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Abstract—In recent years, several approaches have been in-
troduced for estimating the spike onset zone within the ir-
ritative zone in epilepsy diagnosis for presurgical planning.
One important direction utilizes source analysis from com-
bined electroencephalography (EEG) and magnetoencephalog-
raphy (MEG), EMEG, leveraging the benefits from the com-
plementary properties of the two modalities. For EMEG source
reconstruction, an average across the marked spikes is often used
to improve the signal-to-noise-ratio (SNR). In this contribution,
we propose a two-phase clustering of interictal spikes with
unsupervised learning methods, namely Self Organizing Maps
(SOM) and K-means. In addition, we investigate the accuracy of
combined EMEG source analysis on the sorted activity, using an
individualized (with regard to both geometry and conductivity)
six-compartment finite element head model with calibrated skull
conductivity and white matter conductivity anisotropy. The
results indicate that SOM eliminates the random variations of
K-means and stabilizes the clustering efficiency. In terms of
source reconstruction accuracy, this study demonstrates that the
combined use of modalities reveals activity around two focal
cortical dysplasias (FCDs), one in the right frontal area and one
smaller in the left premotor cortex. It is worth mentioning that
only EMEG could localize the left premotor FCD, which was
then also found in surgery to be the responsible for triggering
the epilepsy.

Index Terms—EEG, MEG, Spike Clustering, Epilepsy, Multi-
modal Imaging, Finite Element Method

I. INTRODUCTION

The advances in presurgical epilepsy diagnosis incorporate
non-invasive electrophysiological recordings of the brain ac-
tivity and analysis of neuronal spiking activity. The source
analysis takes often into consideration the average across
all the annotated spikes that indicate the epileptic activity
from the spike onset zone. However, a smooth peak of the
averaged spikes might indicate that the triggers were not set
optimally in each single spike and that the underlying activity
might thus not only include the spike onset zone, but also
already propagated activity [1], [2]. In the context of the
present study, we attempt to mitigate this by proposing a two-
phase clustering of the EEG and MEG spikes and a source
reconstruction of the clustered spikes upon a realistic volume
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conductor head model. In the following sections, we introduce
the concept of clustering in source analysis of an epileptic
activity.

Regarding the source analysis accuracy, it often depends
on the spike selection and the timepoints relative to the spike
maximum [3]. It is impossible to establish beforehand which
spikes are the optimal ones for revealing the pathways of
the spike onset zones. Therefore an evaluation method is
required to select signal patterns and features with an epileptic
predisposition. To overcome this limitation, clustering of the
spikes is mainly used before source analysis in order to
group patterns of similar behavior and enable better source
reconstruction, especially in the multifocal epilepsy cases.

Taking into account the limitations existing in this field,
our study explores the combined EMEG source reconstruction
[2] for characterizing the epileptic activity, paving the way
for exploiting the benefits of complementary information and
avoiding the implications of invasive diagnostic techniques.
Moreover, an attempt to integrate two unsupervised algorithms
for spike clustering is proposed with the ultimate goal to
alleviate the problem of hidden patterns. Such patterns often
have low SNR and thus, they could lead in detection of
an epileptic focal area that is correlated with the seizure
semiology.

II. PATIENT AND METHODS
A. Patient & Ethics Statement

The patient [2] signed all the appropriate consent forms
while the data was collected from both electrophysiological
measurements and MR acquisitions.

B. Preprocessing of the Data

Initially, two different filters were applied, namely a 4th
order Butterworth bandpass filter (passband: 1-100Hz, band of
epileptic studies) and a notch filter at 5S0Hz and its harmonics
to discard Power Line Noise. To detect artifactual activity
derived by physiological sources (such as cardiac or ocular



activity), the filtered signals were decomposed using Principal
and Independent Component Analysis and the components
were selected to explain 95% of the variance. The extracted
components were then submitted to an artifact detection plan
consisting of 3 phases, the metrics calculation (kurtosis, en-
tropy, skewness), the visual inspection and the correlation
with the channels recording non brain activity. The suspicious
components were rejected if they were associated with cardiac
or muscular interference. Alternatively, they were corrected
if corresponding to ocular contamination using the Empirical
Mode Decomposition [4].
C. Clustering of Epileptic Spikes

The measurements were evaluated by three certified epilep-
tologists who marked 30 MEG and 36 EEG interictal epileptic
spikes along the 6 out of the 7 runs. For each spike, we
defined 200 ms before and after the spike peak so that we
could use them for feature extraction described as follows.
We extracted representative features so as to be able to
discriminate them or group them together in the clustering
procedure. The features selected were Kurtosis, Entropy and
Energy. We also performed a 4-level 2-Dimensional Wavelet
decomposition with haar wavelets selecting the first 10 wavelet
coefficients with the greatest deviation from Gaussian distri-
bution as features [5]. The selection of these coefficients was
achieved with Liliefors modification of Kolmogorov Smirnov
Test. Turning now to the clustering of the epileptic spikes
after having constructed two feature vectors (EEG (36x13)
and MEG Spikes Feature Vector (30x13)), we considered a two
phase approach for clustering performing first Self Organizing
Map (SOM) on a 12x12 grid (chosen by Vesanto rule) and
then feeding the output of SOM (assignment to the grid and
the color codebook vector) to K-means trying different Ks
as input (2-10). The clustering efficiency was evaluated with
silhouette score which led to the optimal number of clusters
for the 2 Feature vectors.

D. Source Analysis

The source reconstruction of the clustered EEG/MEG and
EMEG spikes included a solution of the forward and inverse
problem for a given volume conductor model of the head.
To construct the head model of the patient, we first produced
a segmented head model with six-compartments (scalp, skull
compacta and spongiosa, cerebrospinal fluid, grey and white
matter) based on the image registration and segmentation of
the Tlw and T2w MRI [2], [6]. The dMRI was processed
for reducing the susceptibility artifacts. A geometry-adapted
hexahedral head volume conductor model with white matter
anisotropy was constructed, and together with the sensor
positions (EEG or MEG) was used for the simulation of
the electromagnetic field distribution. We used a surface
source space that followed the folding of the gray matter
compartment. The Finite Element Method was utilized for
calculation of the EEG or MEG leadfield matrix (i.e., the
forward simulations) through the SimBio toolbox'. We used
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standard conductivities for scalp, CSF and gray matter while
the white matter conductivity was model based on the effective
medium approach [2]. Due to the strong effect of skull
conductivity on the EEG (and EMEG) source reconstruction,
we calibrated the skull conductivity using the SEP/SEF data
and a procedure that exploits the complementarity of both
EEG and MEG [7]. The combined EMEG reconstruction was
performed by solving the inverse problem using the the EEG
and MEG leadfields in a concatenated form along with a
covariance matrix of the signals in the window between -
20 ms and -5 ms for appropriate sensor weighting [8]. We
localized at the rising flank of the spike to detect the onset of
the epileptic activity and to avoid propagation [1]. For inverse
source analysis, we used sSLORETA, which has been shown
to perform well in situations in which multiple sources need
to be accurately localized, which are temporally disentangled
or whose leadfields are sufficiently uncorrelated [2], [9]. This
approach was applied to every possible combination of the
epileptic clusters. The timepoints selected for identifying the
epileptic zones were set at: -23 ms, -17 ms, -13 ms, -10 ms,
-8 ms, -5 ms, -3.3 ms and 0 ms. These points in time were
selected accordingly in order to gain insights into propagation
phenomena for epileptic activity and to compare them with
the related study of [2].

Fig. 1: The volume conductor model of the head. Top: scalp,
bottom: grey and white matter

ITI. RESULTS
A. Two-phase Clustering Approach

Having our signals cleaned from contamination, clustering
of epileptic activity is performed by applying SOM for the
two different feature vectors of the spikes. In Fig. 2 we show
how the spikes are asssigned to the SOM grid based on the
distance of the nodes’ weights from the feature vector of the
spikes. Two light-yellow areas could be observed in the top
right corner and one in the top middle which indicates that
the values of the spike feature vector are grouped into three
regions which are clearly separated one to another from the
red lines that traverse these groups. On the other hand, the
information extracted from SOM is not easily grasped and this
is one of the reasons why we decode the output through K-
means. In other words we cannot clearly claim which clusters
are formed from this figure even though three clusters could
be identified in the three yellow areas.

Generally, SOM produces a matrix along with a color code-
book vector which stores the information of the assignment .
This output is fed to the K-means algorithm which was tested
with the silhouette metric for various clusters ranging from 2
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SOM Neighbor Weight Distances

Fig. 2: Weights Distribution for Feature Vector: The SOM
network has nodes, the SOM neurons, which are compared
with the feature vectors of samples in an iterative manner and
are weighted reversely proportional to the respective distances.
The dark colors represent large distances, while lighter colors
represent smaller distances

up to 10 but also for every cluster point for the selected K
with the results summarized below.

=
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(a) Mean silhouette value for (b) Silhouette values for K =
each K 3

Fig. 3: Evaluation of K-means clustering

Observing the evaluation of K-means, we could state that
the optimal number of epileptic clusters is equal to three since
it has mean value close to one but also the majority of the
silhouette points of this cluster surpass the mean value. The
last step before the source reconstruction is the subaveraging
of the spikes which belong to the same cluster. In Figs. 4,5 the
signals produced for EEG and MEG clusters are visualized.

Fig. 4: Subaverage in EEG clusters

Fig. 5: Subaverage in MEG clusters

B. Combined EMEG Source Reconstruction

The inverse problem was solved using SLORETA for the 9
different combinations of the clusters and for each timepoint
explained before. The visualization of the detected activity
was depicted on the cortical surface selecting a threshold

of 85% of the maximum F-value of sSLORETA (red areas).
Furthermore, the two FCDs were sketched in Figs. 6 and 7 at
the locations where MRI Zoom Imaging lesions were marked
(black spheres). In the following we outlined the output of

the reconstruction for some of the clusters combination. Fig.
| ‘ ‘ “

Fig. 6: SLORETA combined EMEG source reconstruction for
2nd EEG & 2nd MEG cluster (t=[-23,-17,-13,-10,-8,-5] ms)

t=23ms

6 shows the reconstruction of the EMEG source in the frontal
region near the right FCD, visualized for each time instance
prior to the peak. On the contrary, the Fig. 7 represents the
results of SLORETA for other cluster combinations which
were able to detect activity in the vicinity of the right frontal
FCD at time-point -3.3 ms (a) and in the vicinity of the left
frontocentral FCD at time-point -13 ms (b).

(a) Underlying activity close to
right FCD at -3.3 ms

Fig. 7: sSLORETA EMEG reconstruction leads to FCDs detec-
tion

(b) Underlying activity close to
left FCD at -13 ms

IV. DISCUSSION

The clustering approach proposed in this study demonstrates
the ability to discriminate the activity derived from two
different areas in separate clusters as observed in the source
reconstruction results, see Figs: 6 and 7. In this way, the
features extracted are being able to detect patterns that are
unique for each activation. This is also shown in Fig. 2 in
which the light regions shaped are separated with big distances
(red lines, meaning there is variation of the values between the
clusters) and thus each region represents a different behaviour-
activation. Coupled with this, the single application of K-
means would lead to random variations of the spike clusters
and alterations in every single run, a fact that substantially
affects the localization accuracy and causes misinterpretations.
The average of spikes subset within a cluster increased the
SNR of the spike signal and improved the localization in the
vicinity of the spike onset zone, consisting of two nodes at dif-
ferent time-points. Finally, our method represents a new way
of reconstructing epileptic activity in multifocal epilepsy cases
by separating the sources from the different foci and aiding in
this way to distinguish between onset and propagation nodes
in the epileptic network.



Another aspect of our study improving source reconstruc-
tion accuracy is the choice to perform sub-cluster averaging
at the spike cluster level. Our proposed clustering scheme
can enhance the methodological steps of [2] leading to more
robust clustering within a subaveraging-based source analysis
of the epileptic spikes. While there is also the alternative of
localizing each single spike, e.g. with the goal to get more
insight on the extent of the spike onset zone, in many cases it
is not recommended due to too low SNR [10], so that building
clusters like presented here or using subaveraging of visually
and topologically hand-chosen spikes like done in [2], [10]
might in most cases be superior.

Our case study supports the studies of [1], [2], [10] in
also showing that epileptic activity might in some cases be
largely propagated when evaluating at the spike peak, even
if SNR is optimal there. It also shows that localizations
at the spike onset, even if suffering from low SNR, can
still be performed successfully with appropriate averaging
technologies. Considering this problem, our approach could
be compared with the one by [2], [10], where a subaveraging
technique enabled the sources with low SNR, underlying the
left frontocentral FCD, to be identified as a separate area
from the propagated one of higher SNR, underlying the right
frontal FCD. Moreover, the detection of activity in the left
FCD area suits the patient’s seizure semiology (tingling feeling
in the right anterior torso region). It also matches the results
of [2] where the same patient was investigated and where
the propagation of activity from the left to the right FCD
from combined EMEG was also already established, with the
former being detected at -23ms and the latter close to the
spike peak. Specifically, our results in Fig. 7 support very
well the EMEG source analysis results of [2] that guided
Z0OOMit MRI (0.5 mm voxel edge length) in the detection of
the left frontocentral FCD. In contrast, the activity visualized
in Fig. 6 in the right frontal FCD is not in accordance with
the seizure semiology and presents already clearly propagated
activity with a localization far from the spike onset origin.
This explains our argument for choosing earlier points in time
to detect the activity prior to the propagation phenomena.

We should also mention that our non-invasive EMEG ap-
proach and the localization of the spike onset zone close to
the subtle left frontocentral FCD was supported by sterecoEEG
and the outcome of radiofrequency-thermocoagulation (RFTC)
as presented in [12]. On the other side, we would also like
to mention that the SOM clustering for very large input
datasets could be unstable specifically in the initial stages
of training and might not always be able to disentangle the
inputs correctly. Last but not least, our study enables new
directions to be explored in future work, such as the effective
connectivity between the underlying sources to even shed more
light into the propagation phenomenon.

V. CONCLUSIONS
In this study the combination of Self Organizing Maps

with K-means helped us disentangling the sources associated
with two FCDs from which the subtle earlier one with low

SNR could be reconstructed from combined EMEG data
in the left frontocentral area, fitting well with the patients
semiology. The combined use of EEG and MEG in both data
acquisition and source reconstruction paved the way for ac-
curate reconstructions of the epileptogenic zone, as proved by
later sSEEG and the surgical procedure using radiofrequency-
thermocoagulation. Our results show that combined EMEG
source analysis using a calibrated realistic head model and a
sophisticated spike clustering approach can be an important
additional tool in presurgical epilepsy diagnosis. Hence, the
main outcome of this study is a process pipeline that can be
used to guide epilepsy diagnosis and treatment.
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