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Ville Rimpiläinena,∗, Alexandra Koulourib,c, Felix Luckad,e, Jari P. Kaipiof,g,
Carsten H. Woltersh

aDepartment of Physics, University of Bath, Claverton Down, Bath BA2 7AY, The United
Kingdom

bLaboratory of Mathematics, Tampere University of Technology, P. O. Box 692, 33101
Tampere, Finland

cDepartment of Physics, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
dComputational Imaging, Centrum Wiskunde & Informatica, Science Park 123, 1098 XG

Amsterdam, The Netherlands
eCentre for Medical Image Computing, University College London, Gower Street, London

WC1E 6BT, The United Kingdom
fDepartment of Mathematics, University of Auckland, Private bag 92019, Auckland 1142,

New Zealand
gDepartment of Applied Physics, University of Eastern Finland, FI-90211 Kuopio, Finland
hInstitute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15,

D-48149 Münster, Germany

Abstract

Electroencephalography (EEG) source imaging is an ill-posed inverse prob-

lem that requires accurate conductivity modelling of the head tissues, especially

the skull. Unfortunately, the conductivity values are difficult to determine in

vivo. In this paper, we show that the exact knowledge of the skull conductivity

is not always necessary when the Bayesian approximation error (BAE) approach5

is exploited. In BAE, we first postulate a probability distribution for the skull

conductivity that describes our (lack of) knowledge on its value, and model the

effects of this uncertainty on EEG recordings with the help of an additive error

term in the observation model. Before the Bayesian inference, the likelihood is

marginalized over this error term. Thus, in the inversion we estimate only our10

primary unknown, the source distribution. We quantified the improvements in

the source localization when the proposed Bayesian modelling was used in the

presence of different skull conductivity errors and levels of measurement noise.

Based on the results, BAE was able to improve the source localization accuracy,

particularly when the unknown (true) skull conductivity was much lower than15
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the expected standard conductivity value. The source locations that gained the

highest improvements were shallow and originally exhibited the largest localiza-

tion errors. In our case study, the benefits of BAE became negligible when the

signal-to-noise ratio dropped to 20 dB.

Keywords: Electroencephalography, uncertainty modelling, Bayesian inverse

problem, skull conductivity, source localization

1. Introduction20

Electroencephalography (EEG) is a routinely used brain imaging modality

to study cognitive states of the brain and to diagnose, for example, epilepsy and

brain dysfunction. The EEG data is recorded by measuring electric potentials

on the scalp that are induced by electric current sources in the brain [1]. EEG

is relatively easy to use, low-cost, it has high temporal resolution, and the25

apparatus is small compared to magnetoencephalography (MEG) or magnetic

resonance imaging (MRI) equipment.

The mapping that translates the neuronal current sources into EEG mea-

surements is called the forward model. The inversion of this mapping, i.e., source

reconstruction from EEG data, is an ill-posed inverse problem, and stable esti-30

mates cannot be computed from noisy measurements without either regulariza-

tion or by employing prior models. Additionally, the solution depends strongly

on such forward model parameters as the geometry of the head [2, 3, 4, 5, 6, 7, 8]

and the electric conductivies of the head tissues [9, 10, 11, 12, 13, 14]. Especially

the accurate conductivity modelling of the skull has been shown to be essential35

for accurate source reconstructions [9, 12, 5, 13, 15, 16].

Usually, the geometry can be extracted sufficiently by using such auxiliary

imaging tools as MRI and in some clinical cases computed tomography (CT)

[17]. However, there are only few techniques to determine or calibrate tissue

conductivities in vivo. These techniques usually utilize either well defined so-40

matosensory evoked potentials / fields (SEP/SEF) in combination with EEG

[18, 19], EEG/MEG [20, 21, 22, 23, 24] or electrical impedance tomography
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(EIT) [25, 26, 27]. Unfortunately, these measurements may not always be avail-

able or cannot be conducted. Moreover, even if SEP/SEF data were available

for the calibration, the resulting skull conductivity value might not be optimal45

for sources in another brain region [19].

In this paper, we propose to use a Bayesian approximation error (BAE)

approach [28, 29] to consider the unknown skull conductivity. In BAE, the

observation model is formulated using a standard forward model accompanied

with an additive approximation error term that encompasses the effects of the50

skull conductivity uncertainty. Before the Bayesian inference, this approxima-

tion error term is marginalized from the likelihood using a Gaussian approxima-

tion. Thus, the marginalized likelihood includes statistical knowledge of both

the approximation error and measurement noise, and in the inversion only the

unknown source configuration is solved.55

The approximation error statistics are pre-computed from Monte Carlo sim-

ulations. In practice, we postulate a probability distribution for the skull con-

ductivity and generate a set of lead field models based on this distribution. By

using these sample models, we estimate the statistics of the approximation error

term, i.e., the statistics of the discrepancies in the EEG recordings with respect60

to a standard model with a fixed skull conductivity. The posterior results from

the marginalized likelihood and prior distribution of choice. The maximum-a-

posteriori (MAP) estimate can be used for source visualization. Previously, the

BAE approach has been successfully used, for example, in EIT [30, 31, 32] and

optical tomography [33, 34, 35]. In EEG source imaging, the BAE approach65

has been shown to alleviate localization errors arising from the unknown head

geometry by using simulated 2-dimensional finite element (FE) models [36].

In the current study, we present a comprehensive analysis of the performance

of the BAE approach in improving the source localization when the skull conduc-

tivity is unknown. We quantify the effects of the unknown skull conductivity by70

evaluating the corresponding approximation errors in the EEG recordings and

the source localization errors in the reconstructions. Subsequently, we quantify

the improvements in the source localization when the proposed Bayesian mod-
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elling is used in the presence of different skull conductivity errors and levels of

measurement noise. This work is a simulation study that is carried out by using75

3-dimensional FE-based head models.

2. Theory

2.1. Bayesian framework with linear forward model

The computational domain is denoted with Ω and its electric conductivity

with σ(x) where x ∈ Ω. For numerical implementations, the domain is dis-80

cretized and the observation model is written as

v = A(σ)d+ e, (1)

where v ∈ Rm are the measurements, m is the number of measurements, A(σ) ∈

Rm×3n is the lead field matrix that depends on electric conductivity σ, d ∈

R3n is the distributed dipole source configuration and e ∼ N (e∗,Γe) is the

measurement noise. The noise covariance matrix is modelled as Γe = Γ̃e +85

γI where the small diagonal matrix γI ensures that the level of noise is not

underestimated.

In the Bayesian framework, the inverse solution is formally the posterior

density of the Bayes formula [28, 37, 38]. Here, we consider the posterior that

is the probability density of different source configurations given that the EEG90

measurements are known

π(d|v) ∝ π(v|d)π(d), (2)

where π(v|d) is the likelihood and π(d) the prior.

For the observation model, Equation (1), the likelihood model can be written

as

π(v|d) ∝ exp
(
− 1

2
(v −Ad− e∗)TΓ−1e (v −Ad− e∗)

)
. (3)

Note that the model A(σ) = A assumes that the accurate values of electric95

conductivities of the patient are known which in practice, without additional

effort, is almost never the case.
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2.2. Bayesian uncertainty modelling

In BAE, we re-write the observation model with the help of an approximate

lead field, A(σ0) = A0, in which we employ standard fixed values for the electric100

conductivity, σ0. We can re-write

v = A0d+ ε+ e, (4)

where ε = Ad−A0d is the approximation error, ε ∈ Rm, induced by the use of

the approximate model. The approximation error is a random variable (vector)

whose distribution is determined by the joint (prior) distribution π(σ, d).

We further approximate that ε ∼ N (ε∗,Γε), e and d are uncorrelated, i.e., ε105

is considered as another random additive error term. This specific BAE model

is sometimes referred to as enhanced error model [28, 39, 29]. Even though, in

practice, ε and d are usually correlated, this approximation often leads to very

similar inverse solutions [28, 39, 29]. In our case, since we assume that the true

source activity d is focal (sparse), the cross-covariances with ε will be negligible.110

Based on these approximations, we formulate the probability distribution of

the likelihood as

π(v|d) ∝ exp
(
− 1

2
(v −A0d− ε∗ − e∗)T(Γε + Γe)

−1(v −A0d− ε∗ − e∗)
)
. (5)

In the case of Gaussian additive measurement errors, e ∼ N (e∗,Γe), we can

quantitatively define the case when the approximation errors dominate mea-

surement errors as115

‖e∗‖2 + tr Γe < ‖ε∗‖2 + tr Γε (6)

and

e2∗,k + var(ek) < ε2∗,k + var(εk), (7)

where tr (·) is the trace of a matrix and k = 1, . . . ,m [29]. When these conditions

hold, BAE can be expected to improve the reconstruction results. We shall

discuss this further in Section 5.3.
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2.3. Maximum a posteriori estimates120

In this paper, we compute maximum a posteriori (MAP) estimates of the

posterior

d̂ = arg max
d

π(d|v) = arg max
d
{π(v|d)π(d)}. (8)

For comparison, we compute three different MAP estimates using three dif-

ferent likelihood models. We refer to these likelihood models as accurate, stan-

dard and BAE model, and we describe them in the following.125

In the accurate likelihood model, we assume that the electrical conductivities

are accurately known. Since we study here only single dipole source cases, we

can write the MAP estimate based on the accurate likelihood model (3) as

follows

d̂ACC = min
d
{‖Le(v −Ad− e∗)‖22} (9)

s.t. ‖di‖ · ‖dj‖ = 0 ∀i 6= j,

where Le is a matrix square root (e.g. Cholesly factor) of Γ−1e = LTe Le, and130

‖di‖ =
√

(d2ix + d2iy + d2iz) is the strength of the dipole source at node i. In

practice, we minimize the functional for each source space node (considering that

in every other node the dipoles are zero) and choose the dipole that achieves the

smallest residual as the solution (a.k.a. single dipole scan algorithm) [40, 41].

If we, however, compute the solution using the fixed standard electrical con-135

ductivity values (σ0) in the model we get

d̂STAN = min
d
{‖Le(v −A0d− e∗)‖22} (10)

s.t. ‖di‖ · ‖dj‖ = 0 ∀i 6= j.

From the likelihood of the BAE (5), the source configuration can be esti-

mated as

d̂BAE = min
d
{‖Lε+e(v −A0d− ε∗ − e∗)‖22} (11)

s.t. ‖di‖ · ‖dj‖ = 0 ∀i 6= j,

where (Γε+Γe)
−1 = LTε+eLε+e. Note that the BAE result is computed using the

same lead field matrix as in the standard model, Equation (10). Moreover, it is140
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worth noting that the only differences between (11) and (10) are the subtraction

with ε∗ and that Le is replaced with Lε+e. This means that the computational

complexity is essentially the same when solving (11) and (10).

3. Materials and methods

3.1. Head models145

The geometry of the head was constructed based on T1- and T2-weighted

magnetic resonance images of a healthy subject measured with a 3 T MR-

scanner. The scalp, eyes, skull compacta, skull spongiosa, cerebrospinal fluid

(CSF), gray matter (GM) and white matter (WM) were segmented, for more

details see [42, 14]. In the simulation set-up, 74 measurement electrodes were150

attached to the scalp, and the one closest to the right-hand-side ear was used

as a reference.

The electric conductivities (in S/m) of the different tissues were 0.43 for the

scalp [43, 9], 0.505 for the eyes [44], 1.79 for the CSF [45], 0.14 for the WM [44]

and 0.33 for the GM [44]. The skull conductivities of the different head models155

were the following:

First, we created 200 head models with skull conductivity drawn from a

Gaussian distribution with mean σ0 = 0.01855 S/m and standard deviation

δσ0
= 0.007225 S/m. This distribution was set in such a way that the two

standard deviation lower (σ0 − 2δσ0) and upper (σ0 + 2δσ0) values were 0.0041160

[46, 23, 20, 47] and 0.033 [48], respectively. We refer to these head models as

sample head models.

Because the skull conductivity variations were assumed to be symmetrically

around the mean value σ0 = 0.01855 S/m, we chose to use σ0 in the standard

head model and BAE. The skull spongiosa conductivities in all models were165

selected based on the spongiosa:compacta conductivity ratio 3.6:1 [49, 23].

The head geometry was discretized using a conforming tetrahedral FEM

approach. For the forward simulations, the source space that covered the GM

was constructed with 30,105 nodes on a regular grid with grid size 2 mm. For the
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inverse computations, a source space that covered the GM consisted of 10,782170

source locations on a regular grid with grid size 3 mm. The forward source space

was chosen in such a way that it did not contain the same coordinate points as

the inverse source space. The lead field matrices used in the simulations were

computed using standard piecewise linear FE basis functions with the Saint

Venant source modelling approach [47, 50].175

3.2. Computation of the approximation error statistics

The approximation error statistics were created by first choosing randomly

one of the sample head models, evaluating the model with randomly chosen

source configuration, and finally calculating the approximation error by evalu-

ating the standard model with the same source configuration,180

ε(j) = A(σ(j))d(j) −A0d
(j), (12)

where A(σ(j)) is one of the sample models, d(j) random source configuration

and A0 is the standard model.

The procedure was repeated J = 200, 000 times, and these simulated error

samples were used to calculate the sample mean, ε∗, and the sample covariance,

Γε, of the approximation error as185

ε∗ =
1

J

J∑
j=1

ε(j) (13)

Γε =
1

J − 1

J∑
j=1

(ε(j) − ε∗)(ε(j) − ε∗)T. (14)

4. Results

In this section, we shall quantify the approximation errors in the EEG data,

the localization errors of the reconstructed dipoles, and subsequently, present

how the Bayesian uncertainty modelling can improve the localization accuracy.

In the test cases, we used single dipole sources that located in the gray matter190

and oriented normal to the cortical surface. The EEG data was computed

using one of the accurate lead field matrices that had skull conductivity 0.0041
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[23, 46, 20, 47], 0.0113, 0.0258 or 0.0330 S/m [48, 23] (denoted as σ0 − 2δσ0 ,

σ0−δσ0
, σ0+δσ0

and σ0+2δσ0
); however, all the reconstructions with the dipole

scan algorithm, using Equations (11) and (10), were performed with the same195

lead field matrix that had the mean skull conductivity σ0 = 0.01855 S/m.

4.1. Approximation errors of EEG data

In order to quantify and visualize the approximation errors, i.e. the discrep-

ancies between the EEG data computed from the accurate and standard model,

we utilize the 2-norm of the normalized approximation error (εN) defined as200

‖εN‖ =
‖A(σ)d−A0(σ0)d‖
‖A0(σ0)d‖

. (15)

Figure 1 shows one saggital and axial plane of the human head, and every

circle corresponds to one ‖εN‖ value computed from noiseless data by using a

single dipole source. The accurate model on the top row was A(σ0 − 2δσ0
) and

A(σ0 + 2δσ0
) in the bottom row.

4.2. Localization errors of sources205

Here, we show how the ‖εN‖ values result in source localization errors. Fig.

2 shows with circles the accurate locations of the sources and with arrows the

locations where the source was reconstructed when the standard model (left

column) and BAE (right column) were used. The colors correspond to the

magnitude of the localization error. The same accurate models, A(σ0 − 2δσ0
)210

and A(σ0 + 2δσ0
), were used to generate the data with the sources that located

on the same saggital and axial planes as in Fig. 1.

Figure 3 shows how the localization errors depend on the depth (i.e. distance

from scalp) of the source. The orange markers show the average localization

error at a given source depth when the standard model was used and the black215

markers when the BAE was used in the reconstructions. The error bars illustrate

the spread (standard deviation) of the localization error values.
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Figure 1: The 2-norm of normalized approximation error (εN) is shown for EEG data generated

by single sources that locate in the gray matter and that are oriented normally to the cortical

surface. The top row shows the ‖εN‖ values when the accurate skull conductivity in the lead

field model is 0.0041 S/m and the standard model has skull conductivity 0.01855 S/m. In

the bottom row, the ‖εN‖ values are calculated assuming that 0.033 S/m is the accurate skull

conductivity.
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Figure 2: Top row, left: The circles show the accurate locations of the sources and the arrows

show the locations of the reconstructed sources when the EEG data was generated using 0.0041

S/m skull conductivity in the lead field model and using the standard (erroneous) 0.01855 S/m

skull conductivity in the reconstructions (left). Top row, right: These reconstructions were

carried out using the BAE which takes statistically into account the expected variations in

the unknown skull conductivity. Bottow row: The results are as above except that the EEG

data was generated using 0.033 S/m skull conductivity in the lead field model.
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Figure 3: Localization error with respect to source depth (measured in millimeters from the

scalp). The errorbars illustrate the spread (standard deviation) of the localization error values.
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4.3. Improvement of source localization by BAE

Here, we quantify the achieved improvements in the source localization when

BAE is utilized in the inverse reconstructions. The improvement is defined220

as ∆ = XSTAN − XBAE, where XSTAN and XBAE are the localization errors

evaluated from solutions of the standard model (Equation (10)) and the BAE

model (Equation (11)). In these tests, we computed the EEG forward data

using lead field models with skull conductivities σ0 − 2δσ0
, σ0 − δσ0

, σ0 + δσ0

and σ0 + 2δσ0 to showcase both small and large conductivity deviations from σ0225

that was used in all the reconstructions. Random white noise was added with

signal-to-noise-ratios (SNR) 30 dB and 20 dB. Five different noise realizations

for each EEG data were drawn, five reconstructions and five distance errors were

computed, and the presented ∆ values are the corresponding averages.

Figure 4 presents ∆ values for the 30 dB case with varying skull conductivity230

errors. ∆ values are positive (red ∆ signs) if BAE has improved the source

localization and negative (yellow ∇ signs) if BAE performs worse than the

standard model. The white � signs are used if the difference of distances is less

than 2 mm.

Figure 5 shows the distributions of the ∆ values in the different skull conduc-235

tivity and SNR cases. Moreover, the average localization errors and improve-

ments with their standard deviations are collected in Table 1. These values are

given in millimeters between the actual and the reconstructed source for the

accurate (XACC), standard (XSTAN) and BAE model (XBAE). The XACC are

given for reference.240

13



Figure 4: ∆ signs show the localization improvement (in millimeters) achieved by using BAE

with respect to different skull conductivity modelling errors at SNR = 30 dB. ∇ signs are used

if BAE performs worse and white � signs if the difference of the results is less than 2 mm. In

the top row, the accurate skull conductivity is 0.0041 S/m, second row 0.0113 S/m, third row

0.0258 S/m and last row 0.033 S/m whereas all the reconstructions are carried out by using

the standard lead field matrix with fixed 0.01855 S/m skull conductivity.
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Figure 5: Left: The histograms of the improvement ∆ values in the cases when the true skull

conductivity was 0.0041 S/m and SNR values 30 dB (black) and 20 dB (gray). Right: The

corresponding histograms when the true skull conductivity was 0.0330 S/m.
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Table 1: To evaluate the accuracy of the different solutions, we show the averages and the

±1 standard deviations of the localization errors of the different models, XACC, XSTAN and

XBAE, respectively, and the localization improvement ∆.

Testing skull SNR XACC XSTAN XBAE ∆

conductivity (S/m) (dB) (mm) (mm) (mm) (mm)

0.0041 ∞ 1.7 ± 0.5 12.1 ± 3.7 9.4 ± 2.9 2.8 ± 3.1

30 1.8 ± 0.7 12.1 ± 3.7 9.8 ± 3.1 2.3 ± 2.9

20 2.8 ± 1.6 12.2 ± 3.9 10.9 ± 3.6 1.3 ± 2.5

0.0113 ∞ 1.7 ± 0.5 4.2 ± 1.8 3.6 ± 1.5 0.7 ± 1.7

30 1.8 ± 0.7 4.2 ± 1.8 3.7 ± 1.6 0.5 ± 1.6

20 2.4 ± 1.3 4.5 ± 2.0 4.2 ± 2.0 0.3 ± 1.6

0.0258 ∞ 1.7 ± 0.6 2.6 ± 1.1 2.4 ± 1.0 0.2 ± 1.0

30 1.8 ± 0.7 2.6 ± 1.1 2.5 ± 1.2 0.1 ± 1.0

20 2.2 ± 1.1 3.0 ± 1.5 3.0 ± 1.6 0.0 ± 1.2

0.0330 ∞ 1.7 ± 0.6 3.6 ± 1.6 3.3 ± 1.5 0.3 ± 1.4

30 1.8 ± 0.7 3.6 ± 1.6 3.4 ± 1.5 0.2 ± 1.4

20 2.2 ± 1.1 3.9 ± 1.9 3.9 ± 1.9 0.1 ± 1.4
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5. Discussion

5.1. Approximation errors of EEG data

Based on Fig. 1, we can see that ‖εN‖ values are generally larger when

the source is close to the skull (and the electrodes) than deep in the brain.

This occurs because the electric potential, and thus also the approximation245

error, is inversely proportional to the distance from the source. There are few

exceptions to this, i.e. cases where ‖εN‖ value is higher for a deeper source

than for a superficial source, which can be either due to the curvy geometry of

the GM or the discretization. As mentioned, in all the test cases the dipoles

had orientations that were normal to the cortex. Now, if the local geometry250

is higly curvy, then two neighbouring dipoles can have very different normal

orientations which lead to different EEG topographies and difference in ‖εN‖

values. Discretization, on the other hand, can have an effect on ‖εN‖ if the

inverse mesh does not have enough coverage in the proximity of the forward

mesh coordinates of the source. In this case, the approximation error value255

has a contribution from both, the conductivity difference and the discretization

difference, and the BAE approach can be used to alleviate both.

With respect to the tested skull conductivity values, we see that the over-

estimation of the skull conductivity (A(σ0 − 2δσ0
) versus A0(σ0), top row in

Fig. 1) causes larger ‖εN‖ values than the under-estimation (A(σ0 + 2δσ0
)260

versus A0(σ0), bottom row in Fig. 1). This behavior is due to the fact that,

in the lead field formulation, the skull conductivity is non-linearly related to

the EEG data. This can be understood through an analogy to Ohm’s law: If

we parameterize Ohm’s law with respect to conductance (or conductivity) as

U = 1
GI and deviate the conductance value by δG, then G−δG will always cause265

a larger change in U than G+ δG because U is proportional to the inverse of G.

5.2. Localization errors of sources

As can be seen from Fig. 2, the trends are that the over-estimation of

skull conductivity (the top row) moves the reconstructed sources deeper in the
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brain and under-estimation (bottom row) brings them closer to the skull. This270

result is in agreement with literature (e.g. [51]). The over-estimation causes

much larger localization errors than under-estimation which is in-line with the

approximation errors that are also larger for the over-estimation case (see, Fig.

1). Therefore, it can be argued that if there is no information on the skull

conductivity and BAE cannot be used, then it is a bit safer to use a low skull275

conductivity value rather than a high one.

When the skull conductivity is over-estimated, the sources that are close to

the skull present on average higher localization errors than the ones deeper in

the brain. This is because the deep sources cannot move further deeper in the

brain since they are already close to the bottom boundary of the source space280

to begin with. Therefore, the deep sources exhibit smaller localization errors

than the shallow ones.

In the under-estimation case, the localization errors are noticeably smaller.

The sources that are shallow but not quite at the outer boundary have slightly

higher localization errors than the rest. Again this can be explained through285

the geometry of the source space: the sources close to the skull have smaller

localization errors (than the slightly deeper ones) since they already locate close

to the skull (top boundary of the source space) and cannot therefore move any

closer.

This depth dependence is more evident in Fig. 3. These results are inline290

with Fig. 1 in the sense that the localization errors are larger for the source

locations that also exhibit large ‖εN‖ values. BAE can improve the source

localization especially at points where the approximation and localization errors

are large for the standard model. If the localization errors are small, then

also the compensation by BAE is small and may be unnoticeable in the given295

discretization.

5.3. Improvement of source localization by BAE

When the skull conductivity is over-estimated (accurate skull conductivity

is either σ0−2δσ0
or σ0−δσ0

compared to σ0 in the inverse model), the localiza-

18



tion improvements are the largest. This is especially evident for SNR = 30 dB300

and more moderate for 20 dB. The over-estimation, on average, induces higher

approximation errors than under-estimation (as discussed in Section 5.1). The

improvements gained with BAE are the highest, up to about 10 mm, for the

sources that locate close to the skull. This is in agreement with the locations

that exhibit the highest ‖εN‖ values.305

When the skull conductivity is under-estimated (accurate skull conductivity

is either σ0+δσ0
or σ0+2δσ0

compared to σ0 in the inverse model), the improve-

ments are smaller. On average, there are small improvements for SNR = 30 dB,

but for the 20 dB cases BAE gives on average similar results as the standard

model. The improvements gained with BAE are the highest for the sources310

that locate slightly deeper in the brain (than in the over-estimation case) even

though the ‖εN‖ values are on average higher closer to the skull. This is be-

cause the under-estimation of skull conductivity shifts the sources closer to the

skull, and the sources that already locate close to the skull (top boundary of

the source space) cannot shift any closer.315

There are some locations for which the standard model gives accurate results,

regardless of the erroneous skull conductivity. This occurs in such locations that

do not have wide support (grid points) around them. For example, when the

GM is highly curved there may not be additional points around the original

source location where the source could be moved.320

The limit where the measurement errors start to become equal to the ap-

proximation errors (see, Equation (6)) occurs when the SNR drops to 20 dB.

This deteriorates the benefits of BAE especially in cases where the ‖εN‖ values

are low, and the BAE solution, Equation (10), starts to approach the solution of

the standard model, Equation (11), as the noise covariance matrix (Γe) becomes325

more significant.

Based on this, the consideration of the skull conductivity uncertainties by

utilizing BAE is the most beneficial when the SNR of the measurements is more

than 20 dB and it can be expected that the patient’s skull conductivity may dif-

fer (significantly) from the skull conductivity that is used in the model. There-330
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fore, the proposed uncertainty modelling can be very useful, for example, when

examining infants and young children whose skull conductivities are unknown

since the value can range between several orders of magnitude [12, 52, 7]. With

BAE, it is not necessary to know the exact skull conductivity, and the range of

possible values can be modelled as a probability distribution. To use BAE, it335

is advisable to set-up this probability distribution (i.e. σ0 and δσ0
in our case)

based on age-specific literature values (e.g. [48]), then estimate the statistics of

the approximation error term as described in Section 3.2, and finally add the

corresponding ε∗ and Lε terms in the likelihood.

5.4. Transferability of Bayesian uncertainty modelling340

The presented BAE approach is an a-priori procedure in the sense that it

does not require any measurement or calibration data. The BAE approach is

versatile since it can be accompanied with any prior model for the sources and

any (linear or non-linear) source reconstruction algorithm. Furthermore, the

inclusion of BAE does not increase the complexity of the source reconstruction345

(as pointed out in Section 2.3) and the evaluation of the BAE statistics can be

performed off-line, before any measurements are carried out.

In this paper, we chose to address the well-known problem of unknown skull

conductivity. In addition to this, BAE can be used to treat other unknown

(or uncertain) forward model parameters, such as the geometry of the head350

[36]. Moreover, the properties of the EEG electrodes are typically not modelled

accurately and for instance their contact impedances are only poorly known

[53, 54]. The positions of the electrodes can carry uncertainty as they are

either simply assumed to be distributed according to a standard system [55]

or measured by a tracking system before the EEG recording takes place. BAE355

is also transferable to other imaging settings, such as MEG. In MEG source

analysis, a major uncertainty is the position and orientation of the head with

respect to the MEG sensor coils [56, 57].

5.5. Methodological comparison to empirical Bayesian frameworks
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The simplicity and transferability of BAE can be highlighted when com-360

pared to empirical Bayesian frameworks [58, 59, 60, 61, 62]. In an empirical

Bayesian framework, the unknown forward model parameters are also treated

as stochastic variables. However, unlike in BAE, in this option these forward

model parameters are estimated from the measured EEG data alongside the

source activity and parameters of the prior model by maximizing the Bayesian365

model-evidence (or a free-energy approximation thereof) [60], or marginalized by

using Bayesian model averaging [63, 64]. In other words, these are a-posteriori

procedures since they require and depend on the EEG measurement data which

is then used to estimate both the source activity and the parameters of the for-

ward model that is exploited for the inference. This usually results in a consider-370

ably higher computational complexity compared to plain source reconstruction

or BAE. In the BAE approach, the unknown forward model parameters do not

need to be evaluated, it is simply enough to address their uncertainties and en-

capsulate them in the approximation error term. Therefore, the computational

complexity of BAE is essentially the same as in the plain source reconstruc-375

tion. Furthermore, as already stated, the BAE model does not depend on any

measurement data, and thus is an a-priori procedure. In conclusion, the BAE

approach can be considered as a more straightforward alternative to empirical

Bayesian frameworks.

6. Conclusions and future work380

We have characterized the use of Bayesian uncertainty modelling of unknown

skull conductivity in EEG source imaging with respect to different skull conduc-

tivity errors and SNRs. We have shown that modelling of the skull conductivity

uncertainties can reduce the source localization errors by several millimeters,

and about a centimeter in the best cases. The localization accuracy improves385

especially when the unknown skull conductivity is over-estimated. The under-

estimation of the skull conductivity causes smaller localization errors, and thus

the improvements are smaller as well. The highest improvements occur for the
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sources that locate either close to the skull or slightly deeper in the brain, and

this is in agreement with the locations that exhibit the most prominent local-390

ization errors. The benefits of BAE become uncertain when the SNR drops to

20 dB. The proposed uncertainty modelling can be beneficial especially for in-

fants or young children whose skull conductivities are unknown since the values

can range between several orders of magnitude.

In the future studies, experimental evaluation will be carried out. In the ex-395

periments, it might be beneficial to concentrate only on a specific region of the

brain that corresponds to a particular cognitive state or brain dysfunction. This

anatomical restriction could further increase the localization improvements of

BAE since the induced approximation errors will have more systematic patterns

(rather than when the whole brain is considered). In the future, we will also400

study the uncertainty modelling of head geometry and skin contact in combi-

nation with the conductivity uncertainties.
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R. Drenckhahn, H. Buchner, Improving source reconstructions by com-

24

http://dx.doi.org/10.1007/BF02345748
http://dx.doi.org/10.1016/S1350-4533(99)00038-7
http://dx.doi.org/10.1007/s00259-008-0941-8


bining bioelectric and biomagnetic data, Electroencephalogr. Clin. Neuro-

physiol. 107 (2) (1998) 93–111.

[21] M. X. Huang, T. Song, D. J. H. Jr., I. Podgorny, V. Jousmaki, L. Cui,

D. L. Harrington, A. M. Dale, R. R. Lee, J. Elman, E. Halgren, A novel475

integrated MEG and EEG analysis method for dipolar sources, NeuroImage

37 (3) (2007) 731–748.

[22] C. Wolters, S. Lew, R. S. MacLeod, M. Hämäläinen, Combined EEG/MEG
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Appendix: Bayesian approximation error approach

In the following, we derive the likelihood terms of the Bayesian approxima-625

tion error approach.

Let’s take the observation model as (4), and denote the total error as ν =

ε + e. Because the inverse solution is the posterior density of the Bayes’ for-

mula π(d|v) ∝ π(v|d)π(d), we derive a formulation to π(v|d). This is done by

marginalizing π(v, ν|d) with respect to ν, i.e.630

π(v|d) =

∫
ν∈Rm

π(v, ν|d) dν. (16)

From the joint density π(v, ν, d) = π(v, ν|d)π(d) = π(v|ν, d)π(ν|d)π(d), we

obtain

π(v|d) =

∫
ν∈Rm

π(v|ν, d)π(ν|d)dν. (17)
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Now, the conditional density of v given d and ν is obtained by using (4) as

π(v|d, ν) = δ(v −A0d− ν), (18)

where δ(·) is the Dirac delta distribution.

Hence, from (18) and (17), we have that the likelihood π(v|d) is the convo-635

lution

π(v|d) =

∫
ν∈Rm

δ(v −A0d− ν)π(ν|d)dν (19)

= πν|d(v −A0d|d), (20)

where the subscript ν|d is used to clarify that the probability density is that

of ν given d. We consider that measurement noise e ∼ N (e∗,Γe) and the

approximation error term ε|d ∼ N (ε∗|d,Γε|d) are mutually uncorrelated and

have Gaussian distributions. The subscript |d indicates that the approximation640

error ε in a general case depends on d.

Thus, the approximate likelihood is a Gaussian distribution given by

πν|d(v −A0d|d) ∝ exp
(
− 1

2
(v −A0d− ν∗|d)TΓ−1ν|d(v −A0d− ν∗|d)

)
with ν∗|d = ε∗|d + e∗ and Γν|d = Γε|d + Γe.

In this paper, we use a special case of the BAE approach in which d and ε are

treated as mutually uncorrelated variables, i.e. ε ∼ N (ε∗,Γε) (a.k.a. enhanced645

error model). Thus, we can write that ν∗ = ε∗ + e∗ and Γν = Γε + Γe. We

conclude to the likelihood (5). For further details on the formal derivation of

the likelihood, see for example [28, 29, 33].
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