneous conductivity of 1 S/m.
In this scenario, the exact solution is the fundamental solution (3.3.4)

ΦD(x) =
1

4πσ0
· 〈
−→
M,x〉
|x|3

.

We prescribe Dirichlet boundary conditions with respect to this exact solution.
The error is measured as a continuous L2-error on a small area between the chosen
source location and the boundary, which is colored green in figure 4.1. We compute
the forward solution for 32 different dipole moments on each monopole location.
In UG4 we use P1 Finite Elements. The solver is a gmg–cg with a V-cycle and ac-
curacy 10−12. The monopole’s strength is computed within ug4 with the LAPACK
QR-algorithm [6].

Figure 4.1: The grid used for 2D forward computations with uniform conductivity.
The small dipole in the center of the grid shows the dipole location. The
red lines show the border of the domain where the Dirichlet Boundary
Condition is prescribed. We measure the L2 error within the green
triangles.

We compute the Finite Element solution on the grid, compute the L2-Error, refine
the grid, and repeat the process five times.
The Multipole and the Venant Approach are both computed with a penalty term
weight of λ = 1e− 8.
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4.1 Experiments with uniform conductivity in 2D

First, we compare the convergence rates of the mean error. The results are pictured
in figure 4.2. As reference, we plot the FE interpolation of the analytical solution
(3.3.4). This is the best FE representation available on the grid for linear FE.
The Partial Integration and the Venant Approach are able to gain linear conver-
gence, whereas the Multipole Approach features a quadratic convergence rate here,
the best possible rate for linear FE. Thus, the Multipole Approach is, on average,
more accurate than the Venant or the Partial Integration Approach.

102 103 104

number of dofs

10 5

10 4

10 3

L_
2 

er
ro

r i
n 

th
e 

er
ro

r a
re

a 
at

 th
e 

bo
rd

er

Comparison of the different approaches in 2d
multipole
venant
interpolation
pi

Figure 4.2: Comparison between the Partial Integration, the Venant and the Multi-
pole Approach and interpolation of the analytical solution. We compute
32 forward solutions for sources at one position with 32 different mo-
ments and compare the mean L2-error on the area of interest. The
Partial Integration, the Venant Approaches are able to gain linear con-
vergence rates. The Multipole Approach is able to gain quadratic con-
vergence and therefore yields a similar result as the interpolation.

In 4.3 we plot the L2-Errors for each of the 32 moments in a violin plot to yield
additional information. We see the Partial Integration Approach in green, the
Venant Approach in red, the Multipole approach in blue and the interpolation
in black violin plots. The mean values (displayed as a horizontal black line) are
the same in the violin plot and in the other plot. However, the violin plots look
differently.
The Partial Integration Approach’s error distribution is identical in every refinement
step. In most cases, the FE forward solution tends to spread across the upper part
of the violin plot. The lower section is slightly longer.
For the Venant Approach, most forward solutions converge linearly, as can be seen
by the bigger bulk around the mean error. However, there are some moments for
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which the forward solutions reach the same accuracy as with theMultipole Approach
and yield almost a quadratic convergence rate. Thus, the error spectrum grows with
every step and gets much wider.
The forward solutions for the Multipole Approach show a narrow error spectrum.
Notably, the error variance becomes wider with a finer grid. We can observe the
same behavior as with the Venant Approach: there are some forward solutions which
have a slightly better convergence rate and thus the spectrum widens. However,
the differences between outliers and the mean are smaller and only become more
prominent on finer grids.
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Figure 4.3: Comparison between the Partial Integration, the Venant and the Multi-
pole Approach and interpolation of the analytical solution. We compute
32 forward solutions for sources at one position with 32 different mo-
ments and plot the violin plots for the L2-error on the error area.

These results imply that theMultipole Approach is the best method for resolving the
mathematical dipole and, thus, could be the most suitable approach for computing
the Forward Solution with the help of FE.

4.1.1 The sensitivity of the approaches with regard to the location of
the dipole

During the previous section’s computations, the dipole was placed directly onto an
FE node in the middle of the grid. This type of placement is ideal for the Venant
Approach [44]. We want to know if this configuration is ideal for the Multipole
Approach as well.
Therefore, we repeat the computations from the previous section, but with one
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Figure 4.4: Comparison between the Partial Integration, the Venant, the Multipole
Approach and interpolation of the analytical solution. We compute 32
forward solutions for sources at one position and 32 different moment
and compare the mean L2-error on the area of interest. The dipole is
not placed on a FE node, but changes the distance to the next FE node
during refinement. Therefore, the Partial Integration and the Venant
Approach produce irregularities. The Multipole Approach has still a
better convergence rate and converges similar to the interpolation.

difference: instead of placing the dipole onto an FE node, we position it at a
distance of 0.086 cm from the next FE node. In our grid, the distance between
nodes is in the region of 0.25 – 0.41 cm, so this chosen location is not close to the
center of a triangle.
From the result plots of the means in figure 4.4 it becomes obvious that none of the
three approaches remains unaffected from the change of the dipole location. The
Venant Approach shows an oscillating convergence behavior and is in some resolu-
tions on average less accurate than the Partial Integration Approach. The Partial
Integration Approach also shows some very small irregularities. Those irregularities
show the opposing behavior to the Venant approach. When the accuracy of the
Venant approach increases, the accuracy of the Partial Integration Approach de-
creases and vice versa. This might be due to the optimal placements for either the
Venant Approach (dipole location on FE node) or the Partial Integration Approach
(dipole location in the middle of a cell)..
In comparison, the Multipole Approach does not produce any irregularities. It loses
the convergence rate in the first three steps. However, for a finer grid, the Multipole
Approach again shows quadratic convergence rates but with a lesser accuracy than
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Figure 4.5: Comparison between the Partial Integration, the Venant and the Multi-
pole Approach as well as the interpolation of the analytical solution for
an non-node dipole location in a violin plot for 32 moments.

before.
The violin plots reveal another difference to figure 4.3: The error spectrum is wider
for nearly all three approaches in figure 4.5, especially for the Partial Integration
and the Venant Approach. Most of the outliers show a higher accuracy level –
especially on coarser grids. In this specific aspect, the Partial Integration and the
Venant Approach are able to provide a similar accuracy as the Multipole Approach.
The violin plots produced by the Multipole Approach are very similar for every step
and there are no outliers. The Multipole Approach still provides the best accuracy
for all different dipole moments.
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4.2 Experiments with four–layer sphere models

4.2 Experiments with four–layer sphere models
If the Multipole Approach is to be used for estimating brain activity, it needs to be
tested with an inhomogeneous 3D model.

Figure 4.6: Slices of the four-layer 3D sphere models with 8382, 20398, 58488, and
421124 FE nodes.

For this purpose, we construct suitable 3D models and compare the Multipole Ap-
proach with other contemporary approaches.
Ideally, we would choose a realistic head model and compare the results to a ref-
erence solution. However, there are no head models which have a known reference
solution.
Thus, we choose a very simplified 3D model: a series of concentrically nested
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spheres.
On those models the solution can be computed point wise with a series in expansion
developed by De Munck and Peters [58].
We use four spherical layers to represent four different compartments of the human
head. We choose several points on the outer surface as electrical sensors to represent
EEG electrode locations.
In detail, the model has an outer radius of 2.0 units. There are conductivity jumps
at 1.5, 1.6 and 1.8 units. The four layers have an electric conductivity of 0.33 S/m,
1.79 S/m, 0.0042 S/m, and 0.33 S/m respectively, representing an experimental
brain, CSF, bone and skin succession. We construct six variants of this model with
different mesh resolutions. They consist of 6642, 8382, 20398, 58488 and 421124
nodes, respectively. In all but the highest resolution models, the distance between
two finite element nodes is at least 0.2 units due to the coarseness of the mesh.
From each mesh to the next finer one, we ensure that the finer one shares the FE
nodes of the coarser one, see figure 4.6.
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Figure 4.7: Venant, multipole and PI for four different models. The dipole was
placed at (−0.6, 0.0, 0.0).

On the meshes we apply P1 Finite Elements in UG4. The solver is a gmg–cg with a
V-cycle and accuracy 10−12. The strength of the monopoles was computed within
UG4 with the LAPACK QR-algorithm [6]. For the Multipole Approach and the
Venant Approach we made sure that the so-called Venant Condition [51, 83, 82, 81]
is fulfilled. Specifically, it states that all monopoles used to model the dipole are
constrained to one layer of the sphere model.
We place 162 regularly distributed sensor locations onto Finite Element nodes on
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4.2 Experiments with four–layer sphere models

the head surface. We compare the results of the Multipole Approach, the Venant
Approach and the Partial Integration Approach at these nodes to the point wise
solution postulated by De Munck and Peters.
The dipole is placed within the brain compartment. There are three variations
of this location: rather close to the middle (−0.6, 0.0, 0.0), a little more outside
(−1.0, 0.0, 0.0) and in the vicinity to the border at (−1.2, 0.0, 0.0) (with the sphere
center at (0.0, 0.0, 0.0)). The third dipole location is deliberately chosen such that
in the lower-resolution models, the dipole is located next to a node that borders
two distinct conductivity layers. We then compute 47 forward solutions for different
moments.
Conventionally, this third dipole position would not be considered eccentric, which
is usually around the distance of 2mm. However, for the Multipole Approach the
number of FE nodes between the dipole and the conductivity jump, rather than
the spatial distance, determines the accuracy of the forward solution. Therefore,
the last position can be considered as eccentric.
The results are presented in figure 4.7 to figure 4.9. Specifically, the L2 error is
displayed for all 162 sensor locations and 47 monopole moments with one violin
plot. There are five groups of violin plots, one for each grid resolution. Each plot
group consists of three items: the results from the Partial Integration, the Venant
and the Multipole Approach.
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Figure 4.8: Venant, Multipole and PI for four different models. The dipole was
placed at (−1.0, 0.0, 0.0).

The first dipole location (see figure 4.7) is near the middle of the sphere. In this
configuration, the average L2 error for the Multipole Approach (displayed as a hori-
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zontal gray line) is below the average error of the Venant Approach and the Partial
Integration Approach. Moreover, all types of multipole-based forward computations
show superior results. The error level of the Partial Integration is much higher
than that of the Multipole Approach, and significantly above the average error of
the Venant.
The second dipole is placed 0.4 units further laterally. Again, the error of the Partial
Integration Approach is consistently much higher than the one of the competing
approaches, the Venant and the Multipole Approach. The accuracy spectra of the
Multipole and Venant Approach (see Figure 4.8) overlap partly. However, a brief
statistical analysis shows that the results from the Venant and Multipole Approach
differ significantly (pairwise two–sided t–test: t > 8.0, p < 0.0001).
The third dipole is located near the conductivity jump (at X–position -1.5) of the
innermost compartment. Again the Partial Integration level of error is consistently
higher than the one of the Multipole Approach and overlaps slightly with the level of
the Venant Approach. The error level from the Venant Approach fails to improve on
models with a higher resolution. In contrast, the Multipole Approach does improve
with an increasing grid resolution. The level of accuracy of the Venant Approach
and the Multipole Approach in the grid with 20398 nodes overlap with each other,
but the difference is again significant (t > 5.0, p < 0.0001).
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Figure 4.9: Venant, multipole and PI for five different resolutions. The dipole was
placed at (−1.2, 0.0, 0.0).

These results indicate that the Multipole Approach consistently yields a higher
accuracy when computing forward solutions.
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4.3 A goal function scan - a manual inverse algorithm

To find out if our forward solution algorithm is suitable for use in inverse compu-
tations, we employ a goal function scan.

Figure 4.10: Four–layer sphere model with 58488 elements. Jumps are at 1.5, 1.6
and 1.8 and outer radius is 2.0. The patch is displayed in grey in the
middle compartment. Its corners are located at (−0.15, 0.0,−0.75),
(0.15, 0.0,−0.75), (−0.15, 0.0,−1.35), and (0.15, 0.0, 1.35).

A goal function scan can be understood as a brute force variation of an inverse
algorithm, and was proposed by T. Knösche [38].
Numerous dipoles are placed within the head model where brain activity is possible.
For each of these dipole locations, forward solutions are computed for moments
along the Cartesian directions. Then, we compare the linear combination of the
forward solutions with the presented activity at the sensor locations and compare
the accuracy with regard to the distance from the reference location.
For our goal function scan, we choose the regular four–layer 3D sphere model and
place a 2D patch with corner coordinates (−0.15, 0.0,−0.75), (0.15, 0.0,−0.75),
(−0.15, 0.0,−1.35), and (0.15, 0.0, 1.35) inside. We ensure that the cells around this
patch are regularly shaped (specifically that they have a similar diameter). This
property is optimal on the grid with 58488 nodes, so we continue with this variant.
For comparison: during the 3D forward computations, the Venant Approach and
the Multipole Approach yield a similar accuracy spectrum on this grid.
Then we place 264 dipole locations regularly into the 2D patch and compute the
FE solution at the sensor locations. This process is repeated three times, using
each of the three Cartesian destinations as moments for the dipole respectively.
We compute several reference dipole solutions within the patch by using the De
Munck solution of fieldtrip. Those 21 reference solutions are aligned in the middle
of the patch and reach from the inside of the ”brain” compartment (X-coordinate:
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Figure 4.11: l2 errors for 264 estimated dipole locations to one reference dipole
location. The reference dipole was placed at (−0.93, 0.0, 0.0). The
dipole moment is (0.07..., 0.07..., 0.995...). Above: Multipole, below:
Venant.

−0.75) to the next conductivity jump at the skull layer (X-coordinate: −1.3).

For every dipole location we minimize the l2 error between the reference dipole
solution and any linear combinations of the three computed FE solutions.

Let uref be a reference solution at the sensor positions. So for any location xi,
we compute the forward solutions ϕxi,1, ϕxi,2 and ϕxi,3 for the moments in the
three Cartesian directions (1.0, 0.0, 0.0), (0.0, 1.0, 0.0) and (0.0, 0.0, 1.0) at the sensor
positions. Minimizing the l2 error against the reference solution uref then means to
minimize the functional
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Figure 4.12: like 4.11 but with reference dipole X-coordinate at −1.08. Multipole
is above, Venant is below.

∥∥∥∥∥∥uref − (ϕxi,1, ϕxi,2, ϕxi,3) ·

αβ
γ

∥∥∥∥∥∥
2

(4.3.1)

for

αβ
γ

 ∈ R3. We can do so using a standard orthogonal decomposition. Alter-

natively, we could use normal equations. However, for these, the condition of the
matrix plays an important role for the stability. Thus, orthogonal decomposition
is preferable in this case [21].
The results of three representative dipole locations are displayed in figures 4.11,
4.12, 4.13.
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The images on the left display localization accuracy with respect to the distance
between the estimated and the reference dipole locations. The error range of the
Venant Approach is similar to the error range of the Multipole Approach. For
both approaches, the accuracy increases when the distance to the reference dipole
decreases. However, the results from those two approaches are rather different in
detail.
The Venant Approach shows a convergence rate with distinguishable steps. The
accuracy for locations of similar distance vary noticeably, and a considerable number
of local minima and maxima is produced.
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Figure 4.13: l2 errors between those 264 dipole locations and the real dipole. The
reference dipole was placed at (−1.26, 0.0, 0.0) and has dipole moment
(0.06955..., 0.0716161..., 0.9950041...). Multipole is above, Venant is
below.

In comparison, theMultipole Approach converges much more smoothly. The accura-
cies for locations of similar distance show clustering along one or more converging
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4.3 A goal function scan - a manual inverse algorithm

smooth patterns. Those patterns are similar, especially in figure 4.12. This ap-
proach therefore produces local minima and maxima in this kind of plot, but with
a smaller amplitude than the artifacts created by the Venant Approach.
Inverse algorithms do not deal well with local minima. However, this kind of plot
cannot give an accurate understanding about local minima since it compresses
a small 2D structure in a 3D model into a 1D representation. To get a better
impression about local minima and maxima, we also created an error map. This
chart is shown on the right side of the figures 4.11, 4.12, and 4.13.
Those images display the 2D patch as a color-coded map. Visually, there are 264
distinguishable rectangles in this patch. We place one of the 264 dipoles in the
middle of each rectangle. Then, we color each rectangle according to the accuracy
of this dipole in comparison to the reference dipole.
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Figure 4.14: We pick the errors along one straight line through the patch 4.13. The
line is indicated in the left image on the already shown error map.
In the right image you can see the accuracy of the Venant (red) and
Multipole solutions (blue). The coordinate with minimal distance to
the original dipole is at y = 0.0. The multipole solutions have no
local extrema and are minimal around the wanted y-coordinate. The
Venant solutions show a lot of local extrema.

On this map, we can see the behavior of the two approaches in detail. The error
magnitude decreases from the outside of the model to the reference dipole location
(which is indicated by a small black triangle).
The Venant Approach shows distinct steps. The steps are clustered around FE
nodes, hinting at the cause for the popular recommendation to use the Venant
Approach only with grid nodes as possible dipole locations. These steps pose the
biggest practical problem with the Venant Approach. If we imagine a straigt line
through the patch and plot the error magnitude along the way, the resulting plot
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would show local minima and maxima, for example as in figure 4.14. For this
reason, this approach should only be used in inverse computations when dipole
locations are placed onto FE nodes. However, doing this effectively would require
a rather fine grid resolution.
In comparison, the Multipole Approach does not show those distinct steps. The
error map is very smooth, which – with the same line as before – does not result in
locally minimal or maximal error amplitudes. The aforementioned artifacts in the
distance vs. accuracy plots are caused by different convergence rates from different
directions. To understand this behavior, consider that in the error maps, the areas
of identical accuracy levels are oval rather than circular.
Due to the smooth result pattern, the Multipole Approach is highly suitable for
use in inverse computations, independently of dipole placement. The Multipole
Approach could reach even higher accuracy on coarser grids, resulting in a lower
computational time. This is a highly desirable property for solving the inverse EEG
forward problem.
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4.4 Pitfalls for Multipole computation

The results presented in the last chapters are consequences of an optimization
process. There are several parameters to choose in the Multipole Approach, which
have been deliberately obscured until now. But in order to yield results with the
best possible accuracy, we need to discuss the path to optimize these parameters.
At first, we ensure the fulfillment of the Venant condition [51] for the Multipole
Approach, which – as described in the last chapter – entails placing all monopoles
into the same conductivity layer.
There are two additional parameters to configure:

1. The number of monopoles to represent the dipole. The Venant Approach
implemented in the original SimBio framework [32] and the SimBio-fieldtrip
framework [64] determines this number as follows:

a) first, it finds the FE node closest to the original dipole location,

b) second, this node and all directly connected neighbor nodes (via an edge
or a face) are designated as monopole locations.

This strategy might lead to problems. With fewer monopoles, there is a chance
that the monopole locations are not uniformly distributed around the dipole
location. In this case, the dipole potential can’t be represented accurately in
all directions. Therefore, it makes sense to examine which general numbers
of monopole location will yield good results.

To examine this effect, we modified our algorithm. First, we set a desired
number of monopoles. Second, like in SimBio, we select the FE node that is
closest to the dipole location. Third, we select all connected FE neighbors
to that first node. Fourth (the modification), if the total number of selected
monopoles does not reach our desired number, we add any unselected FE
nodes that are closest to the original dipole location and within the desired
layer.

2. The λ ∈ R, which weighs the penalty term. If λ is too big, the solver for
minimizing the functional (3.3.12) favors the penalty term over the multipole
conditions. Therefore, the dipole will not be resolved as well as it would be
with a smaller λ. Additionally, for a big λ, the multipole conditions might not
be fulfilled at all. This edge case is especially unfavorable if the compatibility
condition of Neumann problems (in this case, 0 =

∑m
i=1 qi) is not fulfilled. The

compatibility condition is part of the multipole conditions. If this condition
is not fulfilled, the Finite Element solver is unable to compute a solution. A
λ which is too small, on the other hand, might lead to instabilities.
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Next, we discuss the parameter settings in the context of the numerical experiments.
First, we will see how the choice of the number of monopoles and λ will affect the
outcome in the 2d uniform conductivity setting. Second, we repeat those computa-
tions for the 4layer 3D setting. Finally, we will bring these results into the context
of the goal function scan.

4.4.1 The penalty weight and the number of neighbors in 2D
experiments

In our first test, we vary the number of monopole locations in the 2D setting.
The Simbio module yields a number of 7 monopoles. As visible in figure 4.15 there
is only one monopole available to represent the dipole potential towards the upper
right and the lower left direction. This will lead to problems, because one node
cannot portray a dipole for opposite directions. This setup could be improved if
the FE nodes in the upper right and the lower left corner could be employed as well
to portray the dipole.

Figure 4.15: The grid used for 2D forward computations with uniform conductivity,
explained in figure 4.1. The Simbio monopole computation algorithm
will only compute the FE nodes within the light grey area. Those are
the FE nodes connected with the node of least distance to the dipole
location (which is the middle in our case). We fixed the algorithm in
such a way that in the next step, the lower left node in the darker gray
area will be also chosen as a monopole location (for 8 nodes) and the
upper right node in the other darker grey area next (for 9 nodes).

With our modification of the algorithm computing the monopole, the next two
chosen locations are exactly these nodes, since they are closer to the dipole location
than any other (not previously selected) node.
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In this context we compare the forward solutions of 7, 8, 9, and 10 used monopole
locations to represent the dipole.
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Figure 4.16: Comparison between 7, 8, 9, and 10 FE nodes used as monopole lo-
cations for the Multipole Approach and interpolation of the analytical
solution. We compute the forward solutions for one dipole location
and 32 directions and plot the mean L2-errors on the error area in a
convergence plot.

When we compare the mean L2 errors, we see that all convergence rates are similar.
The number of monopoles mainly affects the convergence offset. The optimum for
our grid is a number of 9 monopole locations.
There is an intuitive explanation for this result. If we choose too few locations, there
might be areas without a monopole between the dipole location and the border of
the domain. Therefore, in this area the electric field will be more distorted. If we
choose too many locations, the distance between the chosen monopole location and
the location where the error is computed is too close. Therefore, the electric field
will be more distorted in this case as well.
Consequently, there is a number of monopole locations leading to optimal results.
In our 2D case with a relatively regular grid, the number is 9.
We repeated this optimum search with different values for λ as weights for the
penalty term.
Values for λ in the range of 1e− 4 to 1e− 16 1 yield similar results. The values of
λ = 0.01 and λ = 0.1 did not produce good results.

1We here use the common scientific notation with 1e− 3 = 0.001, 1e− 4 = 0.0001 to be able to
distinguish between those of multiples of 10.
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Figure 4.17: Comparison between the Multipole Approach for different penalty
weights and interpolation of the real solution in a violin plot for 32
moments

λ = 1e−3 is notable because it yields results similar to values of λ ∈ [1e−4, 1e−16]
but stops converging early. This happens when the distance between the monopole
locations and the dipole are in the same order of magnitude as lambda.
This observation implies that there is a simple heuristic for choosing an optimal λ
for 2D computation: any value of λ ∈ [1e − 4, 1e − 16], together with 9 monopole
locations should be optimal.
Our next step is to examine if there is a similar simple heuristic for the 3D case as
well.

4.4.2 Forward experiments in 3D with the penalty term and the
number of neighbours

First, we repeat the experiments of Section 4.2 while using a wide array of different
λ.
We specifically vary λ in the powers of 10 between 1e+ 2 and 1e− 16 and also 0.
With λ values above 0.1, the forward computations are unstable and fail to be
completed. Even for the choice of 0.01 and 0.001, some dipole configurations lead
to failing computations.
The reason for this instability lies with the solver of problem (3.3.12). A big λ
causes the optimization to be biased more towards the penalty term than towards
the multipole conditions. Since the necessary condition 0 =

∑m
i=1 qi is part of the

multipole conditions, neglecting them causes the solution to fail.
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Figure 4.18: Comparison between the Multipole Approach on a four–layer grid with
58488 elements. In the left image are the errors for a case where there
are not enough neighbors to the dipole location. This is the case at
(−0.7, 0.0, 0.0). Here, the choice of λ = 0.001 is the best. In the right
image are the errors for a case where there are enough neighbors to the
dipole location. This is the case at (−1.0, 0.0, 0.0). Here any choice for
λ ∈ [1e− 3, 1e− 16] seems to be good.

The value of λ = 0 also yields unstable results.
We do not plot the unstable configurations (λ bigger then 0.1 and equal to 0), we
focus on the influence from λ values for stable λ and from the number of monopole
locations.
We can distinguish two general cases:

1. the Simbio–neighbor computation yields a sufficient number of monopole lo-
cations.

2. the Simbio–neighbor computation yields an insufficient number of monopole
locations.

In the first case, a λ ∈ [1e− 3, 1e− 10] provides good results with similar accuracy
to each other (at least if there is a successful solution for 1e−3). Even if the dipole
location moves to the conductivity jump, a λ ∈ [1e− 3, 1e− 10] yields a favorable
accuracy.
The second case is more interesting. Here, if we choose a λ = 0.001 we obtain
a slightly better accuracy than in the case of a λ ∈ (1e − 3, 1e − 10). If we add
additional monopole locations, the accuracy levels are overall higher.
Next, we examine the optimum of monopole locations, and show possible pitfalls
for using the Multipole approach in an inverse setting.

69



4 Numerical experiments

4.4.3 Goal function scan
The two parameters, λ and the number of monopoles, will also affect inverse so-
lutions. To examine this effect, we compute the goal function scan with a set of
different parameters.
We choose λ = 1e− 8 for a start.
In the first scenario, we use the Simbio search algorithm for computing monopole
locations. For most dipole locations, this algorithm yields a sufficient number of
neighboring grid nodes. In the remaining cases, optimizing the forward solutions
yields outliers (see figure 4.19). In our model, there are four critical FE nodes:
three within the brain compartment, and one directly at the border. For the last
case, the Venant Condition also contributes to the distortion.
Thus, an inverse algorithm solver cannot work properly to compute the location of
global minimal accuracy. It will be disturbed be all the local minima around the
outliers. In order to make the Multipole Approach fit for use in inverse computation,
this issue needs to be remedied.
The second setting involves a mitigation strategy. If the Simbio algorithm selects
an insufficient number of monopole locations, we increase the weight of the penalty
term λ to 0.001. This value of λ was established to be optimal for this condition
during the previous experiments. This strategy ends up ameliorating the problem,
but cannot completely solve it (see figure 4.20). The outliers decrease in magni-
tude but are still visible. The discontinuities and local minima continue to pose a
hindrance to inverse algorithms.
For the third scenario, we modified the Simbio–based algorithm of neighbor selec-
tion. If the selected number of monopole locations was lower than predetermined,
we added the closest nodes until the number was reached. The results for 8, 13 and
16 monopole locations are pictured in 4.21.
Refining this successful scenario, we focus on the seemingly optimal number of
11 − 13 monopole locations. Results from goal function scans for three different
dipole locations are pictured in 4.22.
These results show a continuous error surface with no apparent outliers even in
critical dipole locations. Especially the dipole location affected by the Venant
Condition produces favorable results as well.
In light of these results, we suggest to always employ our modified monopole location
algorithm, and to fill up to a number of 11 − 13 neighbor nodes when computing
the Multipole Approach.
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Figure 4.19: l2 errors between those 264 dipole locations and the reference dipole.
From top to bottom we use the same configurations as figures 4.11,
4.12, 4.13.
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Figure 4.20: l2 errors between those 264 dipole locations and the reference dipole.
From top to bottom we use the same configurations as figures 4.11,
4.12, 4.13. Multipole with λ = 0.001 at those locations, where fewer
than 13 monopole locations were computed.
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Figure 4.21: l2 errors between those dipole locations and the reference dipole. We
computed such, that we had at least 8 monopole locations in the upper
computations, at least 10 in the middle one and 13 in the last one. We
used the same dipole setting as in figure 4.11.
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Figure 4.22: l2 errors between those dipole locations and the reference dipole. From
top to bottom we use the same configurations as figures 4.11, 4.12 and
4.13. For the Multipole we add more locations (of minimal distance),
if fewer than 13 locations are computed in the first case.
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4.5 Results of numerical computations with the classical
errors

In established studies for EEG forward computations, the RDM and the MAG
error measures are used to judge the accuracies of approaches to solve the EEG
forward problem. Specifically, those measures deal with different characteristics of
the accuracy [52].
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Figure 4.23: Venant, multipole and PI for five different models. The dipole was
placed at (−0.6, 0.0, 0.0).

Let usens describe the discrete values of the FE solution at a certain number of
m sensor positions and uDM the discrete values of a De Munck and Peters sphere
solution. We then compare those in terms of the RDM and MAG.
RDM is an abbreviation for relative difference measure and the error is defined by

RDM(usens, uDM) :=

∥∥∥∥ usens
‖usens‖2

− uDM
‖uDM‖2

∥∥∥∥
2

.

It is a measure for the topographic error and bounded from above by 2.
MAG is an abbreviation for magnitude error. It is defined by

MAG(usens, uDM) :=

∥∥∥∥usens
uDM

∥∥∥∥
2

.

In contrast to the RDM and the l2 error, it has 1 as the optimal value.
We have already computed forward solutions for the Venant Approach, theMultipole
Approach and the Partial Integration Approach on several sphere models in chapter
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Figure 4.24: Venant, multipole and PI for 4 different models. The dipole was placed
at (−1.0, 0.0, 0.0).

4.2. In this context, we can revisit the results at the sensor positions. But instead
of computing the l2 error, this time we compute the RDM and the MAG error.
Whereas the RDM error displays analogous behavior as the l2 error presented in
chapter 4.2, the MAG error shows a different distribution.
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Figure 4.25: Venant, multipole and PI for 4 different models. The dipole was placed
at (−1.2, 0.0, 0.0).

The MAG error of all three approaches converges to 1 the finer the grid gets.
Notably, the Multipole Approach shows the smallest error variance, and the fastest
convergence with increasing grid resolution. This behavior is independent of the
location of the dipole. Even if there are not many FE nodes between the dipole
location and the next conductivity jump, the MAG error converges to 1.
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Figure 4.26: MAG errors between those 264 dipole locations and the real dipole.
We used from top to bottom the same dipolar settings as in 4.11, 4.12
and 4.13.
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4 Numerical experiments

We also can compute the RDM and MAG errors for the goal function scan. Here,
we can compute the minimum linear combination we get out of minimizing the
functional (4.3.1) and afterwards use this forward solution to compute the RDM
and the MAG error.
We compute the MAG error for the Multipole Approach. Here, we can clearly see
that error development of the accuracy is not circular but rather elliptic, which
explains the two different converging lines in the middle plot and some bulkier
looking parts of 4.26.
We compare the RDM measures for the forward solutions of the Venant Approach
and the Multipole Approach.
We plot the results of the RDM error in relation to the distance between the refer-
ence solution on the left side and the minimizing forward solution or an error map
of the RDM error on the right side. Figures 4.27 show the the Multipole Approach
and 4.29 the Venant Approach.
The images of the Venant Approach show a heavily scattered behavior. We can see
distinct steps in the error map. However, the behavior in the distance-to-accuracy
plot on the left shows a much wilder and unstructured picture. Here, a search for a
global minimal value will definitively be hindered by the existence of local minima.
Thus, we cannot employ the Venant Approach as is for inverse calculations.
We have to point out again that we used the Venant Approach contrary to its
normal usage: we did not place the dipole location onto a FE node.
On the other hand we have a very smooth behavior for the Multipole Approach.
Here, we can observe again the elliptic accuracies around the original dipole location
in the error maps, which lead to the bulkier parts in the distance-to-accuracy plot
on the left. However, an inverse solver will not be disturbed by this, since there
are no local minima along any line through the patch, where the solver will look
for a global minimum. Therefore, the Multipole Approach can be used for inverse
computations with the modifications of the last chapters.
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4.5 Results of numerical computations with the classical errors
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Figure 4.27: RDM errors between those 264 dipole locations and the real dipole for
the Multipole Approach. We used the same dipole settings as in 4.11,
4.12 and 4.13.
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4 Numerical experiments
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Figure 4.28: MAG errors between those 264 dipole locations and the real dipole for
the Venant Approach. We used the same dipole settings as in 4.11,
4.12, and 4.13.
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4.5 Results of numerical computations with the classical errors
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Figure 4.29: RDM errors between those 264 dipole locations and the real dipole for
the Venant Approach. We used the same dipole settings as in 4.11,
4.12, and 4.13.
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5 Summary

The aim of this dissertation was to expand the Venant Approach both theoret-
ically and practically to use it for EEG/MEG forward computations. The ap-
proach substitutes the dipolar right–hand side with a distribution of monopoles.
The monopoles are placed on the FE grid nodes adjacent to the dipole location.
Monopole strengths are computed by solving a system of seven linear equations
with added penalty conditions [18].
It is established that the Venant Approach is – so far – one of the best method for
forward computations [44, 53]. Its use in inverse computations is successful as long
as the source is located on FE nodes. If not, some forward solution artifacts impede
the optimization process for dipole localization.
In this dissertation we proved the existence and uniqueness of a solution for such a
substitution with the help of established theory about partial differential equations.
The solution exists, if the monopole strengths equals zero, i.e. 0 =

∑m
i=1 qi and

the conductivity fulfills σ ∈ C2(Bi) for Bi := Bri(xi) such that Bri ∩ Brj = ∅
for i 6= j. These conditions also apply to the Partial Integration Approach [79].
However, in contrast to the Partial Integration Approach, any approach based on
the substitution of a dipole with a distribution of monopoles does have a solution
within the function spaces Lq(Ω) for 1 ≤ q ≤ 2, including L2(Ω).
The motivation of the Venant Approach was described rather sparsely in the original
paper [18]. We decided to derive this approach from the ground up. We used a
Multipole Expansion to ensure that the potential of the electrical dipole and the
potential of the monopole expansion are as similar as possible. This path led to our
proposed method, the Multipole Approach. With this approach, the monopoles are
placed upon the neighboring FE nodes, like with the Venant Approach. However, we
now have ten conditions in contrast to the formerly seven to compute the monopole
strengths, requiring us to solve a system of ten linear equations. Additionally, we
also added penalty conditions.
This approach shares the first four conditions with the Venant Approach, but differs
considerably in the remaining conditions.
For theoretical purposes, we derived an error estimator based on the difference of
the computed potentials to an analytical solution.
We applied the new Multipole Approach in several numerical experiments. After
some parameter optimization, this algorithm yielded favorable results for three
different types of computations.
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5 Summary

There are two parameters to optimize for the Multipole Approach: the weight of
the penalty term λ, which is shared with the Venant Approach, and additionally,
the number of locations for the placements of monopoles.
The first experiment involved computing the forward solutions on a 2D grid with
uniform electric conductivity. On this grid we used the Partial Integration Ap-
proach, the Venant Approach and the Multipole Approach to compute electric field
potentials. These potentials were compared to the interpolated analytical solution.
We set up two different dipole locations, each with 47 different dipole moments. The
results show a quadratic convergence rate for the Multipole Approach, whereas the
Partial Integration Approach and the Venant Approach display linear convergence
rates. Furthermore, the Multipole Approach seems to be less prone to artifacts than
its competitors if the dipole is not located on a FE node.
The second experiment involved computing the forward solutions on 3D sphere
models with four different conductivity layers. On these grids, we used the Partial
Integration Approach, the Venant Approach and the Multipole Approach to compute
electric field potentials. These potentials were compared to the De Munck sphere
solution potential computed with fieldtrip [64]. We set up five different dipole loca-
tions, each with 47 different dipole moments. The results show that the Multipole
Approach yielded a consistently higher level of accuracy than the Partial Integration
Approach or the Venant Approach.
The third and final experiment involved computing goal function scans on the same
model as before. We placed a 2D patch with 264 different dipole locations inside
the model. We used the Venant Approach and Multipole Approach to compute the
forward solution for each dipole with moments pointing along the three Cartesian
directions. Then we computed the error to the De Munck sphere solution at each
location with 20 reference dipoles. The results show that the Multipole Approach
yielded a very smooth error surface, especially in comparison to the rough and
artifact-ridden result from the Venant Approach. These experiments indicate that
the Multipole Approach is highly suitable for use in inverse computations.
The computations so far have been rather sterile. Even a four-layer sphere model is
only a rough model for a real human head. Therefore, the results of our numerical
experiments can only be hints at the possible superiority of the Multipole Approach
in a clinical setting.
Nonetheless, the Multipole Approach promises to be an interesting new option for
source modeling in FEM based source analysis.
If the Multipole Approach fulfills its promises, it offers the possibility to improve
localization of EEG measurements. It could directly be used on studies that were
abandoned due to imprecise localization. It could also enable the examination of
subtle activation patterns that were previously tainted by localization artifacts.
With future implementations, our approach may also be used in more general set-
tings that deal with localized electrical fields, such as material science or applied
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chemistry.
Also, if a different source model is studied; for example if people want to study
a quadrupole or a different load source [69]; the Multipole Approach can be easily
adapted with a multipole expansion of the electric potential of the load source.
The Multipole Approach could make brain research a little easier and ultimately
could help to understand and cure brain disorders.
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6 Appendix A: programming the
algorithm

The core function to compute the EEG forward problem with the Multipole Ap-
proach is a computation of the monopole locations and their strengths. The specific
implementation for the location calculation depends on the software framework.
However, if those locations are known, the algorithm for the strength calculation is
always identical and can be roughly described as such:

1. compute the location of the 11–13 nearest FE nodes to the dipole location

2. for these monopole locations compute the Matrix (V,W )T , where V is the
matrix of 3.3.9 and W the matrix of 3.3.11

3. compute the right hand side (
−→
t , 0)T with −→

t described in 3.3.9

4. compute the solution −→q of the least square problem∥∥∥∥(VW
)
−→q −

(
t
0

)∥∥∥∥
2

5. use the computed solution −→q like

(Jh)j =

{
qj , if xj ∈ {x1, . . . , xm}
0, else

as discretization.

This leads to the algorithm described in pseudocode as follows:
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6 Appendix A: programming the algorithm

Algorithm 1 Multipole
Given Moment

−→
M and location x0 of dipole, The Finite Element Grid (N,E, T,C).

1: procedure Multipole
2: Compute at least 13 nearest neighbours x1, . . . , x13 of x0 in N
3: with X compute matrix V of equation 3.3.9
4: with X and λ = 1e− 8 compute Matrix W of Gleichung 3.3.11
5: with

−→
M compute vector t of equation 3.3.9

6: solve
∥∥∥∥( −→

t
0

)
−
(

V
W

)
−→q
∥∥∥∥→ min

6.1 Implementation in UG4

TheMultipole Approach, the Venant Approach and the Partial Integration Approach
exist as prototypes within the UG4 framework in the plugin konnekfem [80, 68].
The C++ software library UG4 provides a fully-featured framework for Finite El-
ement computations. In contrast to standard FE problems, our setting requires a
preliminary step: the regularization of the EEG forward problem. This is an un-
common piece of functionality that needs to be implemented for each of the three
approaches.
The segment that needed to be changed for this purpose was the discretization
routine. We developed the classes Blurred Disc and PIDisc based on the class
IElementDisc, along with some helper classes like the class dipole.
To ensure data encapsulation, UG4 provides a framework in the script language
Lua [36], out of which only a certain set of functions can be called. We restrict
ourself to describing those methods, which will be used for computing a forward
solution. The technical realization within the classes is practically described before
and not of interest for this documentation.
Before starting to use any approach, we first need to define a domain that the FE
solution is computed on. This is accomplished by defining a tetrahedral grid as the
discretized domain. For this purpose, we build sphere models in the UG4 format,
which has the ending .ugx. In out case, the sphere models contain several subsets:
one for each conductivity layer.

6.1.1 The class dipole

The class dipole consists of twoMathVector instances: the vectorm_position, which
describes the position of the dipole, and the vector m_moment which describes the
moment of the dipole. Both vectors are of the type MathVector, which is an internal
UG4 class, and implements a mathematical vector.
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6.1 Implementation in UG4

Both vectors will be needed for the right hand side discretization.
Furthermore, there are several methods that control the dipole’s position and mo-
ment. The method

settestdipole_different_moments(
int i,
const char* momentfile,
int k,
const char* positionfile)

is used if one wants to compute several forward computations with different dipoles
in a loop.
The method is called with a momentfile and a positionfile, both of which are .txt
files. Each line describes one position or moment of a dipole. The three coordinates
of the position or moment are represented with floating–point numbers, separated
by a space.
The method selects the ith moment in the momentfile and the kth position in the
positionfile to define a dipole.

6.1.2 The class Blurred_Disc to compute the Multipole and the
Venant Approach

The class Blurred_Disc can compute either the Venant or the Multipole Approach.
The constructors in those classes are written so that there is no more need for
additional configuration. There are several constructors implemented. The easiest
setup is to call:

Blurred_Disc(
const char* functions,
const char* subsets,
dipole <TDomain::dim> dip,
Gridfunction<TDomain,TAlgebra>).

In this constructor, functions is a char* that is required by the the base class
IElemDisc. It needs to be set to “ c ” to function properly. subsets should be
a char* with the name of the subset in which the dipole is located. If there are
several subsets possible, all can be listed but need to be in one string seperated by
a “,”.
dip is an instance of the helper class dipole.
The last parameter is the object representing the Finite Element vector of the
right–hand side. Its type is GridFunction.
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6 Appendix A: programming the algorithm

With this minimal configuration, Blurred_Dipole computes the Multipole right–
hand side discretization for 13 monopole locations and a λ of 1e− 8 for the penalty
term. This will automatically happen in the call of “ assemble_linear” in the Lua
code.
The method

set_neighbours(int number_of_neighbours)

determines how many monopole locations number_of_neighbours are used to rep-
resent the dipole. The selection starts with the FE node closest to the dipole, and
continues in increasing geometrical distance.
Software libraries like simbio or fieldtrip use a different routine for the selection of
the monopole locations. If this behavior is desired, calling the following method is
recommended:

set_with_fieldtrip( int number_of_neighbours=1).

If no parameter is supplied, the default value is 1. In this case, the simbio monopole
selection is used. This means that the monopole selection consists of two types of FE
nodes: (1) the node closest to the dipole, and (2) all nodes directly connected to (1).
If the supplied parameter number_of_neighbours is larger than 1, the algorithm will
additionally use a third type of FE nodes: nodes of increasing geometrical distance
to the dipole. The search radius for these nodes is increased until the specified
number of nodes is reached.
Furthermore, the parameter lambda can be adjusted with the call:

set_lambda( double lambda).

If the Venant discretization is preferred the call

set_venant(bool)

is needed after initialization with the boolean value of true. With venant, the
calls of set_lambda and set_neighbours are the same as for multipole. However,
set_with_fieldtrip will always just use the SimBio/fieldtrip neighbor computations
without adding any FE nodes up.

6.1.3 The class PI_Disc to compute Partial Integration

The Partial Integration Approach can be initialized with a call of
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6.2 Implementation in Fieldtrip

PI_Disc(
const char* functions,
const char* subsets,
dipole <TDomain::dim> dip,
Gridfunction<TDomain,TAlgebra>).

The supplied parameters are identical to the previous section in both naming and
function.
Since the Partial Integration Approach does not require parameters, no additional
methods are necessary.

6.1.4 Error computations with UG4

If forward computations are conducted with either the Multipole Approach, the
Venant Approach or the Partial Integration Approach, the results are returned via
an instance of GridFunction.
The errors at the sensor locations are not available immediately. To establish error
levels, a class named errors_to_fieldtrip can be used. This class has an empty
constructor.
A call to read_sensors_from_file(sensortextfile) from this class provides support
for virtual sensors which are automatically used as targets for the following forward
computations. The sensorfile is a text file. The first line denotes the total number of
sensors. Each following line describes one sensor position: three separate floating–
point numbers for X, Y, and Z coordinates, separated by a space. Unfortunately,
computational restrictions require that only existing FE nodes can be used as sensor
positions. To extract FE node positions from an .ugx head model, we wrote a
convenient script in python.
When the instance of errors_to_fieldtrip is initiated and the sensors are set, the
gridfunction of the forward solution needs to be read by calling read_gridfunc-
tion(Gridfunctionname). The values of the GridFunction at the virtual sensors can
then be written to a csv–file with a call of write_gridfunction_to_csv(csvfilename)
The next step is to compare the results to those of an analytical De Munck sphere
solution, and to plot the differences.

6.2 Implementation in Fieldtrip

In Fieldtrip, the computations for the Venant approach was already implemented
as described in [84] by default. Our only change consisted of a different weight
computation to implement the Multipole Approach.
For this purpose, we wrote two new routines:
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6 Appendix A: programming the algorithm

(1) sb_rhs_multipole, and the sub function (2) sb_calc_multipole_loads. Those
modified files will hopefully included into fieldtrip in the future. If the multipole
approach is desired over the Venant Approach, the function name sb_rhs_venant
can be changed to sb_rhs_multipole whenever it is called in an existing fieldtrip
script.
Note that fieldtrip may not always allow using 11–13 monopole locations.
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7 Appendix B: Adaptive Finite Element
Methods and the Multipole Approach

We have developed an improvement of the old Venant Approach making it possible
for FE Methods to be used for the EEG forward problem.
However, FE also has some drawbacks. The rule of the thumb is that the approxi-
mation (and the error) improves for a finer resolution of the grid. Since finer grids
need longer computational time, we have to find a sufficient grid with has a good
balance between resolution and accuracy.
The key question to find such a grid is thus: How finely resolved does the grid need
to be?
An answer to this question could be the so–called Adaptive Finite Element Methods,
which start on a coarse grid and use an estimation to the accuracy to refine the
grid only where it is necessary.
As explained in chapter 2.1, we consider the weak solution formulation of the model
problem 3, which was

Problem 7. Let Ωl be a discretization of the domain Ω. Find u ∈ a finite element
space V (Ωl), such that∫

Ω
σ∇u∇vdx =

∫
Ωl

fvdx for any v ∈ V.

Now we do not want to create Ωl+1 out of Ωl with refining all elements (hexahedra
or tetrahedra). We just want to refine those elements where the accuracy would
improve the most.
Thus, to employ adaptive FE Methods on this problem, we need an error estimator.
It reveals a cell wise estimation for the error of a solution ul ∈ V (Ωl). We also need
a marking strategy to decide, which elements will be refined, and a refinement
strategy to compute a Ωl+1 out of Ωl.
The algorithm is very straight forward from that point on.
First, we solve the problem and compute a solution ul ∈ V (Ωl). Second, for every
cell T ∈ Ωl we will compute an error estimator using the solution ul.
We are either interested on the error in the L2–norm with ‖u − uh‖L2(Ω) or the
energy–norm ‖u−uh‖σ,Ω :=

√
a(u− uh, u− uh), where a is the continuous bilinear

form (2.1.4) coming from the problem 4.

93



7 Appendix B: Adaptive Finite Element Methods and the Multipole Approach

Third, when all the estimators for each cells and, thus, also the estimator for the
whole solution are computed, we can decide on which element to refine. The fourth
and final step is to perform the grid refinement.
There is a particular error estimator for the energy error, which was first described
by Babuška and Rheinbold in 1967 ([7]):
Let T ∈ Ωl, then the error estimator is given by

E2(uh, T ) := h2T ‖r(uh)‖2L2(T ) + hT ‖j(uh)‖2L2(∂T\∂Ω), (7.0.1)

where the interior and the jump residuals are defined by

r(uh) = f + div(σ∇uh)
j(uh) = [σ∇uh]S ,

with []S symblizes the jump on the edge S. To compute the whole error for the whole
solution ul, we summarize over all cells

E2(uh,Ωl) :=
∑
T∈Ωl

E2(uh, T ).

The first proven property of this error estimator is its efficiency and reliability,
which are important in the context of AFEM as this bounds the accuracy from
above and below.

Theorem 5. ([7]) The error estimator 7.0.1 is efficient and reliable with an upper
and a lower bound.
There exist C1, C2 ∈ R such that

‖u− uh‖2α,Ω ≤ C1E2(uh, T )

C2E2(uh, T ) ≤ ‖u− uh‖2α,Ω + osc2T (u)

with the element oscillation

oscT (v, T ) = ‖h(r(v)− P2n−2r(v))‖L2(T ) + ‖h1/2h(j(v)− P2n−1j(v))‖L2(T )

(and Pi means the polynomial L2–Projections).

It was possible to prove that the error estimator will give convergence [56]. How-
ever, the most important aspect – whether the estimator showed an improved per-
formance in relation to the number of elements (quasi-optimality) – was still an
open question at this point.
Quasi-optimality for the 2D case was proven by Binev, Dahmen, DeVore [11]. The
proof for the n dimensional case (for n ∈ N) followed in 2007 by Stevenson [76].
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It is important to note, that this quasi–optimality is reaches using Dörfler Marking
[24] for the marking strategy and bisection as refinement stategy.
In summary, a AFEM can be described by four modules:
SOLVE: compute a forward solution of 3
ESTIMATE: compute the error estimator (7.0.1)
MARK: use Dörfler Marking selecting elements that exceed a predefined threshold
of relative local error [24]
REFINE: refine the selected elements through bisection.
We refer to [61, 60] for a deeper understanding to the AFEM.
If we want to apply AFEM to our case, we require regularization since the error
estimator fails to work with a mathematical dipole.

There are some cases in which the refinement goal is neither the L2 nor the energy
norm. Instead, the error is minimized with regard to a functional. This strategy is
called Goal–Oriented Adaptive Finite Element Methods [9, 55].
In addition to the standard AFEM approach, the adjoint problem – provided by
the functional – is also computed in this case. For this adjoint problem we have
the same prerequisites as for the original problem. Thus, a standard AFEM can be
computed on the adjoint problem.
For a goal–oriented AFEM, both approaches are mixed. Error estimators are com-
puted for both the original and the adjoint problems. After comparing the opti-
mization results from each approach, the more favorable refinement method can be
chosen at every step [55].
An AFEM will typically equi–distribute the error estimation over the whole domain.
However, we are unable to measure the electric potential throughout the entire head.
Instead, we are limited to sensor positions on the head surface. For this reason it
would be ideal to minimize the error for exactly these positions. We can understand
this goal as employing a functional.
The quantity of interest for the EEG forward problem is the functional

Fadjoint =
∑

x∈Xsens

δx,

with Xsens defined by 2.0.1.
This will give us the adjoint problem
Problem 8. Find u ∈ {v ∈ H−1(Ω)|

∫
Ω ηvdx = 0}, such that∫

Ω
σ∇u∇vdx =

∑
x∈Xsens

δxv for any v ∈ V.

n the following section, we will adapt the Standard AFEM, a GoAFEM and other
adaptive approaches to our problem and review them numerically.
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7.1 Adaptive Experiments

So far we only have considered standard FE theory for the EEG forward problem.
When attempting to apply an adaptive strategy to this theory, we have to overcome
certain problems.
Even if FE computations are applicable, the new right–hand side Jmonopoles of 3.0.1
is still not in L2(Ω). The error estimator computes the L2–Norm on all elements
of the discretized domain. This can not be done with Jmonopoles.

Figure 7.1: Slices of the four–layer 3D sphere model with 20398 FE nodes, which
was used for adaptive computations.

Instead of concentrating on theory, we choose a rather heuristic approach to use
AFEM in numerical experiments with the Multipole Approach, as this will show us
the usage in practice.
We choose the 3D sphere model grid of chapter 4 (with 20398 FE nodes) as the
base grid.
We try five different kinds of heuristics:

1. global refinement on one grid

2. normal adaptive procedure with a modified error estimator after Babuška

3. adjoint adaptive computations
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4. goal–oriented computations

5. standard adaptive procedure with a modified right–hand side (e.g. [61, 60])

In every experiment, we place the dipole at the grid coordinates (−1.0, 0.0, 0.0) and
compute the forward solutions for 50 different dipole moments, similar to the 3D
sphere model forward computations in chapter 4. In contrast to the six different
grids in that model, we now use only one grid that gets refined adaptive.
We apply the adaptive strategy of choice up to five times, or until we reach a
number of 600000 Finite Element nodes.
We compare the accuracy of these numerical experiments with the results of the
sphere model from Chapter 4, and use violin plots for comparison.
For a more convenient visualization, we summarize the accuracy of the 50 forward
computations on the grids with 20398, 58488 and 421124 from Chapter 4 as a grey
block with upper and lower limit in black and the median indicated with a grey
line. We henceforth call those three grids (4A), (4B) and (4C).
If the adaptive scheme would be better than the 3D forward computations on the
sphere models of chapter 4, the accuracy values would lie in the lower part of the
gray area or even below.
The accuracy of the adaptive numerical experiments is pictured with violin plots,
where we enclosed values into one violin if the number of nodes was sufficient close
enough.
For the global refinement as well as the adjoint refinement and the adaptive com-
putation on the substitution of the right–hand side, the refinement is independent
of the exact moment and thus, the algorithm decides to refine the same cells for
every of the 50 moments.
For the normal adaptive and the goal–oriented procedure this is not the case. Here a
different number of cells is refined in the same step for different moments. However,
the number of cells is in a certain range. Therefore, to produce good images, we
decide to do a k-means clustering beforehand and cluster for the normal adaptive
procedure into seven clusters. We decided the number of clusters by looking at a
scatter plot.
However, using the AFEM with the Multipole Appoach in a practical setting comes
with technical limitations.
Firstly, the adaptive refinement procedure in ug4 only supports the refinement
of hanging nodes. The standard AFEM, on the other hand, uses refinement by
bisection or completion and will not produce hanging nodes [61, 60].
Secondly, the choice is limited by the working memory and processing speed of the
computing platform. For this reason, we focus our efforts on smaller models and
stop refining when 600.000 nodes are reached.
Despite these limitations, the numerical computations are valuable to compare dif-
ferent approaches of adaptivity to each other.
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7 Appendix B: Adaptive Finite Element Methods and the Multipole Approach

7.1.1 Global refinement

In chapter 4, we approximated a refinement strategy by using several sphere models.
Now we are refining one grid globally to be able to understand how global refinement
affects the error propagation.
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Figure 7.2: Accuracy of global refinement pictured with two blue violin plots.

Global refinement yields two grids: the base grid (A) with 20398 FE nodes, and the
grid with 158494 FE nodes (B) after one refinement. A second refinement would
exceed our node limit of 600000 FE nodes and is skipped for that reason.
We observe that the accuracy for grid (B) is overall slightly smaller than for grid
(A). However, both result patterns show considerable overlap. Furthermore, the
numerical computations of chapter 4 on grid (4B) are slightly more accurate than
on grid (B).
Thus, we see that global refinement does have an impact on accuracy, but not in
the desired direction.

7.1.2 Standard AFEM

As mentioned before, we can not apply the error estimator 7.0.1 to elements that
contain monopoles. Therefore, we define a small exclusion radius around the
monopole locations of 1e − 5. Elements within this radius are refined at every
step, but are excluded from the global error estimation.
As apparent from the results, there is no real error reduction using the standard
AFEM. Results are mostly planar, independent of the number of refinements with
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Figure 7.3: Accuracy of normal adaptive procedure pictured with blue violin plots.

some outliers in both directions. As a result, most of the error spectrum overlaps
with the results from chapter 4 (signified by the grey area).
When we visualize the refinement of the grid, we can see the reason for this kind
of behavior.
As we already predicted during the error estimation in Chapter 3.4, the error is
the biggest around the dipole location and decreases towards the boundary of the
domain (with uniform conductivity). Since we have constant conductivity within
this layer, the error estimator shows the largest values right around the dipole
location. Thus, as expected, most of the refinement occurs in the vicinity of the
monopole locations.
However, this will have no effect on the overall error. We are not actually interested
in minimizing the overall error, but rather only at the sensor locations.

7.1.3 Goal–oriented AFEM

Goal–oriented Finite Element methods aim to compute adaptive with regard to a
functional.
As functional of interest we already identified

Fadjoint =
∑

x∈Xsens

δx,

with Xsens defined by 2.0.1.
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7 Appendix B: Adaptive Finite Element Methods and the Multipole Approach

Figure 7.4: Normal adaptive procedure on the grid in four steps. The dipole was
placed at (−1.0, 0.0, 0.0).

Xsens is a discrete set, therefore, we again have a finite sum over dirac delta distri-
butions.
The GOAFEM practically computes two adaptive schemes: one for the original
problem and one for the adjoint problem.
Therefore, we first take a look into the adjoint problem and into its behavior in an
adaptive context.

7.1.3.1 Adjoint AFEM

The adjoint problem substitutes the right-hand side of the PDE with the functional:
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7.1 Adaptive Experiments

Problem 9. Find u ∈ {v ∈ H−1(Ω)|
∫
Ω ηvdx = 0}, such that∫

Ω
σ∇u∇vdx =

∑
x∈Xsens

δxv for any v ∈ V.

The right-hand side is thus, again, not in L2 and we helped ourselves with a small
fix.
Firstly, we assume that every sensor is placed on a FE node in the grid.
Secondly, we have to consider the compatibility condition for Neumann problems,
which requires that the integral over the right-hand side needs to be zero.
Therefore, we weigh every summand of the functional with 1 and −1 in alternation.
The last sensor is assigned a value such that

∑
x∈Xsens

f(x) = 0.
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Figure 7.5: Accuracy of adjoint adaptive procedure pictured with two blue violin
plots.

The adaptive scheme on the adjoint problem will not lead to big enhancements in
accuracy. When actually computing it, side effects cause the error distribution to
be spread out beyond the results from chapter 4 (i.e., grey box).
This problem becomes more obvious when we again visualize the grid refinement:
it mostly takes place in the vicinity of the sensor locations.
Since those are located directly on the surface, the deviations between a perfect
sphere and the actual model are causing a larger model error.
The shape of a practical spherical model for use in FE will always deviate from a
perfect sphere because FE methods require a discretization. Thus we have to use
tetrahedra with a boundary that approximates a spherical surface.
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More tetrahedra could be used to have a finer approximation – however this also
would require more tetrahedra inside of the model and this contradicts the idea to
start on a coarse grid with AFEM.

Figure 7.6: A sketch of how a slice of the surface can approximate the surface of a
sphere. Every line stands for the edge of one tetrahedra.

Therefore, we can not improve the error levels substantially by using this scheme.

Figure 7.7: When we approximate the border smoother and choose the same refine-
ment points in the rest of the sphere as FE nodes, the tetrahedra will
get pointier and the grid will not be as regular as before, which is not
desirable for FEM.

7.1.3.2 Goal–oriented computations

When we use the goal-oriented adaptive FEM as described in [55], we always en-
counter one problem: When the algorithm compares error estimators to select either
the standard error estimator or the adjoint variant for refinement, it always picks
the standard refinement. This happens because the standard error estimator always
implies a bigger gain from refinement.
This issue leads to results as shown in figure 7.3.
To address this problem, we decided to implement a small adjustment: we refine in
alteration between standard and adjoint error estimators, starting with an adjoint
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Figure 7.8: Adjoint procedure on the grid in four steps. The dipole was placed at
(−1.0, 0.0, 0.0).

step.
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Figure 7.9: Accuracy of the goal–oriented adaptive procedure with adjoint and stan-
dard AFEM in alteration pictured with blue scattered x.

For the results from this scheme, we use a scattered plot instead of a violin plot
because the adaptive refinement will lead to approximately the same number of
FE nodes. But we can still see horizontal clusters with the naked eye but cannot
determine, the number of distinct clusters.
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Most of the computed solutions reach an accuracy not better than on the grids
(4A)-(4C) and fit into the grey area or above.

Figure 7.10: goal oriented adaptive procedure on the grid in four steps. The dipole
was placed at (−1.0, 0.0, 0.0).

When we look at how those refinements are done, we can see that the refinements
are a mix by the refinements of standard adaptive and adjoint adaptive scheme.

Thus, we do not get any improvement over the standard adaptive and adjoint
adaptive refinement.
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7.1 Adaptive Experiments

7.1.4 Computing with a new right–hand side

All previous adaptive computations did not reach improvements in accuracy. There-
fore, we want to try something else.
Instead of computing the AFEM for the EEG forward problem we might want to
concentrate on the grid. We acknowledge that the interesting part happens in the
compartment of the brain, which we will call Ωb ⊂ Ω.
We define a new right–hand side as

Jadaptive(x) =

{
1, if x ∈ Ωb

0, else
. (7.1.1)

This right–hand side is in L2(Ω). Then we apply the AFEM with the error estimator
according Babušca [7]. We then compute the accuracy of the Multipole Approach
on this grid.
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Figure 7.11: Accuracy of the AFEM used on the substituted right–hand side pic-
tured with three blue violin plots.

This scheme does not lead to better results. In fact, we will get two additional
violin plots independently of the moment. The violin plots are just horizontal to
the right from the first one and have a slightly higher amplitude.
We cannot see any meaningful change in terms of accuracy - neither in a positive
nor a negative direction.
We visualize the refinement again. With a substituted right–hand side, the algo-
rithm decides to refine within the conductivity jumps. So between the middle of
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Figure 7.12: refinement of AFEM with a substituted right–hand side. The dipole
was placed at (−1.0, 0.0, 0.0).

the tissue compartment to the lower border of the CSF compartment all cells will
be refined. However, the inner part of the sphere is not refined. The boundary is
not refined either.

7.1.5 Conclusion of the numerical experiments for the adaptive FE
methods

When applying the proposed adaptive schemes, we encountered several problems:

1. Model errors due to necessary approximation of the domain boundary

2. Model errors due to necessary approximation of conductivity jumps

3. Error Estimation for the dipolar right–hand side in the EEG forward problem
is not possible

4. Error Estimation for the monopolar right–hand side in the adjoint problem
is not possible

5. Unfinished adaptive procedures in UG4

Each of the tested schemes encounter one or more of this limitations.
However, the grids we designed for the 3D computations work well. and accuracy
convergence with these is faster than with global refinement.
Therefore, we can use the generation of those grids as a guideline for the creation
of grids to compute the EEG forward problem in general.
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When generating the sphere models we control the number of tetrahedra within
ProMesh [67]. In the first step, we define an approximation of sphere surfaces con-
sisting of a certain number of triangles. In the second step we nest those sphere
surfaces. For the outer shells we use finer resolutions than for the inner ones. In
the third and final step, we use the help of a triangulation algorithm called TetGen
[73] to generate a 3D model. We use more sphere surfaces than the number of com-
partments to ensure a good triangulation. However, each compartment boundary
is also one of the nested surfaces.
To get sphere models with a better resolution and more finite element nodes, we
progressively increase the resolution of surfaces from the outside towards the center.
Additionally, for the finer models we subdivided the model into even more sphere
surfaces 4.6.
With this generation process, we obtain sphere models which have relatively regular
tetrahedra. The exact positions of the FE nodes of each coarse model are preserved
in the finer models.
From this and the results of the numerical experiments, we conclude the following
steps for constructing good grids for the EEG forward problems:

• ensure that the grid surface is sufficiently smooth and approximates the orig-
inal surface very well

• ensure that the conductivity jumps are of a sufficient resolution

• ensure that you have sufficiently regular cell elements

However, the experiments so far gave no indications as to what “sufficiently” means
in this context.
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