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Introduction

For targeted individualized transcranial current stimulation (tES) of the human somatosensory 
cortex, an accurate source reconstruction, especially with regard to the orientation component,
is important (Dmochowski et al., 2013; Wagner et al., 2016)

Here, we investigate differences in source reconstruction of the human somatosensory P20/N20 
component with focus on source orientation:

effects of combined EEG/MEG (EMEG) versus single modality EEG or MEG source analysis (Fuchs et 
al., 1998; Sharon et al., 2007; Aydin et al., 2014)

realistic and calibrated head volume conductor modeling (Aydin et al., 2014)

different kinds of stimulation: electric wrist (EW), Braille-tactile (BT) and pneumato-tactile (PT)
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If source orientation differs, the electrode configuration of tES will be different

Dmochowski et al., 2011

*We used maximum intensity optimization of Dmochowski et al., 2011
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Participants and Procedure
2 right-handed participants

74 channel EEG (plus additional 6 EOG) and 275 channel whole head MEG (plus 29 
references to calculate synthetic gradiometers) (CTF, VMS MedTech Ltd.)

stimulus duration: 200ms, ISI: 350 to 450ms, number of events: ~1000

Scanning of T1w-, T2w- Magnetic Resonance Images (MRI) with voxels of 1 x 1 x 1 
mm3 (MAGNETOM 3.0T Siemens Medical Solutions)

Measuring of diffusion weighted MRI (1.9 mm edge length, one flat diffusion 
gradient image and 20 volumes with different directions) 

Braille-tactile stimulation of the index finger

electric wrist stimulation of the median nerve

pneumato-tactile stimulation of the index finger
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Estimation of the P20/N20 component

Filtering 20 – 250Hz

Artifact rejection and elimination of the EEG/MEG (Antonakakis 
et al., 2016, 2017)

Trial definition: pre-stimulus time, 100ms and post-stimulus 
time, 200ms

SEP/SEF single trial estimation

Fieldtrip and CURRY8 for functional data preprocessing
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Head model construction: Segmentation

FSL, SPM12, Seg3D, MATLAB

T1w scans T2w scans

Introduction Methods Results Conclusion



Geometry adapted hexahedral meshes (SimBio-VGRID)
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Head model construction: DTI correction

White matter conductivity tensor estimation (Tuch et al., 2001; Rullmann et al., 2009) and 
embedding into the geometry-adapted hexahedral FE head model

Eddy Current (EC) artifact correction (FLIRT-FSL)

Diffeomorphic approach was applied for nonlinear correction of susceptibility artifacts 
(SPM, FAIR toolbox, Ruthotto et al. 2012)

The color indicates the 
main fiber orientation: 
red is left-right, green is 
anterior-posterior and 
blue is superior-inferior. 
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Source space in gray matter with 2mm resolution fulfilling the Venant condition (all the sources inside 
the gray matter compartment far away from the other tissues - Vorwerk et al., 2014; Fiederer et al., 2016)

Leadfields estimation using FEM – [Venant approach (AMG-CG)- SimBio (Wolters et al., 2004)]

SEP/SEF skull conductivity calibration
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Pipeline for calibrated volume conductor model 
MRI measurement Registration 

Segmentation
Anisotropic head 
model / SEP - SEF

Calibrated volume 
conductor model
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SEP/SEF Skull Conductivity Calibration

Residual variance (RV) of source reconstruction using SEF and SEP (on y-axis) for a predefined set of 
skull conductivities (on x-axis)

CA : Compartment Anisotropy 
CAL: Calibration point

Aydin et al., 2014Introduction Methods Results Conclusion
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Selection of peak around 20ms on GMFP for the electrical wrist P20/N20 component

Single Dipole Deviation Scans for source reconstruction

Regularization for MEG by a factor of 1.3

Scanning Dipole Comparison between 6CA CAL and 3C CAL

Source differences (6CA CAL vs 3C CAL)
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Scanning Dipole Comparison between modalities
Source differences for 3C CAL

Source differences for 6CΑ CAL
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EMEG scanning dipole comparison between different stimulation 
approaches of P20/N20 component

EW: Electric Wrist stimulation
ΒΤ: Haptic-tactile stimulation
PΤ: Pneumatic-tactile stimulation

Source differences for 6CΑ CAL and EMEG
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Conclusion

Comparison of 6CA CAL vs 3C CAL FE head model for all the modalities

Negligible (7mm) localization differences

In average source orientation differences of 25 degrees

Higher source strengths for EMEG using 6CA CAL
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Conclusion

Comparison source reconstruction of EMEG with EEG and MEG

Negligible (10mm) localization differences

Important source orientation differences close to 40 degrees

High source strength reduction using single modalities
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Conclusion

Comparison of EW, BT and PT source reconstruction using 6CA CAL and 
EMEG

Small (<12mm) location differences 

Compared to EW, strong amplitude reduction in BT and PT

Higher orientation changes for BT than PT
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Conclusion

Combined EEG/MEG leads to more reliable source reconstruction and especially  
orientation

6CA CAL realistic head models are needed to determine source orientation

One of the tactile stimulators can be used avoiding any kind of discomfort for long 
lasting stimulation or application in children

Need of application in more subjects for statistical analysis
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SEP/SEF Skull Conductivity Calibration

Tissue Conductivity for 6CA
• Skin : 0.43 S/m
• CSF  : 1.79 S/m 
• GM  : 0.14 S/m
• WM : 0.33 S/m
• Ratio C/S: 3.6

Tissue Conductivity for 3C
• Skin  : 0.43 S/m
• Skull : 0.0008-0.007 S/m
• Brain: 0.33 S/m

Aydin et al., 2014
MATLAB + CURRY8



Define a set of skull conductivity parameters: Σ={σ1,σ2,…,σn}

SEF GFS  location x, orientation o1 and magnitude m1. 

SEP Least Squares (LS); x fixed  orientation o2 and magnitude 
m2. 

SEF LS; x and o2 fixedm3

SEP x, o2 and m3  Residual Variance (RV)

Select the conductivity that gives the lowest RV Aydin et al., 2014, 2015
MATLAB + CURRY8

SEP/SEF skull conductivity calibration



Electric Wrist Hapto-tactile Pneumatic-tactile

Source reconstruction using goal function scan and sLORETA-
weighted accurate minimum norm (SWARM)

25ms 33ms 82.5ms



Head model construction: DTI correction
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Head model construction: DTI correction

1. Eddy Current (EC) artifact correction by affinely
registering directional images to the image 
with flat diffusion gradients

2. Reorientation of gradient directions using the 
rotational part of the transformation matrices 
obtained during step 1 

3. Diffeomorphic approach was applied for  
nonlinear correction of susceptibility artifacts 
in the DTI dataset (Ruthotto et al. 2012)

4. Registration of the nonlinearly corrected DT 
images to the T1w image

Flat diffusion gradients

Directional image

R L

The color indicates the main fiber orientation: 
red is left-right, green is anterior-posterior and 
blue is superior-inferior. 


