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Abstract. Transcranial direct current stimulation is a non-invasive brain stimulation technique
which modifies neural excitability by providing weak currents through scalp electrodes. The aim
of this study is to introduce and analyze a novel optimization method for safe and well-targeted
multi-array tDCS. For optimization, we consider an optimal control problem for a Laplace equation
with Neumann boundary conditions with control and point-wise gradient state constraints. We
prove well-posedness results for the proposed methods and provide computer simulation results in
a highly realistic six-compartment geometry-adapted hexahedral head model. For discretization of
the proposed minimization problem the finite element method is employed and the existence of at
least one minimizer to the discretized optimization problem is shown. For numerical solution of the
corresponding discretized problem we employ the alternating direction method of multipliers and
comprehensively examine the cortical current flow field with regard to focality, target intensity and
orientation. The numerical results reveal that the optimized current flow fields show significantly
higher focality and, in most cases, higher directional agreement to the target vector in comparison
to standard bipolar electrode montages.
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1. Introduction. Transcranial direct current stimulation (tDCS) is a non-in-
vasive, inexpensive and easy-to-perform brain stimulation technique which modifies
neural excitability [23]. Changes in neural membrane potentials are induced in a
polarity-dependent manner, for example, in a motor cortex study, anodal stimulation
right over the motor cortex enhances cortical excitability, whereas cathodal stimula-
tion inhibits it [23]. Recently, tDCS has been applied successfully in the treatment of
neurological and neuropsychiatric disorders such as epilepsy [14], depression [6] and
Alzheimer disease [13]. The effects of tDCS can be preserved for more than one hour
after stimulation [24].
The conventional strategy is to apply the current density σ∇Φ via two large elec-
trodes, with the active electrode (anode) to be placed above the presumed target
region and the reference electrode (cathode) far away from the target region [23, 24].
Accurate and detailed finite element (FE) head models have been created to inves-
tigate the induced current density distribution [32, 10, 30]. While significant effects
of stimulation as compared to sham were reported [6, 14, 23], computer simulation
studies have revealed that the induced cortical current flow fields are very widespread
with often strongest current density amplitudes in non-target brain regions [32, 30].
It is therefore a matter of debate whether the effects of stimulation are driven by the
target brain region or elicited by adjacent cortical lobes [30].
In order to overcome the limitations of conventional bipolar electrode montages,
algorithmic-based sensor optimization approaches were presented [10, 30, 21, 28]. Im
and colleagues [21] searched for two electrode locations which generate maximal cur-
rent flow towards a certain target direction. Ruffini and colleagues [28] described a
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method for optimizing the configuration of multifocal tCS for stimulation of brain
networks, represented by spatially extended cortical targets. Dmochowski and col-
leagues [10] used a multi-channel array consisting of 64 fixed electrode locations to
calculate optimized stimulation protocols for presumed target regions. They employed
radial and tangential targets and reported that compared with conventional electrode
montages their optimization approach achieved electric fields which exhibit simulta-
neously greater focality and target intensity at cortical targets using the same total
current applied.
While the optimization results are very promising and a pilot study using multi-array
tDCS devices for rehabilitation after stroke has been conducted [11], to our knowledge,
there is currently no study providing an in-depth analysis of mathematical models for
multi-array tDCS optimization.
Given a volume conductor model Ω with a fixed electrode arrangement and a tar-
get vector e in Ωt with Ωt ⊂ Ω being the target cortical area, the optimization
approach estimates an optimal applied current pattern at the fixed electrodes. A
Laplace equation with inhomogeneous Neumann boundary conditions is used to cal-
culate the induced current density distribution [32] which is to be controlled by the
boundary condition to ensure safe and focused stimulation. Therefore, the optimiza-
tion problem for tDCS is in the class of control problems with Neumann boundary
conditions [22].
In this paper, we modeled the electrodes with the point electrode model (PEM)
[26, 1, 2]. They can, however, also be modeled using a complete electrode model
(CEM) [26, 9, 12, 1, 2]. In [1, 2], it has been shown, that CEM and PEM only lead to
small differences which are mainly situated locally around the electrodes and are very
small in the brain region. Based on these results, the application of PEM is expected
to result in negligible differences to the CEM and should thus provide a sufficiently
accurate modeling of the current density within the brain region.
This paper is organized as follows: In Section 2 we establish the mathematical model
of tDCS and introduce the optimization problem for multi-channel tDCS. In Section
3 we show existence of at least one minimizer to the optimization problem and the
FE method is used for numerical discretization. In Section 4 we derive the algorithm
for sensor optimization. Section 5 provides optimization results in a highly-realistic
six-compartment head model (skin, skull compacta, skull spongiosa, CSF, gray and
white matter) with white matter anisotropy. Furthermore, a conclusion and outlook
section is presented.

2. Mathematical Model of tDCS. In order to calculate the current flow field
induced by tDCS, the quasistatic approximation to Maxwell’s equations is applied
[32]. This yields the tDCS forward problem

∇ · σ∇Φ = 0 in Ω

〈σ∇Φ,n〉 = I on Γ ⊂ ∂Ω

Φ = 0 on ΓD = ∂Ω \ Γ

with Φ being the electric potential, σ ∈ (L∞)3×3 being an anisotropic conductivity
tensor, I being the applied current pattern at the electrodes with non-zero values only
at the electrode surfaces, n being the outward normal vector and Γ being a part of
the boundary of the domain Ω. Furthermore, a Dirichlet boundary condition on the
remaining part ΓD is used to ensure that a solution to the tDCS forward problem is
unique. We assume all parts of the boundary to have nonzero measure and to be of
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Lipschitz regularity. We introduce the Sobolev space

H
− 1

2
� (Γ) := {u ∈ H− 1

2 (Γ)|
∫

Γ

u(s) ds = 0} ⊂ H− 1
2 (Γ)

with H−
1
2 (Γ) being the standard Sobolev space for Neumann boundary values on Γ.

The precise definition of H−
1
2 (Γ) is to be the dual space of H

1
2 (Γ) consisting of the

Dirichlet traces of H1-functions in Ω. The integral in the above definition has to be
interpreted as a duality product with the constant function equal to one, which is in
H

1
2 (Γ). The weak formulation of the forward problem is given by∫

Ω

σ∇Φ · ∇Ψ dx =

∫
Γ

I Ψ dσ,

for all test functions Ψ ∈ H1(Ω) with vanishing Dirichlet trace on ΓD. Note that the
boundary integral on the right-hand side is only defined if I ∈ L2(Γ), in general it is

to be replaced by the duality product between H−
1
2 (Γ) and H

1
2 (Γ).

Under standard and naturally satisfied regularity assumptions, there exists a unique
solution Φ ∈ H1(Ω) to the tDCS forward problem, which can be shown by the Lax-
Milgram Lemma:

Theorem 2.1. Let σ ∈ (L∞)3×3 with σ ≥ σ0I3×3 and let I ∈ H−
1
2

� (Γ). Then
there exists a solution Φ ∈ H1(Ω) to the tDCS forward problem. The solution is
unique if ΓD has positive measure. Moreover, the following norm estimate holds:

‖Φ‖H1 ≤ C ‖I‖
H−

1
2

For current density optimization, a multi-channel array consisting of 74 fixed elec-
trode locations (the locations of an extended 10-10 EEG electrode system) is used
and optimized applied current patterns are calculated for presumed targets. Figure
1 illustrates an overview of the optimization setup in a two-dimensional model. Op-
timally, the induced current density distribution is maximal in the target region Ωt
and zero in non-target regions Ωr = Ω \ Ωt. Physically, a focal stimulation without
stimulating non-target regions in not possible as the current has to flow through the
volume to reach the target region. Therefore, the current density is restricted by ε > 0
such that

|σ∇Φ| ≤ ε in Ωr.

Secondly, the total current applied to all electrodes is limited to 2 mA, a commonly
used safety criterion [10].
For effective stimulation, the optimized current density distribution should be oriented
perpendicularly to the cortical surface [5, 8]. Besides the correct target location,
also the target direction is important as shown by Bindman and colleagues [5] and
Creutzfeldt and colleagues [8] who were able to demonstrate in physical measurements
in rats and cats, respectively, that the neural firing rate is strongly influenced by the
direction of the field to the cortical surface. Perpendicularly-inwards (and parallel to
the long apical dendrites of the large pyramidal cells in cortical layer V) stimulation,
i.e. anodal stimulation, strongly enhanced the activity of the cortical neurons, whereas
perpendicularly-outwards stimulation, i.e. cathodal stimulation, inhibited it. We thus
maximize

∫
Ωt
〈σ∇Φ, e〉dx with e ⊂ Ωt being a unit vector perpendicularly-inwards-

oriented to the cortical surface [5, 8].
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Fig. 1. Optimization setup in a two-dimensional model. The target region Ωt, a radial (er) and
tangential (et) target vector and the boundary Γ of the volume conductor model Ω are demonstrated.
The electrodes are depicted with solid lines.

In the following we reformulate the current density constraint in the whole domain as
ω|σ∇Φ| ≤ ε with a weight ω = 1 in Ωr and 0 < ω � 1 in Ωt. Thus, we consider the
constrained optimization problem

(P) −
∫

Ωt

〈σ∇Φ, e〉dx→ min
I∈H

− 1
2

� (Γ)

subject to ω|σ∇Φ| ≤ ε∫
Γ

|I|dx ≤ 4

∇ · σ∇Φ = 0 in Ω

〈σ∇Φ,n〉 = I on Γ

Φ = 0 on ΓD

which is a control problem with Neumann boundary conditions [22]. Note that safety
limitation on the inflow current is a control constraint, while the limit on the current
density outside the target region is a state constraint. Also, the state constraint with
ω > 0 ensures that ∇Φ is bounded in L∞(Ω) and due to the embedding theorem
also bounded in L2(Ω). This implies that Φ ∈ H1(Ω) and due to the trace theorem

Φ|Γ ∈ H
1
2 (Γ). Since σ ∈ (L∞)3×3 this implies that 〈σ∇Φ,n〉 is bounded in H−

1
2 (Γ).

Remark 2.2. The constrained optimization problem (P) is a rather challenging
optimal control problem. Firstly, the current density distribution σ∇Φ is optimized,
while many other applications require to optimize the potential field Φ. Secondly,
a point-wise gradient state constraint is used. While optimal control problems with
state constraints were frequently used [17], not much attention was given to gradient
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state constraints only until recently [29, 25, 33] focusing on distributed control in the
domain however. Thirdly, we look for a control function I vanishing on large parts
of the boundary, known as sparsity optimal control problem [19]. Indeed, we rather
look for I as a combination of concentrated measures rather than an L1-function, so
the above integral formulation has to be understood as formal notation for the total
variation of the Radon measure identified with I. This will be made precise in the
next section.
Applying Gauss’ Theorem to

∫
Ωt
〈σ∇Φ, e〉dx provides a further motivation for the

proposed objective functional. Assuming σ and e locally constant we have∫
Ωt

〈σ∇Φ, e〉dx +

∫
Ωt

σΦ∇ · e + e∇σΦ dx =

∫
Ωt

∇ · (σΦe) dx =

∫
∂Ωt

〈σΦe,n〉dσ

In order to maximize the current densities along the target direction, the potential
should be maximized where the target vector e is oriented parallel to the outward
normal vector n on ∂Ωt and minimized where it is antiparallel.

3. Optimal Control Problem. The goal of this section is to provide insight
into the existence theory of at least one minimizer to the tDCS optimization prob-
lem (P). Furthermore, we show existence of at least one minimizer to a simplified
optimization problem without control constraint at the electrodes. Finally, the finite
element method is used for numerical discretization of the considered optimization
procedure.

3.1. Continuous formulation. We now reconsider the optimization problem
(P). In order to provide a rigorous formulation of the safety constraint we interpret
I as a Radon measure in the space M(Γ), whose norm, i.e. the total variation of a
measure, is an appropriate replacement for the L1-norm. The constraint then becomes

‖I‖M(Γ) ≤ 4

In order to obtain a unified formulation also allowing for other design constraints

respectively a discrete electrode setup, we introduce a feasible set D(Γ) ⊂ H
− 1

2
� (Γ).

To further simplify notation we define an operator A via

A : H
− 1

2
� (Γ)→ L2(Ω)3, I 7→ σ∇Φ.

Since I ∈ D(Γ) ⊂ H−
1
2

� (Γ), the boundary value problem for the Poisson equation has
a unique solution Φ ∈ H1(Ω) bounded by a multiple of the norm of I as guaranteed
by Theorem 2.1. This implies that A is a well-defined linear operator. Hence we can
substitute σ∇Φ = AI in (P), which leads to the following equivalent reformulation

(P2
δ ) −

∫
Ωt

〈AI, e〉dx→ min
I∈D(Γ)

subject to ω|AI| ≤ δ
‖I‖M(Γ) ≤ 4.

The existence of at least one minimizer I ∈ D(Γ) to (P2
δ ) is the topic of the following

theorem.
Lemma 3.1. Let ω be bounded away from zero in Ω and let I ∈ H−

1
2

� (Γ) be such
that AI satisfies the constraint ω|AI| ≤ δ almost everywhere in Ω. Then there exists
a constant C depending only on the given data σ, ω, δ, Ω and Γ, such that

(3.1) ‖I‖
H−

1
2 (Γ)
≤ C
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Proof. We have

‖I‖
H−

1
2 (Γ)

= sup{〈I, ψ〉 | ‖ψ‖
H

1
2 (Γ)
≤ 1}.

By the trace theorem we can write each such ψ as the Dirichlet trace of some Ψ ∈
H1(Ω) with vanishing trace on ΓD and ‖Ψ‖H1(Ω) ≤ CT for a universal constant in
the trace theorem depending only on Ω and Γ. Hence, by the weak formulation of the
elliptic partial differential equation satisfied by Φ with AI = σ∇Φ, we find

‖I‖
H−

1
2 (Γ)
≤ sup{

∫
Ω

(AI) · ∇Ψ dx | ‖Ψ‖H1(Ω) ≤ CT }.

Using the Cauchy-Schwarz inequality and an elementary estimate of the L2-norm of
AI in terms of its supremum norm, we find

‖I‖
H−

1
2 (Γ)
≤ C = CT

√
|Ω| δ

inf ω
,

and we see that C only depends on σ, ω, δ, Ω and Γ.

Theorem 3.2. Let D(Γ) be weakly closed in H
− 1

2
� (Γ), let 0 ∈ D(Γ) and let ε > 0.

Then there exists at least one minimizer I ∈ D(Γ) of the convex optimization problem
(P2

δ ).
Proof. An easy computation reveals that I = 0 ∈ D(Γ) is feasible for (P2

δ ),
i.e. the set of feasible points is not empty. Moreover, it is closed in the weak-star

topology of H
− 1

2
� (Γ) ∩M(Γ), which can be seen as follows: First of all the norm in

M(Γ) is lower semicontinuous with respect to weak-star convergence in this space,
which implies that a limit of feasible points satisfies the safety constraint as well.

Moreover, weak convergence of a sequence Ik in H
− 1

2
� (Γ) implies weak convergence of

AIk in L2(Ω)3, which implies that the limit satisfies the state constraint due to the
weak closedness of pointwise constraints in L2. Moreover, the feasible set is obviously

bounded in M(Ω) due to the safety constraint and in H
− 1

2
� (Γ) due to Lemma 3.1.

Hence, the Banach-Alaoglu Theorem implies compactness in the weak-star topology.
Since the objective is a bounded linear functional and in particular weak-star lower
semicontinuous we obtain the existence of a minimizer by standard reasoning.

We mention that our existence proof implicitely uses additional regularity induced
by the gradient state constraint as done also in [33], however we do not discuss further
regularity issues of the solution, which is more involved and possibly not to be expected
with the nonsmooth terms in the objective functional.

We observe that the objective as well as all terms involved in the constraints of
the optimal control problem are one-homogeneous. This allows us to renormalize the
unknown and in this way eliminate the safety constraint. This motivates the following
simplified version:

(Pε) −
∫

Ωt

〈AI, e〉dx→ min
I∈D(Γ)

subject to ω|AI| ≤ ε

By renormalizing a minimizer of (Pε) we can obtain a minimizer for the full optimiza-
tion problem (P2

δ ) with safety constraint for the control, which of course only holds
if the total variation of the minimizer is finite:
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Theorem 3.3. Let ε > 0 be a threshold parameter and I ∈ M(Γ) ∩ H−
1
2

� (Γ)
be a minimizer of the simplified minimization problem (Pε). Then Ĩ = 4I

‖I‖M(Γ)
is a

minimizer of (P2
δ ) with δ = 4ε

‖I‖M(Γ)
.

Proof. An easy calculation reveals that Ĩ = 4I
‖I‖M(Γ)

fulfills the control and state

constraint of (P2
δ ) with δ = 4ε

‖I‖M(Γ)
. Assume that Ĩ is not a minimizer of (P2

δ ). Then

there exists I∗ with smaller functional value, and
‖I‖M(Γ)

4I I∗ is feasible for (P2
δ ) with

lower functional value than I, which contradicts the optimality of the latter.
At a first glance the usefulness of Theorem 3.3 might appear limited, since the relation
between the constraint bounds ε and δ is quite implicit, depending on the minimizer of
the second problem. However, since there is no natural choice of the bound in either
case one can choose δ or ε in appropriate ranges equally well. It turns out however that
(Pε) is somewhat easier in particular with respect to numerical solutions. Moreover,
it offers a better position to introduce sparsity constraints on the control by additional
penalization, which is the subject of the following discussion.

3.2. Penalized Problem Formulation. In order to control the applied current
pattern at the fixed electrodes, the minimization problem (Pε) is extended by two
penalties. While an L2 term α

∫
Γ
I2 dx is introduced to penalize the energy of the

applied current pattern, an L1 penalty β ‖I‖M(Γ) is used to minimize the number of
active electrodes in the minimization procedure. The latter has to be reinterpreted in
the same way as the safety constraint in terms of Radon measures. This leads to the
following minimization problem

(Pα,β
ε ) −

∫
Ωt

〈AI, e〉dx+α

∫
Γ

I2 dx + β ‖I‖M(Γ) → min
I∈D(Γ)

subject to ω|AI| ≤ ε

We call the minimization problem (Pα,β
ε ) with α > 0, β = 0 and α = 0, β > 0 to be

the L2 regularized optimization procedure (L2R) and the L1 regularized optimization
procedure (L1R), respectively. If both penalties are active, the penalty term is also
known as elastic net.
Since the L2 penalty adds strict convexity to the problem, we can obtain uniqueness
of a minimizer together with existence via analogous arguments as above:

Theorem 3.4. Let D(Γ) be weakly closed in H
− 1

2
� , 0 ∈ D(Γ), and let α > 0

and β = 0. Then there exists a unique minimizer I ∈ L2(Γ) to the L2R constrained
optimization problem (Pα,0

ε ). In the latter statement, β = 0 can even be generalized
to β ≥ 0.
For the problem with pure L1-penalization the proof of existence is almost identical
to the one of Theorem 3.3 and we hence conclude:

Theorem 3.5. Let D be weakly closed in H
− 1

2
� and let α = 0 and β > 0.

Then there exists at least one minimizer I ∈ M(Γ) ∩ D(Γ) to the L1R constrained
optimization problem (P0,β

ε ).

3.3. Discrete Problem. For numerical discretization of the considered opti-
mization problem we use the finite element method. The solution of the forward
problem is approximated by looking for Φ =

∑M
k=1 αkΦk with the Φk being edge-

based finite element basis functions vanishing on ΓD.∫
Ω

σ∇Φ · ∇Ψ dx =

∫
Γ

I Ψ dσ,
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for all Ψ in the span of {Φk}. Using standard techniques this allows to verify the

existence and uniqueness of the discrete solution for arbitrary I ∈ H
− 1

2
� (Γ) and to

introduce a discretized solution operator

Ã : H
− 1

2
� (Γ)→ L2(Ω)3, I 7→ σ∇Φ.

Let Ti, i = 1, . . . , N denote the volume elements in the finite element discretization
(tetrahedra or cuboids) and denote for a function u ∈ L2(Ω)3 the local mean value by

ui =
1

|Ti|

∫
Ti

u(x) dx.

Finally we discretize I =
∑S
j=1 Ijφj with φj being local basis functions on Γ. From

the fact that I has mean zero we can eliminate IS . Now we introduce mappings A1

and A2 incorporating the discretizations:

A1 : RS−1(Γ)→ D(Γ), IS = (Ii) 7→ I =

S∑
i=1

Iiφi

A2 : L2(Ω)3 → R3N (Ω), σ∇Φ 7→ ((σ∇Φ)i)i=1,...,N

and define the discretized operator A2 ◦ Ã ◦ A1 = B, represented by a matrix in
R3N×(S−1).
As the target vector e is only defined in the target region, we define a continuous
mapping ẽ: Ωt 7→ R3N (Ω)

ẽi =

{
e, if Ti ⊂ Ωt
0, otherwise

and replace 〈BIS , e〉 by 〈BIS , ẽ〉, since 〈BIS , ẽ〉 = 0 in Ω \ Ωt. We now introduce
the discretized optimization problem (P̄α,β

ε ) as

(P̄α,β
ε ) − 〈BIS , ẽ〉+α〈IS , IS〉+ β ‖IS‖1 → min

Is∈RS−1

subject to ωi|(BIS)i| ≤ ε,

where ωi is a constant approximation of ω in Ti (in our examples defined piecewise
constant anyway).
The existence (and potential uniqueness) of minimizers can now be verified exactly as

for the continuous case above, defining an appropriate discrete version of the H−
1
2 -

norm on

D(Γ) = {I =

S∑
i=1

Iiφi},

e.g. via

‖I‖ = sup{
∫

Γ

IΦ dσ | Φ ∈ span {Φk}, ‖Φ‖H1(Ω) ≤ CT }.

For the sake of brevity we do not discuss the issue of, which can, e.g., be shown via
Γ-convergence of the functionals involved.
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4. Numerical Optimization. For numerical solution of the corresponding dis-
cretized problem we employ the alternating direction method of multipliers (ADMM)
[7]. The ADMM is a variant of the Augmented Lagrangian method, a class for solv-
ing constrained optimization problems. The method combines important convergence
properties (no strict convergence or finiteness is required) and the decomposability of
the dual ascent method [7].
To solve the discretized optimization problem (P̄α,β

ε ), we substitute BIS = y ∈ R3N

and IS = z ∈ RS−1 and obtain the following Lagrangian Lµ1,µ2
(IS ,y, z,p1,p2) which

is to be minimized

Lµ1,µ2
(IS ,y, z,p1,p2) = α〈z, z〉+ β ‖z‖1 +

µ1

2
〈z − IS , z − IS〉+ 〈z − IS ,p1〉

−〈y, ẽ〉+
µ2

2
〈y −BIS ,y −BIS〉+ 〈y −BIS ,p2〉

subject to ωi|yi| ≤ ε

with µ1, µ2 ∈ R and p1 ∈ RS−1,p2 ∈ R3N being the augmented Lagrangian parameters
and the dual variables, respectively [7].
IS-step: Rearranging and neglecting terms without IS , putting the integrals together
and expanding leads to a quadratic minimization problem

µ1

2
(〈Ik+1

S , Ik+1
S 〉 − 2〈zk, Ik+1

S 〉+
2

µ1
〈Ik+1
S ,pk1〉)

+
µ2

2
(−2〈yk, BIk+1

S 〉+ 〈BIk+1
S , BIk+1

S 〉+
2

µ2
〈BIk+1

S ,pk2〉)

Differentiating with respect to Ik+1
S and setting the equation system to be zero results

in

(µ1Id+ µ2B
trB)Ik+1

S − (µ1z
k − pk1 + µ2B

tryk −Btrpk2) = 0

⇒ Ik+1
S = (µ1Id+ µ2B

trB)−1(µ1z
k − pk1 + µ2B

tryk −Btrpk2)

y-step: Rearranging and neglecting terms and putting the integrals together results
in

µ2

2
〈yk+1 −BIk+1

S − 1

µ2
pk2 −

1

µ2
ẽ , yk+1 −BIk+1

S − 1

µ2
pk2 −

1

µ2
ẽ〉

subject to ωi|yi| ≤ ε

which can be solved analytically as follows

yk+1
i =

 ε
ωi

(BIk+1
S + 1

µ2
pk2+ 1

µ2
ẽ)i

|(BIk+1
S + 1

µ2
pk2+ 1

µ2
ẽ)i|

, if |(BIk+1
S + 1

µ2
pk2 + 1

µ2
ẽ)i| > ε

ωi

(BIk+1
S + 1

µ2
pk2 + 1

µ2
ẽ)i, otherwise

z-step: Rearranging the terms, leaving out the terms without z and putting the
integrals together leads to

α〈zk+1, zk+1〉+ β
∥∥zk+1

∥∥
1

+
µ1

2
〈zk+1 − Ik+1

S , zk+1 − Ik+1
S 〉+ 〈zk+1 − Ik+1

S ,pk1〉

= α〈zk+1, zk+1〉

+ 〈
√
µ1

2
Id︸ ︷︷ ︸

:=Ĩd

zk+1 −
√
µ1

2
Ik+1
S − 1√

2µ1
pk1 +

1√
2µ1

β,

√
µ1

2
Idzk+1 −

√
µ1

2
Ik+1
S − 1√

2µ1
pk1 +

1√
2µ1

β〉
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Algorithm 1 Algorithm for the discretized minimization problem (P̄α,β
ε )

1: Input: B, ε, µ1, µ2, α, β, ω, ẽ, Iprev, I
0
S , p0

1, p0
2, z0, y0, N , TOL

2: k = 0
3: while k < 3 or

∥∥∥IkS − Iprev

∥∥∥ > TOL do

4: Iprev = IkS
5: Ik+1

S = (µ1Id+ µ2B
trB)−1(µ1z

k − pk1 + µ2B
tryk −Btrpk2)

6: for i = 1, · · · , 3N do
7: if |(BIk+1

S + 1
µ2
pk2 + 1

µ2
ẽ)i| > ε

ωi
then

8: yk+1
i = ε

ωi

(BIk+1
S + 1

µ2
pk2+ 1

µ2
ẽ)i

|(BIk+1
S + 1

µ2
pk2+ 1

µ2
ẽ)i|

9: else
10: yk+1

i = (BIk+1
S + 1

µ2
pk2 + 1

µ2
ẽ)i

11: end if
12: end for
13: zk+1 = (Ĩd

tr
Ĩd+ αId)−1Ĩd

tr
(
√

µ1

2 Ik+1
S + 1√

2µ1
pk1 − 1√

2µ1
β)

14: pk+1
1 = µ1(pk1 + Ik+1

S − zk+1)

15: pk+1
2 = µ2(pk2 +BIk+1

S − yk+1)
16: k = k + 1
17: end while
18: δ = 4ε

‖Ik+1
S ‖M(Γ)

19: return Ik+1
S , δ, k,

∥∥∥Ik+1
S

∥∥∥
M(Γ)

The solution to this equation is given as

zk+1 = (Ĩd
tr
Ĩd+ αId)−1Ĩd

tr
(

√
µ1

2
Ik+1
S +

1√
2µ1

pk1 −
1√
2µ1

β)

Dual update: Finally, the dual variables are updated

pk+1
1 = µ1(pk1 + Ik+1

S − zk+1)

pk+1
2 = µ2(pk2 +BIk+1

S − yk+1)

We mention that a complete convergence analysis can be carried out following the
arguments in [7]. Algorithm 1 depicts an overview of the optimization steps for the
numerical solution of the discretized problem (P̄α,β

ε ). Note that the Euclidean norm
was used for the stopping criterion in Step 3.

5. Results and Discussion. We generated a highly realistic geometry-adapted
six-compartment (skin, skull compacta, skull spongiosa, CSF, gray and white matter)
finite element head model from a T1- and a T2-weighted magnetic resonance image
(MRI). For the compartments skin, skull compacta, skull spongiosa, CSF and gray
matter we employed conductivity values σ = 0.43 Sm−1, 0.007 Sm−1, 0.025 Sm−1,
1.79 Sm−1 and 0.33 Sm−1, respectively [18, 27, 32]. For the modeling of the white
matter anisotropy, a diffusion tensor MRI was used and the effective medium approach
was applied. The effective medium approach assumes a linear relationship between
the effective electrical conductivity tensor and the effective water diffusion tensor in
white matter [31], resulting in a mean conductivity value σ = 0.14 Sm−1 for the white
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Table 1
Tangential target vector ẽ: Averaged (over 924 targets) scaled threshold value δ, the number of

iterations k and the scaling factor ‖I‖M(Γ) for tangential target vectors ẽ and different input values
ε.

ε 0.0001 0.0005 0.001 0.005 0.01

δ
[
Am−2

]
0.00332 0.0085 0.0154 0.0175 0.0208

Iterations k 132 53 33 203 143

‖I‖M(Γ) 120.15 233.96 352.279 1312.2 1919.93

matter compartment [32]. As the current density amplitudes in the skin and CSF
compartments are much stronger when compared to the brain compartments [32], we
only visualized the current densities in the brain to enable best visibility of the cortical
current flow pattern. The software package SCIRun was used for visualization [9].
Using this highly realistic volume conductor model we comprehensively examine the
optimized current densities in the brain with regard to focality, target intensity and
orientation. Firstly, the maximal current density in non-target regions is investigated
for the discretized optimization problem (P̄α,β

ε ) and four target vectors are used to
calculate optimized stimulation protocols. For all simulations, the target area Ωt
always consists of the elements corresponding to the target vectors and only the
volume conductor elements in the brain are used for optimization, i.e., ω = 1 only in
the brain compartments and ω � 1 in the target region and in the CSF, skin and
skull compartments.
In order to investigate the current flow field that is induced by an optimized standard
bipolar electrode montage, we use a maximum two electrode (M2E) approach. This
approach stimulates only the main positive (anode) and the main negative electrode
(cathode) of the L1R optimized stimulation protocols with a total current of 1 mA. In
order to quantify the optimized current flow fields, we calculate the current densities
in the direction of the target vectors (CDt) and the percentage of current density that
is oriented parallel to the target vector (PAR), as shown in columns 4 and 5 in Table
3, respectively.

5.1. Maximal current density in non-target regions. In this section, the
L1R approximated discretized optimization problem (P̄0,β

ε ) with β = 0.001 is used to
calculate optimized stimulation protocols for a set of 924 tangential (parallel to the
inner skull surface) and radial (perpendicular to the inner skull surface) target vectors
and Theorem 3.3 is applied to estimate the averaged maximal current density in non-
target regions as shown in Tables 1 and 2. Furthermore, the number of iterations until
a minimum was found and the scaling factor ‖I‖M(Γ) is depicted. As can be seen
in the tables, for the threshold value ε = 0.001, the safety value δ ensures that the
maximal current density in the brain compartment is not dangerous for the subject.
Furthermore, the number of iterations k until a minimum was found is lowest for ε
= 0.001. For this reason, a threshold value of ε = 0.001 is thus used in this study as
it allows safe and well-targeted stimulation and fast and robust computation of the
stimulation protocol. Note that the number of iterations until a minimum is found
increases with decreasing mesh size. However, because the maximal resolution of
state-of-the-art whole-head MRI sequences is 1mm, we did not investigate mesh sizes
smaller than 1mm.
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Table 2
Radial target vector ẽ: Averaged (over 924 targets) scaled threshold value δ, the number of

iterations k and the scaling factor ‖I‖M(Γ) for radial target vectors ẽ and different input values ε.

ε 0.0001 0.0005 0.001 0.005 0.01

δ
[
Am−2

]
0.0043 0.0114 0.015 0.023 0.025

Iterations k 134 36 35 68 118

‖I‖M(Γ) 92.03 176.08 267.06 887.08 1597.73

5.2. Mainly tangential target vector. Figure 2 displays the optimized cur-
rent densities (for better visibility, we used a different scaling for the different rows)
and the corresponding stimulation protocols (same scaling) for a mainly tangential
target vector as shown in Figures 2-A1 and -A2. As can be seen in Figures 2-B1 and 2-
C1, the optimized current flow fields using the L2R and L1R approaches, respectively,
show high focality and maximal current densities can be observed in the target region.
While the L2R and L1R approaches lead to target current densities of 0.022 Am−2

and 0.038 Am−2 (Table 3, second column), current densities in non-target brain re-
gions are rather weak (Figs.2-B1 and -C1). Overall, due to the rather widespread
applied current pattern at the fixed electrodes (Fig.2-B2), the L2R optimized current
flow field (Fig.2-B1) has smaller amplitude when compared to the L1R one (Fig.2-
C1). On the other hand, the L1R stimulation protocol (Fig.2-C2) shows high focality
with mainly two active electrodes, while only very weak compensating currents are
injected at the neighboring electrodes. The M2E approach results in higher target
current densities of 0.071 Am−2 (Table 3, second column). However, using the M2E
approach, relatively strong current densities can also be noted in non-target regions,
especially in pyramidal tract and deeper white matter regions (Fig.2-D1).
With a PAR value of 86.4, 86.8 and 85.9 for L2R, L1R and M2E (Table 3, fifth
column), the current densities of all three approaches are mainly oriented parallel
to the target vector, leading to CDt values, i.e., current densities along the target
direction, of 0.019 , 0.033 and 0.061 Am−2, resp. (Table 3, fourth column). While
the CDt values between L1R and M2E are thus less than a factor of 2 different, the
averaged current density amplitudes in non-target regions is about 5.3 times higher
when using the M2E approach (Table 3, third column). The L1R optimized current
flow field thus shows significantly higher focality and also slightly better parallelity to
the target vector in comparison to the bipolar electrode montage M2E. However, if no
multi-channel tDCS stimulator is available, the M2E approach provides an optimized
bipolar electrode montage for a mainly tangential target vector.

5.3. Mainly radial target vector. The mainly radially oriented target is
shown in Figures 3-A1 and -A2. Figures 3-B1 and 3-C1 depict the optimized cur-
rent densities for the L2R and L1R approaches, resp.. As shown in Table 3 (Column
2), with a value of 0.045 Am−2, the target current density for the L1R approach is
more than a factor of 1.7 times stronger than with the L2R approach (0.026 Am−2).
Non-target regions show only weak current densities (Figures 3-B1 and -C1). With
a value of 0.063 Am−2, the M2E approach yields the largest target intensity (Table
3, second column). However, for this approach, the maximal current density in the
brain does not occur in the target region, but on a neighboring gyrus in between the
stimulating electrodes and in mainly tangential direction (Figure 3-D1). Moreover,
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Fig. 2. A mainly tangential target vector (Figs. -A1 and -A3): Figures -B -C and -D present
optimization results for the L2R, L1R and M2E approach, respectively. The optimized current
densities in the brain compartment (different scaling of rows), in a zoomed region of interest and the
corresponding stimulation protocols (same scaling) are shown in Figures -1, -2 and -3, respectively.

the M2E optimized current density shows again an overall much lower focality than
the L2R and L1R current flow fields.
The L2R stimulation protocol (Figure 3-B2) consists of an anode above the target,
surrounded by four cathodes and a ring of very weak positive currents at the sec-
ond neighboring electrodes, a distribution which might be best described by a sinc-
function. As can be seen in Figure 3-C2, the L1R stimulation protocol is mainly
composed of a main positive current at the electrode above the target region and four
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Table 3
Quantification of optimized current density. The averaged current density in the target area

(CDa, second column), the averaged current density in non-target regions (third column), the inner
product of current density and target vector (CDt, fourth column) and the percentage of current
density that is oriented parallel to the target vector (PAR, fifth column) is displayed for different
target vectors and methods (first column). [

Am−2
]

[%]

Target

∫
Ωt
|BIS | dx
|Ωt|

∫
Ω\Ωt

|BIS | dx
|Ω\Ωt|

∫
Ω
〈BIS ,e〉 dx
|Ωt| PAR = CDt

CDa

tangential L2R 0.022 0.00144 0.019 86.4

tangential L1R 0.038 0.00151 0.033 86.8

tangential M2E 0.071 0.0080 0.061 85.9

radial L2R 0.026 0.00064 0.025 96.1

radial L1R 0.045 0.00071 0.043 95.5

radial M2E 0.063 0.0074 0.048 76.2

patch L2R 0.025 0.00147 0.022 88.0

patch L1R 0.037 0.00157 0.033 89.1

patch M2E 0.071 0.0080 0.062 87.3

deep L2R 0.015 0.00345 0.013 86.7

deep L1R 0.019 0.00249 0.018 94.7

deep M2E 0.052 0.01477 0.049 94.2

return currents applied to the surrounding electrodes.
The L2R and L1R optimized current flow fields show high directional agreement with
the target vector e (PAR value above 95 %), with the L2R slightly outperforming
the L1R approach (Table 3, fifth column). With a PAR value of only 76.2 % the
current flow field in the M2E model shows much less directional agreement with the
target vector. This results in CDt values of 0.025, 0.043 and 0.048 Am−2 for the L2R,
L1R and M2E approaches, resp.. In order to obtain higher PAR values for the M2E
approach, i.e., higher current densities along the target direction, the distance be-
tween anode and cathode might be enlarged, in line with Dmochowski and colleagues
[10] who reported that the optimal bipolar electrode configuration for a radial target
vector consists of an electrode placed directly over the target with a distant return
electrode. Another interesting bipolar electrode arrangement for a radial target vector
might consist of an anode over the target and a cathodal ring around the anode.

5.4. Extended mainly tangential target vector region. In this section, an
extended target area of 3 mm × 1 mm × 1 mm is used for current density optimization.
The target area is centered around the location of the superficial target vector that
was also used in Section 5.2 and the corresponding target vectors are selected to be
mainly tangentially oriented (Figures 4-A1 and 4-A2). As can be seen in Figures 4-
B1 and 4-C1, the optimized current flow fields of the L2R and L1R approaches show
high focality. L2R and L1R yield an averaged target intensity of 0.025 Am−2 and
0.037 Am−2, resp. (Table 3, second column). Current density is not restricted to but
focused to the target area, especially for the L2R approach (Fig. 4-B1). In comparison
to the superficial tangential target vector of Section 5.2, the L1R optimized averaged
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Fig. 3. A mainly radial target vector (Figs. -A1 and -A2): Figures -B -C and -D present
optimization results for the L2R, L1R and M2E approach, respectively. The optimized current
densities in the brain compartment (different scaling of rows), in a zoomed region of interest and the
corresponding stimulation protocols (same scaling) are shown in Figures -1, -2 and -3, respectively.

current density in the target area is decreased by about 3 % (from 0.038 Am−2 to
0.037 Am−2) and the optimized stimulation protocols are also very similar. Because
the main two electrodes are taken from the L1R optimization, this implies that also the
M2E stimulation protocol remains constant to the stimulation protocol from Section
5.2. In this way, the M2E approach yields an averaged target intensity of 0.071 Am−2

(Table 3, second column).
With averaged PAR values of 88.0, 89.1 and 87.3 (Table 3, fifth column), the current
densities are mainly oriented parallel to the target vectors with L1R performing best.
The averaged current flow field intensity along the target direction is 0.022, 0.033 and
0.062 Am−2 for the L2R, L1R and M2E approaches, resp. (Table 3, fourth column).
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Fig. 4. An extended target region consisting of 3 tangential target vectors (Figs. -A1 and -A2):
Figures -B -C and -D present optimization results for the L2R, L1R and M2E approach, respectively.
The optimized current densities in the brain compartment (different scaling of rows), in a zoomed
region of interest and the corresponding stimulation protocols (same scaling) are shown in Figures
-1, -2 and -3, respectively.

However, for M2E also non-target regions reach significant current densities, as clearly
shown in Figure 4-D1. The averaged current density amplitudes in non-target regions
is 0.00157 and 0.0080 Am−2 for the L1R and M2E approaches (Table 3, third column).
The L1R optimized current flow field thus shows a factor of 5.1 higher focality in
comparison to bipolar electrode montage M2E. However, the M2E approach provides
an optimized bipolar electrode montage for an extended target area of tangential
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Fig. 5. A deeper target vector (Figs. -A1 and -A2): Figures -B -C and -D present optimization
results for the L2R, L1R and M2E approach, respectively. The optimized current densities in the
brain compartment (different scaling of rows), in a zoomed region of interest and the corresponding
stimulation protocols (same scaling) are shown in Figures -1, -2 and -3, respectively.

target vectors.

5.5. Deep and tangential target vector. In the last simulation scenario, we
investigate optimization for a deeper and mainly tangentially oriented target vector
as shown in Figures 5-A1 and -A2. Figures 5-B1 and -C1 depict the optimized cur-
rent density distributions when using L2R and L1R for optimization, resp.. For those
approaches, the target current densities are 0.015 and 0.019 Am−2, resp.. With a
value of 0.052 Am−2, which is more than 2.7 times the L1R value, the largest target
intensity is, however, achieved with the M2E approach (Table 3, second column).
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CDt values of 0.013, 0.018 and 0.049 Am−2 lead to PAR values of 86.7, 94.7 and
94.2 for the L2R, L1R and M2E approaches (Table 3, fourth and fifth column). The
target current densities are thus for all three approaches oriented mainly parallel to
the target vector.
The L2R and L1R stimulation protocols show high focality with mainly two active
electrodes, while only weak compensating currents are injected at the neighboring
electrodes (Figures 2-B2 and -C2). Similar to Section 5.2, the compensating currents
are stronger when using the L2R optimization procedure, leading to weaker target
brain current densities as compared to the L1R stimulation. In order to enable cur-
rent density to penetrate into deeper brain regions, the distance between the two main
stimulating electrodes is larger when compared to the superficial mainly tangential
target vector from Section 5.2, i.e., the electrode above the target region is not used
for stimulation, while a more distant electrode is used as anode.
For all three approaches, strongest current density amplitudes in the brain compart-
ment always occur at the CSF/brain boundary above the target region (Figures 5-
B1,-C1 and -D1). This is due to the fact that the potential field ∇Φ satisfies the
maximum principle for harmonic functions which states that a non-constant func-
tion always attains its maximum at the boundary of the domain [15, Theorem 14.1].
Nevertheless, in average over all non-target regions, with a value of 0.014 77 Am−2

for M2E, the L2R (0.003 45 Am−2) and L1R (0.002 49 Am−2) optimized current flow
fields show a factor of about 4.3 and 5.9 times lower current densities, resp. (Table
3, third column). Overall, L2R and L1R thus have a much higher focality, which
can also easily be seen in Figures 5-B1,-C1 and -D1. However, if no multi-channel
tDCS device is available, the M2E approach provides an optimized bipolar electrode
arrangement for a deep and tangential target vector.
The deep target region does not seem to be located in a very deep region of the brain.
It gets obvious that the deeper the target vector is located, the higher the averaged
maximal current density in the brain compartment, especially in more lateral brain
regions. Due to the maximum principle it is thus not possible to target deep regions
without stimulating more lateral brain areas. However, many important target re-
gions, e.g. auditory, motor or visual cortex, are located rather laterally, so that it will
be possible to target with significant field strength in many applications. Moreover, in
many applications of brain stimulation it might also not matter, if non-target regions
are also involved, because the experimental setup focuses on the target region, for
example when examining the change in event-related potentials (ERP) in pre- and
post- tCS stimulation ERP measurements.

6. Conclusion and Outlook. A novel optimization approach for safe and well-
targeted multi-channel transcranial direct current stimulation has been proposed. Ex-
istence of at least one minimizer has been proven for the proposed optimization meth-
ods. For discretization of the respective minimization problems the finite element
method was employed and the existence of at least one minimizer to the discretized
optimization problems have been shown. For numerical solution of the corresponding
discretized problem we employed the alternating direction method of multipliers. A
highly-realistic six-compartment head model with white matter anisotropy was gen-
erated and optimized current density distributions were calculated and evaluated for
a mainly tangential and a mainly radial target vector at superficial locations, an
extended target area and a deeper mainly tangential target vector. The numerical
results revealed that, while all approaches fulfilled the patient safety constraint, the
optimized current flow fields show significantly higher focality and, with the exception



An optimization approach for well-targeted transcranial direct current stimulation 19

of the L2R for the deep target, higher directional agreement to the target vector in
comparison to standard bipolar electrode montages. The higher directional agree-
ment is especially distinct for the radial target vector. In all test cases, because of
a more widespread distribution of injected and extracted surface currents, the L2R
optimization procedure (P̄α,0

ε ) led to relatively weak current densities in the brain
compartment. The L1R optimized current density distribution along the target direc-
tion was in all test cases stronger than the L2R one and might thus be able to induce
more significant stimulation effects. The stimulation will thus enhance cortical ex-
citability especially in the target regions, while it will as good as possible prevent too
strong excitability changes in non-target regions.
We were able to demonstrate that the M2E approach provides optimized bipolar
electrode montages as long as the target is mainly tangentially oriented. For radial
targets, the M2E approach was unsatisfactory, an optimal bipolar electrode configu-
ration might then consist of a small electrode placed directly above the target region
with a distant return electrode or a small electrode over the target encircled by a ring
return electrode, as proposed in [10].
A further application for the optimization method is transcranial magnetic stimulation
(TMS). TMS uses externally generated magnetic fields to induce electrical currents to
the underlying brain tissue [16]. Because there is no safety limit for the total currents
applied to the stimulating coils but a safety-threshold for painful muscle twitching
[16], the constrained optimization problem for multi-coil TMS is given as

(PTMS) −
∫

Ωt

〈σ∇Φ, e〉dx→ min

subject to ω|σ∇Φ| ≤ EM

∇ · σ∇Φ = −∇ · σ∂A(x, t)

∂t
in Ω

〈σ∇Φ,n〉 = −〈σ∂A(x, t)

∂t
,n〉 on Γ

Φ = 0 on ΓD

with A(x, t) being the time-dependent magnetic vector potential and EM = 450 Vm−1

being the threshold for painful muscle twitching [16]. By designing the changes in the

magnetic vector potential one can consider ∂A(x,t)
∂t as the optimization variables, re-

spectively some parameters on which it depends linearly. The existence of at least
one minimizer to the constrained optimization problem for TMS directly follows with
similar arguments as in Theorem 3.2.
Because the optimization method can be applied for both brain stimulation modali-
ties, a combined tDCS and TMS optimization might outperform single modality tDCS
or TMS optimizations, similar to what was shown for electro- (EEG) and magnetoen-
cephalography (MEG) [3, 4]. While tCS is able to stimulate a radially oriented target,
TMS is mainly not (like MEG is hardly able to detect radial sources [3, 4]). Possible
applications of combined tDCS and TMS multi-channel and multi-coil optimization
might thus be an improved stimulation of target regions containing both radial and
tangential orientations or of deeper target regions. In order to induce action poten-
tials in deeper target regions, the induced current density should exceed the threshold
for neuronal depolarization of 150 Vm−1 [16]. On the other hand, the threshold for
painful muscle twitching of 450 Vm−1 must be kept [16]. The combination of the op-
timized tDCS and TMS current density fields might lead to higher current densities
in the target and simultaneously reduced current density amplitudes in non-target
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regions.
While a thorough mathematical analysis of our novel multi-array tDCS optimization
method was derived and results for different target regions were presented, besides the
first promising results presented in [20], we did not yet further compare our method
to the existing approaches in the literature such as, e.g., [10, 30, 21, 28]. Such a
comparison is one of our future research goals.
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