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Abstract

Coronary heart disease is the most common cause of death in the world and non-

invasive medical imaging techniques like positron emission tomography (PET)

are important to help diagnose a patient suffering from atherosclerosis as early

as possible. Unfortunately, dynamic PET measurements using radioactive water

to examine blood flow create challenging image reconstruction and parameter

estimation problems.

Non-negative matrix factorization (NMF) has been successfully used as a data

analysis tool for many different applications. In this thesis, we will motivate the

use of NMF through model-based approaches to dynamic PET reconstruction and

examine the results and performance of different NMF algorithms when applied

to dynamic PET measurements with very poor statistics.

Zusammenfassung

Koronare Herzkrankheiten sind weltweit die häufigste Todesursache und nicht-

invasive medizinische Bildgebungsverfahren wie Positronen-Emissions-Tomographie

(PET) sind wichtig um bei der möglichst frühen Diagnose von Patienten zu helfen,

die unter Atherosklerose leiden. Leider führt die Qualität der zur Blutflussunter-

suchung genutzten dynamischen PET Daten basierend auf radioaktivem Wasser

zu schwierigen Rekonstruktions- und Parameterschätzungsproblemen.

Nicht-negative Matrix Faktorisierung (NMF) wird erfolgreich in vielen verschie-

denen Bereichen als Datenanalysemethode angewandt. In dieser Arbeit werden

wir die Anwendung von NMF auf dynamisches PET über passende Modelle moti-

vieren und untersuchen die Ergebnisse verschiedener NMF Algorithmen anhand

von dynamischen PET Messungen mit sehr schlechter Statistik.
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1
INTRODUCTION

According to the World Health Organization, the leading cause of death worldwide

is coronary heart disease (CHD), making up 15.9% of all deaths. In 2015, 110

million people have been affected by CHD and although the rates of death have

declined in most countries, 8.9 million people have died as a consequence of

suffering from a CHD, e.g. from myocardial infarction or sudden cardiac death

[WANG et al., 2018]. There are many risk factors associated with CHD, e.g. high

blood pressure, diabetes, poor diet, lack of exercise and excessive alcohol, but

most importantly smoking (36%) and obesity (20%).

One of the main reasons for CHD is atherosclerosis, the buildup of a waxy

substance inside the coronary arteries called plaque (see Fig. 1.1a.). Atheroscle-

rosis often begins in childhood and typically no symptoms are noticeable for

decades. In the beginning, the arteries enlarge at the plaque locations without

reducing the blood flow and even plaque ruptures do not necessarily cause any

complications if the arteries are still wide enough. Symptoms start to appear

when arteries are narrowed to the degree that the blood flow is constrained and

the heart muscle is not provided with enough oxygen, leading to chest pain or

pressure known as angina. The combination of narrowed arteries and ruptured

plaque can cause a complete blockage of the affected artery and lead to severe

cardiovascular disorders such as a stroke or a heart attack (see Fig. 1.1b). The
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(a) The image shows a normal artery
above and a narrowed artery due to
plaque buildup below.

(b) On the left the dead heart muscle is
shown below a blocked coronary artery.
On the right a cross-section of the coro-
nary artery

Figure 1.1.: Visualization of atherosclerosis and the damage to the heart muscle after a
heart attack as a result of a blocked artery. Source: NATIONAL HEART, LUNG, AND BLOOD

INSTITUTE [2018].

slow progress in combination with the severity of the effect of a blocked artery

demand methods to diagnose and treat a patient as early as possible.

Positron emission tomography (PET) is an imaging technique that allows us

to visualize physiological activities with the help of radioactive tracers. A tracer

is indiscernible for the body from its non-radioactive counterpart, takes part in

the normal body metabolism and can be followed by its radioactive decay. To

visualize myocardial blood flow, we can use dynamic PET measurements using

radioactive water H2
15O, that mixes perfectly with the blood pool. The low

half-life of oxygen-15 keeps the radioactive burden small for the patient, but also

leads to low-quality measurements which make image reconstruction and the

estimation of physiological parameters very challenging.

Most approaches try to solve this problem by including some form of apriori

information to reduce the complexity. Typically, a kinetic model is used to either

employ a parameter fitting to the noisy image reconstructions or as a motivation

to find parameters of the model via a variational formulation. There have also

been attempts in using data analysis techniques like principal component analysis

(PCA) and independent component analysis (ICA) to reduce the dimensionality
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of the data. While they do, with some success, reduce the noise in the data, the

respective components do not have an obvious physiological interpretation.

In this thesis, we will use a data analysis technique, called non-negative matrix

factorization (NMF), which has been used for a variety of problems in the last two

decades. NMF reduces the dimensionality like PCA/ICA but leads to more useful

non-negative components. Particularly, using NMF we can separate the temporal

and the spatial dimension from each other, which gives us a nice interpretation in

terms of a spectral approach to kinetic modeling.

We will start this thesis in Chapter 2 by providing the necessary medical and

mathematical background for the dynamic PET problem of myocardial blood flow

imaging. In Chapter 3 we introduce the concept of kinetic modeling and describe

how we can use a spectral approach to define a general linear operator describing

the model. We also refer to a different approach based on a non-linear model

which provides a consistent interpretation for the NMF components. Chapter 4

briefly describes the problem of using PCA on non-negative physiological mea-

surements and introduces the NMF problem. We close the chapter by describing

four algorithms for solving NMF. Finally, we present numerical results in Chapter

5, first in the optimal case of exact data without any noise, and then trying

to identify components for very noisy data, emulating the noise level of a real

dynamic PET dataset. Chapter 6 concludes this thesis.
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2
MEDICAL IMAGING OF MYOCARDIAL

BLOOD FLOW

This chapter provides the necessary medical and mathematical background

needed in the course of this thesis. We start in Section 2.1 by summarizing

the medical background to better understand the medical side of the problem of

myocardial blood flow quantification. We will introduce the basics of positron

emission tomography in Section 2.2 and describe a mathematical model for PET

in Section 2.3. In Section 2.4 we look at the specific challenges that occur with

dynamic PET.

2.1. Cardiovascular System and Perfusion

The human circulatory system consists of two parts, with the heart muscle being

the pump in between driving the whole system. One part is the pulmonary

circulation which transports deoxygenated blood away from the right ventricle

of the heart to the lungs, where the blood is oxygenated and returned to the left

ventricle of the heart. The second part, the systemic circulation, transports the

oxygenated blood to the rest of the body, assuring the supply of the body with
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Body

LungLung

Direction of
Blood Flow

To Head

(a) Circulatory System. Source: B. [2005] (b) Capillary. Source: COMMUNITY EMER-
GENCY RESPONSE TEAM [2013]

Figure 2.1.: Schematic representations of the circulatory system and a capillary.

oxygen and returning the deoxygenated blood back to the right ventricle, where

the circulation starts anew. Figure 2.1a shows a schematic representation of the

whole circulatory system.

Arteries are the blood vessels responsible for the transportation of the oxy-

genated blood to the organs, while veins transport the deoxygenated blood back

to the heart. The actual supply of the organs with the oxygen, however, happens

in the smallest vessels in the body, the capillaries. This is true also for the heart

muscle itself. Capillaries are tubes with a one cell thick wall with diameters

ranging from 5 to 10 micrometers. A simplified illustration is shown in Figure

2.1b.

In general, the spatial resolution of PET is not good enough to show the

capillaries directly, which is even truer for dynamic PET as we will discuss below.

We can, however, visualize the left ventricle of the heart muscle, which is tissue

that consists of capillaries and where oxygen extraction takes place, i.e. we

can visualize perfusable tissue. Looking at the physical quantities, blood flow

is measured as the volume of blood over time (ml/min) while perfusion is the

volume of blood per unit mass (ml/min/mg). Now, if we are able to connect the

perfusion to the perfusable tissue, we are also able to say something about the
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Figure 2.2.: Image of a typical PET facility with an ECAT Exact HR+ PET scanner. Source:
LANGNER [2003b]

blood flow through the blood vessels in the heart itself. Kinetic models can be

used to model this relation and we will describe how in the next chapter.

2.2. Positron Emission Tomography

PET is a functional imaging method that makes biochemical and physiological

functions visible by displaying the distribution of a radiopharmaceutical, a so-

called tracer. Depending on the tracer, it reacts with the bodies molecules in

different ways, e.g. radioactive glucose is commonly used to examine tumors

since it accumulates in areas with high metabolic activity.

As the name suggests, the radioisotopes used in PET undergo positron emis-

sion decay, also known as β+ decay. In the decay process, it emits a positron,

the positively charged antiparticle of the electron. The positron travels inside

the body a very short distance (usually less than 1 mm, but depending on the

specific isotope) until it loses enough kinetic energy to interact with an electron

which leads to an electron-positron annihilation. In this annihilation process,

both particles get annihilated and two gamma photons are created, traveling in

approximately opposite directions. The PET scanner detects these gamma photon
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(b) Sinogram with the projection angle on
the x-axis and the respective 1D projection
along the y-axis.

Figure 2.3.: Sinogram Example. Figure (a) shows the original image and (b) shows the
respective sinogram.

pairs as coincidence events. An example of a PET scanner is shown in Figure 2.2.

A typical way to store the coincidences is to group them according to their

angle, which means that we get a 1D projection of the 2D object for every angle.

The resulting collection is called sinogram since under this representation, a single

point source will appear as a sine wave, and multiple objects as blurred, super-

imposed sine waves with different phases and amplitudes. A simple geometric

example can be found in Figure 2.3 while a schematic representation of the PET

measuring process is shown in Figure 2.4.

2.3. Mathematical model for PET

As mentioned above the gamma photons travel at (almost) 180 degrees to each

other, which means that the source of the decay event is located somewhere on

a straight line, the line of response (LOR). Thus, instead of measuring the tracer

density directly we can only measure the projection of the density onto lines.

The mathematical equivalent to this projection is the Radon transform (see Def.

2.1), an integral transform introduced in 1917 by the Austrian mathematician
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Figure 2.4.: Schematic representation of the different steps of a PET scan. Source:
LANGNER [2003a]

Johann Radon [RADON, 1917]. We can understand the sinogram PET data as

the Radon transform of the function describing the unknown tracer distribution.

While the Radon transform is defined for two-dimensional functions, there exist

generalizations to higher dimensions. The most important one for tomogra-

phy is the Ray transform (see Def. 2.2), which integrates over lines instead of

hyperplanes. In 2D, both transforms coincide.

Definition 2.1 (Radon Transform). Given a function u on Rn, an angle θ ∈ Sn−1

and a distance s ∈ R, then the Radon transform (Ku)(θ , s) is defined as

(Ku)(θ , s) =

∫
x ·θ=s

u(x)dx (2.1)

Definition 2.2 (Ray Transform). Given a function u on Rn, an angle θ ∈ Sn−1 and

a point x ∈ θ⊥, then the Ray transform (Ku)(θ ,x) is defined as

(Ku)(θ ,x) =

∫
R

u(x + tθ )dt (2.2)

Given sinogram data f , the PET image reconstruction problem is to recover the

function u, i.e. the radiotracer distribution inside the patient, which we can write
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as

f = Pois(Ku). (2.3)

Pois(·) simply expresses the fact that radioactive decay is a stochastic process

following a Poisson distribution (see Def. 2.3) and thus, we can understand our

measurements as random samples of a Poisson distribution.

Definition 2.3 (Poisson Distribution). Let a λ ≥ 0 and k ∈ N0, the probability of

observing k events in an interval is given by

Poisλ(k) =
λk

k!
e−λ, (2.4)

with both the expected value and the variance being equal to λ.

Radon also provided an analytical formula for the inverse transform, which is

the basis of the filtered backprojection formula (FBP) [NATTERER, 2001]. FBP is

based on the intuitive idea to simply take the 1D projections and project them

back into the image domain. In the unfiltered variant, this leads to a blurred

version of the original image since every projection is spread over the whole image

domain. Using a suitable high-pass filter, an unblurred result can be achieved.

However, the Radon inversion is an ill-posed problem [NATTERER AND WÜBBEL-

ING, 2001] and FBP might not be able to provide acceptable results, especially

with incomplete or noisy data. While computational more expensive, iterative

reconstruction methods have become the norm in image reconstruction problems

due to much better artifact and noise handling.

To derive the most commonly used algorithm, the EM algorithm, we will

start by describing the stochastic model for emission tomography introduced

by SHEPP AND VARDI [1982]. Since the stochasticity in emission tomography is

very pronounced due to the small number of events, the idea is to include the

apriori information into the model that the number of events in a certain point is

a Poisson variable.

We start by discretizing the reconstruction region into n pixels (or voxels in
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the three dimensional case), with the Poisson variable φj denoting the number of

events in pixel j, for j ∈ [1, . . . ,n]. The expected value of φj is uj = E(φj), which is

the value that we are interested in recovering. Let γ = (γ1, . . . ,γn) be a random

variable with γi representing the number of events detected by detector i, and

let the measurement f = (f1, . . . , fn) be a realization of γ . If we now define a

(n,m)-matrix K with entries kij to represent the probability that an event in pixel j

is detected in detector i, we get

E(γ ) = Ku . (2.5)

We can now recover u by maximizing the likelihood function

L(f ) =
n∏
i=1

(Ku)
fi
i

fi!
e−(Ku)i . (2.6)

In stead of maximizing 2.6, we can also maximize the log likelihood function

`(u) =
n∑
i=1

(fi log(Ku)i − (Ku)i) , (2.7)

which is obtained by taking the logarithm of L and omitting the constant term

[log(fi!)].

Here we can see that the Kullback-Leibler divergence arises as a natural choice

for the data fidelity term in the variational problem since we are dealing with

data that are sampled following a Poisson process. Going from the discrete to the

continuous model and adding the term [f log(f ) − f ], we get the Kullback-Leibler

divergence as given in definition 2.4.

Definition 2.4 (Kullback Leibler divergence). Let Ku(x) > 0 and f (x) > 0 for all

x ∈ Ω. Then the Kullback-Leibler divergence is given by

DKL (Ku(x), f (x)) =

∫
Ω
Ku log

Ku(x)

f (x)
+ f (x) − Ku(x)dx . (2.8)

We can now formulate the image reconstruction problem as an optimization
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problem, i.e. we are looking for the argument that minimizes

û = arg min
u

DKL(Ku, f ) + R(u), (2.9)

with R(u) representing any additional regularization on the solution û. For ex-

ample, MÜLLER [2013] analyzed the use of (higher order) total variation regu-

larization in the context of PET image reconstruction. However, oftentimes this

minimization problem is solved without additional regularization. In that case,

the simplest way solve (2.9) iteratively is the EM algorithm.

Definition 2.5 (EM algorithm). Let K ,u > 0 elementwise and let u0 > 0. Then the

EM algorithm is given by

uk+1 = ukKT f

Kuk
, k = 0,1, . . . (2.10)

Since the entries of K are probabilities and f is our non-negative data, the

assumptions for the EM algorithm are obviously satisfied and the algorithm itself

can easily be derived by checking the Kuhn-Tucker conditions for ` from (2.7).

We have

∇`(u) = KT

(
f

Ku
− 1

)
(2.11)

where 1 is the vector containing only 1’s. Each global maximum u of ` has to

satisfy

uKT

(
f

Ku
− 1

)
= 0, (2.12)

which leads to the simple iteration scheme

uk+1 =
uk
KT1

KT f

Ku
. (2.13)

In fact, the EM algorithm described in Algorithm 1 is an instance of the EM

algorithm by DEMPSTER et al. [1977], which has been shown by SHEPP AND
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VARDI [1982]. VARDI et al. [1985] then proved convergence.

Algorithm 1 EM algorithm

Input: PET data f , PET matrix K
Output: reconstructed image u

1: initialize u0 > 0
2: for k = 1,2, . . . do
3: compute uk+1 =

uk
KT 1

KT f
Ku

4: end for

2.4. Dynamic Positron Emission Tomography

In our case, we are interested in a dynamic process, i.e. myocardial blood flow,

and we need a suitable tracer. A good candidate for these kinds of measurements

is radioactive water H2
15O since it behaves exactly like water and therefore is

highly diffusible in the blood pool of the patient. Compared to a normal water

molecule, the oxygen-16 isotope is replaced by the radioactive oxygen-15. The

downside of oxygen-15 is its very short half-life of 122.24 seconds, which results

in low measurement times and poor statistics. In fact, due to the fast decay, the

measurement will start even before the tracer is injected to make sure that no

coincidences are missed.

Furthermore, we can not simply collect all coincidences for the image recon-

struction, since we would not be able to see any dynamics. We have to separate

the sinogram data into smaller temporal frames. The length of the frames usually

is chosen such that each frame consists of a similar amount of coincidences. Since

the activity is much higher at the beginning of the scan, the first time frame might

encompass 5 seconds while a time frame at the end of the scan could be as long

as 30 seconds.

The obvious problem with this separation into frames is that each frame consists

of even fewer coincidences than the already low count H2
15O scan. This leads to

noisy, low-quality images if we reconstruct each frame independently with the

EM algorithm. Nonetheless, these images are usually the basis for any kind of
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Figure 2.5.: Blood flow quantification process. From the measured data f an image
sequence is reconstructed using the EM algorithm. These images are then used as a basis
to compute the parameters of a suitable compartment model.

parameter estimation.

The state of the art for blood flow quantification is using this reconstructed

image sequence. The images are being masked to include only the heart and are

segmented to identify the myocardial tissue and both ventricles, which is often

done by computing the principal components of the images to get factor images

[BARBER AND MARTEL, 1992; BARBER, 1980]. Finally, a non-linear least squares

fit to a suitable model is performed to estimate the relevant model parameters

(see e.g. SCHÄFERS et al. [2002] and references therein).

This method (see Figure 2.5) obviously carries with it all the negative side

effects mentioned already in the context of dynamic PET reconstruction. The

quality of the parameter fitting does depend on the quality of the reconstructed

images. We can use additional regularization with the EM algorithm, but we

still have reconstructions that neglect the temporal information inherent in the

dataset.

In the next chapter, we will try to remedy these problems. We will introduce

the kinetic models that are also used in the parameter fitting mentioned above

and construct an operator that decouples the temporal and spatial information.

This way we can hopefully identify the important tracer dynamics while having

much more control over the reconstruction of the spatial information.
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3
MODEL-BASED IMAGE

RECONSTRUCTION

The reconstruction problem for dynamic PET is difficult due to the quality of the

measurements, therefore, apriori information in form of a mathematical model is

used to improve the results. Since the information content of PET data typically

is inadequate to support very complex models, we are compelled to use a model

that simplifies the true physiology to a usable degree. Kinetic models are being

used extensively in pharmacokinetics to describe the interaction of chemicals in a

living organism and thus appear to be appropriate to describe myocardial blood

flow.

In Section 3.1 we describe the basic concept behind kinetic modeling and

compartmental models. We will motivate the dynamic PET image reconstruction

problem in Section 3.2 in terms of the operator we derived from the compartment

model and also introduce a non-linear blood flow model in Section 3.3 and

examine the connection between both models.
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Figure 3.1.: Linear compartment models, with the input function CA , the tissue tracer
concentrations CT and CTi , and exchange variables a,b and ai ,bi , respectively.

3.1. Kinetic Modeling

The reconstructed PET images consist of superimposed signals, but we want to be

able to examine a single signal by itself. A mathematical model describing the

dynamics of the tracer enables us to relate the possible physiological or chemical

states to the PET images. These states are called compartments.

A typical assumption in compartmental modeling is the uniform distribution

of the tracer inside a compartment since we use compartments to describe the

concentration change of a tracer over time and not in space. Each spatial region

we are interested in, e.g. a single pixel or voxel, therefore consists of unique,

homogeneous states, with each state being assigned a compartment. The con-

nection between the compartments and the tracer concentration change inside

the compartments can be described by linear, first order, ordinary differential

equations (ODE).

Figure 3.1a shows the simplest compartment model, the two-compartment

model. In nuclear medicine, it is custom for the first compartment to represent

the tracer concentration in the plasma or blood pool. However, the tracer concen-

tration in the blood is not considered to be a compartment, since it is not part

of the model being calculated but rather a measured quantity usually called the

input function. Due to this, the standard two-compartment model is also called

the one-tissue compartment model.
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Given an input function CA, the corresponding ODE to calculate the tracer

concentration in the tissue is

dCT (t)

dt
= aCA(t) − bCT (t). (3.1)

Since we are dealing with H2
15O PET scans, the measurement is started before

the tracer is injected due to its short half-life. This means the initial condition is

zero, CT (0) = 0, and we can solve the ODE (3.1), obtaining

CT (t) = a

∫ t

0
CA(t)e−b(t−τ )dτ . (3.2)

There are several versions of multiple compartment models. For example,

two-tissue compartment models are used to describe cerebral glucose use with

[18F]FDG and three-tissue compartment models are common for brain receptor

studies. However, CUNNINGHAM AND JONES [1993] have proposed an alternative

to using a specific compartment model by applying spectral analysis to general

linear multiple compartment models. The time-activity curve (TAC) for the tissue

compartment is modeled as the convolution of the input function with several

exponential terms,

CT (t) =

∫ t

0
CA(τ )

N∑
i=1

aie−bi (t−τ )dτ , (3.3)

with N being the (large) maximum number of terms being included in the model

and the bi ’s being fixed to cover a suitable spectral range. The idea is that most of

the coefficients will be equal to zero and there are only a few positive peaks in

the spectrum. A representation of the model (3.3) is shown in Figure 3.1b.

We can understand (3.3) as a natural extension of (3.2) with both formulations

being equal for N = 1.

READER et al. [2007, 2006] have used this spectral analysis technique to

decrease the noise levels in dynamic PET image reconstruction.



36 3 Model-based image reconstruction

0 5 10 15 20 25

0.0

0.5

1.0

1.5

(a) Basis functions according to (3.5).
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Figure 3.2.: A set of 61 basis functions generated according to Equation (3.5) with
parameters bi ∈ [0,6] and step size 0.1. The input curve is shown in blue. Figure (a)
shows the computed basis functions and Figure (b) shows the basis functions normalized
using the L2 norm.

3.2. Linear model operator

We now want to apply the model given in (3.3) to each pixel in our image domain

and add a spatial dimension to the coefficients ai . Assuming the input function

and the coefficients ai(x) are known, and the bi ’s are given, we can construct an

image sequence,

u(x , t) =

∫ t

0
CA(τ )

N∑
i=1

ai(x)e−bi (t−τ )dτ . (3.4)

By rearranging the terms we can define temporal basis functions as

b̃i(t) =

∫ t

0
CA(τ )e−bi (t−τ )dτ , (3.5)

with Figure 3.2 showing an example of a set of basis functions. We are now able

to map the spatial coefficients onto an image sequence using a linear operator B,

[B(a)] (x , t) B
n∑
i=1

ai(x)b̃i(t). (3.6)

Instead of having to solve the image reconstruction problem (2.3), the problem
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Figure 3.3.: Model based inversion problem. The model operator B maps a coefficient
vector of the compartment model onto an image sequence u. Using the linear PET
operator K the images sequence is transformed into the sinogram space. The inversion of
this process (i.e. the inversion of B) allows us to estimate the coefficients directly from
the data.

is now transformed into finding the coefficient vector a such that

Pois(KBa) = f . (3.7)

This problem formulation is depicted in Figure 3.3 and has the advantage that

we can use all the information of the PET dataset f to reconstruct the coefficient

vector directly instead of estimating them form reconstructed low quality images.

To solve problem (3.7), HEINS [2014] used `1,∞ regularization to promote local

sparsity on the coefficients, since the coefficient vector should be sparse regarding

the basis functions for every pixel. In this approach works well to identify the

support of different regions, however, it is difficult to identify the true sparse

coefficients. The problem arises due to the fact that some of the basis functions

are very similar to each other (see Figure 3.2) and the true coefficients belonging

to a specific basis function might get distributed on two or more very similar basis

functions. For a detailed analysis of the method and experimental results, we

refer to HEINS [2014].

We will focus on another feature of the operator B. As we see in (3.6), the

operator separates the spatiotemporal image sequence u(x , t) into two parts, the

space dependent coefficients ai(x) and the temporal basis functions b̃i(t). We

will use exactly this separation in the next chapter as the motivation to use data

analysis techniques.

The decoupling of the space and time dimension also has another immediate

advantage. As mentioned in Section 2.4, the standard approach to reconstructing
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Figure 3.4.: One-tissue compartment model with flow.

a dynamic PET dataset results in low-quality images, since we need to separate the

measured data into temporal frames. But if we are able to extract the temporal

information from the dataset we are left with a number of factors consisting

of spatially dependent coefficients in the sinogram space. We can then use the

EM algorithm (see Algorithm 1) on these factors to reconstruct the coefficient

vectors and get the coefficients in the image space, which gives us a way to

visually interpret the coefficients with regards to the corresponding temporal

basis functions (see Chapter 5).

3.3. Non-linear kinetic model

For the rest of this thesis we will use the linear model operator based on the

spectral analysis technique introduced in Section 3.2, however, we close this

chapter describing a non-linear model developed by BENNING et al. [2010, 2008]

to motivate another interpretation of the linear model.

We want to apply the compartment model from Section 3.1 on the smallest

scale, with the blood compartment representing a single capillary and the tissue

compartment representing the surrounding tissue in the immediate neighborhood.

While the tracer flows through the capillary some of it is removed from the blood

via extraction into the tissue and the tracer concentration in the blood is being

reduced.

We model this behavior by extending the one-tissue compartment model as

shown in Figure 3.4. The tracer enters the capillary via the arterial side with a

concentration CA and leaves the capillary with concentration CV on the venous
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side. The blood flows with the flow rate F .

If we assume that the compartment is in a steady state, Fick’s principle states,

that the flux of blood entering the compartment has to equal the flux of blood

leaving the compartment. The arterial tracer flux is just the arterial tracer

concentration multiplied by the flow rate, JA(t) = FCA(t), and the venous tracer

flux analogously JV(t) = FCV(t). Fick’s principle now simply states, that JA(t) =

JT (t) + JV(t). Again, we can derive an ODE describing the net tracer flux into the

tissue,

JT (t) =
dCT (t)

dt
= JA(t) − JV(t) = F (CA(t) −CV(t)). (3.8)

Since we are dealing with a highly diffusible tracer, the tissue tracer concen-

tration CT (t) and the venous tracer concentration CV(t) will quickly equilibrate.

Thus, we can introduce the so-called partition coefficient λ = CT
CV

, which usually is

set between 0.91 and 0.92 [IIDA et al., 1988].

Combining the partition coefficient with the ODE (3.8), we get

dCT (t)

dt
= F

(
CA(t) −

CT (t)

λ

)
. (3.9)

Again, we can solve the ODE (3.9) explicitly forCT using the zero initial condition

and receive

CT (t) = F

∫ t

0
CA(t)e−

F
λ (t−τ )dτ . (3.10)

Due to the low resolution of the PET scans we can not determine the perfusable

tissue exactly but need to choose larger regions for the compartments. This,

however, creates new problems that we are briefly addressing here following the

ideas of IIDA et al. [1988].

First, since we are enlarging the compartments to make sure that perfusable

tissue is actually contained in the compartment, we need to introduce a new

variable, the tissue fraction r (x), that estimates the fraction of purely perfused

tissue in the compartment.
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Figure 3.5.: Model based non-linear inversion problem. The model operator G couples
the parameters of the compartment model with an image sequence u. Using the linear
PET operator K the image sequence is transformed into the sinogram space. The inversion
of this process (i.e. the inversion of G) allows us to estimate the parameters directly from
the data.

Second, with the ODE model above we are separating the tracer concentrations

into the arterial and venous tracer concentrations, CA(t) and CV(t). Since the

arterial blood originates from the left ventricle and the venous blood from the

right ventricle, we can identify CA(t) with the tracer concentration in the left

ventricle and CV(t) with the tracer concentration in the right ventricle. However,

due to the size of the compartments and the heart motion during the PET mea-

surement, there will be tracer concentration spillover in the border regions of the

compartments. To account for this effect we introduce the spillover term s(x).

Combining all these effects linearly

Creal
T
(t) = rCT (t) + sCA(t), (3.11)

we get the model operator G

G(F , r , s,CA) = r (x)F (x)

∫ t

0
CA(τ )e−

F (x )
λ (t−τ )dτ + s(x)CA(t). (3.12)

As in Section 3.2, we can now reformulate the original problem as a parameter

identification problem. We can model blood perfusion with a limited set of

parameters p = (F , r , s) and create time series of images by computing G(p).

Applying the PET operator K to this sequence results in the sinogram data f . The

inversion of this process allows us to identify the parameters p directly from the

data f , as schematically represented in Figure 3.5.
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To actually solve this problem we can write it as a minimization problem,

DKL(Ku, f ) + R(p) → min
p

subject to u(x , t) = G(p), (3.13)

where DKL is the Kullback-Leibler divergence as defined in (2.4) and R is the

functional containing additional regularization on the parameters p. Again, the

advantage is in this case that we use the whole dataset to identify the parameters,

but we also see that this procedure gives us the opportunity to add regularization

directly to the parameters instead of regularizing the image reconstruction process.

This gives us much more control over the solution.

BENNING et al. [2010, 2008] are using a forward-backward operator splitting to

solve the constrained minimization problem (3.13), based on the corresponding

Lagrange functional,

L(u,p; λ) =
∫ T

0

∫
Ω
(Au − f log(Au))dxdt + R(p)

+

∫ T

0

∫
Ω
(G(p) − u) λdxdt .

(3.14)

with λ being the Lagrangian multiplier, Ω the spatial domain and T the end time

of the time interval. The main difficulties with this non-linear problem are the

identifiability of the parameters since neither convergence nor uniqueness can be

guaranteed.

While we will not further investigate this non-linear model based approach,

there is a nice connection between the spectral model approach of Section 3.2

and the non-linear approach in this section. Let us compare both operators,

[G(F , r , s)](x , t) = r (x)F (x)

∫ t

0
CA(τ )e−

F (x )
λ (t−τ )dτ +s(x)CA(t), (3.15)

[Ba](x , t) = aj(x)b̃j(t) +a0(x)b̃0(t). (3.16)

The motivation behind the spectral approach was to have a large number of

basis functions b̃i and find ideally only one non-zero coefficient aj(x). In this

case, that single coefficient would represent the perfusion, corrected by the tissue
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fraction. By adding the input function itself to the set of basis functions as b̃0(t),

corrected by the spillover, the linear operator B is equivalent to the non-linear

operator G.

While under ideal assumptions, the reconstruction of a single coefficient might

be theoretically possible, in practice we can not hope to achieve this. In addition

to the mentioned spillover effect, we also have to deal with partial volume effects,

which is the underestimation of the activity of a small object do to an insufficient

resolution of the imaging method. Given all the problems mentioned in this

section, a single pixel or voxel will most likely not consist of a single type of tissue

and we expect the activity to be represented by several basis functions, and thus

by more than one non-zero coefficient.
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4
MATHEMATICAL DATA ANALYSIS

In medical imaging, the measured data can be very complex. A dataset usually

consists of many different superimposed two- or three-dimensional time-varying

signals, while we are only interested in a few key parameters. Data analysis

techniques promise to reduce the complexity of these datasets and help recover

the relevant information.

In Chapter 2 we have already mentioned the use of factor images to improve

the region of interest analysis. Principal component analysis (PCA) is the most

prominent way to do a factor analysis and has been used for at least 40 years

[BARBER, 1980; SCHMIDLIN, 1979]. Since the popularization by LEE AND SEUNG

[1999, 2001], non-negative matrix factorization (NMF) also became a popular

choice as well.

While we follow similar ideas than the approaches above, we do not want to

use these data analysis methods for a factor analysis, but rather apply them to the

measurements directly and identify the time-activity curves and the corresponding

coefficients.

We start this chapter in Section 4.1 by providing a brief introduction to PCA

and the inherent problems that arise when used on dynamic PET data. In Section

4.2 we introduce the NMF problem and discuss the corresponding minimization

problem and its properties. We close this chapter with Section 4.3 by presenting
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Figure 4.1.: PCA of 2D data cloud.

several algorithms to solve the NMF problem and consider ways to include

additional regularization.

4.1. Principal component analysis

Principal component analysis has been invented by PEARSON [1901] and is a

statistical data analysis method that transforms a dataset of observations into

linearly uncorrelated variables, the principal components. The transformation is

done in a way that the first principal component has the largest variance, i.e.

explains the largest part of the observation data. The second, and all further

components, are being chosen to have the largest variance regarding the residual

dataset under the constraint of being orthogonal to all preceding components.

In a mathematical sense, PCA is a linear orthogonal transformation of the

dataset into a coordinate system where each coordinate corresponds to a principal

component, starting by the coordinate with the highest variance going to the

coordinate with the least variance. An easy way of visualizing this transformation

is to imagine a two-dimensional elliptical point cloud, with the major axis of the

ellipsis corresponding to the first principal component, and the minor axis to the

second principal component, as shown in Figure 4.1.

Let us assume a p-by-n dataset X , consisting of p variables x1, . . . ,xp and n

samples or observations. There are no additional assumptions on the dataset X ,

except that the first and second order statistics are known or can be estimated
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from the samples. Thus, the first step is to center the dataset, i.e. shift the sample

mean of each column to zero.

Consider now the linear combination

y1 =

p∑
k=1

w1kxk = w
T
1X (4.1)

where w11, . . . ,w1p are scalar weights of a p dimensional vector w1. The variable

y1 is the first principal component of X if its variance is maximal. Since the

variance increases as the norm of the weight vector grows, we restrict the vector

w1 to be a unit vector. Thus, w1 has to satisfy

w1 = arg max
‖w ‖=1

‖wTX ‖2 = arg max
‖w ‖=1

wTXTXw, (4.2)

which can be rewritten as

w1 = arg max
wTXTXw

wTw
(4.3)

since w1 is defined as a unit vector.

Having found w1, we can compute the weights for the second component by

simply subtracting the first principal component from X,

X̂ = X −wT
1Xw1, (4.4)

and use the same formula to find the weights resulting in the maximum variance

for the second component

w2 = arg max
wT X̂T X̂w

wTw
. (4.5)

If we repeat this process for all principal components, we get the full principal

component decomposition of X as

Y =WX (4.6)
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withW being a p-by-p matrix containing the weights and Y the transformed data.

While it is possible to compute all principal components, this is usually not

preferable. We want to reduce the complexity of the dataset by identifying the

most relevant components first and stop after enough components have been

computed. How many components are necessary clearly is a difficult problem in

and of itself and depends greatly on the quality of the data and the application.

In this sense, we are not looking for a principal component decomposition, but

for a principal component approximation.

In fact, when used as a method for compression or dimension reduction, the

motivation behind PCA is, that the elements of the dataset are mutually correlated.

By computing a transformation consisting of linearly uncorrelated variables, we

can reduce the redundancy inherent in the data due to the correlation. Thus,

we can compress the data since we need fewer components to describe the

transformed dataset without losing information.

Although PCA is very good at reducing the complexity and dimensionality of a

dataset without losing much information, we will not follow this approach going

forward. While the components have a statistical interpretation (maximizing

variance), they lack a connection to the physiological factors we are looking for

when dealing with dynamic PET data. The most obvious problem is that we can

not expect the principal components to be non-negative, while the factors we are

interested in are based on physical, non-negative quantities.

A simple illustration of the behavior of PCA for non-negative data is shown in

Figure 4.2. The dataset consists of three non-negative squares, each having a

distinct TAC (see Figures 4.2a and 4.2c). We see in the first PCA factor in Figure

4.2d, that all three squares are represented partly by the first factor. In fact, all

three squares and the TAC for the first factor are positive, since PCA tries to

explain as much of the data as possible in the first factor. However, for the next

factors, PCA is limited to factors orthogonal to the previous factors which results

in negative values in both the TACs as well as the factors.

There have been several attempts to improve PCA to mitigate this problem. The

idea is, that the space spanned by the principal components might at least contain
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Figure 4.2.: PCA decomposition example. (a) shows the time-activity curves of the
factors in (c); (b) shows the time-activity curves of the PCA factors in (d).

the physiological factors that one is interested in and it is simply a matter of

finding them in the reduced PCA space. Since there are infinitely many solutions,

several constraints have been used to find physiologically meaningful factors,

one of the first of course being a positivity constraint. These efforts only showed

limited success, as has been noted by BARBER AND MARTEL [1992].

Therefore, we will use another statistical analysis method, called non-negative

matrix factorization that gets rid of the problem of non-negative factors.
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4.2. Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a multivariate analysis method that

factorizes a data matrix X into two non-negative matrices W and H . Similar

to PCA, we are usually not interested in a full decomposition of the data, but

rather in a few components which reasonably approximate the dataset. Since

non-negativity is inherent in dynamic PET datasets, NMF leads to a decomposition

into factors that are much easier to interpret compared to PCA. In fact, since only

additive combinations are allowed due to the non-negativity, NMF goes well with

the idea that we want to decompose data into separate parts constituting the

whole dataset.

NMF has been introduced for spectrophotometry by LAWTON AND SYLVESTRE

[1971] under the name self modeling curve resolution, while PAATERO AND TAPPER

[1994] called the concept positive matrix factorization. The name non-negative ma-

trix factorization became prevalent after LEE AND SEUNG [1999, 2001] published

simple update rules to solve the NMF problem.

To state the problem mathematically, let X be a non-negative matrix of dimen-

sion M ×N . We want to find two non-negative matricesW ∈ RM×K and H ∈ RK×N

such that

X ≈WH . (4.7)

The dimension K is typically chosen in a way to reduce the dimensionality, i.e.

K � M,N . Due to the reduction of dimensionality, we can not necessarily expect

an exact solution but only an approximation and thus, NMF is also sometimes

called non-negative matrix approximation.

To calculate a factorization as in (4.7) we consider the following minimization

problem

W ,H ← arg min
W ,H

D(X ,WH ) such thatW > 0, H > 0, (4.8)
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with D(X ,WH ) being some kind of distance measure or cost function.

The most common choice for the distance measure is the Euclidean distance

DEU (X ,WH ) = ‖X −WH ‖2F =
∑
i,j

(
Xij − (WH )ij

)2
, (4.9)

with ‖ · ‖F denoting the Frobenius norm. This assumes implicitly an additive

Gaussian noise model, which is a reasonable assumption for many applications.

In our case, however, the natural choice is to use the Kullback-Leibler divergence,

DKL(X ,WH ) =
∑
i,j

(
Xij log

Xij

WHij
− Xij + (WH )ij

)
, (4.10)

since we are dealing with data gathered from measurements that follow a Poisson

process (see 2.3).

Before discussing various algorithms to compute the NMF, we will briefly

mention challenges arising with NMF.

4.2.1. Non-uniqueness

An apparent problem with any factorization (W ,H ) of X , is its non-uniqueness.

It is easy to see, that any matrix S that satisfies WS ≥ 0 and S−1H ≥ 0 creates

another valid NMF. In the simplest case, S is just a permutation matrix scaling and

permuting single factors, which in practice is not an issue. However, there might

exist matrices S satisfying the above conditions that are not simple permutation

matrices, which in turn could lead to completely different factors and, hence,

interpretations.

Under certain conditions, however, DONOHO AND STODDEN [2004] have been

able to prove uniqueness. To summarize the results we need to start with a few

definitions about cones.

Definition 4.1 (Conical hull). Let S be any set. The conical hull is defined as

cone(S) =

{
k∑
i=1

αixi | xi ∈ S, 0 ≤ αi ∈ R, i,k ∈ N

}
. (4.11)



50 4 Mathematical data analysis

Definition 4.2 (Polyhedral cone). A polyhedral cone C in Rn is the intersection of

a finite number of halfspaces, including the origin, i.e. given a matrix A,

C =
{
x ∈ Rn | ATx = 0

}
. (4.12)

Definition 4.3 (Extreme ray). An extreme ray of a convex cone C is a ray Rx =

{ax | a ≥ 0} where x ∈ C can not be represented as a convex combination of two

points x0,x1 ∈ C \ Rx .

Definition 4.4 (Simplicial cone). A simplicial cone is a polyhedral cone with all

extreme rays being linearly independent.

Note that, given a set of vectors, e.g. the columns of a matrix A, the conical hull

cone(A) = {x = Aλ | λ ≥ 0} (4.13)

is a polyhedral cone. Thus, if cone(A) is a simplicial cone, there exists a unique λ

for every x ∈ C. On the other hand, if A has full rank, the conical hull cone(A) is

a simplicial cone.

Given these definitions, we can state the following Lemma.

Lemma 4.1. Let rank(X ) = K . The NMF of a matrix X ≥ 0 is essentially unique if

and only if a unique simplicial coneW exists, with K extreme rays satisfying

cone(X ) ⊆ W ⊆ PV (4.14)

with PV = {w | UTw = 0,w ≥ 0} and U being a matrix whose columns span

Null(XT ).

Proof. See Section 4, Theorem 4.1 in TAM [1981].

We can understand Lemma 4.1 as a reformulation of the NMF problem. Given

a full rank of the non-negative data matrix X , we can get the factorW by finding

a simplicial coneW and taking its extreme rays as the columns ofW .

Finally, DONOHO AND STODDEN [2004] found the following conditions guaran-

tee uniqueness.



4.2 Non-negative matrix factorization 51

Theorem 4.1. Let X ≥ 0 with rank(X ) = K . The non-negative matrix factorization

X =WH is unique under the following conditions.

• Generative Model. Let the groups P1, . . . ,PA be a partition of the set

{1, . . . ,K} with |Pa | = B for all a = 1, . . . ,A. For all i = 1, . . . ,M and

a = 1, . . . ,A, there exists aWi,k such that

Wi,k , 0, k ∈ Pa,

Wi,l = 0, ∀l ∈ Pa, l , k .

• Separability. For each k = 1, . . . ,K there exists a j ∈ {1, . . . , J } such that

Hk,j , 0,

Hk,l = 0, ∀l , j .

• Complete Factorial Sampling. For any ka ∈ Pa, there exist an i ∈

{1, . . . ,M} such thatWi,ka , 0.

Proof. See Section 6 in DONOHO AND STODDEN [2004].

Under the assumption that a particular factorization is given, LAURBERG et al.

[2008] proved uniqueness under a different set of conditions, and HUANG et al.

[2014] improved on these results while also extending the uniqueness results to

the special case of symmetric NMF. In general, however, we can not expect an

NMF to be unique since these kind of conditions are very restrictive. Therefore,

we will not discuss these results here but refer to the references for details.

We will deal with the non-uniqueness in two ways. First, since the minimization

problem 4.8 is scaling invariant, we incorporate additional constraints on the

factorsW ,H , like column or row normalization using the L2 norm, which allows

us to reasonably compare different factorization results. Second, we incorporate

a priori information in form of regularization terms into to the minimization
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problem. Instead of 4.8, we the have to solve

W ,H ← arg min
W ,H

D(X ,WH ) + rW (W ) + rH (H ), (4.15)

with rW and rH representing the regularization terms forW and H .

4.2.2. NP-hardness

As mentioned above, we are interested in a non-negative matrix factorization that

approximates a non-negative matrix, which is a generalization of what is often

called exact NMF. Using the same notation as in 4.7, exact NMF can be stated as

the problem of finding the factorization X =WH , given a non-negative matrix

with rank(X ) = K . Note that a solution to for exact NMF does not need to exist,

but that an optimal algorithm for the approximated version of NMF should solve

the exact NMF problem, when the matrix X does have rank(X ) = K .

VAVASIS [2009] have shown that the exact NMF problem is NP-hard, and

we can assume that any generalization of exact NMF is NP-hard as well. In

practice, however, this does not seem to be a problem with the algorithms working

successfully for most application. We will examine numerical convergence again

specifically for the algorithms that we use below.

4.2.3. Factorization rank

Another very apparent problem is the choice of the factorization rank k. As

mentioned above, we are usually interested in reducing the dimensionality of the

dataset by identifying only the most relevant factors, but it might not be obvious

beforehand how many factors are necessary.

Aside from simply testing several values for k, we could use apriori information

in form of the help of an expert, who might be able to guess a realistic number of

relevant factors. Another more objective approach would be to use the singular

values of the data matrix as an indicator. Either way, this continues to be an open

problem without a clear solution.
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4.3. Algorithms for non-negative matrix factorization

To find a solution for the minimization problem (4.7), we have to minimize over

bothW and H . Most algorithms for NMF do this alternatingly, i.e. fixing eitherW

or H and optimizing for the other. For example, we start by keeping H fixed and

solve the minimization problem

Ŵ = arg min
W ≥0

D(X ,WH ) (4.16)

and then use Ŵ and keep it fixed when we solve

Ĥ = arg min
H≥0

D(X ,ŴH ). (4.17)

The result is a block coordinate descent scheme as shown in Algorithm 2, which

is the general framework of most alternating algorithms. Since the problem

is symmetric in that D(X ,WH ) = D(XT ,HTW T ), most algorithms use the same

update function for bothW and H .

Algorithm 2 Block coordinate descent

Input: data matrix X ∈ Rm×n ≥ 0, factorization rank k

Output: factorization matricesW ∈ Rm×k
+ ,H ∈ R

k×n
+

1: initializeW (0),H (0) ≥ 0

2: for i = 1,2, . . . do

3: W (i) = update(X ,W (i−1),WH (i−1))

4: H (i)
T
= update(XT ,H (i)

T
,W (i−1)T )

5: end for

4.3.1. NMF initialization

All NMF algorithms are iteratively updating the factorsW and H and therefore

depend on some kind of initialization. The simplest and most used way to initialize

the factors is to simply create random non-negative matrices. A randomly bad



54 4 Mathematical data analysis

initialization, however, might lead to convergence to a local minimum, so that a

different random initialization needs to be used. Further, to make different NMF

algorithms comparable, one should use the same randomly generated matrices

for all algorithms.

BOUTSIDIS AND GALLOPOULOS [2008] have proposed an SVD based initializa-

tion method, called non-negative double singular value decomposition (NNDSVD),

that does not depend on randomness. Given the factorization rank k, the idea

is to compute the first k singular values of the data matrix and then using the

positive parts of the unit-rank matrices corresponding to the singular vectors.

Since the basic form simply sets the negative parts equal to zero, this initialization

results in sparse positive factors, that already approximate the dataset to a certain

degree, improving the convergence. We summarize the approach in the appendix

in Section A.1.

Aside from the basic NNDSVD algorithm, they also propose two dense variants

that do not set the negative values to zero but initialize them with the arithmetic

mean of the dataset, NNDSVDa, or a random value depending on the mean of

the dataset, NNDSVDar.

NNDSVD performs very well in most algorithms and we will use it as the

standard initialization method, except for the multiplicative updates rules. We

will examine why in Subsection 4.3.2.

4.3.2. Multiplicative update rules (MUR)

While multiplicative update rules (MUR) have been used by DAUBE-WITHERSPOON

AND MUEHLLEHNER [1986] for non-negative least squares (NNLS) problems,

LEE AND SEUNG [2001] described them for NMF in two variants, using the

Euclidean distance and the Kullback-Leibler divergence as cost functions, thereby

popularizing the use of NMF.

In the case where the cost function is the Euclidean distance DEU , the update
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rules are

W ←W ∗
XHT

WHHT
, H ← H ∗

W TX

W TWH
. (4.18)

Using the Kullback-Leibler divergence, we have the update rules

W ←W ∗
X

WHH
T

1M×NHT
, H ← H ∗

W T X
WH

W T1M×N
, (4.19)

with 1M×N being a matrix of dimension (M × N ) with every entry equal to one.

Note that the division is considered element-wise, while "∗" denotes element-wise

multiplication.

They have shown that the respective cost functions are non-increasing under

these updates, and are invariant under these updates if and only if W and H

are at a stationary point of the divergence. The proof can be found in LEE AND

SEUNG [2001] as well. It is however easy to see through simple substitution, that

a perfect reconstruction X =WH is a fixed point under the above update rules.

Due to the nature of multiplicative updates, it is obvious that a zero entry ofW

or H cannot be changed anymore, and thus, convergence cannot be guaranteed

in general. In practice, a simple solution to this problem is to reinitialize all zero

entries with small positive constants.

The problem with zero entries is also the reason, why we will not use NNDSVD

to initialize the factors. NNDSVD in its basic form will result in a sparse initial

factorization since all negative parts will be set to zero. Using these initial factors

we see that under the multiplicative update rules the solution gets stuck in a

local minimum close to the initialization, even with small positive reinitializations

as mentioned above. Therefore, we will usually use NNDSVDa, however, a

completely random initialization seems to lead to good results as well.

The multiplicative updates rules for the regularized NMF problem (4.15) with

rW (W ) =
αW
2 ‖W ‖

2
F + βW ‖W ‖1 and rH (H ) =

αH
2 ‖H ‖

2
F + βH ‖H ‖1 have been given by

LECHARLIER AND DEMOL [2013]. For the Euclidean distance DEU (X ,WH ) the
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updates are

W ←W ∗
XHT

WHHT + αWW + βW1M×K
, (4.20)

H ← H ∗
W TX

W TWH + αHH + βH1K×N
. (4.21)

Using the Kullback-Leibler divergence DKL(X ,WH ), we have the updates

W ←
2A

B +
√
B2 + 4αWA

with A =W ∗
X

WH
HT , B = βW1M×K + 1M×NH

T ,

(4.22)

H ←
2C

D +
√
D2 + 4αHC

with C = H ∗W T X

WH
, D = βH1K×N +W

T1M×N ,

(4.23)

with the exponentiation being defined element-wise as Z2 = Z ∗ Z . The regular-

ization parameters αW ,H , βW ,H balance the respective regularizations.

4.3.3. Alternating (non-negative) least squares (ALS/ANLS)

In the case where the Euclidean distance is used, another popular choice for

alternatingly solving the subproblems (4.16) and (4.17) is the alternating least

squares (ALS) method. The idea is to solve the unconstrained least squares

problem and simply project all negative values onto zero. If we consider the

subproblem forW , we have the minimization problem

W = max
(
arg min
W ∈Rm×p

DEU (X ,WH ),0
)
, (4.24)

where max(·, 0) is applied element-wise. While ALS is easy to implement and not

expensive to compute, it usually does not converge, since the cost function might

oscillate.

A natural extension to ALS is called alternating non-negative least squares

(ANLS). In contrast to ALS, ANLS aims to solve the subproblems (4.16) and (4.17)



4.3 Algorithms for non-negative matrix factorization 57

exactly. For example, we get the non-negative least squares (NNLS) problem

W = arg min
W ≥0

DEU (X ,WH ) (4.25)

as the update forW .

The active set method by LAWSON AND HANSON [1995] was the first widely

used algorithm to solve the NNLS problem. The aim is to find the optimal active

set of variables corresponding to active constraints, i.e. equality constraints,

exchanging one variable between the active and passive set each iteration. Since

solving the NNLS problem exactly is computationally fairly expensive, many

approaches have been introduced to solve them more efficiently. For example,

the block principal pivoting (BPP) algorithm by PORTUGAL et al. [1994] tries to

improve on the active set method by exchanging multiple variables at once per

iteration.

Another fast way of solving NNLS problems, called fast combinatorial NNLS

(FCNNLS), has been introduced by VANBENTHEM AND KEENAN [2004] and is

based on the assumption that for many applications single problems are being

solved with many observation vectors. In such large-scale problems, there is

much potential to reduce the number of arithmetic operations by exploiting the

structure of the dataset.

Other ideas include approaches to reduce the computation cost by finding

reasonable first approximations for theW and H , as well as only solving the NNLS

subproblem in a refinement step in cheaper algorithms like ALS.

Given the regularized NMF problem (4.15) with rW (W ) = αW ‖W ‖
2
F and rH (H ) =

αH ‖H ‖
2
F , KIM AND PARK [2008] have shown that we can rewrite the NMF problem

as

W ← arg min
W ≥0







©­«
HT

√
αW IK

ª®¬W T −
©­«
XT

0K×M

ª®¬








2

F

(4.26)

H ← arg min
H≥0
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W
√
αH IK
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F

, (4.27)
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with IK being a K × K identity matrix and 0K×M ,0K×N matrices with only zero

entries of dimension K ×M and K × N respectively.

4.3.4. Alternating direction method of multipliers (ADMM)

As a more general algorithm, SUN AND FEVOTTE [2014]; ZHANG et al. [2015]

have proposed using the alternating direction method of multipliers (ADMM) as

a flexible framework for NMF. Before formulating the ADMM problem for NMF,

we will briefly introduce ADMM in general terms.

Given convex functions f and д, we have a problem in the form

minimize f (x) + д(z)

subject to Ax + Bz = c
(4.28)

with x ∈ Rn, z ∈ Rm, A ∈ Rk×n, B ∈ Rk×m and c ∈ Rk . We see that the objective

function in the above problem is separated with respect to the two variables x

and z. The corresponding augmented Lagrangian is given by

Lρ(x , z,y) = f (x) + д(z) + yT (Ax + Bz − c) +
ρ

2
‖Ax + Bz − c‖22 (4.29)

and the ADMM algorithm is given by the iterations

xk+1 B arg min
x

Lρ(x , z
k ,yk) (4.30)

zk+1 B arg min
z

Lρ(x
k+1, z,yk) (4.31)

yk+1 B yk + ρ(Axk+1 + Bzk+1 − c) (4.32)

with some ρ > 0.

We can formulate a scaled version of ADMM by scaling the dual variable and

combining the terms dealing with the constraints. With u = 1
ρy as the scaled dual
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variable, ADMM can be written as

xk+1 B arg min
x

(
f (x) +

ρ

2
‖Ax + Bzk − c + uk ‖22

)
(4.33)

zk+1 B arg min
z

(
д(z) +

ρ

2
‖Axk+1 + Bz − c + uk ‖22

)
(4.34)

uk+1 B uk +Axk+1 + Bzk+1 − c (4.35)

Both ADMM variants, the unscaled version (4.30) and the scaled version (4.33),

are equivalent, but we will mainly use the scaled version going forward, because

the updates usually are shorter than in the unscaled variant.

We can now rewrite the NMF problem (4.8) as

minimize D(X ,V ) + rH (H ) + rW (W )

subject to V = W̃ H̃ ,

W = W̃ ,H = H̃ ,

(4.36)

with the corresponding augmented Lagrangian

Lρ(X ,W ,H ,W̃ , H̃ ,αX ,αW ,αH ) = D(V |X ) + 〈αX ,X − W̃ H̃ 〉 +
ρ

2
‖X − W̃ H̃ ‖2F

+ 〈αW ,W − W̃ 〉 +
ρ

2
‖W − W̃ ‖2F + rW (W )

+ 〈αH ,H − H̃ 〉 +
ρ

2
‖H − H̃ ‖2F + rH (H ),

(4.37)

where rW (W ) and rH (H ) contain additional constraints on W and H , like non-

negativity.

TheW and H updates in Algorithm 3 are so-called proximity operators of the

function 1
ρr (·) around the point W̄ = W̃ + αW and H̄ = H̃ + αH respectively. While

there are many different possible ways to impose additional regularization or

constraints on the problem, we will concentrate on the two variants we are most

interested in, i.e. non-negativity and a smoothness regularization. For a detailed

overview of proximal algorithms, see PARIKH et al. [2014].

Non-negativity The non-negativity constraint can be expressed simply as a pro-

jection onto R+ and the function r (·) becomes the indicator function of R+.
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Algorithm 3 ADMM Algorithm for NMF

Input: data matrix X ∈ Rm×n ≥ 0

Output: factorization matricesW ∈ Rm×p
+ ,H ∈ R

p×n
+

1: initialize X ,W ,H ,W̃ , H̃ ,αV ,αW ,αH

2: for i = 1,2, . . . do

3: W̃ T ← (H̃H̃T + I )−1(H̃VT +W T + 1
ρ (H̃α

T
V − α

T
W ))

4: H̃ ← (W̃ TW̃ + I )−1(W̃ TV + H + 1
ρ (W̃

TαV − αH ))

5: V ← arg minV≥0 D(X |V ) +
ρ
2 ‖V −WH + αV ‖

2
F

6: W ← arg minW rW (W ) +
ρ
2 ‖W − W̃ + αW ‖

2
F

7: H ← arg minH rH (H ) +
ρ
2 ‖H − H̃ + αH ‖

2
F

8: αV ← αV +V − W̃ H̃

9: αH ← αH + H − H̃

10: αW ← αW +W − W̃

11: end for

The update reduces to an element-wise projection of the negative values to

zero.

Smoothness regularization Smoothness can be enforced by adding Tikhonov reg-

ularization ‖Γ · ‖2F with the Tikhonov matrix Γ being a difference operator,

i.e. a tridiagonal matrix with 2’s on the diagonal and (−1)’s on the sub-

and superdiagonal. Using the factor H as an example, the regularization

function becomes rH (H ) =
λ
2 ‖ΓH ‖

2
F , with some regularization parameter

λ > 0, and the corresponding proximity operator H = ρ(λΓT Γ + ρI )−1H̄ .

The choice of the ADMM parameter ρ is still an open problem since it affects

both the overall convergence as well as the convergence speed. While there exist

different approaches to heuristically determine a good value, in practice one often

has to simply test different values and choose the best performing one.

4.3.5. Alternating optimization ADMM (AO-ADMM)

HUANG et al. [2015, 2016] have shown that the combination of alternating
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optimization (AO) and alternating direction method of multipliers (ADMM)

creates a versatile framework for matrix and tensor factorization. In contrast to

ADMM, the proposed AO-ADMM framework does not try to solve the optimization

problem (4.36) for both factors simultaneously, but rather splits the problem

into two subproblems and alternatingly solves these subproblems using ADMM.

Similar to the other alternating algorithms, the subproblems arise by fixing one of

the factors and solving the minimization problem for the other factor. In this case,

however, additional auxiliary variables W̃ , H̃ and X̃ and the dual variables αW , αH

and αX are being introduced in the ADMM algorithm. FixingW , the subproblem

for H can be written as

min
H ,H̃ ,X̃

D(X , X̃ ) + rH (H )

subject to H = H̃ , X̃ =WH̃

(4.38)

with rH (H ) representing additional constraints on the factor H . Accordingly, fixing

H , we get the subproblem forW ,

min
W ,W̃ ,X̃

D(X , X̃ ) + rW (W )

subject to W = W̃ , X̃ = W̃H

(4.39)

with rW (W ) representing additional constraints on the factorW . The AO-ADMM

framework is described in Algorithm 4.

Algorithm 4 AO-ADMM framework

Input: data matrix X ∈ Rm×n ≥ 0, factorization rank p

Output: factorization matricesW ∈ Rm×p
+ ,H ∈ R

p×n
+

1: initializeW (0),H (0) ≥ 0

2: initialize dual variables UW ← 0, UH ← 0

3: for i = 1,2, . . . do

4: (W (i),UW ) ← solve subproblem 4.38 with algorithm 5

5: (H (i)
T
,UH ) ← solve subproblem 4.39 with algorithm 5

6: end for
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Each subproblem can be solved in an analogous way since the NMF problems

X =WH and XT = HTW T are equivalent. Therefore, we will describe the ADMM

algorithm only for the subproblem (4.38) in Algorithm 5. Note that, since W

is fixed in the subproblem, the product W TW can be precomputed and we can

use the Cholesky decomposition of LLT =W TW + ρI to efficiently compute the H̃

update instead of computing the inverse (W TW + ρI )−1 directly.

Algorithm 5 ADMM update for NMF subproblem (4.38)

Input: data matrix X ∈ Rm×n ≥ 0, factorization rank k

Output: H ∈ R
p×n
+ , αH ∈ R

p×n
+ , X̃ ∈ Rn×m

+ , αX ∈ Rm×n
+

1: initialize H ,αH , X̃ ,αX ≥ 0

2: ρ =
‖W ‖2F
k

3: for i = 1,2, . . . do

4: H̃ ← (W TW + ρI )−1(W T (X̃ + αX ) + ρ(H + αH )
T )

5: H ← arg minH r (H )
ρ
2 ‖H − H̃ +U ‖

2
F

6: X̃ ← arg minX̃ D(X , X̃ ) + 1
2 ‖X̃ −WH̃ + αX ‖

2
F

7: αH ← αH + H − H̃

8: αX ← αX + X̃ −WH̃

9: end for

The updates for H and X̃ are again proximity operators and for H we can use

the same updates as mentioned in Section 4.3.4. The update for X̃ , of course,

depends on the cost function, that we will consider being either the Euclidean

distance or the Kullback-Leibler divergence.

Euclidean distance In the case of DEU (X , X̃ ) = ‖X − X̃ ‖2F , Algorithm 5 actually

simplifies to trivial updates of X̃ and αX since H̃ is being fitted to X directly

instead of (X̃ + αX ). This also means the H̃ update can be computed even

more efficiently, since the termW T (X̃ + αX ) reduces toW TX , which does not

change during the iteration and, therefore, can be precomputed as well.

Kullback-Leibler divergence The proximity operator for DKL(X , X̃ ) as defined in
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(4.10) is

X̃ =
1
2

(
(X̄ − 1) +

√
(X̄ − 1)2 + 4X

)
, (4.40)

where all operations are element-wise [SUN AND FEVOTTE, 2014].

Again, choosing a good value for ρ is a difficult problem itself. Choosing

ρ =
‖W ‖2F
k seems to be work well in practice. Especially, since we are alternating

the ADMM subproblems, we can use the old iterates of the dual variables as

initializations for the next iteration, reducing the amount of ADMM iterations

needed to usually less than 10, down to even only one iteration.
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5
NUMERICAL RESULTS

In this chapter we will examine the results of the different NMF algorithms

introduced in Section 4.3 using synthetic dynamic PET data. Before applying

NMF algorithms, we need to reshape the dynamic PET data such that all spatial

information for each temporal frame is flattened into a one-dimensional vector.

Concatenating these vectors gives us the PET measurements in form of a two-

dimensional matrix X . Given a factorization X ≈WH , the columns ofW consist

of the spatial factors, while the rows of H contain the TACs for each factor. In

terms of the linear model operator (3.6),W contains the coefficients a(x) and H

the discretized temporal basis functions b̃(t).

In Section 5.1 we will look at the performance of the algorithms when no noise

is present to get an idea of what results we can expect in the best case scenario.

In Section 5.2 we will add Poisson noise to the data, simulating the bad statistics

of a dynamic PET measurement.

5.1. Clean data

We will test the different NMF methods using a synthetic test dataset representing

a two-dimensional cross-section through a human body. The whole sequence is 26

frames with Figure 5.1a showing the 13th frame, containing different regions with

respective tracer dynamics. We can see, that the dataset basically consists of five
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different regions, with five different temporal behaviors. However, the temporal

dynamics are very similar, suggesting that it might be difficult to separate the

signals from each other.

Since we apply the NMF algorithms to the sinogram data, the factors are

also sinograms and therefore difficult to compare visually. We can, however,

reconstruct a static image from each sinogram to see what parts of the original

image are being represented by which factor, and also how well the different parts

have been separated. For the image reconstruction, we use the EM algorithm.

Due to the invariance to scaling of NMF (see Section 4.2.1), we will normalize

the time activity curves, i.e. the factor H , using the L2-norm and scale the factor

W accordingly. Also, every factor is shown with respect to the same scale to make

it possible to compare the impact of a specific factor on the factorization.

Since the actual values of the factors are meaningless without additional

constraints or a problem specific scaling, we omit any numbering of the scales

in favor of a more clear representation, focusing on a visual comparison of the

results. The color bar in all figures is shown only as an orientation, with the

natural interpretation of black representing zero and white representing the

maximum value of the dataset.

5.1.1. MUR

The multiplicative update rules by LEE AND SEUNG [2001] are the easiest to

implement and are very quick to compute. However, they do have problems

separating similar signals from each other as we will see below. To get an

understanding for the NMF results in this chapter, we will look at the MUR results

with increasing the factorization rank one by one.

In Figure 5.2 we see the factorization result for k = 1, i.e. we only look for one

factor, that approximates the dataset the best. We can immediately expect the

result to be close to the result for the first principal component of a PCA since for

a non-negative dataset, the first component of a PCA will be non-negative as well

while explaining most of the variance in the dataset. In both cases, PCA and NMF
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Figure 5.1.: Synthetic dynamic PET dataset. (a) shows the 13th frame of the dataset. (b)
and (c) show the true and normalized TACs of the different regions.

will return a kind of average of the dataset, both in the temporal factors as well

as in the spatial factors. The spatial factor 5.2b can be understood to show the

most active parts of the dataset over time, on average.

Increasing the factorization rank to k = 2, we see in Figure 5.3 that we get a

separation. One factor mainly represents the body, while the other factor describes

the dynamics of the lungs and the heart. Especially the left lung seems to be

well represented by the second factor. Note, however, that the separation is not

perfect, which is to be expected since the signals are very close together. It also

makes sense in a physiological way, since if there is a lot of blood flow in a certain

region, that means that in that region, there is also implicitly some amount of

background flow, as in every region.

Increasing the factorization rank to k = 5, we can see the five factors in Figure

5.4. While we get different factors with distinct dynamics, each factor contains
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Figure 5.2.: Factorization results using MUR with factorization rank k = 1 and regular-
ization parameters αW ,H = 0 and βW ,H = 0.

part of the signal for the different regions. For example, the dynamics of the left

lung consists of the superposition of the first, third and fifth factor.

Increasing the factorization rank even further to k = 6, i.e., even higher than

there are signals in the original dataset, we can see in Figure 5.5 that we get

redundant factors. For example, apart from a slight scaling difference, the first

and fifth factor, i.e. Figures 5.5b and 5.5f, and the third and sixth factor, i.e.

Figures 5.5d and 5.5g, look very similar, and the time activity curves of both

factor pairs are almost identical as well. This is the usual behavior for all methods

when we try to find more factors than the method is able to separate.

Note that for all factorization ranks, even when dealing with clean data, we

can improve the results by adding at least a small amount of regularization. This

is true for all algorithms below, and thus some regularization has been added to

all results, as noted in the captions of the respective figures.
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Figure 5.3.: Factorization results using MUR with factorization rank k = 2 and regular-
ization parameters αW = 1, αH = 5 and βW ,H = 0.

5.1.2. ANLS

Next, we will examine the results of the ANLS algorithm as described in Section

4.3.3. In Figure 5.6 we see the results for a factorization rank of k = 5.

While we still get some overlap in the regions, we also get a fairly good

separation. In Figure 5.6f for example, we can see that the fifth factor clearly

represents the body without the lungs or the heart. The heart itself can only be

found in the second factor, see Figure 5.6c. The lungs are represented by all of

the first four factors.

5.1.3. ADMM

The factorization results using the ADMM algorithm from Section 4.3.4 can be

found in Figure 5.7. Again, using at least some additional regularization improves
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Figure 5.4.: Factorization results using MUR with factorization rank k = 5 and regular-
ization parameters αW = 5, αH = 4 and βW ,H = 0.
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Figure 5.5.: Factorization results using MUR with factorization rank k = 6 and regular-
ization parameters αW = 5, αH = 5 and βW ,H = 0.
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Figure 5.6.: Factorization results using ANLS with factorization rank k = 5 and regular-
ization parameters αW = 0, αH = 1.
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the results, therefore we use smoothness regularization for bothW and H with

λW = 0.01 and λH = 1.

Similar to the results obtained by the ANLS algorithm we do get some separa-

tion, e.g. the first factor in Figure 5.7b represents both lungs (plus the injection

site). However, part of the dynamic of the right lung is represented by the fifth

factor, see Figure5.7f. Also, the body region is represented by two factors, the

third and the fourth, see Figure 5.7d and 5.7e respectively.

5.1.4. AO-ADMM

Lastly, we will look at the factorization results for AO-ADMM shown in Figure

5.8. We will use the same additional regularization as for ADMM above, i.e.

smoothness regularization on bothW and H with λW = 0.01 and λH = 1, and as

we can see, we obtain comparable results to the ADMM algorithm.

5.1.5. Comparison

We will compare the factorization results by looking at the respective distance

values and also at the relative error (RE), which is defined as RE = ‖X−WH ‖F
‖X ‖F

.

Methods

We start by looking at the approximation errors for the case k = 5. Figure 5.9a

shows the distance value DEU (X ,WH ) per iteration for the different algorithms

presented in the above sections, while Table 5.1 shows the distance values and

the relative error for the end results.

We can see that while the MUR results converge quickly, the distance of the

factorization to the dataset is significantly larger compared to the other algorithms.

ADMM and AO-ADMM seem to converge to the same solution, which can also

be confirmed visually by comparing Figures 5.7 and 5.8, while AO-ADMM needs

fewer iterations. Both observations are to be expected. Both algorithms are based

on the ADMM algorithm and thus are expected to give comparable results, while

AO-ADMM is solving two ADMM problems per iteration, leading to fewer overall
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Figure 5.7.: Factorization results using ADMM with factorization rank k = 5 and regular-
ization parameters αW = 0.01, αH = 1.
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Figure 5.8.: Factorization results using AO-ADMM with factorization rank k = 5 and
regularization parameters αW = 0.01, αH = 1.
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iterations. However, while fewer main iterations are needed, overall it results

in a higher computational effort. We tested this by performing 100 iterations

of the AO-ADMM algorithms and used the corresponding distance value as the

threshold for the ADMM algorithm. On a PC with Intel Core i5-6500 CPU clocked

at 3.2 GHz and 16 GB memory, AO-ADMM needed 90.45 seconds, while ADMM

finished in only 12.38 seconds. AO-ADMM does seem to converge in a more

stable manner, however.

The best factorization, according to the distance value, is obtained by ANLS.

Number of factors

Let us now look at the impact of the factorization rank on the factorizations.

Since ANLS gives the best factorization for the exact dataset, we will examine

the results for different numbers of factors, with k = 1, . . . ,6 and keeping the

regularization parameters equal. In Figure 5.9b we can see that the distance

decreases by increasing the number of factors up to k = 5. The results become

unstable when increasing the factors to k = 6, indicating that k = 5 is indeed the

optimal number of factors.

Using AO-ADMM, however, the situation changes. Figure 5.9c shows that we

can increase the factorization rank to k = 9 without any stability problems while

decreasing the distance. Even though, the original dataset only consists of 5

factors, looking at the error it is advantageous to find more factors since we have

more degrees of freedom to represent the dataset. This usually means that a

single signal is split between two (or more) factors.

Initialization

We have already mentioned the importance of the initialization, especially when

using multiplicative updates. In Figure 5.9d we can see that it is equally important

when using ANLS. While the algorithm converges in stable manner when initial-

ized using NNDSVDa, i.e. the mean NNDSVD variant, it shows highly unstable

convergence for the other two variants.

When using ADMM, it is the other way around and NNDSVDa actually produces
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Algorithm DEU RE
MUR 23.1005 0.0441
ANLS 0.0808 0.0026

ADMM 0.3563 0.0055
AO-ADMM 0.3860 0.0057

Table 5.1.: Distance values and relative error of the factorization results for the different
NMF algorithms.

small instabilities during the first few iterations while the basic NNDSVD initial-

ization leads to good results. AO-ADMM shows no dependence on the NNDSVD

variant at all and results in the same factorization for every variant. A comparison

of AO-ADMM and ADMM for different initializations can be found in Figure 5.9e.

In general, it is always possible to encounter instabilities in these alternating

update schemes, regardless of the initialization. For this reason, we always

perform a minimal number of iterations before checking for any convergence

criteria.

Reconstruction

Finally, in Figure 5.10 we compare the reconstructions from the factorizations

with the original dataset. To do this, we generate the approximated sinogram

dataset using the factorization, X̃ =WH . We then take the 13th frame of X̃ and

statically reconstruct it using the EM algorithm.

We can see that we get comparable results for both methods, and both recon-

structions are very close to the original dataset.
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(a) Convergence plot for the different
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(c) Convergence plot for different num-
ber of factors k using AO-ADMM.
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Figure 5.9.: Convergence plots for different factorization results of the exact dataset.
The distance DEU (X ,WH ) is plotted logarithmically on the y-axis against the number of
iterations on the x-axis.
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(a) Frame 13 of the origi-
nal dataset.

(b) Frame 13, recon-
structed from the factoriza-
tion using MUR.

(c) Frame 13, recon-
structed from the factor-
ization using ANLS.

(d) Frame 13, recon-
structed from the factoriza-
tion using ADMM.

(e) Frame 13, recon-
structed from the factor-
ization using AO-ADMM.

Figure 5.10.: The 13th frame of the original data set and of the reconstructions from the
factorizations obtained by the different methods and a factorization rank k = 5.
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(a) Clean data. (b) Noisy data.

Figure 5.11.: 13th frame of the clean and noisy synthetic dataset.

5.2. Noisy data

For the noisy data, we take the same sequence as in Section 5.1 and use a Monte-

Carlo simulation to simulate PET data averaging 10000 photon counts per frame.

In Figure 5.11 we see the 13th frame of the clean and the simulated noisy data

side by side. As can be seen in Figure 5.11b, the image is very noisy due to the

comparatively low photon count, simulating the low photon count of a dynamic

radioactive water PET scan.

5.2.1. MUR

We again start by looking at the factorizations computed by the MUR algorithm.

In the case of clean data, we were able to extract 5 reasonable, albeit not perfectly

separated factors. Due to the high noise level in the noisy dataset, we can

not expect to be able to find as many factors, and in fact, Figure 5.12 shows

the best factorization results we were able to obtain using strong smoothness

regularization especially on the time-activity curves. We see an unrealistic TAC

for the fourth factor in Figure 5.12a, while the fourth factor itself (Figure 5.12e)

is scaled to be basically zero and thereby does only have a negligible influence on

the factorization.

This is another typical factorization behavior, if we try to find more factors than

the algorithm is able to separate. One (or more) factor(s) will be scaled down
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Figure 5.12.: Factorization results using MUR with factorization rank k = 5, the cost
function DKL(X ,WH ) and regularization parameters αW = 50, αH = 1000 and βW ,H = 0.
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compared to the other factors and the corresponding TAC(s) will show a peak in

one point in time. Additional smoothness regularization does not help because it

is cheaper in the optimization to simply scale the corresponding coefficient than

try to find a smooth TAC and satisfy the regularization.

In fact, we have to reduce the factorization rank to k = 3 to get reasonable

factorizations for the noisy dataset. Figures 5.13 and 5.14 show the factorization

results using the Euclidean distance DEU and the Kullback-Leibler divergence DKL,

respectively, with the same regularization results.

While for the clean data, the different loss functions lead to similar factor-

izations, we can see now that in the noisy case, the factorization using the

Kullback-Leibler divergence is clearly better. In fact, using the Euclidean distance

with even stronger regularization, we were not able to get a factorization with

different factors and without spikes in the TACs.

5.2.2. ANLS

The factorization results using ANLS and the factorization rank k = 3 can be seen

in Figure 5.15 and we notice the same problems as mentioned above when using

MUR with DEU , i.e. we are not able to get three different factors without spikes in

the TACs. This is to be expected since ANLS is based on the Euclidean distance.

5.2.3. ADMM

Next, we look at the factorization using ADMM in Figure 5.16. While it does

perform better than ANLS, which makes sense since we are able to use the

Kullback-Leibler divergence as a cost function due to the flexibility of the algo-

rithm, it was difficult to find good parameters even using a factorization rank

k = 3. We do get fairly nice factors, with the first factor mainly representing the

lungs and the heart, while the third factor mainly represents the body, and the

second factor containing an average over the whole region of interest. Unfortu-

nately, we were not able to find smoother time activity curves, since increasing

the smoothness regularization results in one of the factors vanishing.
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Using a factorization rank k = 4 we were not able to find reasonable factors at

all.

5.2.4. AO-ADMM

Lastly, we will examine the factorization results using AO-ADMM. Interestingly,

AO-ADMM performs much better than ADMM. Comparing the factorization results

for the factorization ranks k = 3 and k = 4, shown in Figures 5.17 and 5.18,

respectively, we can see, that we actually benefit from using one more factor. The

fourth factor, shown in Figure 5.18e, almost only shows the lungs and the hearts,

with only small values for the body. However, the factor itself is scaled down

compared to the other factors and examining all factors, it is apparent that we

can not hope to find clean regional separation for a dataset of this noise level.

Only looking at Figure 5.18a, though, we do get four distinct time activity curves.

We can in fact increase the factorization rank to k = 5 and still get distinct TACs

(Fig. 5.19a) and a factor only containing the lungs and the heart (Fig. 5.19f). But

if we compare the first and the second factor, and the third and the fourth factor,

they do look similar apart from scaling. This might be an indication that we are

trying to find too many factors.

5.2.5. Comparisons

We will again compare the results by looking at the distance values of the factor-

izations.

Methods

Figure 5.21a shows the Kullback-Leibler divergence plotted against the iteration

number for the first 100 iterations. The plot confirms what we have already

noticed visually, i.e. AO-ADMM gives the best results, followed by ADMM and

ANLS, with MUR resulting in the largest KL divergence value. This is reflected

also in the relative error in Table 5.2.
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Figure 5.13.: Factorization results using MUR with DEU as loss function, factorization
rank k = 3 and regularization parameters αW = 50, αH = 1000 and βW ,H = 0.

Algorithm DKL RE
MUR 8.8332 · 105 0.4297
ANLS 8.0639 · 105 0.3555

ADMM 7.9930 · 105 0.3499
AO-ADMM 7.5364 · 105 0.3490

Table 5.2.: Distance values and relative error of the factorization results for the different
NMF algorithms.
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Unfortunately, neither the divergence nor the relative error is a good indicator

of the quality of the factorizations. ANLS, ADMM, and AO-ADMM all result

in comparable relative errors but using ANLS we were not able to find a good

factorization, as mentioned in Subsection 5.2.2. Even with strong regularization,

we were not able to find smooth time activity curves, while most of the signal

was represented by only one factor. ADMM and AO-ADMM are more flexible

allowing us to use different distances as cost functions, with AO-ADMM in general

producing the best results.

Cost function

We already have seen in above that we get much better factorization results using

ADMM and AO-ADMM because we are able to use the Kullback-Leibler divergence

as a cost function which is much more suitable to deal with such a high Poisson

noise. To emphasize the influence of the cost function, we present in Figure 5.20

the results using the Euclidean distance with AO-ADMM and a factorization rank

k = 3. While the factors themselves do look reasonable, the same is not true for

the TACs. Even with strong smoothness regularization, we are not able to find

TACs that even somewhat resemble the true TACs of the dataset.

Number of factors

Using AO-ADMM we examine the results for a different number of factors k.

Figure 5.21b shows that we can improve on the factorization results by including

more than 3 factors. We do also see that using 6 factors seems to result in the

smallest error, when for the exact dataset in Section 5.1.5 using more than 5

factors resulted in instability in the ANLS algorithm. Examining the reconstructed

factors in Figure 5.22, we see that the sixth factor is scaled almost to zero. The

sixth factor is basically an additional degree of freedom to account for some part

of the noise without representing any part of the signal, thus reducing the error.
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Initialization

In Figure 5.21c we see the effect of the different initializations used for the AO-

ADMM algorithm and k = 3, with Figure 5.21d shows the same plot, zoomed in

to better see the instabilities. Not only do wee see instabilities for every NNDSVD

variant, for this case the NNDSVDa variant actually produces the best results, but

also needed more iterations to overcome the instabilities.

Reconstructions

Finally, we compare the effect of NMF on the standard frame-by-frame EM

reconstructions. Figure 5.23 shows the 13th frame of the respective image

sequences and we can see the noise reduction effect of factorization methods,

even for the MUR results. Again, ANLS, ADMM, and AO-ADMM all show similar

results in line with the distance and error of the factorization.

We can also compare the reconstructed time-activity curves of the regions in

reconstructed image sequence. In Figure 5.24 we compare the TAC of four regions

for all four NMF algorithms. To reduce the chance of unfairly choosing a single

noisy pixel, we took the average activity of a 5-by-5 pixel patch from each region.
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Figure 5.14.: Factorization results using MUR with DKL as loss function, factorization
rank k = 3 and regularization parameters αW = 50, αH = 1000 and βW ,H = 0.
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Figure 5.15.: Factorization results using ANLS with factorization rank k = 3 and regular-
ization parameters αW = 60 and αH = 1000.
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Figure 5.16.: Factorization results using ADMM with factorization rank k = 3 and
regularization parameters αW = 5 and αH = 30.
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Figure 5.17.: Factorization results using AO-ADMM with factorization rank k = 3 and
regularization parameters αW = 10 and αH = 70.
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Figure 5.18.: Factorization results using AO-ADMM with factorization rank k = 4 and
regularization parameters αW = 20 and αH = 80.
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Figure 5.19.: Factorization results using AO-ADMM with factorization rank k = 5 and
regularization parameters αW = 20 and αH = 100.
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Figure 5.20.: Factorization results using AO-ADMM with the Euclidean distance DEU
as cost function, factorization rank k = 3 and regularization parameters αW = 10 and
αH = 300.
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(a) Convergence plot for the different
NMF algorithms presented in this sec-
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(b) Convergence plot for different num-
ber of factors k using AO-ADMM.
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(d) Convergence plot for different ini-
tializations for AO-ADMM (zoomed in).

Figure 5.21.: Convergence plots for different factorization results of the noisy dataset.
The distance DKL(X ,WH ) is plotted logarithmically on the y-axis against the number of
iterations on the x-axis.

Figure 5.22.: Reconstructed factors using AO-ADMM, with k = 6, αW = 20, αH = 80.
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(a) Frame 13 of the origi-
nal dataset.

(b) Frame 13, directly re-
constructed from the noisy
data set using the EM-
Algorithm.

(c) Frame 13, recon-
structed from the factor-
ization using MUR.

(d) Frame 13, recon-
structed from the factoriza-
tion using ANLS.

(e) Frame 13, recon-
structed from the factor-
ization using ADMM.

(f) Frame 13, recon-
structed from the factor-
ization using AO-ADMM.

Figure 5.23.: The 13th frame of the original data set and of the reconstructions from the
factorizations obtained by the different methods, using a factorization rank k = 3.
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Figure 5.24.: Reconstructed time-activity curves from different regions. The activity
averaged over a 5-by-5 pixel patch.
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6
CONCLUSION

In this thesis, we have examined the use of non-negative matrix factorization

for dynamic positron emission tomography. With the help of kinetic modeling,

we built a motivation and interpretation for data analysis techniques in general

and discussed the advantages of NMF over other factorization methods. After

summarizing the properties of NMF, we introduced four different algorithms to

solve the NMF problem, ranging from simple multiplicative update rules to more

flexible methods based on the alternating direction method of multipliers. Finally,

we investigated the performance of the algorithms using a synthetic dynamic PET

dataset.

In general, NMF is well suited for non-negative data since the factorization does

not depend on artificial conditions like statistical independence or orthogonality.

When used on noise-free data, we were able to decompose the dataset into

meaningful factors and time-activity curves especially using ANLS, ADMM, and

AO-ADMM. In the more realistic case where a lot of Poisson noise is present, the

more flexible and computationally expensive algorithms based on ADMM had a

distinct advantage, with AO-ADMM resulting in the best results and being the

most stable.

There are some drawbacks using NMF. The most obvious problem is the non-
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uniqueness of NMF. We cannot guarantee to find the best solution, however, in

practice, we do seem to find reasonable factors, especially when using apriori

information in form of regularization. More importantly, the factorization results

are even non-unique in terms of scaling, so that some form of normalizing has to

be employed to make the factors and TACs comparable.

Another unsolved problem for this class of methods is the choice of the factor-

ization rank. There is no clear criterion to choose the number of factors even in

hindsight. For example, the relative error decreases with more factors since if all

of the true signal is covered there are still degrees of freedom to account for the

noise in the additional factors. A reasonable factorization can only be determined

by manually examining the factors and TACs. One possible idea to mitigate this

problem is by computing sufficiently many factors so that spare factors are present

and then discard all factors below a certain norm value, assuming that the small

factors only consists of noise. However, this is computationally more expensive

and the norm threshold does not have a problem specific meaning, shifting the

problem only from the number of factors to the choice of the threshold.

In general, the use of NMF seems to be well suited for dynamic PET dataset,

even with large amounts of noise. Due to the flexibility of the ADMM algorithm,

there are a lot of possible extensions that can make use of the specific problem

properties, e.g. different cost functions and various types of regularization.
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A
ALGORITHMS

A.1. NNDSVD

The NNDSVD algorithm by BOUTSIDIS AND GALLOPOULOS [2008] is based on

the singular value decomposition of a dataset X . Given a factorization rank k,

the k largest singular triplets, consisting of the left singular vectors U , the right

singular vectors V and the singular values S. The factorsW ,H are then initialized

depending on the norm of the positive and negative projections of the left and

right singular vectors.

The whole algorithm is described in Algorithm 6. We use the notation aj to

reference the j-th column of a matrix A, and pos(·), neg(·) being defined as

pos(x) =


x , if x > 0

0, otherwise
, neg(x) =


−x , if x < 0

0, otherwise
(A.1)

and are applied component-wise.

In addition to Algorithm 6, BOUTSIDIS AND GALLOPOULOS [2008] also have

introduced two dense NNDSVD variants. Taking the initializations from the

NNDSVD algorithm, the NNDSVDa variant sets the zero entries to the arithmetic

mean of the dataset X , while the NNDSVDar variant sets the zero entries to a
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random value taken from a uniform distribution in [0, mean(X )
100 ].

Algorithm 6 Nonnegative Double Singular Value Decomposition (NNDSVD)

Input: data matrix X ∈ Rm×n ≥ 0, factorization rank k

Output: factorization matricesW ∈ Rm×k
+ ,H ∈ R

k×n
+

1: Compute k largest singular triplets (U , S,V ) of X

2: Initialize w0 =
√
s0 ∗ u0, h0 =

√
s0 ∗v

T
0

3: for i = 1, . . . ,k do

4: u
pos
i ← pos(ui), u

neg
i ← neg(ui)

5: v
pos
i ← pos(vi), v

neg
i ← neg(vi)

6: npos ← ‖u
pos
i ‖2 ∗ ‖v

pos
i ‖2

7: nneg ← ‖u
neg
i ‖2 ∗ ‖v

neg
i ‖2

8: if npos > nneg then

9: u ←
u

pos
i

‖u
pos
i ‖2

, v ← v
pos
i

‖v
pos
i ‖2

10: σ ← npos

11: else

12: u ←
u

neg
i

‖u
neg
i ‖2

, v ← v
neg
i

‖v
neg
i ‖2

13: σ ← nneg

14: end if

15: wi ←
√
si · σ · u, hi ←

√
si · σ · v

T

16: end for

A.2. FC-NNLS

The fast combinatorial non-negative least squares algorithm by VANBENTHEM

AND KEENAN [2004] attempts to efficiently solve the NNLS problem with multiple

right-hand sides, which can be stated as

min
K
‖CK −A‖22 subject to K ≥ 0. (A.2)

It uses the observation that in large-scale problems, the number of unique pseu-

doinverses required to solve the problem is much lower than the number of
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right-hand side vectors. Grouping all right-hand side vectors that share the

same pseudoinverse reduces the number of times the pseudoinverse has to be

computed.

Algorithm 7 describes the main FC-NNLS algorithm, which uses a subroutine

called combinatorial subspace least squares (CSSLS) as described in Algorithm 8.

Note that a pre- and post-subscription notation is used to represent submatrices,

e.g. for two index sets P, E, the submatrix PKE contains the rows and columns

according to the indices in P and E.

Algorithm 7 Fast combinatorial NNLS (FC-NNLS)

Input: Coefficient matrix C ∈ Rn×l , observation matrix A ∈ Rn×p

Output: NNLS solution K ∈ Rl×p

1: Index columns of K: M = {1, . . . ,p}

2: Index rows of K: N = {1, . . . , l}

3: Precompute constant parts of pseudoinverse, CTC,CTA

4: Solve minK ‖CK −A‖F using CSSLS

5: Initialize passive sets: P = {P1, . . . ,Pp}, where Pj = {x ∈ N : xKj > 0}

6: Find non-optimal columns: F = {j ∈ M : Pj , N}

7: Overwrite solution: xKj = 0∀j ∈ F ,∀x < Pj
8: repeat

9: Solve minKF ‖CKF −AF ‖ using CSSLS and PF
10: repeat

11: Gather columns with neg. variables: H = {j ∈ F : minx∈Pj xKj < 0}

12: ∀i ∈ H select variables to move out of the passive sets PH
13: Solve minKH ‖CKH −AH ‖ using CSSLS and PH
14: until H = ∅

15: Test Ki for optimality ∀i ∈ F
16: Remove indices of optimal solutions from F

17: ∀i ∈ F select variables to move into the passive sets PF
18: until F = ∅
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Algorithm 8 Combinatorial subspace least squares (CSSLS)

Input: Coefficient matrix C ∈ Rn×l , observation matrix A ∈ Rn×p, passive set P

Output: Solution K ∈ Rl×p

1: Initialize K = 0, index columns of K: M = {1, . . . ,p}

2: Find set of k unique passive sets: U = {U1, . . . ,Uk}

3: Index columns of K with identical passive sets: Ej = {i ∈ M : Pi = Ui}

4: Solve: min
UjKEj

‖CUjUjKEj −AEj ‖ ∀j ∈ {1, . . . ,k}
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