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Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG) have become important
tools for non-invasive functional neuroimaging due to their unique time resolution. This comes
at the cost of an ill-posed inverse problem that has to be solved to reconstruct the active brain
areas underlying a measured signal. For accurate EEG/MEG source analysis, it is necessary
to precisely simulate the electric and magnetic fields generated by a minimal patch of active
brain tissue, represented by the model assumption of a current dipole. This leads to the
so-called forward problem of EEG/MEG, which has to be solved numerically when aiming
to consider the individual shape and conductivity distribution of the subject’s head as it is
recommendable. A possible method to achieve this goal is the finite element method (FEM).
In this thesis, two important aspects influencing the accuracy achieved in solving the
EEG/MEG forward problem using FEM are studied. On the one hand, the numerical
accuracy achieved by both established and newly presented FEM approaches is evaluated for
EEG/MEG forward solutions, where both spherical and realistic head models are considered
as evaluation scenarios. On the other hand, the influence of differently detailed distinctions of
the conductive compartments in the human head in the setup of an individual head model is
investigated.
Key contributions are:

• Different source modeling approaches to solve the EEG/MEG forward problem based on
a conforming FEM formulation (CG-FEM) are evaluated in both spherical and realistic
multi-compartment head models and it is shown that these achieve high accuracies in
the considered scenarios. The Venant approach is found to achieve the best compromise
of numerical accuracy and computational effort for both EEG and MEG. It is further
shown that in many cases the effects of simplifications in the model creation exceed the
numerical errors.

• On this basis, the influence of the modeling of different conductive features of the human
head on topography and magnitude of EEG/MEG forward simulations and on inverse
solutions is investigated. The most important conductive compartments to be modeled
are identified and a guideline for EEG/MEG head volume conductor modeling is derived.
It is concluded that starting from the common three-layer scenario (skin, skull, and
brain) especially the additional distinction of the homogeneous brain compartment into
CSF, gray matter, and white matter is highly recommendable, particularly for the EEG
forward problem.



ii

• Theoretical derivations and evaluations of two newly presented FEM approaches to solve
the EEG/MEG forward problem, discontinuous Galerkin (DG)- and Mixed-FEM, are
presented. It is shown that, while matching the accuracy of the CG-FEM in common
sphere models, these approaches allow to prevent numerical errors, so-called leakage
effects, that occur in certain geometries for CG-FEM and that they achieve a higher
accuracy than CG-FEM in a realistic six-layer head model. For the regular hexahedral
meshes used in this thesis, the projected Mixed-FEM achieved the highest accuracies.



Keywords: EEG, MEG, forward problem, source analysis, finite element method, discontin-
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NOTATION AND ABBREVIATIONS

As most of the notation and abbreviations are introduced in the corresponding chapters, this
listing serves as a reference for later look-up and does not claim to be complete.

General notation

Ω open set in Rn; usually the head domain
Γ = ∂Ω

d dimension, usually d = 3

∂f/∂xi partial derivative
∂αf = ∂|α|f/(∂xα1

1 . . . ∂xαnn )

n normal vector, usually on Γ

nF , ne,f normal vector on face F , normal vector pointing from element e to f
∇f = (∂f/∂x1, . . . , ∂f/∂xd) = grad f

∇ · q =
∑d

i=1 ∂qi/∂xi = divq

∂nf = 〈n,∇f〉, normal derivative
∇h element-wise gradient
∆ Laplace operator
〈a, b〉 a, b ∈ Rd, vector scalar product
‖x‖2 = 〈x,x〉1/2, cartesian norm
|V | volume of V
a× b vector product
At transpose of a matrix
Ai·, A·j i-th row/j-th column of matrix A
I identity matrix
δi,j Kronecker delta

xiv



Notation and Abbreviations xv

L2(Ω) space of square-integrable functions on Ω

Lp(Ω) space of p-integrable functions on Ω

L∞(Ω) space of essentially bounded functions on Ω

Cm(Ω) space of functions with continuous derivatives of order m
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INTRODUCTION

Understanding the functioning of the human brain is an important goal of research, involving
many areas of science. Common examples are psychology, where for example the emergence
of emotions or the origin of mental diseases are topics of research, or medicine, where such
research is necessary for a better understanding and treatment of neurological diseases, e.g.,
epilepsy. Prior to the development of modern neuroimaging techniques, brain research was
dependent on indirect evidence such as behavioral experiments and lesion studies or on
post-mortem analysis of the brain structure. Nowadays, neuroimaging techniques have become
powerful tools that allow insight into functioning and pathology of the live human brain on a
macroscopic level.

The used technologies can roughly be separated into those to depict the anatomical structure
of the brain on the one hand and those for imaging the functioning of the brain on the other
hand. Frequently used technologies to generate structural images of the human brain are,
e.g., X-ray computed tomography (CT) or magnetic resonance imaging (MRI), the functioning
of the brain can, e.g., be investigated by analyzing the characteristics of metabolism using
techniques such as positron emission tomography (PET), single photon emission computed
tomography (SPECT), or functional magnetic resonance imaging (fMRI); amongst these tools
electroencephalography (EEG) and magnetoencephalography (MEG) are unique due to their
time resolution in the range of milliseconds and the comparably direct relation between brain
activity and measured signal. These features motivate the frequent use of EEG and MEG in
cognitive science, but also in clinical applications, e.g., in pre-surgical epilepsy diagnosis or in
sleep medicine.

To reconstruct the positions of the sources inside the brain volume that underlie a measured
signal, it is necessary to solve the ill-posed inverse problem of EEG/MEG. This requires to
simulate the electric/magnetic field caused by a point-like source in the brain volume: the
so-called forward problem of EEG/MEG (Brette and Destexhe, 2012). The exactness that
can be achieved in solving the inverse problem strongly depends on the accuracy with which
the forward problem is solved. An important aspect in order to increase this accuracy is
the use of realistic volume conductor models of the subject’s head. As the forward problem
of EEG/MEG cannot be solved analytically in such geometries, this necessitates the use of
numerical methods; amongst the proposed methods to solve the forward problem are boundary
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element methods (BEM) (Akalin-Acar and Makeig, 2010; Gramfort et al., 2011; Mosher and
Leahy, 1999; Stenroos and Sarvas, 2012), finite difference methods (FDM) (Montes-Restrepo
et al., 2014; Vatta et al., 2009; Wendel et al., 2008), finite volume methods (FVM) (Cook and
Koles, 2006), and finite element methods (FEM) (Bertrand et al., 1991; Drechsler et al., 2009;
Marin et al., 1998; Pursiainen et al., 2011; Ramon et al., 2006; Schimpf et al., 2002).

This thesis focuses on the evaluation and application of FEM to solve the EEG and MEG
forward problem. FE methods were shown to achieve high numerical accuracies in solving the
EEG forward problem (Drechsler et al., 2009; Vorwerk et al., 2012), while the computational
burden could be clearly reduced by the introduction of transfer matrices and fast solver
methods (Gencer and Acar, 2004; Weinstein et al., 2000; Wolters et al., 2004). To apply FEM
in solving the EEG/MEG forward problem, an important task that has to be solved is the
modeling of the highly irregular source distribution introduced by the assumption of a current
dipole as fundamental source. Amongst the most frequently used approaches to deal with
this task are the Venant (Buchner et al., 1997; Schönen et al., 1994; Toupin, 1965; Vorwerk
et al., 2012), the partial integration (Vallaghé and Papadopoulo, 2010; Vorwerk et al., 2012;
Weinstein et al., 2000; Yan et al., 1991), the Whitney or Raviart-Thomas (Pursiainen et al.,
2011; Tanzer et al., 2005), and the subtraction approach (Bertrand et al., 1991; Drechsler
et al., 2009; Marin et al., 1998; Schimpf et al., 2002; Vorwerk et al., 2012; Wolters et al.,
2007c). Until recently, all of these approaches were exclusively formulated in the context of
Continuous Galerkin FEM (CG-FEM), also called Lagrange- or conforming FEM. While the
thereby achievable accuracy in most scenarios is, as previously mentioned, high, scenarios
exist, where the accuracy of the CG-FEM is clearly diminished. To tackle this problem, two
new FEM formulations are introduced and evaluated in this thesis. The partial integration
and subtraction approach are formulated in the framework of the discontinuous Galerkin FEM
(DG-FEM) (Arnold et al., 2002; Di Pietro and Ern, 2011) and a new approach to model the
dipole source is introduced on the basis of a Mixed-FEM formulation (Brezzi and Fortin, 1991;
Raviart and Thomas, 1977). It is shown that these approaches lead to similar accuracies as
CG-FEM in common sphere geometries, but achieve better results for some special geometries
and in a realistic six-compartment head model.

A second possible source of error besides the modeling of the highly irregular source distribution,
are simplifications made in the generation of the volume conductor model. The BEM depends
on representations of the surfaces between compartments of different conductivity and is often
used in combination with realistically shaped three-layer head models consisting of skin, skull,
and a homogeneous brain compartment inside the skull. In contrast, FEM, FDM, and FVM
depend on 3d-discretizations of the volume and principally allow the distinction of arbitrarily
many compartments of different conductivity. Possible refinements of three-layer head models
are, e.g., the separation of the homogeneous compartment inside the skull into cerebrospinal
fluid (CSF) and gray and white matter (Lanfer et al., 2012a; Ramon et al., 2004; Wendel
et al., 2008). Furthermore, the different tissues of the skull, skull compacta and spongiosa, can
be distinguished (Akhtari et al., 2002; Dannhauer et al., 2011; Sadleir and Argibay, 2007) or
the anisotropic structure of the white matter can be taken into account (Güllmar et al., 2010;
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Ramon et al., 2004). In this thesis the influence of modeling/not modeling these different
conductive compartments and features of the human head – skull compacta, skull spongiosa,
CSF, gray matter, white matter, and white matter anisotropy – in the creation of a volume
conductor on both EEG and MEG forward solutions is investigated. Therefore, statistical
evaluations and visualizations of the effects on signal topography and magnitude are generated.
On this basis the high importance of accurate volume conductor modeling for EEG and, to
a lesser degree, for MEG forward solutions is shown. As most important modeling steps
the consideration of the highly conductive CSF and the distinction of gray/white matter
conductivity differences is found. Subsequently, also the influence on the inverse problem is
studied and a MATLAB-pipeline allowing the simple generation of FEM forward solutions
using five-compartment head models is presented.
The structure of this thesis is as follows: After deriving the forward problems of EEG and
MEG and indicating quasi-analytical solutions for sphere models in Chapter 1, the CG-FEM
is introduced to solve the forward problems of EEG and MEG in Chapter 2. On this basis,
different approaches to model the dipole source are presented and their numerical accuracy
for both sphere and realistic head models is evaluated for EEG and MEG. In Chapter 3 the
numerical errors are set in relation to the effects of simplifications in the modeling of the
head volume conductor and the most important conductive compartments to be modeled are
identified. Motivated by a scenario in which the CG-FEM achieves insufficient accuracies,
the so-called skull leakage, the DG- and Mixed-FEM are introduced in Chapters 4 and 5,
respectively. It is shown that both approaches achieve a similar numerical accuracy as the
CG-FEM in common geometries, while effectively preventing the numerical inaccuracies caused
by leakage effects.



1
THE EEG/MEG FORWARD PROBLEM

In this chapter, the partial differential equation (PDE) that is known as the forward problem
of EEG and, employing the law of Biot-Savart, subsequently also the forward problem of MEG
is derived. Starting point is a short description of the physiology underlying the generation of
electrical fields in the human brain. Subsequently, a simplification of Maxwell’s equations is
introduced, the so-called quasi-static approximation, and a Poisson equation with Neumann
boundary conditions for the electric potential is deduced, which defines the forward problem of
EEG. After presenting an adequate source model and deriving the forward problem of MEG,
analytical solutions in sphere models for both EEG and MEG are noted.

1.1. Physiological Background

The electrical potential differences at the head surface measured with the EEG as well as
the magnetic fields measured with the MEG are an effect of electromagnetic fields induced
by ion currents inside the brain. To understand the sources of this bioelectromagnetism,
the basic structures and elementary processes inside this highly complex organ are shortly
explained in the following. The human brain is composed out of 1011 up to 1012 elementary
cells, the so-called neurons (Thompson, 1992). Neurons are electrically excitable cells that
communicate amongst each other using electrochemical signaling. A typical neuron in the
brain consists of three parts, the soma, which represents the cell body, the dendrites, and

Figure 1.1.: A human neocortical pyramidal neuron stained via Golgi technique. Source: Bob Jacobs,
Wikimedia Commons, CC BY-SA-2.5; released under the GNU Free Documentation License.
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1 The EEG/MEG Forward Problem 5

one axon arising at the axon hillock (cf. Figure 1.1). Each cell builds only one axon, which
can reach a length between 1 µm (in the brain) up to 1 m (in the spinal chord) and branch
several times, whereas several dendrites having a length of some hundred micrometers may
develop. The neurons connect to each other cultivating (complex) networks, communicating
via chemical transmitters at the synapses, where typically signals from the axon of one neuron
are passed to a dendrite of another. Each neuron has about 7,000 synaptic connections to
other neurons (Drachman, 2005).

The process of signal transmission between neurons is based on the rise and fall of electric
potentials at the cell membranes, established by the diffusion of ions through ion-channels.
These potential differences cause intra- and extracellular ion currents, i.e., currents flowing in-
and outside the neurons, respectively. According to Maxwell’s equations of electrodynamics,
the movement of electric charges gives rise to electromagnetic fields propagating through the
human body. Two major patterns of membrane potentials appear in the signal transmission
between neurons: action potentials and post-synaptic potentials.

When a certain threshold potential at the axon hillock of the pre-synaptic neuron is exceeded,
the neuron “fires”, i.e., a sudden change of the membrane potential consisting in an abrupt
rise followed by a fall of the same amplitude occurs. This action potential propagates along
the axon, inducing the dumping of neurotransmitters at the pre-synaptic membrane of the
affiliated synapses. The diffusion of these transmitters through the neighboring post-synaptic
membrane causes a potential change – the post-synaptic potential – in the post-synaptic
neuron. This (or the sum of various) potential changes may, again, initiate an action potential
in the post-synaptic neuron, i.e., the signal is passed on.

Since action potentials are too short (0.5-2 ms), insufficiently synchronized, and their far-field
induced by the resulting ion currents is dominated by the quadrupole term, they do not
evoke an exploitable EEG signal (Jackson et al., 2006; Plonsey, 2005). In contrast, the
simultaneous generation of post-synaptic potentials with a duration of tens of milliseconds by
some ten-thousand neighboring and similarly oriented neurons, corresponding to a patch of
few square millimeters of cortex surface, results in a measurable, dipolar electromagnetic field
(Murakami and Okada, 2006; Okada, 1993). The potential difference between the particular
dendrite and the soma induces a balancing flow of ions in the liquid between the neurons.
The highest concentration of similarly oriented neurons is given for the approximately 109

pyramidal cells that are mainly found in the cortex, but also in the hippocampus and the
amygdala. Thus, the major contribution to the EEG/MEG signals originates from these areas.

1.2. Quasi-Static Approximation of the Maxwell Equations

In this section, a quasi-static approximation of Maxwell’s equations following Hämäläinen
et al. (1993) is derived. As a first step we note that the permeability of the head’s tissue is



6 1.3 The Forward Problem of EEG

that of free space, i.e., µ = µ0. Then, Maxwell’s equations read

∇ ·E =
ρ

εrε0
, (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂B
∂t
, (1.3)

∇×B = µ0j + µ0εrε0
∂E

∂t
, (1.4)

where E denotes the electric field, B the magnetic field, ρ the charge density, j the current
density, ε0 and εr the permittivity of free space and the relative permittivity, respectively,
and µ0 the permeability of free space. In the following, it is shown that the quasi-static
approximation, i.e., neglecting the temporal derivatives in Maxwell’s equations, is a reasonable
assumption for modeling EEG/MEG signals. Using Ohm’s law, j = σE, in (1.4), we have

∇×B = µ0(σE + εrε0
∂E

∂t
), (1.5)

where σ represents the underlying isotropic or anisotropic conductivity distribution, respec-
tively.
Since one can apply a Fourier decomposition to a general time dependent electric field, one
has no loss of generality when assuming a harmonic time dependency with angular frequency
ω, i.e., E(t) = E0e

−iωt, in (1.5):

∇×B = µ0(σE− iεrε0ωE). (1.6)

Thus, for the quasi-static approximation to be valid, it is needed that |εrε0ω| � |σ|, i.e.,
|εrε0ω/σ| � 1. With σ≈ 0.3 S/m, εr ≈ 105 and a frequency f = ω/2π ≈ 100 Hz, which is
assumed to be an upper bound for frequencies in neuromagnetism (Hämäläinen et al., 1993),
we have εrε0ω/σ ≈ 2 · 10−3 � 1.
To show that ∂B/∂t in (1.3) can be neglected, the rotation of (1.3) is taken and with (1.4)
we have

∇×∇×E = − ∂

∂t
(∇×B) = −µ0

∂

∂t
(σE + εrε0

∂E

∂t
) = µ0(iσω − εrε0ω2)E. (1.7)

The solutions of this equation have a characteristic wavelength of λc = |µ0σω(1−εrε0ω/σ)|−1/2

≈ 65 m, which is much larger then the diameter of the human head, so that the contribution
to E can be neglected.

1.3. The Forward Problem of EEG

Since ∇×E = 0 as a consequence of (1.3), E is a gradient field and can be related to a scalar
potential u:

E = −∇u. (1.8)
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Next, the current density j(x) is separated into two parts to simplify the following calculations.
We define the primary current jp(x), which represents the neural activity and is commonly
spatially limited to a small volume; the passive volume or return current, jv(x) = σ(x)E(x),
flows in the whole medium as an effect of the macroscopic electric field:

j(x) = jp(x) + jv(x) = jp(x) + σ(x)E(x) = jp(x)− σ(x)∇u(x). (1.9)

The macroscopic conductivity σ is either a non-negative scalar (isotropic case) or a symmetric
positive definite tensor (anisotropic case), i.e., σ : Ω → R+ or σ : Ω → R3×3, depending on
whether the anisotropic conductivity of, e.g., the white matter is taken into account or not. Ω

denotes the head domain.

Remark 1. We assume that the head domain Ω is open and connected. We further assume
that Γ := ∂Ω is sufficiently regular, e.g., Lipschitz continuous or Γ ∈ C1.

Taking the divergence of (1.4), where the temporal derivative is neglected following Section
1.2 and ∇ · ∇ ×B = 0 is exploited, this can be combined with (1.9) and a system of two first
order partial differential equations can be formulated:

j + σ∇u = jp

∇ · j = 0
in Ω, (1.10a)

〈j,n〉 = 0 on ∂Ω = Γ. (1.10b)

This formulation is later used in Chapter 5. However, it is also possible to directly eliminate
the unknown j, gaining the second order PDE

∇ · (σ∇u) = f = ∇ · jp in Ω, (1.11a)

σ∂nu = 0 on ∂Ω = Γ. (1.11b)

This is a Poisson equation with (homogeneous) Neumann boundary conditions. f is introduced
as an abstract source term here, the actual definition of f later depends on the choice of the
source model.
The forward problem of EEG now consists in finding a solution u or (j, u) to the equivalent
equation systems (1.11) or (1.10), respectively. Classical solutions to the problem in the strong
formulation, i.e., solutions that are sufficiently often differentiable for example u ∈ C2(Ω) or
similar, are only existing under restrictive assumptions, such as a sufficiently regular source
term f and a continuous conductivity σ. These assumptions turn out to be too restrictive in
the present scenario, as usually only piecewise constant conductivities can be assumed, i.e.,
σ ∈ L∞(Ω). Thus, we instead search for a solution of the weak formulation of (1.11). Using a
linear test function space V , which needs to be chosen to be a Hilbert space to show existence
and uniqueness of a solution as it is shown later, this reads:
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Find u ∈ V such that
∫

Ω
〈σ∇u,∇v〉dx =

∫
Ω
fv dx for all v ∈ V. (1.12)

The weak formulation can be derived by multiplying (1.11) with a test function v, integration
over the domain Ω, applying Gauss’s theorem (multi-dimensional integration by parts), and
exploiting the boundary condition (1.11b). Introducing the notation

a(u, v) = (σu, v)L2(Ω)3 =

∫
Ω
〈σ∇u,∇v〉 dx for u, v ∈ V, (1.13a)

l(v) = (f, v)L2(Ω) =

∫
Ω
fv dx for v ∈ V. (1.13b)

(1.12) can be reformulated to

Find u ∈ V such that a(u, v) = l(v) for all v ∈ V. (1.14)

One can now show (cf. Braess, 2007, 2.2) that under the assumption that a is a symmetric,
positive linear form, i.e., a(u, u) > 0 for all u ∈ V \{0}, solving (1.14) is equivalent to finding
a solution to the variational problem

u = arg min
v∈V

J(v), J(v) :=
1

2
a(v, v)− l(v). (1.15)

Furthermore, the problem (1.14) is consistent with the strong formulation (1.11):

Remark 2 (Consistency). Every solution of the classical problem (1.11) is also a solution of
the weak formulation (1.12)/ (1.14). This is of course also true for general problems of this
kind.

Proof. Braess (2007, 2.2 and 2.3)

To show existence and uniqueness of a solution for (1.15) and thereby of course also for (1.12),
one would like to apply the Lemma of Lax-Milgram:

Lemma 1 (Lax-Milgram). Let H be a Hilbert space, a : H ×H → R an elliptic bilinearform,
i.e., symmetric positiv-definite and a(v, v) > α‖v‖2H for v ∈ H, α > 0. Then, for every l ∈ H ′

the variational problem

J(v) :=
1

2
a(v, v)− l(v)→ min (1.16)

admits a unique solution in H.

Proof. Braess (2007, 2.5)

This implies that it is necessary to find a fitting function space V such that a as defined in
(1.13a) is V -elliptic. As mentioned, one would desire to find a solution in C2(Ω), however
this is in most scenarios not mathematically feasible. Instead, V is chosen to be the Sobolev
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space H1(Ω) in the following. The Neumann boundary condition (cf. Equation 1.11b) only
determines the solution u up to a constant; a is therefore not H1(Ω)-elliptic. This can be
solved by restricting H1(Ω) to the subspace

H1
∗ (Ω) := {v ∈ H1(Ω) :

∫
Ω
v dx = 0}. (1.17)

H1
∗ (Ω) is the quotient of H1(Ω) taken by the space of constant functions supported on Ω, i.e.,

the resulting solution is up to a constant unique in H1(Ω).
Now, existence and uniqueness of a solution for (1.15)/(1.12) can be shown.

Lemma 2. For every l ∈ H−1(Ω) the variational problem (1.15) admits a unique solution in
the space H1

∗ (Ω).

Proof. To apply the Lax-Milgram lemma (Lemma 1) one has to show that a(v, v) is H1
∗ (Ω)-

elliptic. This is easily done, as

a(v, v) =

∫
Ω
〈σ∇v,∇v〉 dx = σ|v|2H1(Ω) ≥ min

x∈Ω
σ(x)‖v‖2L2(Ω), (1.18)

where it is exploited that ‖v‖L2(Ω) ≤ |v|H1(Ω) for all v ∈ H1
∗ (Ω) Braess (cf. 2007, p. 32).

| · |Hm(Ω) is the seminorm

|v|2Hm(Ω) :=
∑
|α|=m

‖∂αv‖L2(Ω), (1.19)

and ∂α indicates the partial derivative with multi-index α = (α1, . . . , αd).

Remark 3. l ∈ H−1(Ω) demands f ∈ L2(Ω) and in terms of jp we have ∂(jp)i/∂xi ∈ L2(Ω).

Remark 4. The condition
∫

Ω vdx = 0 is advantageous for the proof of uniqueness, but is
mostly not feasible in the implementation of solvers for the equation systems that occur for the
numerical methods used to solve the EEG forward problem, e.g., BE or FE methods. However,
this problem can be avoided by replacing the pure Neumann boundary conditions by mixed
boundary conditions, i.e., introducing Dirichlet boundary conditions on ΓD ⊂ Γ, |ΓD| 6= ∅. It
is actually sufficient if ΓD consists of a single point, ΓD = xD ∈ ∂Ω, to uniquely determine u.

Remark 5. If we additionally assume σ ∈ C1(Ω) and f ∈ L2(Ω), we find u ∈ H2
loc(Ω) for a

solution u ∈ H1(Ω) of (1.14) and for each open V ⊂⊂ Ω we have the estimate

‖u‖H2(V ) ≤ C(‖f‖L2(V ) + ‖u‖L2(V )) (1.20)

with a constant C only depending on V , Ω, and σ (Evans, 1998). For f ∈ Hm(Ω), we even
find u ∈ Hm+2

loc (Ω) (Evans, 1998). If a classical solution u of (1.11) exists, we even have
u ∈ C2(Ω) ∩ C1(Ω̄) (Hackbusch, 2003).
However, these estimates do not take the discontinuous conductivity distribution σ and the
possibly singular source term f (cf. Section 1.4) into account. For a jumping conductivity
distribution σ /∈ C1(Ω) that is constant/continuous on the disjunct subsets Ωi ⊂ Ω, Ωi ∩ Ωj =
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∅ for i 6= j, ∪iΩ̄i = Ω̄ one can at least still expect to have u ∈ H2
loc(Ωi), while the derivative

of u is usually not continuous at the boundaries Γi,j = Ω̄i ∪ Ω̄j , i 6= j (Hackbusch, 2003).
For problems with a Dirac source term, but sufficiently regular conductivity distribution, e.g.,
σ Lipschitz continuous, and Ω convex and polyhedral it can be shown that u ∈ W 1,p(Ω),
1 ≤ p < 1.5 (Casas, 1985; Köppl and Wohlmuth, 2014). A further loss of regularity has to be
expected when a source term that has a stronger singularity than a delta function is chosen as
it is the case for the choice of a current dipole, though, it can be approximated through the
limit case of two approaching Dirac distributions.

Next, the already mentioned and commonly assumed source model of a current dipole is
introduced, which has the consequence that even the assumption f ∈ L2(Ω) is not fulfilled.

1.4. The Current Dipole as a Source Model

The source term f has to be chosen so that it adequately represents the generators of measured
EEG/MEG signals in the brain, i.e., the electrical currents generated by brain activity. A
widely used concept in bioelectromagnetism is the mathematical or current dipole, which
represents an infinitesimally small source of electrical current. This is a good approximation
to the neural generators of EEG/MEG seen from a relatively far distance (de Munck et al.,
1988; Hämäläinen et al., 1993; Sarvas, 1987), since the far-field of such a source is mainly
dipolar (cf. Section 1.1). Furthermore, it can be shown that any further source of electrical
current can be decomposed into a distribution of current dipoles, as this is the fundamental
solution of the Poisson problem in the strong formulation (1.11). A current dipole is defined
by its position x0 and its moment p:

jp(x) = pδx0(x), (1.21)

where δx0 is the Dirac delta distribution and p the dipole moment (cf. Jackson et al., 2006).
It can be illustrated as the limit case of two electrical monopoles, a current source and a sink
with charge q and distance vector d, that come infinitely close together in x0, while the dipole
moment p = qd remains constant:

p = lim
‖d‖2→0
q→∞

∫
x(qδx0+d/2(x)− qδx0−d/2(x)) dx = lim

‖d‖2→0
q→∞

qd. (1.22)

p can then be related to the dipole term in the multipole expansion of a source distribution
(Jackson et al., 2006). The corresponding source term f in (1.11) is given by f = ∇ · jp =

〈p,∇δx0〉. However, since we have

δ(x) ∈ H−3/2−ε and ∂αδ(x) ∈ H−3/2−|α|−ε for ε > 0 (cf. Taylor, 1996), (1.23)

the requirements of Lemma 2 are not fulfilled. This is possibly problematic with regard to the
convergence of the numerical solutions as it gets clear in the following chapters.
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Furthermore, it is unclear how to evaluate ∇δx0 . Dealing with this singularity is the main
task to solve when one would like to apply finite element methods to solve the EEG/MEG
forward problem. The derivation and evaluation of different approaches to resolve this are a
main topic of this thesis and content of Chapters 2, 4, and 5.

However, the choice jp = pδx0 has some advantages in the analytical treatment of the Poisson
equation, since δx0 occurs naturally in the context of fundamental solutions and choosing
f = ∇jp allows to derive analytical formulas to calculate EEG/MEG forward solutions in
some simple scenarios. Therefore, the fundamental solution of the Poisson problem is needed.

Definition 1. We define

G(x) :=
1

4π‖x‖2

for x ∈ R3. (1.24)

Remark 6. For n ≥ 3, G is the fundamental solution of the Poisson equation, i.e., it fulfills
the property −∆G(x) = δ(x) in a distributive sense.

Proof. Jackson et al. (2006); Nédélec (2001).

Fundamental solutions allow to easily derive solutions of linear partial differential equations
via convolution. For example, in an unbounded volume conductor with isotropic conductivity
σ, the solution of the Poisson problem is given by convolution of the source term f with G:

u = − 1

σ
f ∗G. (1.25)

In the case of a mathematical dipole at position x0 one obtains (Sarvas, 1987)

u(x) = − 1

σ
(∇ · jp) ∗G(x) =

1

σ

∫
R3

〈p,∇δx0(x− y)〉G(y) dy =

− 1

σ

∫
R3

〈pδx0(x− y),∇G(y)〉dy = −〈p,∇G(x− x0)〉
σ

=
〈p,x− x0〉

4πσ‖x− x0‖32
. (1.26)

The solution of the Poisson equation in an unbounded volume conductor is the basis to
introduce the subtraction approach in Section 2.6 (Drechsler et al., 2009; Wolters et al.,
2007c).

Also for more general domains Ω, the fundamental solution can often be used to derive a
solution of the Poisson problem with boundary conditions such as problem (1.11) (Hackbusch,
2003). However, this is a rather theoretical possibility, since this function can usually only be
evaluated explicitly in few special cases, mainly those with a high symmetry. A scenario in
which an analytical solution can be derived is the multi-layer sphere model. This is topic of
Section 1.6.

The fundamental solution also plays an important role in the numerical solution of (1.11)
using boundary element methods (BEM) (Adde et al., 2003; Geselowitz, 1967; Kybic et al.,
2005; Zanow, 1997), which are applied in Section 2.11.
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1.5. The Forward Problem of MEG

In the following, the basic equations of magnetostatics that are needed to solve the forward
problem of MEG are stated, for a more general overview on magnetostatics we refer to Jackson
et al. (2006). The solution to the forward problem of MEG follows directly from the solution
of the respective EEG forward problem via the law of Biot-Savart. For a general current
distribution j : Ω→ R3 this reads

B(x) =
µ0

4π

∫
Ω
j(x′)× x− x′

‖x− x′‖32
dx ′ (1.27)

in the formulation for the magnetic field B. Introducing the vector potential A in Coulomb’s
gauge, defined through the equations B(x) = ∇×A(x) and ∇·A = 0, (1.27) can be rewritten
to

A(x) =
µ0

4π

∫
Ω

j(x′)

‖x− x′‖2
dx ′. (1.28)

In MEG, the current flow induced in the measurement coil can be calculated when knowing
the magnetic flux Φ through the surface enclosed by the coil. With F being this surface and
γ := ∂F its boundary, the magnetic flux is given by

ΦF =

∫
F
B(x) dF =

∮
γ
A(x) dx, (1.29)

where the equality follows from Stokes’ theorem. Only the equations for the vector potential
A are derived here, however, the representation in terms of B follows accordingly. Again
splitting the current j into primary current jp and volume currents σ∇u following (1.9), the
current distribution is given by j(x) = jp(x)− σ(x)∇u(x) and from (1.28) and (1.29) we have

ΦF =

∮
γ

µ0

4π

∫
Ω

jp(x′)− σ(x′)∇u(x′)

‖x− x′‖2
dx ′ dx . (1.30)

This expression can be simplified by applying Fubini’s theorem and defining

C(x′) :=

∮
γ

1

‖x− x′‖2
dx . (1.31)

If one furthermore assumes a dipolar source jp = pδx0 as introduced in Section 1.4, the
so-called primary and secondary magnetic flux, Φp and Φs, can be defined:

Φp =
µ0

4π
〈p,C(x0)〉, (1.32a)

Φs = −µ0

4π

∫
Ω
〈σ(x′)∇u(x′),C(x′)〉dx ′, (1.32b)

ΦF = Φp + Φs (1.32c)

The primary flux Φp represents the magnetic field directly caused by the current dipole jp,
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while the secondary flux Φs can be identified with the volume currents σ∇u (Hämäläinen
et al., 1993). When the coil integral C is known, the primary flux can be directly evaluated
analytically.

1.6. Analytical Solutions to the EEG/MEG Forward Problem

Besides the unbounded homogeneous volume conductor, some further geometries exist for
which the forward problems of EEG/MEG (1.11)/(1.32) can be solved (quasi-)analytically.
One of these is the multi-layer sphere model. The analytical formulas allow for an easy
calculation of the electric potentials under the constraint to model the human head by nested
spheres of different conductivities, i.e., the compartment boundaries are spheres with a common
origin. In practice, analytical solutions were (and still are) used to solve the forward problem
of EEG and especially MEG due to the fast computation and the omission of the model
generation. Obviously, a major drawback is that the assumption of a multi-layer sphere as a
model for the human head is rather inexact. Thereby, especially for the EEG, but also for the
MEG, the model error exceeds the numerical errors of methods being able to solve the forward
problem for realistic head models, such as the finite element method that is introduced in
the following chapter. Nevertheless, analytical solutions are still useful as a tool to compute
reference solutions to evaluate the accuracy of the numerical approaches.

We first concentrate on solutions for the EEG forward problem. Different formulas to obtain
an analytical solution for the EEG forward problem have been derived. While first solutions
were only valid for a constant number of spheres with isotropic conductivities (Geselowitz,
1967; Hosek et al., 1978), solutions that are able to handle arbitrarily many spheres and
to a certain extent even anisotropic conductivities have later been developed (de Munck,
1988; de Munck and Peters, 1993; Mosher et al., 1999; Zhang, 1995). The solution derived in
de Munck and Peters (1993) is used throughout this thesis, which allows to treat arbitrarily
many spheres and even radial symmetric anisotropy. The necessary formulas are noted in the
following.

The assumed model consists of N nested shells with radii r1 < r2 < . . . < rN and constant
radial and tangential conductivities σrad(x) = σradj ∈ R+ and σtan(x) = σtanj ∈ R+ in each
shell, rj < xr < rj+1, where xr ∈ R is the radial coordinate of x, i.e., the distance to the sphere
origin. It is further assumed that the source is in a more interior layer than the measurement
electrodes at positions yi, i = 1, . . . , s with s being the number of electrodes, with radial
coordinate yri ∈ R. Then, the potential evoked at yi by a source at position x with dipole
moment p is given by

u(x,p,yi) =
1

4π
〈p, S0

yri
yi +

(
S1

xr
− cosωx,yi

S0

xr

)
x〉 (1.33)

with ωx,yi being the angular distance between x and yi, i.e., for spheres with center in the
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origin ωx,yi = arccos〈x/‖x‖2,yi/‖yi‖2〉, and

S0 =
F0

xr
Λ

(1− 2Λ cosωx,yi + Λ2)3/2
+

1

xr

∞∑
n=1

[(2n+ 1)Rn(xr, yri )− F0Λn]P ′n(cosωx,yi),

(1.34)

S1 = F1
Λ cosωx,yi − Λ2

(1− 2Λ cosωx,yi + Λ2)3/2
+
∞∑
n=1

[
(2n+ 1)R′n(xr, yri )− F1nΛn

]
Pn(cosωx,yi). (1.35)

Pn and P ′n are the Legendre polynomial and its derivative, respectively, and can be computed
recursively; the coefficients Rn and their derivatives R′n can be computed analytically. The
computation of the infinite series is stopped when a stopping criterion is fulfilled. The definitions
of F0, F1, and Λ are given by de Munck and Peters (1993), as well as the exact derivation
of the above formulas. This results in the vector of electrode potentials (uana)i = u(x,p,yi),
i = 1, . . . , s.
Also for the forward problem of MEG several analytic solutions in sphere models were derived
(Grynszpan and Geselowitz, 1973; Sarvas, 1987). In the same notation as before, i.e., source
position x, dipole moment p, and evaluation position yi, and the center of the spheres in the
origin, the formula of Sarvas (1987) reads

B(x,p,yi) =
µ0

4πF
(Fp× x− 〈yi,∇F 〉p× x) , (1.36)

F (x,yi) = ‖yi − x‖2(‖yi‖2‖yi − x‖2 + ‖yi‖22 − 〈x,yi〉) and ∇F = ∇F (yi) the gradient of F
with respect to yi. The magnetic flux through the MEG sensors can now be calculated by
integrating the normal component of B over the sensor face. Formula (1.36) does not depend
on the actual conductivity distribution σ and is thus identical for any sphere with spherically
symmetric conductivity profile. Furthermore, (1.36) is zero for radial dipole orientations
p, as the expression p × x vanishes in this case. This relation is also important in the
case of realistically shaped volume conductors. Due to the roughly spherical head shape,
source orientations to which the MEG is only weakly sensitive exist in many areas of the
brain, so-called quasi-radial sources. If desired, these can be identified by a singular-value
decomposition (SVD) of the magnetic leadfield L = (ei,Φj) with ei being the cartesian basis
vectors and Φj the forward solution for the respective MEG sensor, j = 1, . . . , s. Furthermore,
every source becomes nearly radial when approaching the center of the sphere, resulting in a
weak magnetic field for deep sources in spherical geometries.
When aiming to evaluate only the results for the secondary magnetic flux, as it is done in
Section 2.10.4, an analytic solution for Φs can be calculated by subtracting the contribution
of the primary flux defined in (1.32a) from the result for the full B-field gained from (1.36).



2
THE CONTINUOUS GALERKIN FINITE

ELEMENT METHOD

In this chapter, the continuous Galerkin finite element method (CG-FEM) and different
approaches to deal with the singular source distribution are introduced; namely the Venant,
partial integration, subtraction approach, and Whitney approach. First, a mathematical
framework is derived on which the discretization of the unknowns, i.e., the electric potential u,
is based. This is the same for each method. Subsequently, the different ways of dealing with
the, due to the assumption of a current dipole as introduced in Section 1.4, singular source
function f are presented, which are characteristic for each method. As the source is thereby
represented by an infinitesimally small current, i.e., with a limit extent of zero, no natural
way to handle this problem in the FEM formulation exists. The presented approaches can
be divided into two classes. The Venant, partial integration, and Whitney approach rely on
the representation of the current dipole as a blurred/smoothed current distribution, i.e., a
current distribution with a non-zero extent is derived that approximates the original current
distribution in certain aspects. These approaches are in the following called direct approaches.
In contrast, for the subtraction approach the solution in the homogeneous volume conductor
(1.26) is used as a basis and only a correction potential uc is calculated numerically to account
for the specific conductivity distribution.

First of all, the basics of CG-FEM are presented. This method is also known as conforming
or Lagrange FEM, since it is based on Lagrange Ansatz functions, i.e., hat functions. As these
basis functions define a subspace of H1(Ω) in which the solution for the problem (1.15) lives,
this is a conforming FEM formulation. Subsequently, the respective approaches to deal with
the source singularity are derived and a selection of error estimates for the numerical solutions
is stated. Finally, the accuracy of these approaches is evaluated in a variety of test scenarios.

15
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2.1. Basic Derivation

The basic idea of the finite element method is not to search for a solution in the usually
infinite-dimensional function space in which the variational problem is posed, i.e., in our case
H1(Ω) or H1

∗ (Ω), but rather in a finite dimensional function space, which is usually chosen to
be a subspace of the original function space.
In the following, the notation mainly follows Braess (2007). To construct such a finite
dimensional subspace, the volume Ω is subdivided and approximated by a set of simple
geometrical objects, the so-called triangulation. In two dimensions these objects are typically
triangles or quadrilaterals, in three dimensions usually tetrahedra or hexahedra are chosen.
Here, tetrahedra allow a better approximation of the underlying geometry. However, hexahedra
may have advantages in practical applications as they allow for a very simple model construction
(cf. Chapter 3). For the sake of simplicity, such a subdivision of Ω into either tetrahedra or
hexahedra is frequently just called a triangulation T = {T1, T2, T3, ..., Tm} in the following,
especially when it is not important whether it is a tetrahedralization or hexahedralization in
the specific context.

Definition 2. A decomposition T of Ω is called admissible, iff

1. Ω̄ =
⋃
i
Ti,

2. Ti 6= ∅ for all i,

3. for i 6= j, Ti ∩ Tj = ∂Ti ∩ ∂Tj and is (depending on the dimension) either a vertex, an
edge, or a face, i.e., codim(Ti ∩ Tj ,Ω) > 0.

Remark 7.

• We write Th instead of T , if each element T ∈ T has a diameter of maximally 2h.

• A family of triangulations {Th} is called shape regular, if there exists κ > 0, such that
for every T ∈ Th with radius ρT of the inscribed circle

ρT ≥ hT /κ

holds true, where hT is half the diameter of T .

• Though any considered triangulation Th is assumed to be a decomposition of the head
domain Ω in the following, we sometimes explicitly refer to it as Th(Ω).

Some scenarios that may not occur in an admissible triangulation are depicted as 2d-examples
in Figure 2.1. In the following, it is implicitly assumed that all decompositions Th fulfill
Definition 2 and are shape regular. We denote by V (T ) the set of vertices of an element
T ∈ T , by E(T ) the set of edges ei = T ∪ U , U ∈ T , U 6= T, ei 6= ∅, codim(ei, T ) = 2, and by
F (T ) the set of faces fi = T ∪U , U ∈ T , U 6= T, fi 6= ∅, codim(fi, T ) = 1. Accordingly, V (T ),
E(T ), and F (T ) are the sets of all vertices, edges, and faces of T . Furthermore, we denote by
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Figure 2.1.: Examples of triangle intersections that may not occur in an admissible triangulation.

v(x) the identification between a point x and a vertex of a decomposition and by E(v(x)) or
E(x) the set of edges the vertex/point is contained in. The same notation is also used for
faces.
Next, based on a decomposition Th, a discrete space Vh to approximate H1(Ω) is introduced.
We denote by Pk the space of polynomials in d = dimΩ variables of degree p ≤ k, by P̃k the
space of homogeneous polynomials of degree k, and by Qk those of partial degree ≤ k, i.e.:

Pk(T ) := span{Πd
i=1x

αi
i : x ∈ T, α ∈ Nd,

∑
αi ≤ k} (2.1)

P̃k(T ) := span{Πd
i=1x

αi
i : x ∈ T, α ∈ Nd,

∑
αi = k} (2.2)

Qk(T ) := span{Πd
i=1x

αi
i : x ∈ T, α ∈ Nd,maxαi ≤ k} (2.3)

For a tetrahedralization Th(Ω), we introduce the polynomial spaces

Mk = Mk(T ) := {v ∈ L2(Ω) : v|T ∈ Pk(T ) for all T ∈ Th} (2.4)

Mk
0 := Mk ∩ C0(Ω) = Mk ∩H1(Ω). (2.5)

M1
0 is also known as the space of P1-elements. The elements of P1 are piecewiese linear and

continuous functions. Similarly, we define

Qk := {v ∈ L2(Ω) : v|T ∈ Qk(T ) for all T ∈ Th} ∩H1(Ω). (2.6)

In the following, the space Vh = P1 is chosen for tetrahedralizations, while Vh = Q1 is applied
for hexahedral decompositions. In both cases, a basis of the space Vh is given by Lagrange
Ansatz-functions, which are due to their shape also called hat-functions, and can be defined
through the relations

hk ∈ P1 or Q1 and hk(xi) = δi,k for all xi ∈ V (Th). (2.7)

We refer to the set of basis functions as Sh := {hk, k = 1, . . . , |V (Th)|}. The set of Lagrange
functions Sh is unisolvent, i.e., any function v ∈ Vh can be uniquely represented in terms of
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the hk, v(x) =
∑

k vkhk(x). The vk are called the degrees of freedom of Vh. If one replaces the
space H1(Ω) by its approximation Vh = spanSh in (1.12), it suffices to use the elements of
Sh as test functions since this is a linear space. u can now be replaced by its approximation
uh ∈ Vh,

uh(x) =
∑
j

ujhj(x), (2.8)

and one has to solve the problem

Find uh ∈ Vh, such that
∫

Ω
〈σ∇uh,∇hk〉dx =

∫
Ω
fhk dx for all hk ∈ Sh. (2.9)

The approach of approximating u in the space defined by the test functions Sh is called the
Ritz-Galerkin method (Braess, 2007). Our operators change to

ah(uh, hk) =
∑
i

ui

∫
Ω
〈σ∇hi,∇hk〉 dx for uh ∈ Vh, hk ∈ Sh, (2.10)

lh(hk) =

∫
Ω
fhk dx for all hk ∈ Sh. (2.11)

Defining

Aij = ah(hi, hj) :=

∫
Ω
〈σ∇hi,∇hj〉dx (2.12)

bi := lh(hi) =

∫
Ω
fhi dx , (2.13)

we obtain a discrete version of (1.14) that can be expressed as a linear equation system

Au = b. (2.14)

For now, the resulting matrix A is only positive semidefinite, as the additional condition to
achieve uniqueness of the weak formulation introduced in Lemma 2 was not considered in
the construction of Vh. Thus, the potential u is only fixed up to a constant. However, if the
elements Sh define a partition of unity, i.e.,

∑
k hk ≡ 1, the null space of A is one-dimensional

(namely the space of functions v =
∑

k vkhk ∈ Vh with constant coefficients vk = ω ∈ R).
Following Remark 4, positive definiteness can then be achieved by introducing mixed boundary
conditions and fixing the potential at a single node xD ∈ ∂Ω.
The dimension of A is usually large. Thus, it is not efficient to calculate the inverse matrix A−1

to solve for the solution vector u. However, A is sparse, so that (2.14) can be efficiently solved
with preconditioned conjugate gradient solvers, e.g., using incomplete Cholesky preconditioning
with zero fill-in (IC(0)) or algebraic multigrid (AMG) preconditioning. The efficiency of
different solvers was evaluated by Lew et al. (2009b); Wagner (2015); Wolters et al. (2002);
in accordance with these results the AMG-CG solver implemented in the SimBio-toolbox
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(https://www.mrt.uni-jena.de/simbio/) is used to solve (2.14) throughout this thesis.
When defining bi =

∫
Ω fhi dx , the choice of jp to be a current dipole – as defined in Section

1.4 – was neglected, resulting in f = ∇ · jp = 〈p,∇δx0〉. Thus, it is not at all clear if the
integral

∫
Ω fhi dx is well-defined and how it should be evaluated, since it is not known how to

integrate the singular function ∇δx0 . In the following, different approaches to circumvent this
problem are derived, followed by an excursus on error estimates to estimate the accuracy of
the discrete solutions of (2.14).

2.2. The Partial Integration (PI) Direct Approach

An intuitive way to overcome the problem of the derivative applied to the δ-distribution is to
apply multi-dimensional partial integration, i.e., Gauss’s theorem, to shift the derivative to
the test functions hk (Gramfort et al., 2011; Lew et al., 2009b; Weinstein et al., 2000; Yan
et al., 1991). Thereby, the singularity of the source term can be lowered by one degree and
the integration of δx0 is well-known and very simple.

bpii =

∫
Ω

(∇ · jp)hi dx =

∫
Ω
〈jp,∇hi〉dx =

{
〈p,∇hi(x0)〉 if x0 ∈ supphi,

0 otherwise.
(2.15)

The integration by parts should not be understood in the classical sense here, due to the
singularity of jp, however, it corresponds to the definition of the distributional derivative of
δx0 . Since the hi are piecewise linear functions, they are differentiable almost everywhere,
so that bpi is well-defined. ∇hk(x) is piecewise constant for Vh = P1, i.e., bpi is constant on
each element T ∈ Th. Thereby, no spatial resolution inside a mesh element is given. For the
Q1-elements used with hexahedra and for higher order polynomial elements this is not the
case. The influence of the constant right-hand side inside a mesh element on the accuracy of
the solution was evaluated in detail by Vorwerk (2011). Experimentally, the highest accuracies
were found for sources placed in the center of the mesh element as one might naively expect
(Bauer et al., 2015; Vorwerk, 2011). Practically, this does not lead to any limitations, since
the used meshes usually have a sufficient resolution, so that never more than one source per
element is set when constructing a source space. This source can then consequently be placed
at a position where the resulting error is minimal.

2.3. The Venant Direct Approach

The Venant approach applies St. Venant’s principle, originally established for elasticity
theory, to electrostatics. It is founded on the idea that complicated stress distributions can
be locally simplified without notable influence in a relatively large distance when obeying
certain restrictions. Thus, Venant’s principle allows to replace a point dipole by a distribution
of electrical monopoles with very local extent and specific strength, if the moments of the
original distribution are conserved. Then, the influence of this approximation on the electric
field in a relatively far distance, e.g., at the EEG electrodes, is assumed to be negligible. The



20 2.3 The Venant Direct Approach

derivation for the approach implemented in the SimBio-toolbox was described by Buchner
et al. (1997); Schönen et al. (1994); Wolters et al. (2007a); the basic ideas are recited in the
following.

The goal is to represent the dipolar source by a distribution of electrical monopoles ρ(x)

that optimally reproduces the moments of this source. Here, the moments of the source
distribution are defined to be kT =

∫
Ω(x− x0)kρ(x) dx . This definition is not equivalent to

the coefficients of the multipole expansion as it is known from physics, which is obtained by a
multi-dimensional Taylor expansion of the electric potential u (Jackson et al., 2006), which
reads

u(x) =
1

4πε0

q
r

+
〈p,x〉
r3

+
1

2

∑
ij

Qij
xixj
r5

+ . . .

 (2.16)

in cartesian coordinates, where r = ‖x‖2 and the xi are the entries of x. q is the sum of charges,
i.e., q = 0 in our case, and p and Qij are the dipole and quadrupole moment, respectively:

p =

∫
x′ρ(x) dx ′,

Qij =

∫
(3x′ix

′
j − r′2δij)ρ(x′) dx ′.

While the dipole moment obviously corresponds to 1T after a transformation to a common
orign, the quadrupole moment differ from the moment 2T . This choice is a consequence of the
historical derivation of the Venant approach. In some scenarios, e.g., for irregular tetrahedral
meshes, this leads to non-optimal simulation results, the differences are nevertheless usually
negligible (Hanrath et al., in prep.). Due to the choice of Lagrange functions as test functions
as described in Section 2.1, each basis function can be uniquely identified with a mesh vertex.
Thus, only the mesh vertices are considered as possible monopole positions; monopoles of
strength qi are placed on the vertex x1 ∈ V (T ) closest to the dipole position x0 and the
n − 1 further vertices x2, x3, . . . , xn ∈ E(x1) that belong to an element x1 is also part of.
In the case of a tetrahedral geometry, this means that they share an edge with x1. The
number of considered vertices is thus 27 for cubic meshes and usually about 16 for tetrahedral
meshes (Buchner et al., 1997). To simplify the computation of the moments kT , point-like
monopole sources are assumed; the source distribution is now given by the sum of monopoles,
ρ =

∑n
i=1 qiδxi . The possible consequences of this simplification are discussed later in this

section. The discrete moments kT , k ≥ 0, then read

kT =
n∑
i=1

(xi − x0)kqi =
n∑
i=1

∆xki qi, ∆xi := xi − x0. (2.17)

To improve the numerical stability of the resulting equation system, it is rescaled with a suitable
reference length aref , chosen larger than the mesh width h of Th, so that
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∆xi/a
ref < 1 for all i = 1, . . . , n. This modifies (2.17) to

(kT̄ )j =
n∑
i=1

(∆x̄i)
k
j qi, j = 1, 2, 3. (2.18)

A bar is indicating scaled variables. If the distance ∆x̄i between a vertex xi and x0 is too
small, the load qi can become very high. This might lead to numerical instabilities. Thus,
qi = 0 is set for ∆x̄i < 10−3. The use of higher order moments kT̄ was suggested by Rienäcker
et al. (1994). As mentioned previously, these moments should not be confused with the higher
moments of the common multipole expansion, only zeroth and first order moment are identical
(Jackson et al., 2006). For k = 0, (2.18) is the sum of charges

∑n
i=1 qi, which must be zero

since the resulting far-field does not contain any monopole contributions. With the zeroth, all
other odd moments vanish, too. The first order moment is exactly the dipole moment, this
implies 1T = p. We obtain the equation system

(0T̄ )j

(1T̄ )j
...

(kT̄ )j


t̄j

=


(∆x̄1)0

j (∆x̄2)0
j . . . (∆x̄n)0

j

(∆x̄1)1
j (∆x̄2)1

j . . . (∆x̄n)1
j

...
...

. . .
...

(∆x̄1)kj (∆x̄2)kj . . . (∆x̄n)kj


X̄j

·


q1

q2

...
qn


q

(2.19)

One can compute the kT̄ up to l = 2 for the given dipole moment p via

kT̄ =
1− (−1)k

(2aref )
k
p. (2.20)

In the case of a point dipole, all higher order moments are automatically zero due to the limit
case ‖d‖2 → 0 in the derivation of the mathematical dipole. We define the matrix W̄j through
(W̄j)m,s = (∆x̄m)r δm,s for r = 0 or r = 1. Then, the load vector q is the result of minimizing
the functional

Fλ(q) = ‖t̄j − X̄jq‖22 + λ‖W̄jq‖22, (2.21)

with X̄j and t̄j defined as in (2.19). The first term measures the difference between the
moments of the original source and the approximation, the second term penalizes loads of
large absolute value |qi| in a least square sense and ensures the uniqueness of the solution
when minimizing Fλ. Furthermore, by choosing λ large enough, one avoids sources with large
values that do not contribute to the far-field, so-called blind sources. Differentiation with
respect to the qi yields the solution of the minimization problem

(
X̄T
j X̄j + λW̄ T

j W̄j

)
q = X̄T

j t̄j (2.22)
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and as result for the vector q

q =

 3∑
j=1

(
X̄T
j X̄j + λW̄ T

j W̄j

)−1

·
3∑
j=1

X̄T
j t̄j . (2.23)

The approximation order k is commonly not chosen larger than two. Buchner et al. (1997)
suggest that choosing order two results in a spatial concentration of loads in the dipole axis
compared to order one. The choice r = 1 in the calculation of W̄j causes a spatial concentration
of loads around the dipole position, as large values of ∆x̄iqi are penalized. The parameter λ
should be chosen as small as possible to approximate the desired moments accurately, but
large enough to avoid indetermination of the equation system.
Though an individual optimization of λ for each dipole position x0 and the corresponding
set of monopole positions x1, . . . ,xn is possible, the choice of λ is not assumed to be critical
and fixing λ= 10−6 has established in praxis. For the following computations furthermore
aref = 20 mm, k= 2, r= 1 are fixed. These values are rather conservatively chosen, e.g., a
value of aref = 20 mm is clearly overestimated as h is rather in the range of a few millimeters
for the meshes commonly used nowadays.
If vglo(i) defines the unique mapping between the local indices of the xk and the global indices
and v−1

glo its inverse, the Venant right-hand side vector is given by

bveni =

 qv−1
glo(i)

if i ∈ v−1
glo({0, . . . , n}),

0 otherwise.
(2.24)

Figuratively speaking, the approach performs a blurring of the previously point-like source
current. From a physical point of view, the term f = ∇ · jp corresponds to the sinks and
sources of the current jp. The idea of choosing f =

∑
i qiδxi is to introduce a current density

with sources at the positions xi that matches the original distribution in the previously noted
properties. In the derivation it was assumed that these sources are point-like. However, due
to the used Ritz-Galerkin approach as introduced in Section 2.1, the source term actually
corresponds to the function f =

∑
i qihv−1(i). This is not considered when computing the

moments of the source distribution. Since xi corresponds to arg maxhi and also to the center
of mass of hi, this is not assumed to have any significant effects. The consequences of the
resulting singular right-hand side f on the convergence of the discrete solution are further
discussed in Section 2.7.

2.4. The Whitney Approach

In the derivation of Venant and partial integration approach the idea is to replace the singular
source distribution jp by a blurred distribution that is in a certain sense similar to the original
one. Instead, for the Whitney approach directly a source term f with a higher regularity is
chosen. Thus, it is necessary to search vector-valued functions, such that the term ∇ · jp is
well-defined (at least in a weak sense), i.e., ∇ · jp ∈ L2(Ω). This is guaranteed if our primary
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current jp is contained in the space H(div; Ω):

Definition 3.
H(div; Ω) :=

{
q ∈ L2(Ω)3 : ∇ · q ∈ L2(Ω)

}
(2.25)

As discrete approximation of H(div; Ω) one can choose the space RT0 of lowest-order Raviart-
Thomas elements (Nédélec, 1980; Raviart and Thomas, 1977). The normal component of
these functions is by definition continuous on element boundaries, they are thus conforming in
H(div; Ω).

Definition 4 (Raviart-Thomas elements). Let Th(Ω) be a tetrahedralization. We introduce
the Raviart-Thomas elements of order k by defining them on each element T ∈ Th,

RTk(T ) :=(Pk(T ))d + xP̃k(T ),

RTk(Th) :=
{
q ∈ L2(Ω)3 : q|T ∈ RTk(T ) and 〈q,n〉 is continuous over ∂T for all T ∈ Th

}
,

=
{
q ∈ L2(Ω)3 : q|T ∈ RTk(T ) for all T ∈ Th

}
∩H(div; Ω).

(2.26)

The lowest order space RT0(T ) can also simply be written as

RT0(T ) :=
{
a + bx : a ∈ R3, b ∈ R,x ∈ T

}
⊂ H(div, T ).

For a hexahedralization Hh and H ∈ Hh, the definition of RTk(Hh) follows accordingly (Brezzi
and Fortin, 1991; Nédélec, 1980):

RTk(H) := (Qk(H))d + xQk(H)

RTk(Hh) :=
{
q ∈ L2(Ω)3 : q|H ∈ RTk(H) and 〈q,n〉 is continuous over ∂H for all H ∈ Hh

}
(2.27)

Raviart-Thomas elements are also used and analyzed in more detail in Chapter 5. For now, it
suffices to define a basis of the space RT0 for both tetrahedral and hexahedral elements. For
tetrahedral elements, a finite dimensional basis of RT0 is defined by the vector-valued functions
supported on two adjacent elements T1 and T2 sharing a common face f1,2 = T̄1 ∩ T̄2 ∈ Fh, so
that the normal derivative is continuous across this face and zero on all other faces. With the
vi defined as in Figure 2.2 (left), we have

wk(x) :=



|f1,2|
3|T1|

v4 − x

‖v4 − v1‖2

if x ∈ T1,

|f1,2|
3|T2|

x− v1

‖v4 − v1‖2

if x ∈ T2,

0 otherwise.

(2.28)

|T1| and |T2| indicate the volume of the tetrahedra T1 and T2, respectively, and |f1,2| the
surface area of the face f1,2. For x ∈ ∂T1 ∪ ∂T2, we have 〈wk(x),nf1,2〉 = 1f1,2(x).
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v1 v4
v2

v0v3

T1T2

h

nk

fk
Q1 Q2

Figure 2.2.: Zeroth order Raviart-Thomas basis function supported on two tetrahedra T1 and T2

(left) and on two hexahedra Q1 and Q2 (right). Resulting synthetic dipole indicated by the arrow.

For a regular, hexahedral mesh with edge length h, a RT0 basis function wk is supported on
the two hexahedra Q1, Q2 ∈ Th sharing the face fk = Q̄1 ∩ Q̄2 with normal vector nk and
centroid x̄k and can be defined by

wk(x) =


(
1 +

〈x− x̄k,nk〉
h

)
nk if x ∈ Q̄1 ∪ Q̄2,

0 otherwise.
(2.29)

This definition can be transferred to non-degenerated parallelepipeds using a Piola transfor-
mation to preserve the normal components (Brezzi and Fortin, 1991; Nédélec, 1980).

One can now write jp in terms of wk, i.e., j
p
rt =

∑
k jkwk. To compare the results obtained

using Raviart-Thomas elements as source model with those of the other approaches, Pursiainen
et al. (2011) derived a relation of the so-called Whitney-type sources to a point dipole of a
certain moment and position. Furthermore, it is possible to compute solutions for arbitrary
source distributions using different interpolation techniques (Bauer et al., 2015).

Inserting jprt in the FEM right-hand side bi as defined in (2.13), we have

(brt)i =

∫
Ω
∇ · jprthi dx =

∑
k

jk

∫
Ω
∇ ·wkhi dx . (2.30)

The matrix Gij =
∫
Ω∇ · wjhi dx defines a mapping from the RT0 basis functions to the

Lagrange basis functions Sh. In the tetrahedral case, G has two non-zero entries per column,
for hexahedral meshes the number of non-zero entries per column is eight. In both cases, the
contributions from the two elements wk is supported on sum up to 0 for the vertices on the
shared face f . Thus, for a locally supported source current jp, brt is sparse.

Pursiainen et al. (2011) have shown that in the tetrahedral case each basis function wk can
optimally be identified with a dipole at position xk = (v1 +v4)/2 and moment qk =

∫
Ωwk dx

(cf. Figure 2.2, left). This fits to the intuitive choice, since G·k has non-zero entries only at the
positions corresponding to v1 and v4, i.e., according to the interpretation of the entries of the
right-hand side vector b as current sinks and sources, a current from v1 to v4 is simulated here.
Thus, it seems reasonable to identify this current with a dipole in its midpoint. Accordingly,
for a (regular) hexahedral mesh, each wk can be identified with a dipole in the center of the
shared face (corresponding to the center of gravity x̄k) and with the dipole moment again
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devined via qk =
∫

Ω wk dx (cf. Figure 2.2, right).
To simulate arbitrary dipolar sources using the Whitney approach, it is necessary to introduce
interpolation techniques that define a linear combination of different Whitney elements that
represents the original source with position x0 and moment p.
An intuitive choice is to define the weights jk for each basis function wk via

jk :=

∫
〈jp,wk〉 dx =

∫
〈p,wk〉δx0 dx = 〈p,wk(x0)〉. (2.31)

This interpolation is easy to implement and stable for (regular) hexahedral meshes, where the
directions of the wk are either orthogonal or parallel to each other. However, this interpolation
strategy leads to 32 non-zero entries in the right-hand side brt, since it utilizes all six basis
functions that are supported on the source element. One could also think of other interpolation
strategies that are limited to only three of the basis functions, so that the nk, i.e., the normal
vectors of the faces fk associated to the wk, form an orthogonal basis. For tetrahedral meshes,
it is possible that due to badly shaped tetrahedra the basis functions are not as nicely oriented
as in the hexahedral case. To account for this, different interpolation strategies have been
presented and evaluated (Bauer et al., 2015; Pursiainen et al., 2011). In the following, the
position based optimization scheme (PBO) is chosen that was introduced by Bauer et al. (2015).
The goal is to approximate a given dipole at position x0 ∈ T and with moment p through the
four basis functions wl, l = 1, 2, 3, 4, that are supported on T and can be associated to the
four faces of T , pδx0 ≈

∑
l clwl. Using the position xl and direction ql that can be associated

to each wl, the task is to find a solution to the optimization problem

min
c

∑
l

c2
l ω

2
l subject to Qc = p, (2.32)

where c = (c1, c2, c3, c4) are the weights given to each basis function, ωl = ‖xl − x0‖2 is a
further weighting coefficient, and Q = (q1,q2,q3,q4). Due to the convexity of

∑
l c

2
l ω

2
l , (2.32)

has a unique solution that can be obtained via the method of Lagrangian multipliers. It is
given by the linear system (

D QT

Q 0

)(
c

d

)
=

(
0

p

)
(2.33)

with diagonal matrixD = diag(ω2
1, ω

2
2, ω

2
3, ω

2
4) and an auxiliary vector of Lagrangian multipliers

d = (λ1, λ2, λ3).

2.5. Monopole Distribution for Direct Approaches

As mentioned in Section 2.3, the non-zero entries of the right-hand side vector b can be inter-
preted as electrical monopoles at the respective vertex positions. Knowing that monopoles
placed outside or on the boundary of the source compartment may lead to numerical inaccu-
racies (Medani et al., in prep.; Vorwerk, 2011), a focal monopole distribution consisting of as
few as possible monopoles seems desirable. However, with respect to the approximation of
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Figure 2.3.: Sketch of sources fixed with a normal constraint in tetrahedral model. Source: Bauer
et al. (2015)

Figure 2.4.: Monopole distribution for the Whitney FE approach for optimized dipole position in
tetrahedral and regular hexahedral mesh.

the original dipole, a too small amount of monopoles might also lead to inacurrate solutions.
Before evaluating the accuracy of the different approaches to approximate the dipole source,
the extent and distribution of the monopole loads are discussed in this section.

Table 2.1.: Number of monopoles considered to model the dipole source (tetrahedral/hexahedral
model). Data for Venant approach calculated in model 4layer-802k (cf. Section 2.10.2).

Source Position/Orientation Partial Integration Venant Whitney

optimized 4/8 ≈ 16, (≤ 23) / 27 2 / 8

random 4/8 ≈ 16, (≤ 23) / 27 8 / 32

The tetrahedral case is considered first, the hexahedral case follows accordingly. For a source
with position and orientation chosen such that it can be represented by a single Raviart-
Thomas basis function, the mapping matrix G in Section 2.4 only has two non-zero entries per
column and thereby also the right-hand side vector b only has two non-zero entries. These are
the two nodes belonging to two tetrahedra that share a common face but are no element of this
face. This monopole distribution corresponds to the natural idea of a dipole consisting of a
current source and sink of the same strength (cf. Figure 2.4). This scenario might, e.g., occur
when the source space is based on a discretized brain surface and a normal constraint, i.e.,
source orientations perpendicular to this surface, is chosen (cf. Figure 2.3). When applying the
interpolation scheme to account for arbitrary source positions and orientations, the number of
right-hand side entries grows to 8, since all basis functions supported on the element containing
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Figure 2.5.: Monopole distribution for the direct FE approaches Venant (left), partial integration
(middle) and Whitney (right) in tetrahedral model.

the dipole position are taken into account.

For the partial integration approach the number of monopoles simply corresponds to the
number of vertices per mesh element, as it is obvious from the derivation (cf. Section 2.2),
while for the Venant approach the number of non-zero right-hand side entries depends on the
number of edges the vertex x0 shares with other vertices. Thus, it depends on the local mesh
structure in the tetrahedral case (cf. Section 2.3).

The distributions of the monopoles for a source with random position and orientation in a
tetrahedral mesh are shown in Figure 2.5. To give an idea of the extent of the monopole
cloud, the displayed detail is not changed for the different approaches. The different extents
of the set of monopoles are obvious. For all three approaches, the main contribution to the
representation of the dipole is rendered by one large positive and negative load. The value of
the other monopole loads is considerably smaller, they mainly contribute a correction to better
approximate the desired dipole orientation. Besides the different extent, a major difference
between the distributions is the positioning of the two strong monopoles. While these are
very close for Venant and partial integration approach, as they share a common edge, they
are two nodes on the opposing sides of a face for the Whitney approach. Thereby, they have a
clearly larger distance if the mesh is well-shaped. As the PBO interpolation scheme assigns
different weights to the respective basis functions, this shows that the dipole representation
is dominated by a single Whitney basis function. However, this is just an illustrative single
case example, the actual consequences of these differences for the accuracy in solving the
EEG/MEG forward problem are investigated in the remainder of this chapter.

In a hexahedral model, as mentioned in Section 2.4, six Whitney basis functions are supported
on each element and each of them can be identified with a dipole in the center of an element
face. Thus, a dipole whose position and direction are chosen suitably is represented by 8
monopoles (cf. Figure 2.4). For arbitrary positions and orientations, different interpolation
techniques are conceivable, the output of the one indicated in Section 2.4 is shown here,
leading to a distribution consisting of 32 monopoles. This distribution is depicted in Figure
2.6 (right) together with the distributions for Venant (left) and partial integration approach
(middle). The source is the same as in the tetrahedral case and a 2 mm regular hexahedral
mesh was used, again the displayed detail is the same for all approaches.
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Figure 2.6.: Monopole distribution for the direct FE approaches Venant (left), partial integration
(middle), and Whitney (right) in regular hexahedral model.

2.6. The Subtraction Approach

Though founding on different ideas how to approximate the dipole source, all of the previously
presented approaches finally ended up at replacing the dipolar source by a distribution of
electrical monopoles to circumvent the problem of the singular source term. The basic idea of
the subtraction approach is fundamentally different. Under the assumption that there exists a
non-empty open neighborhood Ω∞⊂Ω of the source with constant, isotropic conductivity σ∞,
one can make use of the fundamental solution (1.25)/(1.26) to model the source singularity
and rewrite (1.10) into an equation for a correction potential uc. The correction potential uc

accounts for the specific conductivity profile and can be calculated akin to (2.9) (Bertrand
et al., 1991; Drechsler et al., 2009; Wolters et al., 2007c). Anisotropic conductivities in the
source area can be modeled similarly, but this case is skipped here and it is referred to
(Drechsler et al., 2009; Wolters et al., 2007c) instead. The derivation is essentially identical to
the one presented here, only (1.25) has to be adjusted to the anisotropic case.

The main idea is to split up potential u and conductivity σ into two parts:

u = u∞ + uc, (2.34a)

σ = σ∞ + σc. (2.34b)

u∞ is defined as the potential in an unbounded, homogeneous volume conductor with con-
ductivity σ∞ and can thus be calculated analytically applying (1.25): σ∞u∞ = −(∇ · jp) ∗G.
As previously, f = ∇ · jp = 〈p,∇δx0〉. Inserting the decomposition of u into (1.11), one can
subtract the homogeneous solution, since σ∞∆u∞ = −∆((∇ · jp) ∗G) = ∇ · jp, and we obtain
a Poisson equation with inhomogeneous Neumann boundary conditions for the correction
potential:

∇ · (σ∇uc) = f in Ω, f := −∇ · (σc∇u∞), (2.35a)

σ∂nu
c = g on Γ, g := −σ∂nu∞. (2.35b)
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Similarly to Section 1.3, one can derive a weak formulation for the correction potential uc.

Find uc ∈ H1
∗ (Ω), such that∫

Ω

〈σ∇uc,∇v〉 dx = −
∫
Ω

∇ · (σc∇u∞)v dx −
∫
∂Ω

(σ∂nu
∞)v dx (2.36)

for all v ∈ H1
∗ (Ω).

Again, the weak formulation can be derived from (2.35) using partial integration and the
identity (2.34b). For the equation system (2.36), existence and uniqueness of a solution can be
directly proven in the same fashion as done for the general problem in Section 2.1 (Drechsler
et al., 2009; Wolters et al., 2007c). On the left-hand side we have the bilinear form a known
from (1.13), thus Lemma 2 still applies. We define the linear form

lc(v) = −
∫
Ω

∇ · (σc∇u∞)vdx−
∫
∂Ω

σ∂nu
∞v dx (2.37)

and conclude

Lemma 3. The linear form lc is well-defined and bounded on H1(Ω), particularly lc ∈ H1
∗ (Ω)′.

Proof. Wolters et al. (2007c).

Thus, the Lemma of Lax-Milgram (Lemma 1) can be applied to prove existence and uniqueness
of a solution. Using partial integration and the Neuman boundary condition (2.35b), we have

lc(v) =

∫
Ω

〈σc∇u∞,∇v〉 dx −
∫
∂Ω

σ∞∂nu
∞v dx . (2.38)

The space H1(Ω) is now replaced by its discrete approximation Vh and the representation
of uch ∈ Vh in terms of the basis functions Sh, uch(x) =

∑
j(u

c)jhj(x), is inserted, so that we
obtain the equation system

Auc = bc. (2.39)

A is the same stiffness matrix as previously (Section 2.1) and the right-hand side bc is given by

(bc)i =

∫
Ω

〈σc∇u∞,∇hi〉dx −
∫
∂Ω

σ∞∂nu
∞hi dx . (2.40)

This equation system can be solved in the same way as it was done for the direct approaches.
The full potential is then computed via (2.34a), uh(x) = u∞(x) + uch(x). Since both u∞ and
uch are only determined up to a constant, it has to be made sure that they fulfill a compatibility
condition, e.g.,

∫
Ω u
∞ dx = −

∫
Ω u

c dx , before adding them up.
Since the expression for the right-hand side bc cannot be further simplified, it needs to be
calculated using numerical integration (Drechsler et al., 2009). Especially for superficial



30 2.7 Error Estimates for the Discrete Solution

sources the numerical accuracy can decrease strongly (Wolters et al., 2007c). Furthermore,
in contrast to the direct approaches, where the right-hand side vectors are generally sparse,
bc is dense. This causes the setup of the right-hand side bc to be computationally way more
expensive for the subtraction approach than for the direct approaches. While this is negligible
when solving only few forward problems, it becomes significant when solving many forward
problems at a time and applying the transfer matrix approach that is introduced in Section
2.9. A projected subtraction approach that allows for a faster computation of bc was proposed
by Wolters et al. (2007c), but did not lead to satisfying accuracies (Drechsler et al., 2009).

Figure 2.7.: Visualization of volume term of subtraction right-hand side bc,
∫

Ω
〈σc∇u∞,∇hi〉 dx , for

a dipole at position (1, 47, 47) and direction (0, 1, 1) in models 4layer-519k and seg 2 res 2. Slice is
taken in the x = 1 plane, gray values indicate the compartments brain, CSF, skull, and skin (from
interior to exterior), dark gray is air.

Remark 8. If the head model consists of compartments of constant conductivities, Ω1, . . . ,Ωn,
as assumed in the numerical experiments in Sections 2.10 and 2.11, f c = ∇ · σc∇u∞ is
non-zero only at the compartment interfaces Ω̄e ∩ Ω̄f , e 6= f . For x ∈ Ω̊e and any e = 1, . . . , n,
f c(x) = ∇ · (σc(x)∇u∞(x)) = σc(x)∇ ·∇u∞(x) = 0, since either σc(x) = 0 or ∇ ·∇u∞(x) =

∆u∞(x) = 0. Thus, one can also expect that
∫

Ω〈σ
c∇u∞,∇hi〉 dx admits the highest absolute

values if the vertex xi that can be identified with hi is on a compartment interface. This
explains, why the choice of meshes with inhomogeneous resolution, i.e., with smaller mesh
elements at compartment interfaces, leads to higher accuracies for the subtraction approach
in comparison to homogeneous meshes (cf. Chapter 2; Lew et al., 2009b). In Figure 2.7,∫

Ω〈σ
c∇u∞,∇hi〉 dx is visualized for a dipole at position (1, 47, 47) and direction (0, 1, 1) using

the tetrahedral and hexahedral models 4layer-519k and seg 2 res 2 from Sections 2.10 and 4.2,
respectively.

2.7. Error Estimates for the Discrete Solution

This section is devoted to the approximation properties of the discrete solution uh contained in
the space Vh = P1 or Q1. The goal is to derive a priori error estimates of type ‖u−uh‖ ≤ Chp

for a solution of the continuous problem u, some norm ‖ · ‖, mesh width h, convergence order
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p, and a constant C that might depend on u, f , σ, or the shape of Ω, but is independent of h.

Commonly, such estimates are derived under the assumption u ∈ H2(Ω), which requires at
least f ∈ L2(Ω) and σ ∈ H1(Ω). Also assumptions on the shape of the domain Ω are usually
necessary, e.g., Ω convex and Γ = ∂Ω (piecewise) C2-smooth.

This leads to at least two obvious problems when aiming to derive error estimates for FEM
EEG forward solutions:

• In multi-compartment head models σ is usually assumed to be piecewise constant on
each conductive compartment and jumping on compartment interfaces, i.e., σ /∈ H1(Ω)

• For Venant and partial integration approach f /∈ L2(Ω), while this is uncritical for
Whitney and subtraction approach

Finally, a frequent assumption in the derivation of error estimates are homogeneous Dirichlet
boundary conditions in (1.11), i.e., u = 0 on ∂Ω, so that it is not always clear if these results
can be directly transferred to problems with Neumann boundary conditions.

As a consequence, it is necessary to restrict to a simplified setting to be able to easily apply
standard error estimates to the EEG forward problem, e.g., a (convex) one-layer model, i.e., σ
constant on Ω, as done by Wolters et al. (2007c). This simplification allows to derive error
estimates using standard methods for subtraction and Whitney approach, while more work is
necessary for partial integration and Venant approach or when willing to consider the piecewise
constant conductivity distribution σ.

These thoughts in mind, we note a basic estimate for many scenarios, the Cea-Lemma, which
states (Braess, 2007; Hackbusch, 2003)

‖u− uh‖V ≤ C inf
v∈Vh
‖u− vh‖V . (2.41)

This estimate is rather unsatisfying as the infimum is neither easily accessible nor demonstrative.
However, on this basis meaningful error estimates can be obtained by finding upper bounds for
this infimum, optimally with an explicit dependency on the mesh width h. The derivations of
the estimates are skipped in the following, for details it is referred to Braess (2007); Hackbusch
(2003) if not differently indicated.

Sticking to the naturally occuring H1-norm and for u ∈ H2(Ω), i.e., σ ∈ H1(Ω) and f ∈ L2(Ω),
fixing the polynomial degree k = 1 we obtain the estimates

‖u− uh‖H1(Ω) ≤ C1h‖u‖H2(Ω), (2.42)

‖u− uh‖H1(Ω) ≤ C2h‖f‖L2(Ω). (2.43)

In the L2-norm instead of the H1-norm, the convergence order in h is one degree higher; still
assuming u ∈ H2(Ω), we have
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‖u− uh‖L2(Ω) ≤ C3h
2‖u‖H2(Ω), (2.44)

‖u− uh‖L2(Ω) ≤ C4h
2‖f‖L2(Ω), (2.45)

while for u ∈ H1(Ω) one can only assume

‖u− uh‖L2(Ω) ≤ C5h‖u‖H1(Ω). (2.46)

These estimates can directly be applied to the Whitney or subtraction approach:

Theorem 1 (Quantitative error estimate for the subtraction approach in a one-layer model;
Hackbusch, 2003; Wolters et al., 2007c). Let uc be a sufficiently regular solution of (2.35),
uc ∈ H2(Ω). For an appropriate triangulation (tetrahedralization/hexahedralization), linear
(trilinear) FE-trial functions, and a continuous and elliptic bilinearform a, we find constants
C1, C2 independent of uc and h with

‖uc − uch‖H1(Ω) ≤ C1h‖uc‖H2(Ω), (2.47a)

‖uc − uch‖L2(Ω) ≤ C2h
2‖uc‖H2(Ω). (2.47b)

Proof. Hackbusch (2003); Wolters et al. (2007c)

When applying these estimates to the Whitney approach, it has to be kept in mind that
only the convergence of uh towards a solution u for the Whitney right-hand side frt = ∇ · jprt
is estimated here, while the goodness with which frt approximates a current dipole is not
considered.
The above estimates do no longer hold if the assumption of σ ∈ H1(Ω) is dropped. In this
case, only general estimates of the type ‖u− uh‖H1(Ω) = O(h1/2) and ‖u− uh‖L2(Ω) = O(h)

can be directly achieved. Possibly sharper estimates can be reobtained by improving the
representation of the domain boundaries Γi, e.g., using isoparametric finite elements (Barrett
and Elliott, 1987; Hackbusch, 2003; Wolters et al., 2007c).
Other options to achieve (optimal) error estimates for jumping coefficients σ are, e.g., con-
sidering the convergence towards a solution u of the weak formulation instead of a strong
solution (Li et al., 2010) and the use of weighted-norms (Plum and Wieners, 2003). Due to
the less restrictive requirements on the disjunct domains Ωi of constant conductivity σi, we
choose to adapt the results of Plum and Wieners (2003) here. It is necessary to assume that
u fulfills the (physically reasonable) jump conditions

[u]i,j = 0 and [σ∂nu]i,j = 0

on the interfaces Γi,j = Ω̄i ∩ Ω̄j . The jump operator is defined as the difference between the
limits of a function x on Γi,j taken from Ωi and Ωj , respectively, [x]i,j := x|∂Ωi − x|∂Ωj . It is
further introduced and excessively used in Chapter 4.
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Theorem 2 (Plum and Wieners, 2003). Let Ω and the Ωi be Lipschitz domains with piecewise
C2 boundaries ∂Ωi, ∪Ω̄i = Ω, Ωi ∩ Ωj = ∅ for i 6= j, and σ(x) = σi > 0 for x ∈ Ωi. Let
u ∈ H1(Ω) be a solution of the Poisson problem (1.14) with homogeneous Dirichlet boundary
conditions for f ∈ L2(Ω) and fulfilling the jump conditions. Then, we have the weighted
L2-estimate

(∑
i

σi‖u− uh‖2L2(Ωi)

)1/2

≤ Ch2

(∑
i

σ−1
i ‖f‖

2
L2(Ωi)

)1/2

(2.48)

for a constant C > 0 possibly depending on σi.

Proof. Plum and Wieners (2003)

Corollary 1 (Quantitative error estimate for the subtraction and Whitney approach in a
multi-compartment model). Let Ω and the Ωi be domains that fulfill the requirements of
Theorem 2 and σ(x) = σi > 0 for x ∈ Ωi. Let u/uc ∈ H1(Ω) be a solution of the Poisson prob-
lem (1.14)/ (2.36) with homogeneous Dirichlet boundary conditions and subtraction/Whitney
right-hand side f ∈ L2(Ω) and fulfilling the jump conditions. Then, the estimate (2.48) holds.

The previous estimates guarantee that the solution uh converges against the exact solution u
globally in L2(Ω). This does not rule out the possibility that the approximate solution still
strongly differs from the exact solution in single points. The convergence in single points,
which is of interest for the EEG forward problem due to the evaluation of the solution only
at the electrode positions, can be guaranteed by error estimates using the L∞-norm (Braess,
2007):

‖u− uh‖L∞(Ω) ≤ Ch‖u‖H2(Ω). (2.49)

Again, this estimate is directly applicable to Whitney and subtraction approach in the one-layer
scenario. Stricter estimates in the L∞-norm were, e.g., derived by Ciarlet (1978).
Even when assuming such a simplified scenario, the derivation of error estimates for partial
integration and Venant approach is still complicated when interpreting the source term as
a distribution of electrical monopoles. Here, two sources of error occur. The error due to
the approximation of the source by a monopole distribution and the numerical error of the
solution uh for the monopole right-hand side f =

∑
qiδxi .

The first source of error was experimentally evaluated by Hanrath et al. (in prep.) for
Venant and partial integration approach. In the considered setting (one-layer model, Dirichlet
boundary conditions) a convergence rate of O(h2) was found for the Venant approach in a
2d-scenario, while the partial integration approach showed maximally linear convergence. For
the 3d-case, approximately linear convergence was found for both approaches. A theoretical
estimate of this error has not been reached yet.
To assess the numerical error of uh, a priori error estimates for singular right-hand sides f
are necessary. First results were, e.g., obtained by Casas (1985); Scott (1973). Therefore, a
further simplification is necessary, this time concerning the shape of the domain Ω. Under the
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assumption of Ω convex, σ Lipschitz-continuous, homogeneous Dirichlet boundary conditions
on ∂Ω, and f being a real and regular Borel measure µ on Ω, possibly µ = f =

∑
qiδxi , Casas

(1985) showed that u ∈W 1,s(Ω), 1 ≤ s < d
d−1 , and derived the error estimate

‖u− uh‖L2(Ω) ≤ Ch1/2‖µ‖M(Ω) = Ch1/2∑
i
|qi|. (2.50)

Especially for cases where one is not interested in the error at the singularity, such as the
EEG forward problem, Köppl and Wohlmuth (2014) derived estimates for the convergence of
the FEM solution towards a weak solution in L2-seminorms that exclude a neighborhood of
the singularity. Therefore, the test space W 1,q

0 (Ω) is defined:

W 1,q
0 (Ω) := {v ∈W 1,q(Ω) : v|∂Ω = 0}. (2.51)

Theorem 3 (Köppl and Wohlmuth, 2014). Let Ω be a bounded, open, convex, and polyhedral
domain. Let further u ∈W 1,p(Ω), p ∈ (1, 3/2), be a solution of the weak formulation of the
Poisson problem (1.14) with V = W 1,q

0 (Ω), 1
p + 1

q = 1, singular right-hand side f = δx0, and
constant conductivity σ ≡ 1. For an open subset B ( Ω, such that x0 ∈ B, we have the
estimate

‖u− uh‖L2(Ω\B) ≤

{
Ch2| lnh|, if k = 1,

Chk+1, if k > 1
(2.52)

for a constant C > 0 and k the polynomial degree. C is independent of h, but may depend on
dist(x0, ∂B), dist(B, ∂Ω), the solution u, and the polynomial degree k.

Proof. Only the main ideas of the proof are exposed here, for the full proof it is referred to
Köppl and Wohlmuth (2014).
We assume two subdomains x0 ∈ B ( B̃ ( Ω. The main idea of the proof is to use the
fundamental solution of the Poisson equation G (cf. Section 1.4) and a cutoff function
η ∈ C∞(Ω), η = 1 on B, η = 0 on Ω\B̃, and 0 ≤ η ≤ 1 on Ω, to construct an auxiliary
right-hand side f0 = 2〈∇η,∇G〉 + ∆ηG on B̃\B and consider the weak formulation of
−∆v = f0 + δx0 with test space W 1,q

0 (Ω). The main task is to show that an inequality of type
(2.52) holds for v and the corresponding finite element solution vh, so that (2.52) follows as a
corollary.
To prove this inequality, a series of balls Br′0 ⊂ Br0 ⊂ . . . ⊂ Br′k ⊂ Brk ⊂ B is considered and
for each of these balls the L2-error ‖v − vh‖L2(Ω\Brl )

is estimated depending on the estimatle
of the interior ball Brl−1

. Therefore, the dual problem of the Poisson equation is considered,
−∆wl = (v − vh)1Ω\Brl . Upper bounds for the resulting terms are estimated exploiting the
properties of the fundamental solution and the main result is proven by induction.

Remark 9. Since (1.14) is a linear problem, (2.52) also holds true for a constant conductivity
σ 6= 1. This results in a constant C also depending on σ.

Theorem 3 now provides the possibility to derive error estimates for the finite element error
in partial integration and Venant approach. We denote by qi the non-zero entries of the
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right-hand side vector bven or bpi and by xi the position of the corresponding vertices. Thus,
the source term f is given by f =

∑
qiδxi . Assuming linear Ansatz-functions, i.e., k = 1, we

conclude:

Corollary 2 (Quantitative error estimate for the partial integration and Venant approach in a
one-layer model). Let Ω fulfill the requirements of Theorem 3 and let u ∈W 1,p(Ω), p ∈ (1, 3/2)

be a solution of the weak formulation of the Poisson problem (1.14) with V = W 1,q
0 (Ω),

1
p + 1

q = 1, singular right-hand side
∑
qiδxi, constant conductivity σ, and homogeneous

Dirichlet boundary condition u = 0 on ∂Ω. For an open subset B ( Ω, such that ∪xi ∈ B, we
have the estimate

‖u− uh‖L2(Ω\B) ≤ Ch2| lnh|
∑
i
|qi| (2.53)

for a constant C > 0; C is independent of h, but possibly depending on dist(xi, ∂B),
dist(B, ∂Ω), the solution u, and σ.

Proof. The proof follows directly from (2.52) by superposition. Let the ui ∈ W 1,p(Ω),
p ∈ (1, 3/2), be solutions of the weak formulation of the Poisson problem (1.14) with singular
right-hand sides δxi and uih the corresponding finite element solutions. For each ui (2.52)
holds true with constant Ci. Due to the linearity of (1.14)

∑
qiu

i is a solution of the problem
with the full source term f =

∑
qiδxi and as the uniqueness of the solution is preserved (cf.

Theorem 2.1, Babuška, 1971; Köppl and Wohlmuth, 2014) we have
∑
qiu

i = u. The same is
valid for the discrete solution,

∑
qiu

i
h = uh.

From (2.52) one obtains

‖u− uh‖L2(Ω\B) = ‖
∑
qiu

i −
∑
qiu

i
h‖L2(Ω\B)

= ‖
∑
qi(u

i − uih)‖L2(Ω\B)

≤
∑
|qi|‖(ui − uih)‖L2(Ω\B)

≤
∑
Cih

2| lnh||qi|

≤ Ch2| lnh|
∑
|qi|

for a constant C > maxCi > 0.

Remark 10. Corollary 2 provides a heuristic, why it is not reasonable to actually use the
current dipole as introduced in Section 1.4 as a source term in FEM. This would correspond to

f = lim
‖d‖2→0
q→∞

(qδx0+d/2 − qδx0−d/2).

Assuming a scenario where the requirements of Corollary 2 are fulfilled, with q →∞ also the
right-hand side of (2.53) approaches infinity.

Given the estimates for jumping conductivities derived by Li et al. (2010) and Corollary 2.53,
which are both derived for solutions u of the weak problem, it seems desirable to join these
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estimates to gain a result akin to Corollary 1 also for Venant and partial integration approach.
However, amongst other things, the assumed requirements on the regularity of the solution u
differ for the two estimates, so that this is expected to be a non-trivial task.

A point that was not discussed so far is the behaviour of the constants C = C(x0) in the error
estimates when the source position x0 approaches the domain boundary ∂Ω or a conductivity
jump. Wolters et al. (2007c) and Scott (1973) showed for the constants in (2.47) and an
estimate akin to (2.50), respectively, C(x0)→∞ when x0 approaches the domain boundary.
A similar behaviour can be expected for the other estimates. Since the source position x0 is
always close to the gray matter/CSF interface in realistic head models, the actual benefit of
the error estimates for the EEG forward problem is thus questionable.

However, besides poviding upper bounds for the approximation error, the error estimates also
allow conclusions about possibilities to improve the accuracy of the numerical solution. One
apparent possibility is to increase the polynomial degree of the space of test and trial functions
Vh = Mk

0 . While a polynomial degree k = 1 was assumed throughout this section, for higher
degrees in many estimates the exponent of h grows linearly with increasing k. For singular
right-hand sides, also a local refinement of the mesh around the singularity can be applied
to improve the convergence, this can also be combined with the use of weighted Sobolev
spaces (Agnelli et al., 2014; Apel et al., 2011; D’Angelo, 2012; D’Angelo and Quarteroni,
2008). Finally, optimal convergence rates can also be recovered by applying a mesh dependent
smoothing kernel (Rüde, 1988).

2.8. Solving the MEG Forward Problem

To calculate a solution for the MEG forward problem, it is necessary to evaluate the integral
(1.31) for each coil. For circular shaped coils this can be done analytically, otherwise first
order rod elements are used to generate a representation of the coil shape and a numerical line
integration is performed subsequently. Details regarding the implementation in SimBio are
described by Lanfer (2007). The primary flux Φp can now directly be evaluated. To calculate
the secondary flux it is necessary to access the gradient of the electric potential, ∇u. For the
direct approaches, one can make use of the representation of u in Sh, uh(x) =

∑
j ujhj(x),

and easily compute ∇uh to be

∇uh(x) =
∑
j

uj∇hj(x). (2.54)

For the subtraction approach, only an approximation of uc ∈ Vh was derived so far. The
simplest way to compute Φs using the subtraction approach is to project the potential u∞ to
the space Vh by evaluating it at the vertex positions xi, u∞h (x) =

∑
j u
∞(xj)hj(x), so that

we have

usubh = u∞h + uch =
∑
j

(ucj + u∞(xj))hj . (2.55)
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This expression allows for an easy implementation, but a similar loss of accuracy for very
eccentric sources as for the projected subtraction approach has to be expected (Wolters et al.,
2007c).
The calculation of the secondary magnetic flux Φs through the i-th coil/sensor now simplifies
to

(Φs)i = −µ0

4π

∫
Ω
σ(x′)

∑
i

ui〈∇hi(x′),Cj(x
′)〉dx ′ = −µ0

4π

∑
i

ui

∫
Ω
σ(x′)〈∇hi(x′),Cj(x

′)〉dx ′

(2.56)
and with the definition Sij := −µ0

4π

∫
Ω σ(x′)〈∇hi(x′),Cj(x

′)〉dx ′ it can be written in matrix
form:

Φs = Su. (2.57)

∇hi is piecewise constant and supphi only consists of few mesh elements, so that the calculation
of the matrix Sij is relatively simple.

2.9. Transfer Matrices

All of the presented FEM-approaches result in a linear equation system with the same matrix
A and the unknown being the potential u/uc (in the following only the notation u is used
throughout):

Au = b. (2.58)

As previously mentioned, the dimension of this equation system is usually very large; for
realistic head models the number of unkowns n can be about 3 millions (for a hexahedral head
model with a resolution of h = 1 mm). For most of the commonly used inverse approaches it
is necessary to define a source space, i.e., a discrete set of dipole positions and directions inside
the brain compartments, which are considered as possible sources of neural activity; it is thus
common to precompute a so-called leadfield matrix L. In each column the forward solution for
one pair of source position xi and dipole direction pi is stored. For s EEG/MEG-sensors and
m source positions the size of L is thus s× (d ·m). d indicates the number of dipole directions
per source position and is usually either d = 3, i.e., at each source position the cartesian
directions are chosen as dipole directions, or d = 1 when a normal constraint is assumed, i.e.,
the sources are distributed on a surface approximating the shape of the gray matter and their
dipole moment is oriented perpendicular to this surface as it is physiologically plausible (Brette
and Destexhe, 2012). To set up L it is thus necessary to solve the equation system (2.58) d ·m
times. Since the value of m can be in the range of some thousands, this would be very time
consuming and thus not feasible. However, the number of sensors s is usually clearly smaller
(at most a few hundred) than m. This fact is exploited by introducing transfer matrices
(Gencer and Acar, 2004; Weinstein et al., 2000; Wolters et al., 2004). This approach makes
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use of the fact that the operator a and thereby also the matrix A is self-adjoint/symmetric,
i.e., AT = A. Since one is only interested in the potential at the sensor positions, it is not
necessary to compute the potential u for every mesh vertex/degree of freedom. Therefore, a
restriction/mapping matrix R is introduced that maps the solution vector u to the EEG/MEG
forward solution at the electrodes/sensors ueeg/Φmeg. This restriction matrix R has size s× n
with n being the number of degrees of freedom.

The EEG case is first discussed here, the MEG case is essentially identical and derived
subsequently. For the EEG, commonly each electrode is assigned with the potential of the
mesh vertex that is next to its position when using CG-FEM, so that R has only one non-zero
entry per line; Rij = δi,sens(i) with sens(i) indicating the vertex corresponding to electrode i
and thus

ueeg = Ru. (2.59)

The transfer matrix T eeg is now defined via the equation

T eeg = RA−1. (2.60)

Thus, to calculate the forward solution ueeg a simple matrix-vector multiplication of transfer
matrix T and right-hand side vector b has to be performed

Tb = (RA−1)b = R(A−1b) = Ru = ueeg. (2.61)

However, even though the inverse of the stiffness matrix A−1 exists, its direct computation
is not feasible due to the size of A and the loss of sparseness for A−1. Instead, the transfer
matrix T can be expressed by a linear equation system so that the computation of T reduces
to numerically solving (s− 1) equation systems (since the potential at one reference electrode
is fixed). Multiplying (2.60) with matrix A from the right and transposing the equation gives

AT T = RT , (2.62)

where symmetry of A is exploited. T can now be computed line by line solving (2.62) with
the column vectors of RT as right-hand side vectors. This can be done in the same manner
as solving the equation system (2.58). The resulting matrix T is densely populated. The
calculation of the electrode potential ueeg is thus reduced to a matrix-vector multiplication
with a sparse (direct approaches) or dense (subtraction approach) vector. For the subtraction
approach, the homogeneous medium solution u∞ still needs to be calculated and added. As
the computation of the right-hand side vector is more time-consuming, the speed-up factor is
lower for the subtraction approach compared to the direct approaches.

The use of transfer matrices is advisable as soon as the number of sources is larger than
the number of sensors. Due to its size of (s − 1) ×#vertices and the dense structure, the
necessary amount of memory to store T can become an issue for fine meshes. In this case, it
is possible to store T on the hard disk and load it to the working memory line by line and
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directly multiply each line with the matrix of right-hand side vectors b, so that L is computed
row by row.
For the MEG, the secondary flux matrix S as introduced in (2.57) in Section 2.8 has to be
used instead of the restriction matrix R to compute the magnetic transfer matrix Tmeg. The
secondary flux Φs is then given by Φs = Tmegb and the overall flux is Φ = Φp + Φs.

2.10. Numerical Evaluation I: Sphere Studies

In this section, a variety of studies comparing the previously derived FEM approaches in
multi-layer sphere models for both EEG and MEG is presented. Comparison studies in sphere
models have the huge advantage that the analytical solutions given in Section 1.6 can be used
as (exact) references. These studies are therefore commonly the first step in comparing the
accuracies of different numerical approaches to solve the EEG/MEG forward problem. The
analytical solution allows for an unbiased comparison that is not distorted by inaccuracies in
the reference solution, as it might occur when numerically calculated reference solutions are
used. A possible pitfall that should be considered when conducting such comparisons is the
high symmetry of the scenario, which might influence the observed accuracy. Furthermore,
the highly regular shape of the domain Ω might influence the convergence of the numerical
approaches (cf. Section 2.7). Thus, it is especially important to consider different source
positions and not to distribute the test sources regularly, e.g., on a single line, in the used
model. Complementary evaluations including more realistic head models are presented in
Section 2.11 and Chapter 3. The results shown in this section mainly rely on the previously
published studies by Bauer et al. (2015); Vorwerk (2011); Vorwerk et al. (2012).

2.10.1. Methods

For the following comparisons four-compartment sphere models, representing the head tissues
brain, cerebrospinal fluid (CSF), skull, and skin, were used. Compartment boundaries are set
to radii of 78 mm, 80 mm, and 86 mm and the outer head radius was chosen to be 92 mm;
conductivities were chosen as indicated in Table 2.2.

Table 2.2.: 4-layer sphere models (compartments from in- to outside)

Comp. Out. Radius Cond. Reference

Brain 78 mm 0.33 S/m (Ramon et al., 2004)

CSF 80 mm 1.79 S/m (Baumann et al., 1997)

Skull 86 mm 0.01 S/m (Dannhauer et al., 2011)

Skin 92 mm 0.43 S/m (Dannhauer et al., 2011; Ramon et al., 2004)

Following the study of Lew et al. (2009b), two different tetrahedral head models for the
different FEM approaches were used. Model 4layer-802k has a homogeneous mesh resolution
and is used for the direct approaches Venant, partial integration, and Whitney. Model
4layer-519k has a coarse resolution inside the brain compartment but a high resolution at the
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compartment boundaries and is used for the subtraction approach following the results of Lew
et al. (2009b). The meshes were created applying a constrained Delaunay tetrahedralization
(CDT) as implemented in TetGen (Si, 2004, http://tetgen.berlios.de/). More information
on the parameters used in the mesh generation are given in Table A.1 and Vorwerk (2011);
visualizations of the meshes are shown in Figure A.1. Furthermore, a regular hexahedral
model with an edge length of 1 mm was used, 4layer-hex-1mm. The parameters of this model
are indicated in Table A.2 and Section 2.10.3.

Synthetic electrode configurations were created by distributing the electrode positions regularly
on the outer mesh surface. Numerical and analytical solutions were then evaluated at these
measurement points. The actual number of evaluation points may differ from study to study.
Due to the high number of electrodes and the statistical evaluation of the accuracies, as it is
explained later, this should not have any measurable effect on the shown results.

Two error measures are used to evaluate the accuracy of the numerical approaches, the relative
difference measure (RDM) and the logarithmic magnitude error (lnMAG) (Güllmar et al.,
2010; Meijs et al., 1989).

RDM(unum, uref ) =

∥∥∥∥ unum

‖unum‖2
− uref

‖uref‖2

∥∥∥∥
2

lnMAG(unum, uref ) = ln

(
‖unum‖2
‖uref‖2

) (2.63)

with unum, uref ∈ Rs, s being the number of sensor nodes, and ‖u‖2 :=
√∑s

i=1 u
2
i being

the Euclidian norm. The RDM can thus be interpreted as a normalized `2-error; it is not
influenced by errors in the calculation of the overall magnitude ‖unum‖2 of the solution but
only measures differences in the topography; it is bounded between 0 (= no error) and 2
(unum = −uref ). In the studies by Cho et al. (2015); Dannhauer et al. (2011) it was shown that
a higher topography error – and thus a higher RDM – is related to a worse source localization
and connectivity estimation (cf. Section 3.1.5). The lnMAG measures the difference in overall
magnitude compared to the reference solution and has an optimal value of 0. Compared to the
frequently used MAG error it has the advantage of being symmetric around 0, simplifying the
comparison of over- and underestimations of the magnitude. Due to the relation ln(1 + x) ≈x
for small |x|, we have lnMAG ≈‖unum‖2/‖uref‖2 − 1 for small deviations and 100 · lnMAG

is about the change of the magnitude in percent.

As the achieved accuracy of the forward solution is known to be influenced by the local mesh
geometry and the position of the source inside a mesh element, the errors are evaluated statis-
tically. This is especially important for the direct approaches, where the actual approximation
of the current dipole depends on the local mesh geometry, while the subtraction approach was
found to be less influenced by these factors (Vorwerk, 2011). Instead of only placing sources
on a single ray from the center to the outside of the sphere, several sources were randomly
distributed at each considered eccentricity, i.e., the quotient of source radius and radius of the
innermost conductivity jump. Subsequently, at each eccentricity either the arithmetic mean
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of the errors was calculated and depicted in a common line chart or a so-called boxplot (also
known as box-and-whisker plot) was created. This displays median, upper and lower quartile,
and minimum and maximum of the errors. The advantage of the presentation using boxplots
is that median and quartiles are robust against outliers, furthermore the representation as
boxplots contains more information about the possible range of the errors. In many cases
both ways of visualization are presented side by side.

2.10.2. Study 1: Direct approaches - EEG

In this study, published by Bauer et al. (2015), the accuracies of Venant, partial integration,
and Whitney approach were compared. In contrast to previous studies that only included
Venant, partial integration, and possibly the subtraction approach, this was the first study
that compared the newly presented Whitney source model (Pursiainen et al., 2011) to the
previously evaluated methods. For reasons of clarity, the subtraction approach was excluded
in this comparison, as it is conceptually and with regard to computation times clearly different
from these approaches.

Methods

The tetrahedral model 4layer-802k was used for all computations in this study. s = 200

measurement electrodes were distributed on the outer surface of the model. Eccentricities of
0.20, 0.40, 0.60, 0.80, and 0.99 were considered, i.e., the outermost sources were placed at a
distance of 0.78 mm to the next conductivity jump. For each eccentricity 200 source positions
were generated. In the first part of the study the positions and directions of the sources were
optimized for each approach, i.e., shifted to the element center for the partial integration
approach (Vorwerk, 2011), to the next mesh vertex for the Venant approach (Vorwerk, 2011),
and to the next face for the Whitney approach (Pursiainen et al., 2011). Since the Whitney
approach is also restricted with regard to the source orientation, the source orientation for
all approaches was chosen fitting to the Whitney approach, i.e., p = (v4 − v1)/‖v4 − v1‖2
with v4, v1 defined according to Figure 2.2. For the second part, the source position and
orientation were randomly chosen, thus an interpolation using the PBO scheme had to be
applied for the Whitney approach (cf. Section 2.4).

Results

Figure 2.8 illustrates the results gained for optimized source locations and orientations. Mean
and maximal RDM errors are below 0.016 and 0.03, respectively, and with regard to the lnMAG
mean and maximum are below 0.001 and 0.01 in absolute values, respectively. Corresponding
to maximal errors of 1.5% and 1.0% for RDM and lnMAG, respectively, these results indicate
that all approaches achieve high numerical accuracies in this scenario. For all three methods,
both errors and the spread, i.e., the distance between minimal and maximal value, increase
with the eccentricity. Here, the Whitney model shows the overall best results. The maximal
errors with regard to the RDM (Figure 2.8, top right) at an eccentricity of 0.99 for the Whitney
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Figure 2.8.: Mean errors (left) and boxplots (right) of RDM (top row) and lnMAG (bottom row)
versus eccentricity for optimized source positions and directions.
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Figure 2.9.: Mean errors (left) and boxplots (right) of RDM (top row) and lnMAG (bottom row)
versus eccentricity for random source positions and directions.
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model are below 0.008 (Venant ≤ 0.014, PI ≤ 0.028) and the median value is at 0.004 (Venant
0.006, PI 0.014). The Whitney model also yields the smallest interquartile range (IQR), i.e.,
difference between upper and lower quartile, with only 58% and 28% of that of Venant and
partial integration approach, respectively. With regard to the lnMAG (Figure 2.8, bottom
row) the maximal errors for the Whitney model at an eccentricity of 0.99 are nearly below
0.005, corresponding to just 0.5% (Venant ≤ 0.005/0.5%, PI ≤ 0.009/0.9%) and the median
value is almost at zero, i.e., without any error, for all three methods. The Venant approach
has the smallest IQR at 76% and 39% of that of Whitney and partial integration approach,
respectively.

Considering random source positions and orientations all three approaches again yield low
errors, with maxima of RDM and lnMAG below 0.04/2.0% and 0.013/1.3%, respectively. In
this kind of comparison, the Venant approach overall shows the best results. Comparing
Figures 2.8 and 2.9, one notes that the accuracy of the Whitney model decreases significantly
in the case of random orientations, when multiple basis functions are utilized to represent
a single dipole via the PBO interpolation strategy. This is particularly disadvantageous for
sources with high eccentricity. Again, the mean and median of the RDM (Figure 2.9, top right)
increase with the eccentricity for all three approaches. At the highest eccentricity, the maximal
error of the Venant approach is below 0.033/1.7% (Whitney ≤ 0.038/1.9%, PI ≤ 0.04/2.0%)
and the median value is at 0.012/0.6% (Whitney 0.016/0.8%, PI 0.018/0.9%). Venant and
Whitney approach yield an IQR of 0.08/0.4%, while the IQR for the partial integration
approach is 0.1/0.5%. With regard to the lnMAG (Figure 2.9, bottom), the maximal and
median errors for the Venant approach are at a absolute values of 0.011/1.1% (Whitney and
PI 0.013/1.3%) and 0.001/0.1% (Whitney 0.003/0.3%, PI 0.002/0.2%), respectively. Again,
the Venant approach yields the smallest IQR, i.e., only 85% and 59% of that of Whitney and
partial integration approach, respectively.

2.10.3. Study 2: Venant, PI, Subtraction - EEG

In this study, also the subtraction approach was included, therefore the Whitney approach
was not considered to break down the results, however, one can conclude from the previous
comparison that its accuracy should be in between that of Venant and partial integration
approach. In Vorwerk (2011) a variety of comparisons between these three approaches was
performed, a selection of these results is recalled here.

Methods

As previously, the model 4layer-802k was used for Venant and partial integration approach,
for the subtraction approach model 4layer-519k was used. Furthermore, a hexahedral model,
4layer-hex-1mm, with an edge length of 1 mm – resulting in 3,342,701 vertices and 3,262,312
elements – was used (cf. Table A.2). s= 522 measurement positions were regularly distributed
on the outer surface of the model. 125 random positions on the unit sphere were generated
and subsequently scaled to radii between 2 mm and 77 mm in 1 mm steps to generate the set
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of dipole positions. For each of the dipole positions a radial and tangential dipole direction
was computed.

Results

Only the results for radial dipole directions are presented here for reasons of conciseness and
since the results for tangential dipoles do not add much new information. The complete results
can be found in Vorwerk (2011).
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Figure 2.10.: Mean errors (left) and boxplots (right) of RDM (top row) and lnMAG (bottom row)
versus eccentricity for random source positions and radial directions. Source: Vorwerk (2011)

With regard to the RDM, Figure 2.10 (top left) shows an increase of the mean errors with
increasing eccentricity for all approaches. Overall, a maximal error of only about 0.04/2%
is found (Figure 2.10, top right), underlining the findings of the previous study of a high
accuracy for all considered approaches. Both with regard to the mean errors (maximally
0.012/0.6%) and the boxplots, i.e., the error statistic (maximum ≤ 0.023/1.2%), the Venant
approach shows the lowest errors at all eccentricities. Except for the highest eccentricity,
where it has a higher median, upper, and lower quartile, the subtraction approach performs
better than the partial integration approach. Figure 2.10 shows that the subtraction approach
leads to a decreased dependency of the solution accuracy on the local mesh structure, so that
the errors of the subtraction approach grow gradually with increasing eccentricity and the
IQR is lower than for the direct approaches except for the highest eccentricity. Here, maximal
errors below 0.03/1.5% for subtraction and partial integration approach can be observed, while
the Venant approach performs best with errors constantly below 0.022/1.1%. The decrease
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of errors at higher eccentricities for the partial integration approach shows the effect of the
already discussed mesh dependency.

Also with regard to the lnMAG (Figure 2.10, bottom row) all approaches achieve high
accuracies aside from the Venant approach at the highest eccentricity. This excluded, the
maximal lnMAG errors are below 0.015/1.5% at all eccentricities and the medians are below
0.005/0.5%. Except for the highest eccentricity, the subtraction approach yields the lowest
errors with maximal errors below 0.01/1% and error medians below 0.002/0.2%. The Venant
approach performs slightly worse, mainly due to higher maximal errors than the subtraction
approach, while error medians and IQRs are very similar. The partial integration leads to the
worst results except for the highest eccentricity. At this eccentricity the partial integration
approach performs best, while it particularly leads to higher maximal lnMAG errors and IQRs
otherwise.
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Figure 2.11.: Mean errors (left) and boxplots (right) of RDM (top row) and lnMAG (bottom row)
versus eccentricity for random source positions and radial directions. Source: Vorwerk (2011)

Since the current implementation of the subtraction approach is unable to deal with geometry-
adapted meshes, this comparison study was carried out using a four-layer regular hexahedral
model (Figure 2.11). For deep sources all approaches lead to similar RDM errors (top row).
The maximal RDM is below 0.03/1.5% and the median below 0.025/1.3% up to an eccentricity
of over 0.92 (top right). For more superficial sources especially the maximal errors strongly
increase, while the upper quartile is below 0.03/1.5% for all approaches up to an eccentricity
of nearly 0.98. Median and IQR are very similar for all approaches, the partial integration
approach performs slightly worse than the other two approaches with regard to the maximal
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errors at values of up to 0.08/4%. At the most eccentric set of sources, higher errors are found
for all approaches with the partial integration and subtraction approach performing worst
and the Venant approach performing clearly better, however still with maximal errors above
0.13/6.5%.
In the regular hexahedral model all approaches show a tendency towards overestimating the
magnitude with mean errors mainly in the range of 0.055 and 0.07, i.e., between 5.6% and 7.3%
(Figure 2.11, bottom left). The boxplot does not show any remarkable differences between the
approaches except for the highest eccentricity. Here, all approaches show a higher IQR, a high
difference between minimal and maximal values and a median error that clearly differs from
that at the lower eccentricities. Due to its higher stability with regard to mean and median
error, the performance of the subtraction approach can be judged as best.

2.10.4. Study 3: Venant, PI, Subtraction - MEG

Even though the forward problems of EEG and MEG are closely linked via the law of Biot-
Savart as shown in Sections 1.5 and 2.8, it is nevertheless valuable and necessary to also study
the MEG forward problem due to the special characteristics of the MEG. Radial dipoles do
not cause an outside measurable magnetic field in sphere models (cf. Section 1.6; Sarvas,
1987), therefore only tangential dipoles are evaluated here. Furthermore, since all dipoles
become nearly radial when their position approaches the center of the sphere, the strength of
the measured signal becomes very low. This causes that small deviations in the numerical
solutions lead to high errors in relative measures, such as RDM and lnMAG, due to the small
numerator. The signal measured with circular, radially oriented sensors is dominated by the
primary magnetic flux, and therefore only weakly influenced by the accuracy of the numerically
computed secondary flux. When tangentially oriented sensors are simulated instead, this leads
to higher errors than to be expected in realistic scenarios, however, this is a tough test case.

Methods

The same models (both tetrahedral and hexahedral) and source positions as in Section 2.10.3
were used, just with randomly chosen tangential instead of radial source orientations. 258
artificial MEG sensor coils with a radius of 9 mm were regularly distributed at a radius of 110
mm with tangential orientation (precisely, parallel to the eϕ unit vector).

Results

For both models the results for secondary and total magnetic flux are displayed separately.
Mainly the results for the secondary magnetic flux are discussed, since the total magnetic flux
is simply the result of the summation with the analytically computed primary magnetic flux.
For the tetrahedral models, the results for the secondary magnetic flux differ strongly between
the highest eccentricity and the lower ones. With regard to the RDM (Figure 2.12, top row),
the subtraction approach performs exceptionally well, except for the highest eccentricity. The
mean error and upper quartile are below 0.005/0.25%, for the second highest eccentricity the
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Figure 2.12.: Tetrahedral model: Mean errors (left) and boxplots (right) of RDM (top row) and
lnMAG (bottom row) versus eccentricity for secondary flux, random source positions and radial
directions for MEG.
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Figure 2.13.: Tetrahedral model: Mean errors (left) and boxplots (right) of RDM (top row) and
lnMAG (bottom row) versus eccentricity for total flux, random source positions and radial directions
for MEG.
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maximal error is still below 0.04/2%. However, for the highest eccentricity a median error of
0.07/3.5% and maximal errors above 0.15/7.5% are found. In contrast, except for the maximal
errors of the partial integration approach, for the other two approaches the accuracies are very
similar across all eccentricities. The median of the errors for the Venant approach fluctuates
around 0.015/0.75% with maximal errors constantly below 0.06/3% and an IQR of about
0.015/0.75%. The errors for the partial integration approach are also quite constant, but at
a higher level. The median varies around 0.03/1.5% and the IQR is at about 0.02/1%. For
lower eccentricities, the maximal errors of the partial integration approach are below 0.12/6%,
but above 0.15/7.5% for the highest eccentricities.

The subtraction approach also achieves very high accuracies with regard to the lnMAG (Figure
2.12, bottom row), again apart from the highest eccentricity. For the lower eccentricities,
the lnMAG is nearly negligible, only a slight increase of the maximal lnMAG to 0.01/1%
is noticeable, while the median remains at about 0 with a very low IQR. At the highest
eccentricity the median is again nearly at 0 but the IQR is about 0.02/2% and maximal errors
reach up to 0.08/8.3%. The direct approaches again show a stronger variance, however the
median is also around 0. The IQR for the Venant approach is up to 0.015/1.5% and maximal
errors are below 0.02/2%, while the IQR for the partial integration approach is up to nearly
0.04/4% at the highest eccentricities and maximal errors of up to 0.04/4% are found.

The results for the total magnetic flux are in line with the results for the secondary magnetic
flux (Figure 2.13). Again, especially the high accuracy achieved by the subtraction approach
even at very low eccentricities, i.e., for nearly radial sources, is notable.

The results obtained using the hexahedral sphere model are basically in line with the findings
using the tetrahedral model, again all approaches show a high numerical accuracy – at least
apart from the highest eccentricity. This set of sources excluded, the mean RDM for the
secondary magnetic flux is below 0.01/0.5% for all approaches, for the subtraction approach
even below 0.005/0.25% (Figure 2.14 top row, left). The upper quartile of errors is below
0.01/0.5% for all approaches for eccentricities between 0.86 and 0.98 (top row, right). For
the partial integration approach the upper quartile of errors in this eccentricity range is
constantly below 0.01/0.5% even for the highest eccentricity, the maximal error increases
from 0.015/0.75% to slightly less than 0.03/1.5%. The subtraction approach shows clearly
lower errors for lower eccentricities starting with maximal errors of about 0.005/0.25% at an
eccentricity of 0.86, however, at the second highest eccentricity it performs nearly identical to
the partial integration approach and for the highest eccentricity the median of the errors is
at 0.075/3.8% and upper quartile and maximum error are above 0.1/5%. Also the Venant
approach performs better than the partial integration approach for lower eccentricities, having
a maximal error below 0.01/0.5% up to an eccentricity of 0.92. Again, the errors are nearly
identical to that of the partial integration approach at the second highest eccentricity and
clearly higher for the highest eccentricity with a median of 0.015/0.75% and a maximal error
of 0.09/4.5%.

Both mean and median for the lnMAG are negligibly small for all approaches when excluding
the highest eccentricity. For lower eccentricities (below 0.95) the subtraction approach shows
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Figure 2.14.: Hexahedral model: Mean errors (left) and boxplots (right) of RDM (top row) and
lnMAG (bottom row) versus eccentricity for random source positions and tangential directions for
MEG.
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Figure 2.15.: Hexahedral model: Mean errors (left) and boxplots (right) of RDM (top row) and
lnMAG (bottom row) versus eccentricity for random source positions and tangential directions for
MEG.
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the smallest IQR (≤ 0.002/0.2%) and the smallest spread between minimal and maximal
lnMAG (≤ 0.01/1%). The Venant approach performs slightly worse with a similar difference
between minimal and maximal lnMAG, but a higher IQR (≤ 0.004/0.4%). The partial integra-
tion approach performs worst (with a still high accuracy) for the lower eccentricities. The IQR
is below 0.005/0.5% and the spread between minimum and maximum is 0.022/2.2%. However,
these bounds also hold for the highest eccentricity. At this eccentricity, the subtraction
approach performs worst with a median of 0.018/1.8% and an IQR of over 0.04/4%. The
Venant approach performs only slightly worse than the partial integration approach with
regard to the IQR at this eccentricity (≤ 0.008/0.8%), but minimal and maximal error are
below/above -0.02/-2% and 0.02/2%.
The results for the total magnetic flux are, again, in line with these results (Figure 2.15).
The results for the subtraction approach at lowest eccentricities are not as good as for the
tetrahedral model, however, this should not have any practical implications. The highest
eccentricity excluded, the maximal absolute values of the RDM are below 0.04/2% (top row,
right) and below 0.04/4% in lnMAG (bottom row, right) for all approaches. For the highest
eccentricity the partial integration approach performs best, again.

2.10.5. Computational effort

In this section, the computational effort of the used FEM approaches shall be discussed, i.e.,
timing and hardware requirements that are necessary for solving the EEG/MEG forward
problem using CG-FEM. The results were obtained using the sphere models also applied for
the accuracy evaluations. Despite being obtained in sphere models, these results are similar
to those in realistic head models with a comparable number of vertices, since the efficiency of
the used solvers is only weakly dependent on the geometrical structure of the meshes as long
as these are not degenerated. Thus, the crucial parameters influencing computation times and
hardware requirements (particularly necessary RAM) are the number of mesh vertices and the
number of sources. When using the transfer matrix approach, the number of sensors becomes
a third, very important, parameter. In this case, except for the subtraction approach, the
setup of the transfer matrix becomes the most costly step in the computation. It is obvious
that the computation time for the transfer matrix is linearly related to the number of sensors.
A critical point is the storage of the transfer matrix in the RAM as it is a dense matrix of
size #sensors×#nodes. However, this problem can be solved by precomputing the (except
for the subtraction approach) sparse right-hand-side vectors and subsequently computing the
transfer matrix line-by-line and directly executing the matrix-vector product.
Lew et al. (2009b); Wolters et al. (2002) evaluated the performance of different solvers for
Equation (2.14); an AMG-CG solver was found to perform best. Vorwerk (2011) compared
the computation times for Venant, partial integration, and subtraction approach in the models
4layer-802k, 4layer-519k, and 4layer-hex-1mm using this solver, the drawn conclusions are
recited here and abutted by computation times for the Whitney approach. For Venant and
partial integration approach the computation times in the hexahedral model were gained
in a node-shifted model; this has no measurable influence on the computation times. The
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measurements in the tetrahedral models were carried out on a PC with an Intel Core2 Quad
Processor at 2.83 GHz with 8 Gb of RAM and Ubuntu 9.10 installed, for the hexahedral
models a PC with an Intel Core i7 Processor at 2.80 GHz with 16 Gb of RAM and Ubuntu
9.10 was used. The results of this study, complemented by the computation times for the
Whitney approach in model 4layer-802k, are indicated in Table A.4.

The influence of the conceptual differences between the approaches on the computational
effort is obvious. While the setup time for the transfer matrix is of course about the same for
all considered approaches, the computation time for a single right-hand side vector strongly
differs by more than two magnitudes. For the direct approaches these are in the range of some
tens of ms, while multiple seconds are needed for the subtraction approach. The differences
between the direct approaches are irrelevant in praxis and therefore not further discussed
here, as the computation of the right-hand side and the sparse matrix-vector multiplication of
transfer matrix and right-hand side hardly contribute to the overall computation time, e.g.,
lasting only 20 min 37 s for 19,000 sources using the partial integration approach, which is
thereby already the slowest of the direct approaches (cf. Table A.4). The setup time, which is
dominated by the computation of the transfer matrix, amounts to 98 min 59 s. The overall
computation time for 19,000 sources using the partial integration approach is therefore less
than 2 hours. In contrast, with a duration of more than 50 h for the computation of the
19,000 sources, the time effort of the subtraction approach is in a range where the application
in praxis is nowadays not reasonable, unless it would be mandatory due to undisputable
advantages compared to the other approaches, e.g., regarding numerical accuracy.

2.11. Numerical Evaluation II: Realistic Head Model Studies

In the so far presented studies it was shown that CG-FEM approaches achieve high numerical
accuracies in sphere models for both EEG and MEG. As already mentioned, these studies can
only be seen as a first step of a comprehensive evaluation and need to be accompanied by
studies using more realistic head models. In this section, two studies evaluating the different
CG-FEM source modeling approaches and also boundary element methods (BEM) in more
realistic scenarios are presented. In Section 2.11.1, the results of Vorwerk et al. (2012) are
presented, where the accuracies of Venant, partial integration, and subtraction approach were
compared to that of two BEM approaches – the frequently applied double-layer BEM (Barnard
et al., 1967; Geselowitz, 1967; Zanow, 1997; Zanow and Knösche, 2004) and the symmetric
BEM (Adde et al., 2003; Gramfort et al., 2011; Kybic et al., 2005) – in a three-compartment
realistically shaped head model. This study was limited to the EEG forward problem. The
errors of the different approaches were evaluated by using the solution in a high-resolution
model as reference. Furthermore, a first approach to set these errors in relation to the effect
of model simplifications was made by additionally evaluating the effect of neglecting the
highly-conductive CSF compartment. This study is accomplished by a comparison study of
the four CG-FEM approaches introduced in this chapter in a six-compartment realistic head
model. In this second study, the accuracies for both EEG and MEG forward problem were
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evaluated; again a high-resolution model was used as reference.

2.11.1. Study 4: BEM-FEM comparison in realistically shaped three-compartment
model

An introduction into boundary element methods is skipped here, an extensive description
and a first comparison study between BE and FE methods in sphere models can be found in
Vorwerk (2011). At this point it shall suffice to know that boundary element methods rely on
a discretization of the interfaces between compartments with different conductivity instead
of a volume discretization as it is the case for FE methods. This leads to certain theoretical
and practical limitations for example related to the treatment of non-nested compartments
or of holes in surfaces, e.g., due to the spinal cord or the eye nerve penetrating the skull. A
major goal of this study was to show that FE methods are able to match BE methods in both
accuracy and computation time already in a three-compartment head model. The allegedly
higher computational effort was frequently used as an argument against the application of
FEM in praxis. As the computational effort to directly invert the matrices that occur for
BEM grows asymptotically cubic with the number of surface vertices (Kybic et al., 2005),
BE head models are usually restricted to three layers that can be represented by smooth
surfaces (skin, skull, and brain). The separation between brain and the CSF is omitted since a
representation of the strongly folded brain surface with an amount of vertices that still allows
a reasonable computation time is usually not possible. Therefore, this study also aimed at
showing that the errors introduced by neglecting certain conductive compartments, e.g., in
this case the CSF, clearly surpass the numerical differences between the numerical methods,
motivating an increase of the efforts to make the usage of four or more compartment head
models practically feasible.

Figure 2.16.: EEG and MEG sensor distribution in realistic head model.
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Methods

Considering the previously explained limitations, a three-compartment realistically shaped
head model was constructed. A T1-weighted (T1w-) MRI scan of a healthy 25-year-old male
subject was acquired on a 3 T MR scanner (Magnetom Trio, Siemens, Munich, Germany)
using a 32-channel head coil. An MP-RAGE pulse sequence (TR/TE/TI/FA = 2300 ms/3.03
ms/1100 ms/8◦, FOV = 256 × 256 × 192 mm, voxel size = 1 × 1 × 1 mm) with fat suppression
and GRAPPA parallel imaging (acceleration factor 2) was used. Surfaces with 2,219, 1,814,
and 2,879 vertices were extracted representing skin, outer skull, and inner skull, respectively,
using the proprietary toolbox Curry (http://www.neuroscan.com). While these surfaces could
directly be used for the BEM approaches, a tetrahedralization based on these surfaces was
performed using TetGen to create a tetrahedral model for the FEM approaches. This approach
ensures that the geometry of the volume conductor is identical in all models. As for the sphere
studies, different models for the direct approaches and the subtraction approach were created
according to Lew et al. (2009b). The tetrahedralization resulted in a model with 933,038
vertices and 5,891,852 elements and a homogeneous mesh density for the direct approaches and
a model with 653,664 vertices and 4,075,056 elements and a high mesh density at compartment
boundaries and a low density inside the homogeneous source compartment for the subtraction
approach. Since no analytical solution exists in this scenario, a high-resolution FE model
was created to calculate a reference solution. This resulted in a mesh consisting of 2,242,186
vertices and 14,223,508 elements. Finally, a high-resolution FE model additionally considering
the CSF compartment was generated to evaluate the influence of modeling/not modeling this
conductive compartment (2,268,847 vertices, 14,353,897 elements). The parameters used to
generate these meshes are indicated in Table A.3.

18,893 test sources were distributed regularly on an extracted gray/white matter interface.
This assures a sufficient distance between source positions and brain surface in order to
avoid numerical errors as a consequence of sources being too close to a conductivity jump,
especially when taking into account the CSF compartment. The surface normals were chosen
as source directions. The simulated potentials were evaluated at the sensor positions of a
realistic 80 electrode cap (10-10 system with six additional electrodes). The reference solutions
were computed for the high-resolution three and four compartment model using the Venant
approach.

Results

The results of this study are shown in Figure 2.17. The graphs show cumulative relative
frequencies, i.e., the ordinate of each point of a curve indicates the amount of sources that
has an error below the respective abscissa value. Regarding the RDM, the symmetric BEM
performs best having an error below 0.025 for over 95% of the dipole positions (Figure 2.17,
left). However, it shows a tendency to underestimate magnitudes (Figure 2.17, right). In
contrast, the subtraction approach shows only slightly higher RDM errors, while achieving a
low and unbiased lnMAG (90% within the range from -0.01 to 0.01, i.e., a variation of ±1%).
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Figure 2.17.: Cumulative relative frequencies of RDM (left) and lnMAG (right) errors for EEG in
realistically shaped three-layer head model with truncated x-axis. Source: Vorwerk et al. (2012)
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Figure 2.18.: Cumulative relative frequencies of RDM (left) and lnMAG (right) errors for EEG in
realistically shaped three-layer head model. Source: Vorwerk et al. (2012)

The same holds true for the Venant approach with, again, slightly higher overall errors than
the subtraction approach, but still 95% of the RDM errors being below 0.04. Finally, the
partial integration approach shows the worst results of the FEM approaches. The double layer
BEM performs good with regard to the RDM, being in the range of the FEM approaches, but
it shows high deviations for the lnMAG that are asymetrically distorted. It is eye-catching
that, while the results for all other approaches are well-ordered and none of the displayed
curves intersect, the RDM of the double layer BEM is in the range of the subtraction approach
for the best performing 5% of sources, but in the range of the partial integration approach
for the worst performing 5% of sources. Possibly most important, a glance at the CSF effect
shows that all numerical errors lie clearly below the model error (Figure 2.18). For 95% of
the dipole positions the effect in the RDM introduced by neglecting the CSF compartment
is larger than 0.05/2.5% and the caused lnMAG effect is larger than 0.1/10% and strongly
varying (Figure 2.18).

2.11.2. Study 5: Direct approaches in realistic six-compartment head model

The results gained by Vorwerk et al. (2012) (Figures 2.17, 2.18) show that also a realistically
shaped three-layer head model still suffers from distorted results due to simplifications in
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the modeling process, particularly the omission of differing conductivities for some large
compartments, e.g., CSF, gray matter, and white matter. As basis for further investigations
of effects caused by these simplifications, the numerical accuracy achieved by the different
FEM approaches in solving the EEG/MEG forward problem in a six-compartment realistic
head model and using realistic sensor configurations is studied. The explicit effects of the
particular omissions are then in-depth studied in the following chapter and set in relation to
the numerical accuracies.

Methods

Two six-compartment (skin, skull compacta, skull spongiosa, CSF, gray matter, and white
matter) head models with isotropic conductivities, again one with a normal and one with an
especially high resolution, were used as test scenario. The details of the model generation and
the chosen conductivity parameters are described in the following chapter (Section 3.1.1; Table
3.1, model 6CI ; Figure 3.1); this resulted in one model with 984,569 vertices and 6,107,561
tetrahedral elements and the high-resolution model with 2,159,337 vertices and 13,636,249
elements. As in the previous study, 18,893 sources were distributed on the gray/white matter
interface. Since the white matter was considered as an additional conductive compartment
in this study, the source positions were shifted to the centroid of the next tetrahedron that
was fully contained in the gray matter, i.e., all of its vertices exclusively belonged to gray
matter elements. As source directions again the surface normal at the respective position was
chosen. The EEG was evaluated using a realistic 74 electrode cap (10-10 system), for the
MEG a realistic 275 channel whole head sensor configuration (CTF Omega 2005 MEG by
MISL, http://www.vsmmedtech.com/hardware.html) was simulated (Figure 2.16). Reference
solutions for EEG and MEG were computed using the high-resolution model and the Venant
approach.

Results
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Figure 2.19.: Cumulative relative errors of RDM (left) and lnMAG (right) for EEG in realistic
six-layer head model

The results gained using the realistic six-compartment head model underline the findings
made in the sphere studies (Figure 2.19). For the EEG, the Venant approach has the highest



56 2.11 Numerical Evaluation II: Realistic Head Model Studies

accuracy both regarding RDM with 95% of the errors below 0.06/3% and lnMAG with 90%
of the errors between -0.04 and 0.04 (i.e., a variation of ±4%). Subtraction and Whitney
approach show a similar accuracy regarding the RDM with 95% of the errors below 0.09/4.5%
and 0.11/5.5%. For the partial integration approach the mark of 95% of the errors is just
reached before the end of the displayed x-range at 0.15/7.5%. With regard to the lnMAG
the results might be slightly biased due to the choice of the reference method, as Whitney
and partial integration approach have a too low/high magnitude for 60% of the sources,
respectively, while this is more symmetric for Venant and subtraction approach. Regarding the
extent of the intervall containing 90% of the lnMAG values, the Venant approach performs best
with a value of 0.08. Whitney and subtraction approach also perform similar regarding this
measure with a value of about 0.13 with the already mentioned tendency to underestimate the
magnitude compared to the reference for the Whitney approach. For the partial integration
approach the extent of the interval containing 90% of the sources is about 0.16.
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Figure 2.20.: Cumulative relative errors of RDM (left) and lnMAG (right) for secondary magnetic
flux in realistic six-layer head model
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Figure 2.21.: Cumulative relative errors of RDM (left) and lnMAG (right) for MEG in realistic
six-layer head model

The results for the MEG (Figures 2.20 and 2.21) are very similar to those for the EEG. When
considering only the secondary magnetic flux (Figure 2.20) the Venant approach performs
best with 80% of the RDM errors below 0.05/2.5% and 95% below 0.12/6% and 90% of the
lnMAG errors in a range of 0.08 and a variation of ±4% compared to the reference. As for the
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three-layer scenario, the partial integration approach performs worst and the mark of 95% of
the errors is out of the displayed graph range of up to 0.2 for the RDM and the range for 90%
of the lnMAG errors is 0.16, corresponding to a variation of ±8%. Subtraction and Whitney
approach perform similarly with the subtraction approach being slightly better with regard
to the RDM and 95% of the errors below 0.17/8.5%, while for both approaches 90% of the
lnMAG errors lie in the range between -0.06 and 0.06.

When adding the analytically calculated primary magnetic flux and thus evaluating the overall
MEG signal, the results with regard to the RDM are more accurate than for the secondary
magnetic flux alone, while the lnMAG results become slightly less accurate (Figure 2.21). The
general tendency remains the same as for evaluating the secondary magnetic flux separately.
Again, the Venant approach performs best, with 95% of the RDM errors below 0.07/3.5% and
90% of the lnMAG results between -0.05 and 0.05 (i.e., a variation of ±5%). Subtraction and
Whitney approach still perform very similar with regard to the topography error, each with
95% of the RDM errors below 0.11/5.5%, while the subtraction approach performs clearly
better when considering the lnMAG (90% between -0.06 and 0.08, Whitney 90% between
-0.10 and 0.07). The partial integration aproach achieves the worst results both with respect
to topography and magnitude.

2.12. Discussion

In this chapter, several approaches to solve the EEG/MEG forward problem were introduced
based on a conforming finite element formulation, the continuous Galerkin FEM (CG-FEM).
Basic theory regarding existence and uniqueness of a solution was presented and suitable error
measures were introduced. The theoretical considerations were followed by a comprehensive
evaluation of the numerical performance of the presented approaches in both sphere and
realistic head models for both the EEG and MEG forward problem.

The results gained in the sphere studies for the EEG forward problem underline and augment
previous findings. Especially the statistical evaluation allows for a better assessment of the
reliability of the numerial approaches than in the previously presented studies, where often
only a single dipole per eccentricity was evaluated.

For the first time the study presented in Bauer et al. (2015) (Section 2.10.2) compared
the accuracy of the newly introduced Whitney approach to that of previously proposed
FEM forward approaches, namely Venant and partial integration approach. The results for
optimized source positions and orientations (Figure 2.8) confirmed the assumptions of Section
2.5, showing the highest accuracy for the Whitney approach in this scenario. Thus, when
the source space in a tetrahedral model is generated out of a surface representation of the
gray matter and a normal constraint is implied, i.e., sources are oriented perpendicular to
this surface (cf. Figure 2.3), the use of the Whitney approach should be considered. The
non-interpolated Whitney type sources have been applied to EEG inversion by Calvetti
et al. (2009). For random locations and source orientations the Venant approach showed
a higher accuracy than the Whitney approach (Figure 2.9). However, the accuracy for all
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three approaches in the sphere model was very high so that at this point of evaluation also
the focality of the monopole representation might be considered. A higher focality simplifies
fulfilling the constraints that have to be respected in the construction of a source space, as
no monopoles should be placed on vertices outside the source compartment. In this aspect,
the partial integration approach is the best approach (4 nodes, cf. Table 2.1), followed by
Whitney (8 nodes) and Venant (≈16 nodes) approach.

When also considering the subtraction approach in the evaluation, the Venant approach
remains overall most accurate with regard to mean and median errors in a tetrahedral model
(Section 2.10.3, Figure 2.10). However, it shows very high magnitude errors for the highest
eccentricity and the maximal error is higher than for the subtraction approach at some
eccentricities. These findings are in line with the findings by Lew et al. (2009b), where likewise
a high magnitude error at highest eccentricities was found for the Venant approach and radial
source directions. In the regular hexahedral sphere model all three approaches achieved nearly
identical accuracies except for the highest eccentricity, where the Venant approach performed
best (Figure 2.11). These results generalize the study of Wolters et al. (2007b). A dependency
of the numerical accuracy of Venant and partial integration approach on the position of the
source inside the mesh was observed in this study. This finding was in detail investigated by
Vorwerk (2011), showing that optimal accuracies for the direct approaches can be achieved
when sources are placed appropriately inside the mesh, i.e., no monopoles are placed on
vertices outside the source compartment (usually the gray matter). This is not necessary for
the subtraction approach, for which it is sufficient when the source remains inside the brain
compartment and respects a sufficient distance to the conductivity jump. However, due to
the higher computational effort (Section 2.10.5) the direct approaches are to be preferred in
practical applications.

In the MEG sphere study, the general performance of Venant and partial integration approach
in both tetrahedral (Figures 2.12 and 2.13) and hexahedral models (Figures 2.14 and 2.15) was
in line with the findings of Lanfer (2007); Lanfer et al. (2007), showing high relative errors for
deep sources due to the weak signal and good numerical accuracies for more superficial sources.
The finding of the Venant approach performing best confirms the assumption that the results
for the EEG can mostly be transferred to the MEG due to the law of Biot-Savart. In this
context, the clearly better performance of the subtraction approach, especially in tetrahedral
models, might be a bit surprising. Recalling that the potential in the source compartment,
where the strongest volume currents occur, is mainly calculated analytically here, this result
gets plausible.

The study deduced by Vorwerk et al. (2012) (Section 2.11.1) was a first step to proof that
the results gained in sphere studies can be transferred to more realistic scenarios. This study
shows that the approaches based on the FEM can match the accuracy and speed of the
until now widely applied BE methods also in a three-layer realistically shaped head model.
Though the symmetric BEM was discriminated by choosing the solution of a FEM approach
as reference, it outperformed the other approaches regarding RDM (Figure 2.17, left). With
regard to the lnMAG both BEM approaches show a bias compared to the reference solution,
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a result that was previously also found in sphere studies for the double-layer approach but
not that distinct for the symmetric BEM (Gramfort et al., 2011; Vorwerk, 2011; Vorwerk
et al., 2012). In this scenario with a large homogeneous source compartment and a relatively
high distance between sources and conductivity jumps, the subtraction approach was the
best performing FEM approach. However, Figure 2.18 shows that it is highly advisable to
extend realistic head models by further conductive compartments as done in the following
study (Section 2.11.2) and investigated in more detail in Chapter 3.

When comparing the different FEM approaches in a six-compartment realistic head model
without using a specifically adjusted head model for the subtraction approach, the results
are slightly different than in the three-layer scenario. Though the number of vertices and
elements was nearly identical in both scenarios, the achieved accuracies are decreased when
using the six-compartment model. The main reason for this is probably found in the smaller
distance of the source positions to the conductivity jumps, as the sources are now placed in
the relatively thin gray matter compartment which is enclosed by the CSF and the white
matter compartment. This behaviour corresponds to the increase of errors at higher source
eccentricities in the sphere models. Especially the subtraction approach suffers under this
change in geometry, as it performs best for large compartment of homogeneous conductivity.
The Venant approach performs best in this scenario for both EEG and MEG in contrast to
the three-layer scenario (Figure 2.17). This result is not fully in line with the sphere results,
where subtraction and/or partial integration approach outperformed the Venant approach in
certain scenarios (Figure 2.10, bottom row for most eccentric sources, Figures 2.13 and 2.12
for all except most eccentric sources), however, the general trend showed that the Venant is
the most stable approach and is thereby confirmed in the more realistic scenario. It has to be
kept in mind that the reference results were computed using the Venant approach, so that a
certain bias towards this approach cannot be excluded for these results. However, the source
positions were optimized for the partial integration and Whitney approach so that especially
the bad performance of the partial integration approach is rather surprising (cf. Pursiainen
et al., 2011; Vorwerk, 2011).

Some general possibilities to improve the accuracy of the FEM were already indicated in Section
2.7. The use of higher order test and trial functions, i.e., increasing the polynomial degree of
the discrete space Vh, is suggested by the error bounds in Section 2.7 and was evaluated for the
subtraction approach by Grüne (2014). A reduction of the error for higher polynomial degrees
was found in sphere models. However, this comes at the cost of an increase in computation
time, as the number of degrees of freedom and thereby the dimension of the equation system
(2.14) that has to be solved grows strongly. If the computation time was kept constant, no
improvements for high source eccentricities could be found. Thus, it seems arguable that the
use of finer meshes should be preferred over an increase of the polynomial degree as this allows
a better approximation of the geometry. Besides the better approximation of the potential,
also a better representation of the dipole source when increasing the polynomial degree would
be expected for the direct appoaches (Section 2.7) and should be evaluated. Especially for the
partial integration approach using tetrahedral elements, the problem of the right-hand side
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being constant inside a mesh element could thereby be overcome.
For the subtraction approach, also the use of adaptive mesh refinement techniques with an
residual-based error estimator was tested (Meyer, 2013), but did not lead to satisfying results
so far. At least for the EEG forward problem, where one is only interested in the solution
at the electrode positions, it seems reasonable to consider the use of dual-weighted error
estimators. Thereby, it would be possible to define the regions in which one is especially
interested in an accurate solution, i.e., the electrode positions for the EEG forward problem
(Bangerth and Rannacher, 2003; Johansson, 2010; Ramm et al., 2003). For problems with a
singular right-hand side, also local mesh refinements around the position of the singularity
have been proposed (Agnelli et al., 2014; Apel et al., 2011; D’Angelo, 2012; D’Angelo and
Quarteroni, 2008). However, this is not feasible as usually a large number of sources at
different positions has to be computed to set up the leadfield L, so that one should instead
rather consider a global refinement of the source compartment. The influence of the mesh
width – and thereby of mesh refinements in the source compartments – for the Venant direct
approach is studied by Hanrath et al. (in prep.), where optimal convergence rates were found.
Thus, a global refinement of the source compartment seems reasonable, but is only easily
realizable for tetrahedral models. In hexahedral meshes, it unavoidably leads to hanging nodes
(cf. Figure 2.1, middle), which complicate the numerical treatment using CG-FEM. Hanging
nodes can easily be treated using the discontinuous Galerkin (DG) method that is introduced
in Chapter 4.
The accuracy of the Venant approach can further be improved by replacing the here defined
moments by those of the multipole expansion (Hanrath et al., in prep.), by increasing the
number of electrical monopoles considered for the approximation of the source (Medani et al.,
in prep.), and by preventing that monopoles are placed outside the source compartment
(Medani et al., in prep.). Pursiainen et al. (submitted) propose the use of further basis
functions, namely face-intersecting and edgewise ones, to improve the approximation of the
dipole source in the Whitney approach. Thereby, an increase in numerical accuracy could be
achieved without including further monopoles.
However, in some – possibly even many – scenarios the numerical accuracy is less important for
an accurate solution of the forward problem than an accurate representation of the underlying
geometry. Here, tetrahedral meshes are usually advantageous as they allow the modeling of
smooth surfaces, while for (regular) hexahedral meshes staircase effects occur. The accuracy
in hexahedral models can be easily improved by the use of geometry-adapted meshes that
allow for a better representation of the underlying geometry and weaken the influence of
staircase effects (Camacho et al., 1997; Vorwerk, 2011; Wolters et al., 2007a). To further
improve the representation of the geometry, Vallaghé and Papadopoulo (2010) proposed
a trilinear immersed FEM. This method is based on structured hexahedral grids that are
independent of the geometry; the compartment interfaces are represented using levelsets and
included by a modification of the basis functions. A similar approach can also be applied
for the discontinuous Galerkin method as introduced in Chapter 4, leading to the unfitted
discontinuous Galerkin (UDG) method (Bastian and Engwer, 2009; Nüßing et al., 2015).



3
EFFECTS OF REALISTIC VOLUME

CONDUCTOR MODELING IN

EEG/MEG SOURCE ANALYSIS

The results obtained in the previous chapter (cf. Section 2.11.1; Figures 2.17 and 2.18) gave a
clear hint that in order to solve the EEG/MEG forward problem accurately, it is necessary
to model the head volume conductor as realistic as possible. Furthermore, it is evident that
this particularly includes the distinction of more than the three conductive compartments
skin, skull, and brain. In this chapter, which is in large parts based on and recites the
study published by Vorwerk et al. (2014), the influence of additionally distinguishing the
conductive compartments skull spongiosa, skull compacta, cerebrospinal fluid (CSF), gray
matter, and white matter and of the inclusion of white matter anisotropy on the EEG/MEG
forward solution is investigated. To be able to include these complicatedly shaped head
compartments, the Venant approach was used to compute forward solutions. The Venant
approach was derived in the previous chapter (cf. Section 2.3) and showed a high numerical
accuracy in solving the forward problem in all of the performed evaluations. A highly realistic
six-compartment tetrahedral head model with white matter anisotropy was created; the mesh
generation is described in Section 3.1.1. Furthermore, a high-resolution reference model was
created. Realistic sensor configurations were used for EEG and MEG. Sources were distributed
with a high, regular density in the gray matter compartment and their orientations chosen
perpendicular to the gray/white matter interface, i.e., the physiologically plausible normal
constraint was applied. On this basis, the effects of the respective model refinements are
studied.

Starting from a three-compartment scenario (skin, skull, and brain), the head model was
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refined step-by-step by distinguishing one further of the above-mentioned compartments. For
each of the thereby generated five head models, both the effect on the signal topography
and signal magnitude in relation to a reference model and to the model that was generated
in the previous refinement step was measured. The differentiation between topography and
magnitude effects is of high importance as these effects strongly differ in their impact on
inverse solutions. The results of the simulations are evaluated using a variety of visualization
methods, allowing to gain a general overview of effect strengths, of the most important source
parameters triggering these effects, and of the most affected brain regions. The results are
visualized on an inflated brain surface to depict the spatial distribution of the changes for
both EEG and MEG. Additionally, these effects are presented in special diagrams – known as
heat maps – where their strength is related to parameters characteristic for the respective
source location. These analyses allow to estimate the influence of the simplifications applied
in the head model creation on the investigation of activity originating in certain brain regions.
Thereby, it is possible to show the high importance of detailed volume conductor modeling in
order to achieve accurate EEG and, to a lesser degree, for accurate MEG forward solutions.
The results of the forward study are underlined by reflecting the most important results of
a study considering the inverse problem of EEG/MEG that was conducted by Cho et al.
(2015). Here, it is shown that the results of the forward study are directly related to the
accuracy in computing inverse solutions and source connectivity. Based on these results, a
guideline for volume conductor modeling in EEG and MEG source analysis is worked out.
The consideration of the highly conductive CSF and the distinction of gray/white matter
conductivity differences are found to be the most important modeling steps.
Finally, a MATLAB-based pipeline that allows for an easy generation and application of
realistic five-compartment hexahedral head models is presented. It is shown that the usage of
the head models generated with this pipeline can clearly improve the accuracy of the forward
solutions compared to a simpler three- or four-compartment head model. Furthermore, the
results of this pipeline in localizing somatosensory evoked data measured from a healthy
subject are shown.

3.1. A Guideline for EEG/MEG Head Volume Conductor Modeling

3.1.1. Segmentation and Mesh Generation

To construct a realistic, high-resolution volume conductor with anisotropic white matter,
T1-weighted (T1w-), T2-weighted (T2w-), and diffusion-tensor (DT-) MRI scans of a healthy
25-year-old male subject were acquired with a 3 T MR scanner (Magnetom Trio, Siemens,
Munich, Germany) using a 32-channel head coil. For the T1w-MRI, an MP-RAGE pulse
sequence (TR/TE/TI/FA = 2300 ms/3.03 ms/1100 ms/8◦, FOV = 256 × 256 × 192 mm,
voxel size = 1 × 1 × 1 mm) with fat suppression and GRAPPA parallel imaging (acceleration
factor 2) was used. For the T2w image, an SPC pulse sequence (TR/TE = 2000 ms/307 ms,
FOV = 255 × 255 × 176 mm, voxel size = 0.99 × 1.0 × 1.0 mm interpolated to 0.498 ×
0.498 × 1.00 mm) was used. The MR images were resampled to an isotropic resolution of
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1 mm. DT-MRIs (DTI) were acquired with the standard Siemens pulse sequence ep2d_diff
(TR/TE = 7700 ms/89 ms). Geometry parameters were: FOV 220 × 220 × 141 mm, voxel
size = 2.2 × 2.2 × 2.2 mm. Seven volumes were acquired with diffusion sensitivity b =
0 s/mm2 (i.e., flat diffusion gradient) and 61 volumes with b = 1000 s/mm2 for diffusion
weighting gradients in 61 directions, equally distributed on a sphere. Seven additional data
sets with flat diffusion gradients and reversed spatial encoding gradients were acquired for
distortion correction according to Ruthotto et al. (2012). The T2w-MRI was registered onto
the T1w-MRI using a rigid registration approach and mutual information as cost-function as
implemented in the FSL-toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). The skin, skull
compacta, and skull spongiosa were segmented by applying a gray-value based active contour
approach (Vese and Chan, 2002). Subsequently, the segmentation was manually corrected
and, because of the importance of modeling skull holes for source analysis (Oostenveld and
Oostendorp, 2002; van den Broek et al., 1998), the foramen magnum and the two optic canals
were physiologically correct modeled as skull openings. Following the advice of Lanfer et al.
(2012b), the model was not cut off directly below the skull but realistically extended at the
neck. Curry was used to extract highly resolved surfaces of skin, skull compacta, and skull
spongiosa. A Taubin smoothing was applied to remove staircase-like effects (Taubin, 1995).
The FreeSurfer-toolbox (https://surfer.nmr.mgh.harvard.edu) was then used to segment and
extract the cortex surface and the gray/white matter interface.

Figure 3.1.: Sagittal cut through the volume conductor model (white matter shown in light gray,
gray matter in dark gray, CSF in light blue, skull compacta in dark blue, skull spongiosa in red, and
skin in yellow) (left), fractional anisotropy (color-coded) visualized on an axial slice of the T1-MRI
(middle), source space visualized on the brain surface (right).

In order to apply a constrained Delaunay tetrahedralization (CDT), all obtained surfaces
were checked for intersections and those found were corrected by flattening the inner surface,
ensuring a minimal distance between all surfaces. The CDT was executed using TetGen; the
resulting mesh consists of 984,569 vertices and 6,107,561 tetrahedral elements (Figure 3.1).
Additionally, a mesh with a higher resolution of 2,159,337 vertices and 13,636,249 elements
was constructed using the same surfaces in order to compare numerical errors and modeling
errors. The conductivities used in this study were chosen according to Table 3.1 (Akhtari
et al., 2002; Baumann et al., 1997; Dannhauer et al., 2011; Ramon et al., 2004).

To construct anisotropic white matter conductivity tensors, after an affine registration for
eddy current correction, the DW-MRIs were corrected for susceptibility artifacts using a novel
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Table 3.1.: Overview of the compartment conductivities, the conductive features of the different head
models (| is considered, – is disregarded,: is further divided, and A is anisotropic), and their resolution.

Compartment σ (S/m) 3CI 4CI 5CI 6CI 6CA 6CA_hr

Brain 0.33 | | : : : :

Brain GM 0.33 – – | | | |
Brain WM 0.14 – – | | A A

CSF 1.79 – | | | | |
Skin 0.43 | | | | | |
Skull 0.01 | | | : : :

Skull comp. 0.008 – – – | | |
Skull spong. 0.025 – – – | | |

Resolution # vertices 984,569 984,569 984,569 984,569 984,569 2,159,337

reversed gradient approach based on the images acquired with flat diffusion gradient that
leads to a diffeomorphic, smooth, and thus physically reasonable transformation (Ruthotto
et al., 2012). Finally, the corrected DW-MRIs were registered to the T2-MRI using a rigid
transformation. Following the effective medium approach proposed by Tuch et al. (2001) that
has been positively validated in a variety of studies (Butson et al., 2007; Chaturvedi et al.,
2010; Oh et al., 2006; Tuch et al., 2001), conductivity tensors σ were deduced from the diffusion
tensors D using the linear relationship σ = sD. Instead of using the theoretically derived
scaling factor s as proposed by Tuch et al. (2001), s was computed empirically adapting
the approach used in Rullmann et al. (2009). The modeling of gray matter anisotropy was
dispensed due to the severe influence of partial volume effects at the resolutions achieved with
3 T MR scanners and previous studies showing only weak radial cortical anisotropy (cf. Figure
4 in Heidemann et al., 2010; Figure 3.1, middle). Thus, the computation of s reduced to

s = σisowm

(
dwm
Nwm

)−1

. (3.1)

dwm denotes the sum over the product of the diffusion tensor eigenvalues for all voxels classified
as white matter and Nwm is the number of these tensors. This approach ensures that the
mean conductivity of the anisotropic white matter fits that of isotropic white matter, while
local variations in conductivity are preserved. Finally, to each element the conductivity tensor
corresponding to its centroid was assigned.

To investigate the influence of considering/not considering conductivity differences between
the different compartments on the accuracy of the forward simulation, head models with a
differently detailed discrimination of these compartments were generated. Except for the highly
resolved model 6CA_hr, the finite element mesh was not changed, so that the geometrical
structure of the head model remained the same for all models, i.e., the influence of geometrical
errors is not examined here.

Five differently detailed head models were constructed based on the finite element mesh
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with the lower resolution (i.e., 984,569 vertices). To simulate the same steps that one would
usually follow to achieve a more realistic head model, the starting point is the commonly used
three-compartment head model with homogenized isotropic skull and brain compartments,
which in this study was extended by the realistic modeling of skull holes that were already
included as a necessity of the approach not to change the geometrical representation of the
volume conductor (model 3CI in Table 3.1). This model was extended by the distinction of
further compartments, namely the CSF (model 4CI ), gray and white matter separation (model
5CI ), skull compacta and spongiosa separation (model 6CI ), and finally by the inclusion of
white matter anisotropy (model 6CA). Head model 6CA_hr was based on the highly resolved
mesh (2,159,337 vertices) and served as a reference to estimate the numerical error. Due to
the fact that the anisotropic conductivity tensors were assigned according to each element’s
centroid, this error contained not only the numerical error caused by the different model
resolutions, but also the effect of the possibly slightly different subsampling of tensors between
the two models. Since the numerical error is expected to dominate, it is nevertheless denoted
as numerical error.

3.1.2. Sensor Setup

Realistic sensor configurations were used for both EEG and MEG. The positions of 74
electrodes (10–10 system) were digitized using a Polhemus device and projected onto the
skin surface. A 275-channel whole head MEG gradiometer sensor configuration (CTF Omega
2005 MEG by MISL, http://www.vsmmedtech.com/hardware.html) was modeled and a rigid
transformation to the head model was calculated using the positions of head localization coils
inside the MEG and the positions of fiducials placed at the corresponding positions during
the MRI recordings. The positioning of EEG/MEG sensors in relation to the model surface is
shown in Figure 2.16.

3.1.3. Methods

To achieve the goal of systematically describing the effects of using differently detailed head
models to solve the EEG/MEG forward problem, it is – besides a suitable head discretization
and accurate numerical methods, which were already introduced – necessary to have the
right tools (especially for visualization) available to describe the underlying relations between
the observed effects and certain parameters. In the following section, the used visualization
methods as well as the used effect measures and the parameters used to distinguish the affected
sources are described.

Source space construction

As shown in Chapter 2, despite its generally high accuracy, the Venant approach requires
special care in the construction of volume conductor and source space mesh. In this study,
sources with a normal constraint are placed in the gray matter as it is physiologically plausible
(Brette and Destexhe, 2012). Therefore, it had to be ensured that the vertex closest to the
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source position is exclusively part of elements belonging to the gray matter. Otherwise, the
examined effects of conductivity changes especially in the neighboring compartments, i.e.,
white matter and CSF, might have been corrupted by numerical inaccuracies (Vorwerk, 2011).
Starting from 129,640 regularly distributed source positions on the gray/white matter surface,
the surface normal at each position was calculated and fixed as the source orientation (Figure
3.1, right). Then, all vertices in the gray matter compartment fulfilling the Venant condition
were computed and the source positions were moved into the direction of the next valid node,
until this node was the node closest to the source position. Thereby, it is ensured as good as
possible that the results are not disturbed by numerical inaccuracies.

Error measures

As error measures the RDM and lnMAG as introduced in Section 2.10 were used. It has to be
noted that in some applications the absolute values of the lnMAG are of less interest, e.g., if
one wants to compare the magnitude of the reconstructed sources at different locations. In
such scenarios, a large variance of the lnMAG, i.e., the ratios of signal magnitudes of sources
at different positions are strongly distorted, might easily lead to misinterpretations. Thus, also
the width of the distribution of the lnMAG differences is taken into account when analyzing
the results.

Effect evaluation/visualization

Different kinds of diagrams are used to display the overall distribution of the quantities that
were analyzed (RDM, lnMAG, signal magnitude, etc.). To visualize the effect of both single
steps of head model refinement and the difference in relation to the reference model, cumulative
relative frequencies are shown (cf. Figure 3.4). This representation has the advantage that
the shape of the plotted curve is less dependent on the choice of the interval length than
in common histograms. Furthermore, 2d-histograms are used to show the dependency of
the magnitude of the effect measures on a certain model parameter and previous to this to
analyze the interdependency between the model parameters used here. To create these plots,
a matrix was calculated where each entry determined the frequency of values that are both
inside a specific interval on ordinate and abscissa. This distribution is visualized using heat
maps, where, for the sake of better recognizability, each column was scaled by the inverse of
its maximum (i.e., normalized to a maximum of 1; cf. Figure 3.7). The heat maps provide
more information than the frequently used boxplots or floating mean plots, since they allow
a more detailed overview of the effect distribution and it is also possible to recognize weak
dependencies that might be overlooked in other modalities. Common graphs were created
using gnuplot (http://www.gnuplot.info), heat maps were created using MATLAB.
For visualization purposes, an inflation of the gray/white matter surface was created using
BrainVISA (http://www.brainvisa.info). On the resulting surface the values of effect measures
or parameters are depicted (cf. Figure 3.3). In Figure 3.2, the inflation process is presented.
This visualization allowed to easily identify and classify the brain regions that were most
affected or not affected by the refinement steps. In addition to the color-coded visualization
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Figure 3.2.: Inflation of the gray/white matter surface: Segmented gray/white matter surface (left),
after half of the inflation steps (middle), and final result on which effect surface plots are presented
(right).

of effects, the curvature of the original surface was calculated and displayed underneath the
effect results to allow for a better identification of brain regions. A positive curvature, which
roughly corresponds to gyri, is shown in light gray, a negative curvature is shown in dark
gray (cf. Figure 3.2). The most tangential source orientations were thus roughly achieved
around the intersection between light and dark gray and the most radial source orientations in
the middle of the light and dark gray regions. An increasing transparency for smaller values
was used so that the underlying curvature is still visible in the plots (cf. Figure 3.8, right
column). All visualizations were carried out using SCIRun (http://www.sci.utah.edu/cibc-
software/scirun.html).

3.1.4. Results

Forward solutions for the models presented in Table 3.1 and the respective source space as
introduced in Section 3.1.3 were calculated. RDM and lnMAG differences were computed
for each source position, both relative to the reference model and to the model with one
refinement step in between. Furthermore, the signal magnitude was calculated for each source
position in all models. On this basis, a series of different evaluations was performed to achieve
a decent overview of effect magnitudes.

EEG and MEG signal magnitude

Figure 3.3 shows the distribution of the signal magnitude (relative to the maximum for the
respective model) plotted on the brain surface for EEG (top row) and MEG (bottom row)
computed in models 3CI (left column) and 6CA (right column). These plots underline the
different sensitivities of EEG and MEG, an important parameter by which to interpret effect
results in the later investigations. The EEG signal magnitudes (top row) have their local
peaks for superficial sources close to or on the gyral crowns, where sources are very close to
the electrodes, and decrease continuously when going to deeper source positions. The EEG
signal magnitudes are weakest for sources in sulcal valleys. The 3CI distribution (top left)
showed large areas of above 90% relative signal strength and hardly any areas below 22%,
while the 6CA distribution (top right) was less smooth and had a broad range with only a few
small areas of above 90% relative signal magnitude and large areas of below 22%. In contrast,
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Figure 3.3.: Signal magnitude relative to its maximum for the respective model for EEG (upper row)
and MEG (lower row) computed in models 3CI (left column) and 6CA (right column).

for the MEG (bottom row) the signal decay into the depth was stronger than for the EEG
and the signal magnitude was very weak on a thin line on gyral crowns and a broader line
in sulcal valleys, where sources are quasi-radial. A small displacement of the source from
the thin line at the gyral crown caused the orientation to change strongly towards a more
tangential direction and the signal rapidly increased to its local peak value. As for the EEG,
the full 6CA head model (compare right column top and bottom) led to a more scattered
sensitivity profile. Even though the overall properties described for the 3CI model were still
visible, the influence of the more detailed conductivity distinction on the local distribution of
the signal magnitude can be clearly observed, which is no longer nearly exclusively dominated
by source depth and orientation.

Topography and magnitude differences

As a first evaluation of topography and magnitude changes, the cumulative relative frequencies
of RDM (upper rows) and lnMAG (lower rows) for EEG (Figure 3.4) and MEG (Figure 3.5)
are depicted, showing the effects between single refinement steps (left columns) and the overall
effects of the various models compared to the reference model 6CA_hr (right columns). This
presentation allows for a first, very general, interpretation of the influence of the distinction of
certain conductive compartments on the forward solution. Second, the inter-dependencies of
the different properties that were used to classify the effects of the model refinements were
investigated (Figures 3.6 and 3.7). Finally, heat maps of RDM and lnMAG as a function
of these properties as well as surface plots of the effect measures were used to identify and
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Figure 3.4.: Cumulative relative frequencies for effects induced in EEG. RDM (upper row) and
lnMAG (lower row) between two refinement steps (left column) and relative to the reference model
6CA_hr (right column). The horizontal lines indicate frequencies of 0.05 and 0.95.

classify the brain regions most affected by the model refinements (Figures 3.8 - 3.16).

The introduction of the CSF had the biggest influence on the EEG forward simulation, both
regarding RDM and lnMAG (dark blue lines in Figure 3.4, left column). While for the RDM
the plot shows that the influence of gray/white matter distinction (red line in Figure 3.4a)
and white matter anisotropy (light blue line in Figure 3.4a) was only slightly smaller, the
consideration of the CSF led to by far the biggest effect regarding the lnMAG in absolute
values (dark blue line in Figure 3.4c). Looking at the variance of the lnMAG effects for each
of these three steps (dark blue, red, and light blue lines) about 90% of the sources lay in
an interval with a width of about 0.4 in lnMAG (e.g., the red line in Figure 3.4c reaches a
cumulative relative frequency of 0.05 at about -0.3 and of 0.95 at about 0.1). This would
correspond to a misestimation by a factor of up to 1.5 when comparing the magnitudes
of reconstructed sources. In both modalities, the influence of modeling the different skull
compartments showed a minor effect (orange lines in Figure 3.4, left column). Nevertheless,
the caused effects were still higher than the numerical error, i.e., the difference between model
6CA and 6CA_hr (green lines in Figure 3.4). As the Figures 3.4b and d show, the effects of
the different refinement steps mainly added up and did not cancel each other out.

The RDM results of the MEG simulations were very similar to those of the EEG simulations.
Again, distinction of CSF (dark blue line in Figure 3.5a) and gray/white matter (red line
in Figure 3.5a) showed the biggest influence. The magnitudes of these effects were nearly
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Figure 3.5.: Cumulative relative frequencies for effects induced in MEG. RDM (upper row) and
lnMAG (lower row) between two refinement steps (left column) and relative to the reference model
6CA_hr (right column). The horizontal lines indicate frequencies of 0.05 and 0.95.

identical in this case. The influence of white matter anisotropy was clearly smaller (light blue
line in Figure 3.5a), while skull modeling (orange line in Figure 3.5a) and numerical error
(green line in Figure 3.5a) were at the same, small, level. Regarding the lnMAG, the effect
of gray/white matter distinction (red line in Figure 3.5c) was even bigger than that of CSF
modeling in absolute values (blue line in Figure 3.5c). These effects had opposite signs – a
result in line with the increase (CSF added) and decrease (WM added) of the conductivity in
large parts of the head. As in the EEG case, the width of the distribution of the lnMAG for
the distinction of CSF and gray/white matter, as well as for the inclusion of anisotropy, was in
the same range. For all three of these effects, 90% of the sources fell within a range of about
0.5 in lnMAG (e.g., the light blue line in Figure 3.5c reaches a cumulative relative frequency
of 0.05 at about -0.4 and of 0.95 at about 0.1), which would correspond to a misestimation by
a factor of over 1.6 when comparing source magnitudes. In comparison, the numerical error
would only lead to a maximal factor of 1.1.

Comparing the size of the effects for EEG and MEG, both are at a similar level. This might
be counterintuitive at first glance, since one would expect the MEG to be less influenced by
conductivity changes, but actually this is a consequence of the approach to choose sources
perpendicular to the brain surface so that also quasi-radial and very deep sources were included
in the analysis. These sources generate a weak MEG sensor signal, and, thus, small absolute
effects could directly lead to large relative effects. This effect can possibly be avoided by
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a) b)

Figure 3.6.: Median of the distances between a source position and the electrodes (in mm, left) and
distance between a source position and the inner skull surface (in mm, right).

Signal magnitude (V 2, y-axis) vs. Signal magnitude (fT 2, y-axis) vs.
median of distances to the distance to the inner

electrodes (mm, x-axis) for EEG skull surface (mm, x-axis) for MEG
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Figure 3.7.: Signal magnitude (in V 2/fT 2) computed in model 3CI as a function of median of
distances between the source position and the electrodes for EEG (left) and distance to the inner skull
surface for MEG (right).

excluding sources with low signal magnitude or a pre-selection of sources with regard to
positions and directions, but this would have increased the possibility of a biased evaluation
result. Instead, all sources were included in the analysis and it was tried to create visualizations
where one can particularly identify the effects due to quasi-radial and deep sources.
Finally, one observes that the numerical error, i.e., the error of model 6CA in reference to
the highly resolved model 6CA_hr, was smaller than all observed modeling effects in both
modalities, underlining the high accuracy of the used FEM approach and of the head model.

Evaluation of spatial measures

The plots of the cumulative relative frequency of RDM and lnMAG already gave a valuable
overview of the importance of the different head tissue properties for the EEG and MEG forward
problem. However, the goal of this study was to pursue a deeper insight into the relationship
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of source properties and volume conduction effects. As the following investigations show, this
relationship can be further enlightened using the additional measures and visualization means
introduced in Section 3.1.3.
The important characteristics of the spatial distribution of the signal magnitude for EEG and
MEG are shown in Figure 3.3 and have already been discussed in Section 3.1.4.
In Figure 3.6, the median of the distances between a source position and the electrodes (left)
and the distance between a source position and the inner skull surface (right) are visualized
on the brain surface. In Figure 3.6a it can be observed that a high median is mainly given
for temporal and frontal regions. In comparison to Figure 3.6b, the different focus of this
parameter becomes clear.
Figure 3.7 shows the dependency of the signal magnitude computed in model 3CI for EEG
(left) and MEG (right) on the parameters visualized in Figure 3.6. Interestingly, Figure 3.7a
shows that sources with the smallest and with the largest median have the smallest signal
magnitude for the EEG, while those with an intermediate median have the strongest signal.
The surface representation in Figure 3.6a shows that the latter correspond to more central
and superficial sources, which were expected to have the strongest signal. For the MEG, a
set of superficial sources with a weak signal could be identified corresponding to quasi-radial
sources on gyral crowns (Figure 3.7b, sources with lowest distance to the skull). For both
EEG and MEG, Figures 3.3a-d and 3.7b clearly show the decay of the signal magnitude as
a consequence of source depth/distance to the inner skull surface. One can not distinguish
the quasi-radial sources at sulcal valleys as clearly as those at gyral crowns; they can only be
suspected as outliers with low signal magnitude at distances between 18 and 30 mm (Figure
3.7b). This can be explained by the higher variety in the distance between the sources in the
sulcal valleys and the inner skull surface due to the different sulci depths (causing a blurring
in x-direction in Figure 3.7b). Furthermore, the difference between the signal magnitude of
quasi-radial sources in the sulcal valleys and neighboring sources at similar depth is much
smaller than at gyral crowns (causing a blurring in y-direction).
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Figure 3.8.: Effect of CSF distinction - difference between models 4CI and 3CI plotted on brain
surface.

Single tissue compartment sensitivity investigation

Finally, detailed single tissue sensitivity analyses complemented the investigations. For each
refinement step a heat map was created using one of the above proposed parameters for both
RDM and lnMAG in addition to the surface plots. In most cases the distance to the inner
skull surface was found to be the most meaningful parameter.

Distinction of CSF: When evaluating the effect of including the CSF compartment on the
EEG, the visual inspection of the surface plots (Figure 3.8a,b) is in line with the visualization
in the heat maps (Figure 3.9a,b) for both difference measures. The lnMAG in Figure 3.8b
shows a strong decrease of signal magnitude especially for superficial sources (on gyral crowns),
which is evident in the diagram in Figure 3.9b. A negative lnMAG was especially observed
for the most superficial sources, while it was constantly at a smaller but still clearly negative
level for deeper sources. Such an effect might lead to significant misinterpretations when
comparing source magnitudes of superficial and deep reconstructed sources. For the used
model, a possible decrease/increase by a factor of up to 1.6 was found. The RDM distribution
in Figure 3.8a is less clear; significant effects were identified at the very top of the brain in the
vicinity of the interhemispheric fissure, in deep areas like the Sylvian fissure, and the frontal
and temporal poles as well as the inferior temporal lobe were found to be affected, too. Figure
3.8a and especially Figure 3.9a show a trend towards lower RDM effects for deeper sources.
Here, a lower limit was reached at a depth of about 15 mm below the inner skull surface; for
even deeper sources the RDM stayed at a constant level. Even though the trend was clearly
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Figure 3.9.: Effect of CSF distinction - difference between models 4CI and 3CI in 2d-histogram.

recognizable, a considerable variance of effect sizes was observed at all source depths.
A clear effect of the CSF distinction on the MEG was found in the lnMAG, where the optical
impression of increased signal magnitude for superficial sources in Figure 3.8d is visible in the
heat map plot in Figure 3.9d. A lower limit was reached at a depth of 8 mm below the inner
skull surface. As for the EEG, this is especially problematic when comparing the strength
of superficial and deeper lying reconstructed sources. The topography of the RDM plot in
Figure 3.8c is again less clear, but, similar to the EEG case, significant effects were found on
some gyral crowns, at the top of the brain, in the Sylvian fissure, at the frontal and temporal
poles, and at the inferior temporal lobe. Furthermore, a clear correlation of RDM and signal
magnitude is visible in Figure 3.9c.
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Figure 3.10.: Effect of gray/white matter distinction - difference between models 5CI and 4CI plotted
on brain surface.

Distinction between gray and white matter: For the EEG, strong effects both regarding RDM
and lnMAG were found for the most superficial sources in Figure 3.10a and b and 3.11a and b.
The surface plot in Figure 3.10b shows a strongly decreased magnitude with the lnMAG being
partially even below -0.25 – and thus exceeding the limit of the color bar – mainly on top of
gyri; a finding that is also apparent in the heat map visualization in Figure 3.11b. For deeper
sources, a weaker decrease of EEG signal magnitude (lnMAG between 0 and -0.2; cf. Figure
3.11b) was observed. For the few visible areas with an increased magnitude in Figure 3.10b,
no representation in the heat map plot in Figure 3.11b could be found. As seen in Figure
3.4, the width of the distribution of the lnMAG effects is as large as for the CSF distinction.
Again, especially the differences between very superficial and deeper sources are huge. The
spatial distribution of the highest RDM effects is very similar to that of the lnMAG (Figures
3.10a,b). RDM effects above 0.2 were found for very superficial sources. Visually, these could
be identified predominantly on the gyral crowns. For the remaining deeper source positions
the RDM effects are still non-negligible with values mainly between 0.05 and 0.1.

The RDM surface plot for the MEG in Figure 3.10c shows high effects in areas where sources
are suspected to be quasi-radial, again. Furthermore, a clear correlation of these RDM effects
to the MEG signal magnitude is found (similar to Figure 3.9c and therefore not shown here).
Figure 3.11c shows a slight decrease of the effects up to a depth of about 6 mm, followed
by an increase for even deeper sources where both the lower bound of effects and the mean
effects are higher. The visualization of the lnMAG in Figure 3.10d mainly shows a decrease
of MEG signal magnitude, corroborated by the systematic plot in Figure 3.11d with nearly
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Figure 3.11.: Effect of gray/white matter distinction - difference between models 5CI and 4CI in
2d-histogram.

all magnitude effects being below 0. At values between -0.3 and -0.1, effects were lowest for
superficial sources (as in Figure 3.11c the more superficial quasi-radially oriented sources show
bigger effects), getting stronger towards a RDM of -0.4 at a distance of about 1 cm to the
inner skull surface and remaining constant for even deeper sources.
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Figure 3.12.: Effect of spongiosa/compacta distinction - difference between models 6CI and 5CI in
2d-histogram.

Distinction between skull compacta and spongiosa: In Figure 3.13 and Figure 3.12, notable
RDM effects for the EEG are mainly found at the temporal lobe and its surrounding region,
i.e., in a relatively deep area with bad sensor coverage (Figure 3.13a). Furthermore, some
notable topography changes are found at the very top of the brain. The same locations were
affected when looking at the lnMAG, finding a moderate decrease of signal magnitude (Figure
3.13b). Since the areas with a larger median in Figure 3.6a strongly correlate to the affected
areas in Figure 3.13a and b, these were used as a parameter for computing the heat maps.
The magnitude of the RDM and lnMAG effects clearly increased with the median of the
distances to the electrodes (Figures 3.12a,b), showing that the spatial measure used was able
to resolve the effects in the visually identified areas as desired. lnMAG effects of up to -0.15
were found in temporal areas (Figure 3.13b), this corresponds to an underestimation of the
source strength by a factor of up to 1.17 when comparing reconstructed sources in temporal
areas to those in brain areas with negligible lnMAG effects using a head model that does not
include the distinction between skull spongiosa and compacta.
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Figure 3.13.: Effect of spongiosa/compacta distinction - difference between models 6CI and 5CI
plotted on brain surface.
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Figure 3.14.: Effect of spongiosa/compacta distinction - difference between models 6CI and 5CI
plotted on brain surface together with spongiosa compartment.



3 Effects of Realistic Volume Conductor Modeling in EEG/MEG Source Analysis 79

RDM lnMAG

E
E
G

a) b)

M
E
G

c) d)

Figure 3.15.: Effect of anisotropic white matter conductivity - difference between models 6CA and
6CI plotted on brain surface.

Figures 3.13c and d and 3.12c and d clearly show that the impact of skull spongiosa/compacta
distinction is by far weaker for the MEG. A weak influence on the topography was found for
deep sulcal sources (Figure 3.13c) in combination with a positive lnMAG (Figure 3.13d). This
was more pronounced in sulci at the pole of the temporal lobe, in the Sylvian fissure, and in
some areas at the base of the frontal lobe. The only considered parameters that correlated
with these small effects were the median of the distances between the source position and the
MEG sensors (RDM increases with median in Figure 3.12c) and the MEG signal magnitude
(Figure 3.12d showing a tendency towards a slightly negative lnMAG for weak sources).

However, the probably best visualization of the effects of the distinction between skull compacta
and spongiosa is shown in Figure 3.14. Here, the correlation between existence of spongiosa
in the overlying skull and the effect on RDM and lnMAG especially for the EEG is nicely
visible, showing that high effects mainly occur in areas where no spongiosa is modeled.

White matter anisotropy: Figures 3.15a and c and 3.16a and c show the RDM changes due to
white matter anisotropy. For both EEG (Figures 3.15a and 3.16a) and MEG (Figures 3.15c
and 3.16c), the most significant topography changes occurred for sources in sulcal valleys and
on gyral crowns. The heat map for the EEG results in Figure 3.16a shows RDM effects with
values mainly between 0.02 and 0.10 at all source depths. A slight trend towards higher effects
for deeper sources could be observed, but this was not as distinct as for the other refinement
steps. The RDM heat map for the MEG in Figure 3.16c shows a clear correlation between
signal magnitude and topography effect, underlining the visual finding of strongest effects for
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Figure 3.16.: Effect of anisotropic white matter conductivity - difference between models 6CA and
6CI in 2d-histogram.

quasi-radial sources.
For both EEG and MEG the effects with regard to the lnMAG were very similar and the
visual impression obtained from Figures 3.15b and d was in line with the heat maps in Figures
3.16b and d. Minor effects could be reported for the most superficial sources with an lnMAG
between -0.1 and 0.1 in both modalities. For deeper sources, the signal magnitude continuously
decreased in comparison to the isotropic model 6CI, an effect which was weaker for the EEG
than for the MEG (Figures 3.16b, d).
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3.1.5. Relevance of the Forward Results to Inverse Solutions and Connectivity
Estimations

A question that naturally poses for studies only considering the accuracy of the solution of
the EEG/MEG forward problem is the influence of these results in the context of source
and/or connectivity analysis. A first idea of this interdependency was given by Dannhauer
et al. (2011), who visualized the influence of the forward topography error, i.e., the RDM,
on the accuracy of the inverse solution. In the present case, the forward study published
by Vorwerk et al. (2014) was accompanied by a follow-up study (Cho et al., 2015), where
the effect of the simplifications in the forward model on the subsequent analysis, e.g., source
reconstruction or connectivity analysis, was investigated. In a first step, the consequences of
simplifications of the forward model on source reconstruction were investigated. Therefore,
artificial source time courses were generated in the fully detailed model and subsequently the
accuracy of a source reconstruction in the simplified model was evaluated. As inverse approach
a linear constrained minimum variance (LCMV)-beamformer was applied (Van Veen et al.,
1997). Second, the influence of model simplifications on the reconstruction of connectivity
using the measures ICoh (imaginary coherence; Nolte et al., 2004) and generalized partial
directed coherence (GPDC; Baccald and de Medicina, 2007) was investigated. The results of
the source analysis study and of that only the results of one of the evaluated measures, namely
the output SNR, are recited in the following to provide basic evidence that the results of the
accuracy investigations for the forward problem are also of high relevance when estimating the
accuracy in subsequent steps of analysis. For further results it is referred to Cho et al. (2015).

Methods

To preserve a high comparability of the results, the used head model remained essentially
unchanged. However, instead of extending the head model 3CI step-by-step by adding one
further compartment at a time, in this study the starting point was the model 6CI. As all of
the considered models only included isotropic conductivities, it is simply denoted as model
6C here. For this model then single refinements, e.g., the distinction between gray and white
matter, were neglected. The thereby generated five compartment models are 5C-w/g (no
gray/white matter distinction – white matter set to gray matter conductivity), 5C-c/s (no
compacta/spongiosa distinction – skull conductivity set to isotropic skull conductivity; cf.
Table 3.1, Dannhauer et al., 2011), and 5C-CSF (no CSF distiction – CSF compartment set to
gray matter conductivity). Furthermore, the size of the source space was reduced to decrease
the computational effort; this resulted in a source space consisting of 16,000 nodes.

To investigate the source analysis accuracy, an artificial source network was generated using
neural mass modeling (David et al., 2005; Jansen and Rit, 1995). Here, the position for one
source was kept fixed (Figure 3.17, blue dot), which was chosen so that it has a small RDM
for all of the considered model simplifications and both for EEG and MEG, and the position
of the second source was varied over all remaining source space positions. More details on the
generation of the artificial source time courses are given in Cho et al. (2015).
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Figure 3.17.: Location of source 1 (blue dot). Source: Cho et al. (2015), CC BY-NC-ND
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Subsequently, the LCMV beamformer was used to reconstruct the source time courses in the
simplified head models. The LCMV beamformer is an adaptive spatial filtering technique that
is widely used for source analysis because of its high spatial resolution (Sekihara et al., 2005).
Assuming that the measured signal m is generated by few, focal neural sources at locations
qr each with activity x(qr), i.e., x is a 3 × 1 vector containing the source activity for each
cartesian direction, it can be represented by

m =
∑
r

L(qr)x(qr). (3.2)

L(qr) is the leadfield for source position qr, i.e., the #sensors × 3-matrix containing the
forward simulation results for dipoles oriented in the three cartesian directions. The idea
of the LCMV beamformer is to construct a spatial filter w(qi) whose output x̂(qi), i.e., the
reconstructed source activity at a particular location qi in the source space, is given by

x̂(qi) = wt(qi)m. (3.3)

The weights of the spatial filter w(qi) are selected to minimize the variance of the filter output
under the constraint that signals from the pointing location are passed with a unit gain:

min
w(qi)

tr
(
wt(qi)C

−1
m w(qi)

)
with wt(qi)L(qi) = I. (3.4)

Cm denotes the spatial covariance matrix of the measurement data. This optimization problem
can be solved using Lagrangian multipliers (Van Uitert et al., 2004):

w(qi) = C−1
m L(qi)

(
Lt(qi)C

−1
m L(qi)

)−1
. (3.5)

For the two source scenario with sources r1 and r2 the covariance matrix can be expressed as

Cm = σ2
0I + σ2

r1L(qr1)Lt(qr1) + σ2
r2L(qr2)Lt(qr2). (3.6)

σ2
0 is the noise variance, σ2

r1 and σ2
r2 are the power of the sources qr1 and qr2 , respectively.

Accordingly, one can define the signal-to-noise ratio (SNR)

SNR(r1, r2) =
σ2
r1‖L(qr1‖+ σ2

r2‖L(qr2)‖
σ2

0

. (3.7)
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As a measure of the quality of the spatial filter – and thereby also of the source reconstruction
– the output SNR (or Z2) can be defined, a ratio between reconstructed source power and
projected noise power, to compare the properties of the spatial filters obtained from the
reference head model and test head models:

Z2(qi) =
wt(qi)Cmw(qi)

wt(qi)(σ0I)w(qi)
(3.8)

The Z2 value can be interpreted as 1 plus original source power divided by projected noise
ratio, i.e., the higher the value the better. Similar to the previous study, the influence of RDM
and input SNR on the output SNR was visualized using heat maps. Therefore, the sources
were sorted in ascending order regarding their RDM (for source 1 the RDM of source 2 was
chosen for sorting) and for each input SNR the respective output SNR was computed and
color coded (Figure 3.18). Furthermore, the values of ln(Z2) for an input SNR of 300 were
visualized on an inflated brain surface to be able to estimate the areas where the accuracy of
the inverse analysis is most affected by the model simplifications (Figure 3.19). The values for
source 1 are plotted at the position of source 2, as the position of source 1 was kept constant.

Figure 3.18.: Heat maps of ln(Z2) for sources 1 and 2, as a function of input SNR and RDM in EEG
and MEG. Note the different RDM ranges of the y-axis. The output SNR was calculated with different
input SNRs. Then, the output SNR was sorted in ascending order of the RDM value for each head
model. The heat maps for the reference head model represent the mean output SNR value at each
input SNR. Source: Cho et al. (2015), CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Figure 3.19.: ln(Z2) for sources 1 and 2 in EEG and MEG for an input SNR of 300, plotted on the
inflated white/gray matter interface. Note that in the maps for source 1, the ln(Z2) value for source 1
is mapped onto the corresponding location of source 2 for visualization purposes because the location
of source 1 is fixed in one location and only the location of source 2 varies. Source: Cho et al. (2015),
CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Results

In general, Figure 3.18 shows that for a minimal SNR (input SNR = 1) ln(Z2) is also
very small, as one would naively expect. When only slightly increasing the input SNR
(1 < input SNR < 100 in Figure 3.18), ln(Z2) rises sharply; a further increase of the input
SNR (100 < input SNR in Figure 3.18) often causes ln(Z2) to decrease again. For source 1,
the slope of this decay does not depend on the RDM for the EEG (Figure 3.18, top row) and
only slightly so for the MEG (Figure 3.18, second row), but becomes steeper for a larger RDM.
For the reference and the 5C-c/s model, no decrease of ln(Z2) with increasing input SNR
was visible at all, while it is strongest for model 3C. Models 5C-w/g and 5C-CSF show very
similar results. The relative insensitivity to the RDM is probably due to the choice of source 1
to have a small RDM for all tested models. For source 2 a higher RDM causes the maximum
of ln(Z2) to decrease and the decay of ln(Z2) with increasing input SNR becomes steeper for
both EEG and MEG (Figure 3.18, bottom two rows). Furthermore, for any considered input
SNR ln(Z2) decreases with increasing RDM. Again, the strongest effects are observable for
model 3C and the effect of neglecting the CSF is slightly stronger than that of neglecting the
distinction between gray and white matter.
The spatial distributions (Figure 3.19) reveal that for source 1 (top two rows) deeper areas
show smaller ln(Z2) in EEG, while the crests of gyri and troughs of sulci show smaller ln(Z2)

in MEG. The values of ln(Z2) are large (> 2) when both sources are very close to each other,
i.e., the position of source 2 is close to the position of source 1 (cf. Figure 3.17), but these
patterns differ between EEG and MEG. This could be due to the varying crosstalk effects of
the test head models. No obvious dependency between the spatial distribution of the RDM
as shown in Section 3.1 and the ln(Z2) for source 1 can be seen. This is clearly different for
source 2 (Figure 3.19, bottom two rows), where the values computed for ln(Z2) very much
resemble the spatial maps of the RDM, also with regard to the intensity of these effects. Here,
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a quantitative relation between the accuracy of the forward solution and the inverse analysis
is found. The values of ln(Z2) are nearly unchanged high for the 5C-c/s model, while the
strongest effects, i.e., the smallest values of ln(Z2) are, again, found for model 3C.

3.1.6. Discussion

In this section, the influence of modeling or omitting different conductive compartments in
realistic head models on the finite element forward solution was evaluated for both EEG
and MEG. The practical relevance of these results was underlined by illustrating the strong
correlation between inacuraccies in the forward simulation and the results of inverse analysis.
It was shown that the CSF is one of the most important compartments to be modeled.
Especially for superficial sources, modeling the CSF compartment had a large influence on the
signal topography for both the EEG (Figures 3.4a, 3.8a, 3.9a) and the MEG (Figures 3.5a,
3.8c, 3.9c), while it had a much larger influence on the signal magnitude in EEG (Figures
3.4c, 3.8b, 3.9b) than in MEG (Figures 3.5c, 3.8d, 3.9d). In both modalities the influence on
the signal magnitude, measured by the lnMAG, strongly varied depending on source position
and orientation. The huge effect for the EEG can be explained by the strong increase of
conductivity between sources and sensors that causes a shunting effect, while the effect for
the MEG is probably due to the strong volume currents in the now highly conductive CSF
compartment. In Wolters et al. (2006) these volume currents were visualized, underlining the
need for an accurate modeling of this conductive compartment.
While this is a pure computer simulation sensitivity study and the effects were not validated
in real experiments, some experimental studies allowing indirect conclusions on the effects
of CSF modeling can be found in the literature and are in line with the results. Rice et al.
(2013) showed in EEG experiments that brain shift and the resulting small changes in CSF
layer thickness, induced by changing the subject’s position from prone to supine, have a
significant effect on the EEG in several standard visual paradigms. They describe a local
increase of signal magnitude when decreasing the thickness of the CSF by changing the
subject’s position. This effect is consistent with the finding of a decreased signal magnitude
due to the distinction of the CSF. Bijsterbosch et al. (2013) investigated the effect of head
orientation on subarachnoid CSF distribution and concluded that minor differences in local
CSF thickness are likely to significantly affect the accuracy of EEG source localization. In a
further experimental validation study, Bangera et al. (2010) found that the inclusion of both
CSF and brain anisotropy in the forward model is necessary for an accurate description of the
electric field inside the skull.
Besides the strong effect on signal topography and magnitude, a further argument for the
inclusion of the CSF in realistic head models is that the conductivity of human CSF at
body temperature is well known; it was measured to be 1.79 S/m with a low inter-individual
variance (Baumann et al., 1997; average over 7 subjects ranging in age from 4.5 months to
70 years with a standard deviation of less than 2.4% between subjects and for frequencies
between 10 and 10,000 Hz). Thus, the CSF conductivity is one of the best-known parameters
in the modeling process. The influence of modeling the CSF on forward solutions was also
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investigated in other computer simulation studies, though the used models as well as the
evaluation methods differ strongly (Ramon et al., 2004; Vallaghé and Clerc, 2009; Wendel
et al., 2008). In this section, both the influence on EEG and MEG for realistically chosen
sensor arrangements was investigated and thereby a more systematic evaluation of the CSF
effect was added. The examination of the CSF effects in this study confirms and elaborates
upon the previous studies, which also observed the decrease of signal amplitudes for the EEG.

Furthermore, it was shown that the effect of the distinction between gray and white matter
is nearly as strong as that of the CSF inclusion in both modalities (Figures 3.4a,c, 3.5a,c),
especially with regard to signal magnitude (Figures 3.4c, 3.5c). This stresses the strong effect
of conductivity changes in the vicinity of the source as it was previously shown by Haueisen
et al. (2000). While the EEG was affected the most for superficial sources both with regard to
topography and magnitude (Figures 3.10a, b, 3.11a,b), a stronger decrease of signal amplitude
was found for deep sources than for superficial ones for the MEG (Figures 3.10d, 3.11d). Here,
strongest topography effects were found for the most superficial sources and for relatively
deep sources (Figures 3.10c, 3.11c). For the MEG, Figures 3.8d and 3.10d show that the areas
most affected by the magnitude effects of the two refinement steps from model 3CI to model
5CI do not overlap, but are mainly disjoint. This is underlined by the distribution of the
magnitude effects in relation to the distance to the inner skull (Figures 3.9d, 3.11d), showing
the clearly different effect of adding the CSF and of distinguishing between gray and white
matter on sources at different depths. As for including the CSF compartment, the gray/white
matter distinction induced a conductivity change for a large volume, explaining the strong
effect on the signal magnitude.

To the best of the author’s knowledge, only relatively few publications have investigated the
effect of the (isotropic) distinction between gray and white matter so far, even though Haueisen
et al. (2000) demonstrated the significant effect of local conductivity changes around the source
position. The results of Haueisen et al. (1997) suggest a strong change of the signal topography
and magnitude for both EEG and MEG when the white matter conductivity is chosen in the
range of the gray matter conductivity. From the results presented, it can be concluded that
the strength of this effect is slightly lower than the effect of the CSF modeling in 4CI vs. 3CI
comparisons, which is supported by the findings presented here. The systematic evaluation
adds important information about the locations of the most affected sources compared to the
single source scenario evaluated by Haueisen et al. (1997), as described previously. Ramon
et al. (2004) also found a decrease of the scalp potentials, i.e., the EEG signal, due to the
introduction of gray and white matter compartments of differing conductivities, even though
the magnitude of the decrease was not further classified. Van Uitert et al. (2004) found the
conductivity of white and gray matter to appear especially influential in determining the
magnetic field and showed that using a too high white matter conductivity, as it is of course
the case when not distinguishing between gray and white matter, leads to high forward and
inverse errors.

Compared to the previous two steps, the distinction of skull compartments of different
conductivity only showed comparatively weak effects on the EEG (Figures 3.4a,c) and nearly
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no effect on the MEG (Figures 3.5a,c). Mainly the temporal lobe and its surrounding
area were affected in the EEG both with respect to topography and magnitude (Figures
3.13a,b). The effect on the MEG was even weaker; it could almost exclusively be seen for deep
sources in sulcal valleys (Figures 3.13c,d). The relatively small impact of skull spongiosa and
compacta distinction was probably at least partly caused by the use of an already optimized
conductivity value for the homogenized skull compartment that represents the best fit to the
realistic spongiosa/compacta scenario (Dannhauer et al., 2011; Stenroos et al., 2014). This is
underlined by the findings in Figure 3.14. It is apparent that the highest RDM errors occur
where no compacta is modeled and the optimized conductivity value is thus no longer a good
approximation.

Surely, these results do not imply that an accurate modeling of the geometry and conductivity
of the skull plays a minor role in forward modeling as it is also subsequently shown in Section
3.2. Much research was conducted with regard to skull modeling. Hence, it is now well known
that the EEG is very sensitive to it, while the MEG is assumed to be mainly not affected as
long as the inner skull surface is represented appropriately (Fuchs et al., 1998; Hämäläinen
et al., 1993; Lew et al., 2013; Marin et al., 1998; van den Broek et al., 1998; Vanrumste et al.,
1998). However, Stenroos et al. (2014) have recently shown that assuming the skull to be
fully insulating leads to errors that are larger than the geometrical errors in a three-shell
model and especially larger than those that are induced by assuming a homogeneous skull
compartment. Skull conductivity parameters might vary across individuals and within the
same individual due to variations in age, disease state, and environmental factors (Akhtari
et al., 2002). The huge sensitivity of the EEG signal to these changes was shown (Vallaghé
and Clerc, 2009). The use of suboptimal values for the skull conductivity and uncertainties
about the actual value strongly influence the EEG as shown in various studies (Dannhauer
et al., 2011; Fuchs et al., 1998; Huang et al., 2007; Lew et al., 2013; Montes-Restrepo et al.,
2014). Recent studies proposed ways to individually estimate parameters such as the skull
conductivity (Aydin et al., 2014; Gonçalves et al., 2001, 2003; Huang et al., 2007; Wolters
et al., 2010) that are important not only in EEG but also in combined EEG and MEG source
analysis. It was furthermore shown that skull holes, included in all of our models, play an
important role for EEG, but are less important for MEG (Lanfer et al., 2012b; Lew et al.,
2013; van den Broek et al., 1998). Akhtari et al. (2002); Dannhauer et al. (2011); Ollikainen
et al. (1999); Sadleir and Argibay (2007) studied the importance of skull inhomogeneity and
of distinguishing skull compacta and spongiosa. However, Dannhauer et al. (2011); Stenroos
et al. (2014) have shown that differences between EEG and MEG forward solutions computed
in models with skull spongiosa and compacta and those with homogenized isotropic skull can
be kept at a rather small level compared to other effects by using an optimized isotropic skull
conductivity, as it was done in this study. The results of this study are in line with the results
of the MEG study by Stenroos et al. (2014), who found only small effects of neglecting the
fine structure of the skull when using an optimized isotropic conductivity. The EEG study of
Dannhauer et al. (2011) reported the strongest changes in motor areas, occipital and frontal
lobe, while notable effects of skull spongiosa/compacta distinction for the EEG were mainly
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found at the temporal lobe, at the base of the frontal lobe, and in some spots at the very
top of the brain in present study. Possible reasons for these differences might be found in
the differing model setup. The head model used by Dannhauer et al. (2011) neglected the
CSF compartment and thereby the here observed strong smearing of the potentials was not
present. This might have changed the influence of variations in the skull compartment on
the forward simulation. Furthermore, Dannhauer et al. (2011) used a conductivity of 0.0042
S/m for the isotropic skull compartment, while here already their proposed optimized value of
0.01 S/m was used, which minimizes the differences between isotropic and multi compartment
skull models.

The influence of modeling white matter anisotropy was also found to be strong, but less
influential than that of CSF or brain compartment distinction (3.4a,c, 3.5a,c), and the spatial
pattern of the induced changes was difficult to interpret (Figures 3.15 and 3.16). The signal
magnitude decreased with increasing source depth in both modalities (Figures 3.16b,d), while
the distribution of the topography effects was scattered with a trend towards higher effects
for deeper sources (Figures 3.15a,b, 3.16a,b).

Bangera et al. (2010) have experimentally shown that an anisotropic model leads to an
improved performance compared to isotropic models for the calculation of intracranial EEG
forward solutions. Butson et al. (2007) and Chaturvedi et al. (2010) demonstrated in patient
studies that the tissue activated by deep brain stimulation (DBS) can be reliably predicted by
finite element simulations using realistic head models incorporating tissue anisotropy calculated
following the approach of Tuch et al. (2001). These studies can be seen as an experimental
validation of this approach also for EEG/MEG simulations, since the underlying mechanisms
of volume conduction are identical. As further experimental evidence for the importance of
modeling white matter anisotropy, Liehr and Haueisen (2008) presented phantom studies and
demonstrated that anisotropic compartments influence directions, amplitudes, and shapes of
potentials and fields at different degrees. They conclude that anisotropic structures should be
considered in volume conductor modeling when source orientation, strength, and extent are of
interest.

Additionally, several simulation studies investigated the influence of white matter anisotropy
on EEG and MEG source analysis. Güllmar et al. (2010); Haueisen et al. (2002) investigated
effects of white matter anisotropy on topography and magnitude measures. While these studies
provide a comprehensive evaluation of white matter anisotropy effects, this study adds a more
detailed investigation of the spatial distribution of these effects and the comparison of effect
strengths in relation to other important modeling effects. Even though Güllmar et al. (2010)
visualized the effects for a fixed anisotropy of 1:10, the depicted effect distribution appears
very similar to the one presented here. Their so-called directv approach showed the same
tendency towards a negative lnMAG for both EEG and MEG when the cumulative relative
frequency was plotted as it is observable in our Figures 3.15 and 3.16. Of all their approaches
it is the one that is most similar to the one used here, since it is also based on the model of
Tuch et al. (2001). A more detailed comparison of the RDM effects is hardly possible, since
the results were depicted as histograms by Güllmar et al. (2010) in contrast to the cumulative
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relative frequencies plotted here. For most sources they reported an RDM below 0.1, while
slightly higher overall effects were found here. This might be explained by the different
approaches used to scale the conductivity tensors. In the directv approach the tensors for each
element are scaled so that they fit best to the isotropic conductivity. This results in a better
approximation of the isotropic model than the approach used here and thus leads to smaller
relative effects. However, this does not allow for a conclusion which approach is more realistic,
but only which is closer to the isotropic model. Haueisen et al. (2002) used the theoretically
derived scaling factor from Tuch et al. (2001) to compute anisotropic conductivity tensors
for both gray and white matter and also found a decrease of signal magnitude for deeper,
dipolar sources in both EEG and MEG due to the introduction of anisotropic conductivity.
The change in correlation between the topography in the isotropic and anisotropic model was
less clear. While the correlation in the MEG was still high and a – even though weak – depth
dependency could be found, the EEG was more strongly affected, but the behavior was rather
unsteady. Hallez et al. (2008) showed that particularly the omission of conductivity anisotropy
leads to a large displacement of reconstructed sources that are oriented parallel to the fiber
structure in the main direction of anisotropy, while it was considerably smaller for sources
oriented perpendicular to the local fiber structure. The observed localization errors reached
up to 10 mm.

Wolters et al. (2006) showed that white matter anisotropy causes volume currents to flow in
directions more parallel to the white matter fiber tracts, with a clearly increased influence
of white matter anisotropy on a deep source compared to superficial sources. However, they
only investigated the effect of prolate anisotropy at fixed ratios on the forward solution for
three sources; one deep in the thalamus and both a radial and a tangential source in the
somatosensory cortex.

As previously mentioned, Dannhauer et al. (2011) presented a first approach to estimate
the influence of changes in the forward solution on the inverse solution. They investigated
the relationship between RDM and localization error for the EEG using scatter plots and
correlation analysis. A clear correlation between these measures was observed. Upper and
lower limits for the localization error were found to exist as linear functions of the RDM;
an RDM of 0.025 predicted, for example, maximal localization errors between 8 and 10 mm
and an RDM of 0.25 predicted minimal localization errors of about 2 mm. These results
allow the conclusion that, even though the present study focused on the forward problem,
the conclusions derived for volume conductor modeling are directly related to the accuracy
in the EEG and MEG inverse problem. This conclusion is further underlined by the more
detailed results gained by Cho et al. (2015) that were partly recited in Section 3.1.5. The
results show that source analysis using the LCMV beamformer is for both EEG and MEG
clearly affected by the considered head model simplifications, leading to decreased output
SNR and increased crosstalk (crosstalk results not depicted here). The output SNR as a
measure of the soure reconstruction accuracy is inversely correlated with both the topography
changes of the forward solution (RDM; Figure 3.18) and the input SNR (Figure 3.19). Figure
3.19 shows that the values of the input SNR even replicate the patterns of the topography
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effects in the study of the forward solution (cf. Figures 3.8, 3.10, and 3.13). Furthermore, the
results of Cho et al. (2015) show that the effects of the model simplifications also propagate
to further analysis based upon the results of the source reconstruction, i.e., the output of the
LCMV beamformer, e.g., when conducting connectivity analysis using GPDC (Baccald and
de Medicina, 2007). This is due to crosstalk and a higher correlation of the weights of the
LCMV beamformer caused by the introduced head model simplifications. Furthermore, the
crosstalk induced by model simplifications might even lead to spurious connectivity for the
GPDC. When using imaginary coherence (ICoh) (Nolte et al., 2004) instead of GPDC as a
connectivity measure, the effects of the model simplifications were clearly decreased. However,
in some regions still large relative errors for ICoh are visible and the patterns found are very
similar to those of RDM and output SNR. It can thus be inferred that the results obtained by
ICoh are also affected by imperfect head modeling, albeit less severely.

For the MEG on its own, the importance of the changing volume currents seems to be
lower than for the EEG, since the main results were changes in signal magnitude, while the
topography was strongly affected only for sources with a weak sensor signal. Indirectly, the
results of Ahlfors et al. (2010) were confirmed and expanded, who showed that – similar
to spherical head models – also in the classic three-compartment isotropic head model a
source orientation to which the MEG is nearly insensitive exists. In the more realistic six-
compartment anisotropic head model used here, the measured sensor signal in the MEG is
still strongly influenced by source orientation and depth; namely being weak for quasi-radial
and deep sources, while the dependency of the EEG on these parameters is much weaker. This
shows the benefits of EEG for source analysis in a variety of scenarios despite the stronger
interference of volume conduction effects.

Nevertheless, all of the discussed results, including those from this study, were gained under
the assumption of point-like dipole sources. Since sources in practice might most often have
an extent of at least some mm, not many purely quasi-radial sources at gyral crowns might
exist in realistic scenarios. Hillebrand and Barnes (2002) for example concluded that source
depth and not orientation is the main factor that compromises the sensitivity of MEG to
activity in the adult human cortex. They argue that even if there are thin (approximately 2
mm wide) strips of poor MEG resolvability at the crests of gyri, these strips account for only
a relatively small proportion of the cortical area and are abutted by elements with nominal
tangential component and thus high resolvability due to their proximity to the sensor array.
This study clearly showed that also in a six-compartment anisotropic head model the strips
of poor MEG resolvability are rather thin (cf. Figure 3.15). The presented effects for the
weak quasi-radial sources at gyral crowns might therefore not be relevant in practice. But,
when aiming to evaluate EEG and MEG data simultaneously, these effects become much more
important when trying to explain the multimodal measurement.

This study elaborates upon the results of Vorwerk et al. (2012) presented in Section 2.11.1,
which already suggested that the effect of model simplifications can be much larger than the
accuracy differences between the examined numerical approaches exemplarily for the CSF
compartment. It demonstrates that also the effect of gray/white matter distinction or of
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modeling the white matter anisotropy is clearly bigger than possible accuracy differences.
Even the least influential modeling effect investigated in this study, the distinction of skull
spongiosa/compacta, was still in the range of the numerical error between models 6CA and
6CA_hr.

In order to achieve a high practical relevance of our results, the number of sensors was not
adjusted between modalities. Instead, realistic sensor configurations were used as they are
currently applied in our lab, e.g., in epilepsy diagnosis (Aydin et al., 2014, 2015), since it
can be assumed that these provide a sufficient spatial sampling (Ahonen et al., 1993; Grieve
et al., 2004; Lantz et al., 2003) so that the different number of sensors does not significantly
influence the results. Additionally, the influence of sensor coverage on the observed effects was
investigated. When evaluating the effect of the distinction between skull spongiosa and skull
compacta a possible relation between weak sensor coverage and an increased topography error
was found, especially for the EEG. In practice, this issue can be addressed by using sensor
caps reaching further downwards, thereby better covering the temporal lobe and the base of
the frontal lobe.

3.2. The FieldTrip-SimBio Pipeline for EEG Forward Solutions

In the previous sections of this chapter the great importance of detailed volume conductor
models for an accurate inverse analysis was demonstrated and especially the huge influence of
distinguishing the compartments gray matter, white matter, and CSF instead of modeling a
homogeneous brain compartment was shown. Tetrahedral head models – commonly generated
based on triangulations of the compartment boundaries – allow the accurate modeling of
compartments of almost arbitrarily complicated shape, e.g., the strongly folded interface
between cortex and CSF. However, a frequently raised argument against the usage of realistic
head models that include more than the commonly used three compartments in praxis is
the high effort that is necessary to construct these (tetrahedral) head models. This is in
huge parts caused by the restrictions that have to be fulfilled by the surface triangulations
representing the compartment boundaries. These are mainly a necessity of the used model
generation techniques such as the here applied constrained Delaunay tetrahedralization. The
surfaces should be non-intersecting/touching and optimally have a certain distance between
each other. The additional consideration of skull holes – be it naturally existing ones such
as the foramen magnum or as a consequence of brain surgery – as it is suggested by Lanfer
et al. (2012b); Montes-Restrepo et al. (2014), further complicates the model generation due
to the more complicated compartment topologies. A possibility to simplify the head model
generation is the use of hexahedral head models. Thereby, finite element meshes can be
directly generated out of segmented images of the human head such as MR or CT images.
When using regular hexahedra, this is achieved at the cost of a less accurate representation of
the compartment interfaces, where so-called staircase effects may occur. These effects can be
weakened by the use of geometry-adapted hexahedral meshes (Camacho et al., 1997; Wolters
et al., 2007a). Examples for the use of geometry-adapted hexahedral meshes can, e.g, be
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found in the studies of Aydin et al. (2014, 2015); Rullmann et al. (2009); Wagner et al. (2014);
evaluations of the numerical accuracy achieved using geometry-adapted hexahedral meshes in
sphere models were, e.g., performed by Vorwerk (2011); Wolters et al. (2007a). In this section,
a MATLAB-based – and therefore multi-platform – pipeline is presented that was integrated in
the FieldTrip-toolbox (http://www.fieldtriptoolbox.org) and allows for the easy computation
of accurate solutions to the EEG forward problem using FE methods with automatically
generated hexahedral head models. Therefore, it was necessary to provide tools to generate
hexahedral multi-compartment finite element head models and to implement the Venant
approach (cf. Chapter 2) from the SimBio-toolbox in MATLAB. Thereby, this pipeline also
directly makes a further analysis, e.g., source reconstructions, possible using the functionality
of the FieldTrip-toolbox. It is important to note that unlike implementing the generation of
hexahedral meshes and the fully MATLAB-based computation of FEM forward solutions on
multiple platforms, improving the segmentation algorithm was not a main goal of the work
presented here. In the following, the basic implementation and workflow of the pipeline is
sketched, the accuracy of forward solutions computed in a realistic five-compartment head
model generated using this pipeline is evaluated, and an exemplary source reconstruction of
somatosensory evoked potentials (SEP) is performed.

3.2.1. Implementation

The segmentation algorithm – even though a very basic one – distinguishing the five compart-
ments white matter, gray matter, CSF, skull, and skin out of individual MRIs was already
existing in the FieldTrip-toolbox, the additional implementation of two necessary features
remained to make the computation of EEG forward solutions using realistic multi-compartment
head volume conductor models possible: The generation of hexahedral meshes out of the
segmented images and the computation of FEM forward solutions using these meshes. To
achieve this, a set of low-level functions was generated, which were afterwards integrated into
the high-level functions of the common FieldTrip workflow.

Hexahedral mesh generation

cfg struct
resolution double
shift double
background bool

con guration parameters
up-/downsampling
nodeshift parameter 
background modeling

seg struct
dim double array
transform double array
coordsys string
seg double array

image segmentation
image dimensions
coordinate transformation
coordinate system identi er
segmentation

seglabel cell segmentation label

prepare_mesh_hexahedral
vol struct
hex double array
pnt double array
tissue int
tissuelabel cell

hexahedral mesh
connectivity information
vertex positions
tissue-cell assignment
tissue label

Figure 3.20.: Sketch of the function prepare_mesh_hexahedral. Not all possible input parameters are
shown. Optional parameters are indicated by gray font. Green background indicates MATLAB structs,
red background MATLAB functions.

For the generation of hexahedral meshes the function prepare_mesh_hexahedral was imple-
mented; a sketch of the function call is shown in Figure 3.20. This function allows to generate
hexahedral meshes directly out of segmented MR images. A basic segmentation can be
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generated using the FieldTrip-toolbox, but also segmentations from other MATLAB-toolboxes
such as SPM (http://www.fil.ion.ucl.ac.uk/spm/) or from commercial tools like BESA or
Curry (after loading them to MATLAB) can be included. Further options for the mesh
creation are the generation of geometry-adapted meshes following the approach proposed by
Camacho et al. (1997); Wolters et al. (2007a), up-/downsampling of the image resolution, and
modeling/not modeling the image background.

EEG forward solution computation

sb_calc_sti
calculate FE sti ness matrix (Aij)

vol struct
hex double array
pnt double array
tissue int
tissuelabel cell

hexahedral mesh
connectivity information
vertex positions
tissue-cell assignment
tissue label

cond double array tissue conductivities

sti sparse double matrix

Figure 3.21.: Sketch of the function sb_calc_stiff. Not all possible input parameters are shown.
Optional parameters are indicated by gray font. Green background indicates MATLAB structs, red
background MATLAB functions, blue background matrices.

The next necessary step after the mesh generation was to enable the computation of FEM
solutions to the EEG forward problem using a fully MATLAB-based multi-platform pipeline.
Therefore, it is necessary to be able to calculate the stiffness matrix A (cf. Equation (2.12)).
The goal was to easily enable the usage of the isoparametric FEM approach implemented
in the SimBio-toolbox directly out of MATLAB. A MATLAB Executable (MEX-function)
was implemented to enable a convenient execution of the core Fortran-functions of the
SimBio-toolbox from within MATLAB. The MEX-function is written in Fortran and can be
compiled on any platform for which a supported compiler is available (for supported compilers
in MATLAB R2015b cf. http://de.mathworks.com/support/compilers/R2015b/index.html).
The resulting function providing this functionality is sb_calc_stiff ; a sketch of the function
call is shown in Figure 3.21. Pre-compiled binaries of this function for, e.g, most Linux
distributions, MAC OS X, and Windows XP/7/8 are available with the FieldTrip-toolbox.

The remaining necessary functions were directly implemented in the MATLAB script language,
some of the implemented functions are (in alphabetic order)

sb_check_sources checks whether the source positions are valid, i.e., whether the mesh vertex
next to the source position is fully inside the source compartment; takes the mesh
geometry, the source positions, and the source compartment identifier as input, output
is a boolean vector indicating whether the respective vertices are valid or not

sb_rhs_venant calculates the rhs-vector bven (cf. (2.24)); takes the mesh geometry and source
position and direction as input, output is the rhs-vector bven

sb_set_bndcon sets the Dirichlet boundary conditions necessary to achieve a unique solution
of (2.12); takes the stiffness matrix A, the rhs-vector b, the dirichlet nodes, and the
dirichlet values as input, outputs are the corrected stiffness matrix Ã and rhs-vector b̃
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sb_solve solves the equation system (2.14) using an IC(0)-CG-solver; takes the output from
sb_set_bndcon, i.e., the stiffness matrix Ã and rhs-vector b̃, as input, output is the
solution vector u

sb_transfer computes the EEG transfer matrix T eeg; takes the stiffness matrix, the mesh
geometry, and the sensor positions as input, output is the transfer matrix

ft_read_mri
read the anatomical information

mri struct
the anatomical information, e.g., the MRI

ft_volumerealign
align MRI to head coordinates

mri struct
the aligned MRI

ft_volumesegment
create the segmentation

seg struct
the segmented MRI

ft_prepare_mesh
create the (hexahedral) mesh

mesh struct
the hexahedral head volume conductor

ft_prepare_headmodel
calculate sti ness matrix

vol struct
mesh and sti ness matrix

ft_prepare_sourcemodel
prepare source positions

ft_prepare_lead eld
calculate lead eld

grid struct
the source space

lf struct
the lead eld

ft_read_header
read sensor information

ft_electroderealign
align the electrodes to the head

elec struct
the electrode positions

elec struct
the electrode positions aligned to the head

Figure 3.22.: Sketch of the FieldTrip-SimBio pipeline (workflow goes from top to bottom). Red
background indicates MATLAB/FieldTrip-functions, green background the (main) output of the
respective function.

These functions were integrated into the high-level functions of the FieldTrip-toolbox to create
an easy-to-use pipeline for FEM-based EEG forward simulations. The resulting pipeline is
sketched in Figure 3.22. Due to the FieldTrip workflow – which was originally designed for
forward analysis using BEM or sphere models – the main computational effort, i.e., the setup
of the transfer matrix, is not included in the function ft_prepare_headmodel as one might
expect from Figure 3.22, instead only the stiffness matrix A is computed in this function. The
transfer matrix T eeg is subsequently computed in the function ft_prepare_sourcemodel, where
the sensor information is available to the pipeline functions for the first time.

3.2.2. Evaluation

To evaluate the accuracy of the results gained with the FieldTrip-SimBio pipeline, the
generation of a head model as performed in Section 3.1 was repeated with the same image
data using this pipeline and afterwards the results of forward simulations were compared to
those gained using the highly accurate tetrahedral head model generated in Section 3.1.
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Methods

A five-compartment (white matter, gray matter, CSF, skull, and skin) hexahedral head
model was generated based on the segmentation of a T1-MRI (cf. Subsection 3.1.1) using
the FieldTrip-Simbio pipeline (Figure 3.22). This model is denoted 5CI_hex_ft in the
following. Instead of SPM8, which is the standard for brain segmentation in FieldTrip,
SPM12 was used here, as it leads to a (at least visually) more accurate brain segmentation.
Furthermore a scalpthreshold of 0.06 was chosen instead of the standard value 0.10 in the call
to ft_volumesegment. The segmentations used to create model 5CI_hex_ft along with the
segmentation used to generate the models used in Section 3.1 are shown in Figure 3.23. For
the generation of the hexahedral head model a node-shift of 0.3 was chosen.

Figure 3.23.: Original MRI (left), manually corrected segmentation (middle), and automatically
generated segmentation using FieldTrip (right).

The electrode positions were aligned to the respective model surfaces and the source positions
from Section 3.1 (cf. Figure 3.1, right) that are also valid source positions in the newly
generated mesh (i.e., the mesh vertex next to the source position is fully inside the gray matter
compartment) were selected; this led to 89,902 sources in the comparisons.

To classify the accuracy of the newly generated head model 5CI_hex_ft, Figure 3.4 was
expanded by displaying the deviation of this model from the reference solution additionally to
the modeling effects, leading to Figure 3.24.

Results

Comparing the results of the segmentation visually (Figure 3.23), it is obvious that the
main inaccuracies of the automatic segmentation are found for the skull mask, which is
simply generated by a dilation of the inner skull surface in the FieldTrip-pipeline, and in
the nose/mouth area, where the contrast of the original image is very bad. In contrast, the
automatic segmentation of the brain compartments seems to be accurate, possibly even more
accurate than the previously generated and manually corrected segmentation underlying the
tetrahedral head model, where a minimal distance between outer brain and inner skull surface
had to be assured to enable the tetrahedralization and the ventricles were modeled as white
matter to achieve a closed topology of the surfaces.
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Figure 3.24.: Cumulative relative frequencies of RDM (left) and lnMAG (right) effects (cf. Figure
3.4) and error of model 5CI_hex_ft for EEG with model 6CA_hr as reference.
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Figure 3.25.: Butterfly plot of preprocessed SEP data (+16 to +27 ms, left) and peak topography
(24 ms, right).

In Figure 3.24, the deviation of the forward solutions computed with model 5CI_hex_ft
in comparison to the modeling effects is depicted, augmenting Figure 3.4. With regard to
the RDM, the values are similar to those of model 4CI, i.e., a four-compartment model
distinguishing skin, skull, CSF, and brain. Looking at the lnMAG, the hexahedral model
shows a tendency towards an underestimation of source magnitudes, about 70% of the sources
have a negative lnMAG value and 90% of the lnMAG values are in the range from -0.4 to 0.2.
The error range is similar to model 5CI.

3.2.3. Source Localization of SEP Data

Finally, to perform an actual source reconstruction and test the FieldTrip-SimBio pipeline
from start to finish, a subject dataset was measured including MRI data and somatosensory
evoked potentials (SEP).

A T1-weighted (T1w-)MRI scan of a healthy 23-year-old male subject was acquired with a 3
T MR scanner (Magnetom Prisma, Siemens, Munich, Germany) using a 32-channel head coil.
An MP-RAGE pulse sequence (TR/TE/TI/FA = 2300 ms/3.5 ms/1100 ms/8◦, FOV = 256
× 256 × 192 mm, voxel size = 1 × 1 × 1 mm) with water selective excitation was used. 80
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Figure 3.26.: Original MRI (left), segmentation (middle), and hexahedral mesh with aligned electrodes
(right).

Figure 3.27.: Result of source analysis of SEP data.

channel EEG and electrocardiography (ECG) were measured simultaneously. The EEG cap
had 74 Ag/AgCl sintered ring electrodes placed equidistantly according to the 10-10 system
(EASYCAP GmbH, Herrsching, Germany). In addition to those 74 electrodes, 6 additional
channels were available and used for both eye movement detection (with a bipolar software
montage) and as additional EEG channels for source reconstruction. The electrode locations
were digitized with a Polhemus Fastrak system (Polhemus Incorporated, Colchester, Vermont,
U.S.A.) prior to the measurement. The patient was measured in lying position to avoid
erroneous CSF effects due to brain shift when combining EEG and MRI following the results
of Rice et al. (2013). To generate somatosensory evoked potentials (SEP), one measurement
run with electrical stimulation of the left median nerve and varying inter-stimulus intervall
(ISI) to avoid habituation (ISI: 350 ms to 450 ms, pulse duration 0.5 ms) was recorded at a
frequency of 1200 Hz, resulting in 967 trials.

The EEG data were preprocessed using the FieldTrip-functions ft_preprocessing,
ft_rejectvisual, and ft_timelockanalysis. Using ft_preprocessing a 20 Hz high pass filter,
a 250 Hz low pass filter, and a discrete fourier transform (DFT) filter for line noise removal at
frequencies of 50, 100, and 150 Hz were applied. A baseline correction was performed using
the window from 150 ms to 50 ms before stimulus onset. ft_rejectvisual was used to reject
bad channels and artifacts, e.g., due to eye-blinks. 10 channels (C4, Pz, FC2, CP2, F1, C2,
P6, AF8, TP8, PO7) and 104 trials were rejected, thus resulting in 64 channels available for
source reconstruction and 863 trials for signal averaging. Finally, a time-locked average of the
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trials was computed with ft_timelockanalysis. A butterfly plot and the peak topography of
the resulting data are shown in Figure 3.25.

Following the pipeline sketched in Figure 3.22, a hexahedral five-compartment head model
was generated. Again, a scalpthreshold of 0.06 was chosen instead of the standard value 0.10

for ft_volumesegment. The resulting segmentation and the mesh with aligned electrodes are
shown in Figure 3.26. In the call of ft_prepare_sourcemodel a grid resolution of 2 mm was
chosen for the source space.

Finally, the P20 component was localized at the peak (i.e., at +24 ms, cf. Buchner et al.,
1994) using the function ft_dipolefitting, which performs a goal function/dipole scan (when
choosing the parameter cfg.nonlinear = ’no’ ). The result of the source reconstruction is shown
in Figure 3.27, the goodness of fit (GoF)-value was 0.963 (optimal value is 1).

3.2.4. Further Applications in Brain Research

Figure 3.28.: Visualizations of volume of activated tissue (VAT, dark red, tip of right electrode) for
deep brain stimulation of subthalamic nucleus (cyan, left image only). Bipolar stimulation of lowermost,
i.e., first, contact (-3 V) and second contact (+3 V). Furthermore, nucleus ruber (dark red), striatum
(orange), external globus pallidus (dark blue), internal globus pallidus (green), and subtantia nigra
(yellow) are shown.

The integration of the FEM approach into the MATLAB-based FieldTrip-pipeline also allows
for the easy application in other areas of bioelectric research, e.g., deep brain stimulation
(DBS) or transcranial direct/alternating current stimulation (tDCS/tACS). To achieve this,
it is only necessary to change the boundary conditions and right-hand side vectors applied
in the derivation (Section 2.1, Equation (2.12)). The possibility to simulate the effects of
DBS using highly realistic volume conductor models was integrated into the LEAD-DBS -
toolbox (http://www.lead-dbs.org/). FEM was previously used to simulate the effects of deep
brain stimulation, e.g., by Butson et al. (2007); Chaturvedi et al. (2010); Schmidt and van
Rienen (2012). Simulations of DBS effects gained using LEAD-DBS are shown in Figure
3.28. Furthermore, also the MATLAB-based simulation of tDCS stimulation is possible,
corresponding to the approach used in Wagner et al. (2014). Examples are shown in Figure
3.29. These results shall not be further discussed here as DBS and tDCS are not in the scope
of this thesis.
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Figure 3.29.: Visualizations of auditory cortex tDCS. Visualization of surface potential with isovalue
lines, skin and skull clipped at z = 140 plane (top left), detail of potential at cathode in y = 128 plane
with isopotential lines (top right), potential in CSF, gray, and white matter in y = 128 plane with
isopotential lines (bottom left), and visualization of injected currents in y = 128 plane, short gray
lines indicate direction of the current and the color-coding the current strength (bottom right). In
all potential visualizations blue coloring corresponds to negative values, red coloring to positive ones;
for current visualization blue coloring corresponds to smaller current strength, red coloring to larger
current strength.

3.2.5. Discussion

In this section, the FieldTrip-SimBio pipeline for finite element EEG forward computations in
MATLAB was presented and evaluated. This pipeline was implemented to allow for the easy
computation of EEG forward solutions using basic five-compartment (skin, skull, CSF, gray
matter, and white matter) hexahedral head models. The accuracy that can be achieved with
such a simplified head model in comparison to the highly accurate model used in Section 3.1
was evaluated and an exemplaric source reconstruction of SEP-data using this pipeline was
shown.

As already mentioned in the introduction, only few work was invested so far to improve
the accuracy of the MRI segmentation. Major differences are found for the segmentation of
the skull and the segmentation of the brain compartments (compare Figures 3.23 and 3.26).
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The skull segmentation is generated by a dilation of the inner skull/outer brain surface in
the FieldTrip-SimBio pipeline, which is a very simple, but robust approach. This results
in a constant skull thickness and thereby a missestimation of the original skull thickness
in many areas, which is unfavorable due to the major influence of an accurate modeling of
the skull on EEG forward solutions, as it was discussed in Section 3.1. However, the open
structure of the pipeline also allows the user to include the possibly more accurate skull
segmentations from other toolboxes such as SPM (http://www.fil.ion.ucl.ac.uk/spm/), FSL
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), or BrainSuite (http://brainsuite.org). A comparison
study including these toolboxes was conducted by Kazemi and Noorizadeh (2014). A main
cause for the differences in the brain segmentation were the restrictions of the tetrahedral mesh
generation, which requires a sufficient distance between inner skull and outer brain surface. As
the huge effect of the varying CSF thickness due to the movement of the brain with changing
body position of the subject was shown by Rice et al. (2013), hexahedral meshes possibly even
allow for a more realistic modeling in this aspect as they allow realistically touching skull and
brain compartments. The inaccurate segmentation of the nose/mouth area with FieldTrip
should only have a minor influence as the model is nevertheless not cut off directly below the
skull following the results of Lanfer et al. (2012b). Furthermore, this problem only occured
for the specific dataset used in the comparison study, while the scalp surface could be nicely
estimated using the FieldTrip-SimBio pipeline in Section 3.2.3 (cf. Figure 3.26). Thus, this
might rather be a problem of the recorded MRI than of the segmentation algorithm.

When comparing the head model generated using this pipeline with the simplified head models
generated in Section 3.1, the simple five-compartment model 5CI_hex_ft performs about as
good as the tetrahedral model 4CI with regard to the RDM (Figure 3.24), i.e., the effect of
using the simple five-compartment model is as big as that of neglecting the differentiation
between gray and white matter (Figure 3.24). As no manual corrections were applied for
the segmentation, this can be considered a button-press pipeline. Thus, given the negligible
amount of time invested in the model generation and the big influence of the highly-conductive
CSF compartment on the EEG forward solution that was already discussed in Section 3.1,
this is a quite remarkable result.

Finally, in Section 3.2.3 it was demonstrated that this pipeline can actually be applied to
evaluate real data. The results of the localization of SEP generated by medianus nerve
stimulation are in line with the literature results (cf. Figure 3.27; Buchner et al., 1994).

3.3. Conclusion

In Section 3.1 it was shown that a realistic modeling of the volume conductor has strong effects
on both EEG and MEG forward simulations that should be taken into account. Especially for
superficial sources, which were often assumed to be less affected by volume conduction effects
than deep sources, the strongest changes with regard to signal topography and magnitude
were found. The following recommendations can be concluded for an accurate EEG/MEG
forward simulation:



3 Effects of Realistic Volume Conductor Modeling in EEG/MEG Source Analysis 101

a) CSF This study systematically showed the importance of including the highly conductive
CSF as a separate compartment in the volume conductor for both EEG and MEG. This
step only requires moderate additional effort in the segmentation procedure.

b) Gray/white matter distinction The same conclusions as for the CSF hold true for the gray/
white matter distinction. Strong effects were found for this modeling step, while the
additional amount of work for including gray/white matter distinction into a volume
conductor model is at a reasonable level.

c) White matter anisotropy The inclusion of white matter anisotropy showed smaller (but still
significant) effects than a) and b). However, the complexity of modeling anisotropy and
the limitations of the underlying model have to be taken into account. Therefore, not
modeling white matter anisotropy can be concluded to be admissible unless the last
doubts in a realistic modeling of white matter anisotropy (sufficient DTI resolution,
appropriate scaling between diffusion and conductivity tensors) have been eliminated.

d) Skull The distinction between skull compacta and spongiosa showed weak effects especially
for the MEG. Thus, it might in most cases be disregarded for the MEG. For the EEG,
distinguishing different skull compartments is clearly less important than the previously
mentioned modeling steps, especially when using an optimized conductivity value for the
homogenized skull. However, the otherwise high importance of an accurate modeling
of the skull was shown in a variety of studies and was therefore not in the focus of
this study. The influence of the uncertainty in the skull conductivity values found in
the literature should not be underestimated and a conductivity calibration should be
considered (Aydin et al., 2014, 2015; Aydin, 2015; Lew et al., 2007, 2009a).

In summary, the study performed in Section 3.1 shows the most reasonable steps one should
take to expand the commonly used three-layer head model by additional compartments.
Furthermore, this study demonstrates that the numerical inaccuracies of the used finite
element approach appear to be negligible compared to these modeling effects.
However, despite the advantages of highly-realistic multi-compartment volume conductor
models, the issue of the often high workload to create these models remained, especially for
tetrahedral models. To allow the practical use of FEM approaches for EEG source analysis on
several platforms, the FEM originally implemented in SimBio was integrated in a FieldTrip-
pipeline. It was shown that an automatically generated five-compartment head model achieved
a reasonable accuracy that is clearly superior to the accuracy of the commonly used three
compartment head models. Furthermore, the analysis of SEP-data using this pipeline was
demonstrated in Section 3.2.3 and the obtained results are in line with the literature.
Finally, in Section 3.2.4 examples were shown that the used FEM approach – and thereby
also the results gained in its analysis in the current and previous chapter – is not limited to
the use in source analysis, but can also be easily applied in other fields of bioelectric research
such as deep brain stimulation or transcranial current stimulation.



4
THE DISCONTINUOUS GALERKIN

FINITE ELEMENT METHOD

The conforming finite element approaches introduced in Chapter 2 achieve a high numerical
accuracy using hexahedral and tetrahedral meshes in both sphere and realistic head model
scenarios. In Chapter 3, tetrahedral meshes generated by constrained Delaunay tetrahedraliza-
tions (CDT) from given tissue surface representations were used (Lew et al., 2009b; Vorwerk
et al., 2014). These have the advantage that smooth tissue surfaces are well represented
by the model. Also the drawbacks of CDT modeling were mentioned. The generation of
such models is difficult in practice and might cause unrealistic model features, e.g., holes
in tissue compartments such as the foramen magnum and the optic canals in the skull are
often artificially closed to allow CDT meshing. Furthermore, CDT modeling necessitates
nested surfaces, while in reality surfaces might touch, like for example the inner skull and
outer brain surface. Hexahedral models do not suffer from such limitations, can be easily
generated from voxel-based magnetic resonance imaging (MRI) data as shown in Chapter 3,
and are more and more frequently used in source analysis applications (Aydin et al., 2014;
Rullmann et al., 2009). However, when aiming to apply hexahedral meshes in praxis, for
certain geometries unwanted effects might occur. More specifically, when the segmented skull
compartment is in some areas so thin that mesh elements corresponding to the originally
separated compartments in- and outside the skull (usually CSF or gray matter and skin)
touch in single vertices (cf. Figure 4.1), an unphysical leakage of volume currents through
these vertices may occur (Sonntag et al., 2013). This leads to a distortion of the simulated
surface potentials, since the skull in reality functions as a low-conducting barrier between the
higher conducting compartments (except for the actually existing skull openings of course).
This behaviour is a consequence of certain properties of the CG-FEM that was applied to
simulate the potential u. While this method enforces the continuity of the potential u, it
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Figure 4.1.: Sketch of segmentation that might lead to leakage effects (left). Yellow line shows inner
skull surface, red line original outer skull surface, blue line corrected outer skull surface. Where the red
and the blue line overlap, only the blue line is visible. In the magnified detail scalp and CSF show two
erroneous connections via single vertices or edges (right subfigure, where red and yellow lines touch
each other). Source: Engwer et al. (submitted)

CG-FEM DG-FEM
Figure 4.2.: Illustration of current flow/leakage effect for CG-FEM (left) and DG-FEM (right). While
for the CG-FEM an “unphysical” current flow through a single vertex occurs, the DG-FEM only allows
current flow over faces. Source: Engwer et al. (submitted)

does not control for a realistic flow of the volume currents j, i.e., with a continuous normal
component over element faces and fulfilling the important physical property of conservation
of charge. This behaviour is directly connected to the choice of trial and test functions (cf.
Section 2.1, Equation (2.7)). As these are supported on all elements containing a single vertex,
this leads to a mixing of conductivities when the entries of the stiffness matrix are computed
(cf. Equation (2.10)), thereby to inadequately high matrix entries for these functions, and
finally to current leakage “through” single vertices (cf. illustration in Figure 4.2, left).

Two main options to prevent these leakages exist when using finite element methods that rely
on a representation of the geometry through an unstructured volumetric mesh, as it is the
case in this thesis. Either the volume conductor model has to be adapted to prevent this
unwanted behaviour of the numerical method or the method has to be modified, so that a
realistic simulation of the volume currents is enforced. Adapting the volume conductor model
would usually mean to either artificially thicken the skull in the affected areas or to increase
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the resolution of the segmentation locally or globally. Thickening the skull in the volume
conductor model would cause a deviation of the model from the segmented geometry and
thereby decrease the accuracy of the simulation. A global refinement of the segmentation
would require a higher resolution of the underlying image data and is therefore usually not
practically feasible. A locally refined segmentation could be achieved by involving data gained
with zoomed MRI technology in the segmentation (Blasche et al., 2012). However, this opposes
the goal of an as simple as possible pipeline for mesh generation and leads to meshes that
either have a very fine resolution, and a thereby strongly increased computational effort, or are
no longer admissible (cf. Definition 2) as they include hanging nodes, which again complicates
the numerical treatment.

In the following, two numerical methods that fulfill the goal of a realistic modeling of the
volume currents are introduced and evaluated, the discontinuous Galerkin finite element
method (DG-FEM) and a method based on mixed finite elements (Mixed-FEM or M-FEM).
In this chapter, the DG-FEM is introduced and evaluated. This method has the advantageous
feature of being locally charge preserving and controlling for the current flow through element
faces and thereby preventing possible leakage effects. An illustration of the conceptual
difference in current simulation between CG- and DG-FEM is shown in Figure 4.2. To achieve
this, the previously used vertex-based trial and test functions, which are supported on multiple
elements of possibly varying conductivity, are replaced by functions that are only supported
on a single element each. The coupling between the elements is then introduced by controlling
the normal current over element faces. The chosen functions are not in the space H1(Ω), where
we expect the solution, so that this approach is not conforming. In general, this approach does
not result in a continuous solution for the potential u. However, the discontinuities between
elements can be controlled by including additional terms in the problem formulation that
penalize jumps of the potential at the element boundaries. The previously derived subtraction
and partial integration approach can be easily adapted to the DG-framework.

In the following, the theoretical basics of the DG-FEM are derived and the subtraction and
partial integration approach are formulated in this framework. Subsequently, the implemen-
tation of these approaches in the DUNE-toolbox (http://www.dune-project.org) is shortly
described and they are evaluated in comparison to the implementations based on the CG-FEM.
Therefore, both common sphere models with a geometry as it was introduced in Chapter 2
(cf. Table 2.2) and sphere models with a reduced thickness of the skull compartment in order
to provoke leakages are used. Furthermore, the current flow for both CG- and DG-FEM for
a single source scenario is visualized in models with differing skull thicknesses to allow for
a better understanding of the effect of skull leakages. Parts of this chapter are cited from
Engwer et al. (submitted), which was submitted for publication.

4.1. Derivation

The historic idea that later led to the formulation of DG methods was proposed by Lions
(1968) to solve elliptic problems with very rough Dirichlet boundary data. Instead of directly
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enforcing the boundary conditions by the definition of the space of trial functions v, as it
was usually done, it was proposed to weakly enforce the Dirichlet boundary conditions by
means of adding a penalty term in the weak formulation of the underlying PDE (Arnold et al.,
2002; Lions, 1968). For example, instead of solving the Dirichlet problem −∆u = f in Ω with
boundary condition u = g on ∂Ω, the boundary condition is replaced by the Robin boundary
condition u+ µ−1∂nu = g with a large penalty parameter µ > 0. This boundary condition
is then weakly enforced by an additional term in the weak formulation of the problem (cf.
Equation (1.12)), penalizing deviations from the original boundary conditions:∫

Ω
〈∇u,∇v〉 dx +

∫
∂Ω
µ(u− g)v dx =

∫
Ω
fv dx for all v ∈ H1(Ω). (4.1)

The Dirichlet boundary condition is fulfilled for the limit case µ → +∞, even though the
trial functions v do not satisfy it. The DG approach founds on the observation that – just
as the exterior boundary conditions – also the interior boundary conditions can be enforced
in this way. These could, e.g., be the interelement continuity of the solution, in our case the
continuity of the potential u or the continuity of the normal component of the current j. These
quantities are called numerical fluxes. In the following, it is shown that a DG formulation
has advantageous properties such as consistency and conservation of the numerical fluxes.
Therefore, one often aims to choose a numerical flux such that it can be linked to a conserved
physical property, e.g., the electric charge. Depending on the actual definition of the numerical
fluxes, different DG methods with specific properties with respect to stability and accuracy
can be derived (Hartmann, 2008). For a more detailed discussion of the historical motivation
and a general description of theory and applications of DG methods, it is referred to Arnold
et al. (2002). Some general properties of DG-FEM in comparison to CG-FEM are discussed
and illustrated in Ludewig (2013).

4.1.1. A Weak Formulation

Prior to the derivation, some basic notations are introduced in the following. For a triangulation
T (cf. Definition 2), the internal skeleton is defined by

Γint = {γe,f = ∂Te ∩ ∂Tf | Te, Tf ∈ T , Te 6= Tf , |γe,f | > 0} (4.2)

and correspondingly the skeleton is defined by Γ = Γint ∪ ∂Ω. Furthermore, the broken Sobolev
spaces on a partition T of Ω are defined:

W k,p(T ) :=
{
v ∈ L2(Ω) : v|T ∈W k,p(T ) for all T ∈ T

}
,

Hk(T ) := W k,2(T ).
(4.3)

Unlike the spaces W k,p(Ω) and Hk(Ω), the elements of W k,p(T ) and Hk(T ) may admit jumps
at the boundary of the partition elements also for k > 0. The broken Sobolev spaces are
indicated by the explicit reference to a triangulation T , i.e., by writing W k,p(T ) or Hk(T ). In
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the following derivation, an admissible triangulation Th(Ω) and a for now not further specified
general space of test and trial functions are assumed, possibly V = Hk(Th(Ω)), k > 0.

Instead of following the original idea of a derivation by enforcing boundary conditions along
element interfaces, a less formal but easier accessible approach via Gauss’s theorem (integration
by parts) is chosen here. In Section 1.3, it was mentioned that the weak formulation (1.12)
of the classical forward problem (1.11) can be derived by testing with a test function v and
subsequently applying integration by parts. Repeating this with the here chosen space of test
functions V , the (possible) discontinuities across element boundaries of the elements of V lead
to the additional occurence of (non-zero) terms on the internal skeleton Γint. Following, a
general DG formulation of (1.11) exploiting the homogeneous Neumann boundary conditions
is derived. The derivation of the partial integration approach is then straight-forward, for the
subtraction approach this formulation has to be modified to also consider the non-zero terms
on the outer boundary ∂Ω.

Let u be a solution of (1.11), we test with v ∈ V

−
∫
Ω

(∇ · σ∇u)v dx =

∫
Ω

fv dx . (4.4)

Since v might be discontinuous, integration by parts cannot be applied globally on Ω. Instead,
it is applied on each element E ∈ Th(Ω), where v is by construction in Hk(E), separately. On
the left hand side we obtain

lhs =−
∫
Ω

(∇ · σ∇u)v dx

=−
∑
Te∈Th

∫
Te

(∇ · σ∇u)v dx

=

∫
Ω

〈σ∇u,∇v〉dx −
∑
Te∈Th

∫
∂Te

〈σ∇u,n〉v ds

=

∫
Ω

〈σ∇u,∇v〉dx −
∫
∂Ω

〈σ∇u,n〉︸ ︷︷ ︸
=0(∗)

v ds

−
∑

γe,f∈Γint

 ∫
γe,f∩∂Te

〈σ∇u,ne,f 〉v ds +

∫
γe,f∩∂Tf

〈σ∇u,nf,e〉v ds

 ,

(4.5)

where ne,f denotes the outwards pointing normal unit vector on the boundary of Te to Tf ,
i.e., pointing from Te to Tf .

The sum over all element boundaries is split into the domain boundary and all internal edges,
each being visited twice, once from left and once from right. The electric current (∗) through
the boundary is fixed by the homogeneous Neumann boundary conditions in (1.11).

To simplify the above expressions, additional notations following Arnold et al. (2002) are
introduced, the jump operators
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[x]e,f := x|∂Te − x|∂Tf JxKe,f := x|∂Tene,f + x|∂Tfnf,e (4.6)

and on boundary edges ∂Te ∩ ∂Ω 6= ∅

[x]e := x|∂Te JxKe := x|∂Ten∂Ω (4.7)

and the average operator

{x}e,f := ωe,fx|∂Te + ωf,ex|∂Tf {x}e := x|∂Te (4.8)

of a piecewise continuous function x on the interface γe,f between two adjacent elements Te
and Tf . We have the relation ne,f [x] = JxK. Both jump and average operators can easily be
generalized for arbitrary interfaces γ that allow the definition of a surface normal n. The
weights ωe,f and ωf,e could, e.g., be chosen to be the arithmetic mean. However, Ern et al.
(2009) have shown that a conductivity-dependent choice is optimal in the case of heterogeneous,
isotropic conductivities σ:

ωe,f :=
σf

σf + σe
and ωf,e :=

σe
σe + σf

(4.9)

with σe = σ(x)|∂Te , σf = σ(x)|∂Tf . Jump and average operator fulfill the following multiplica-
tive property

JxyKe,f = JxKe,f {y}e,f + {x}e,f JyKe,f . (4.10)

(4.5) can now be rewritten and we obtain

lhs =

∫
Ω

〈σ∇u,∇v〉 dx −
∫

Γint

J(σ∇u)vK ds.

With the multiplicative property (4.10) follows

lhs =

∫
Ω

〈σ∇u,∇v〉dx −
∫

Γint

Jσ∇uK︸ ︷︷ ︸
=0

{v}+ {σ∇u} JvK ds, (4.11)

exploiting that the electrical current should be continuous over element boundaries by definition
(and of course also by physics) and thus Jσ∇uK = JjK = 0. Defining
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ã(u, v) :=

∫
Ω

〈σ∇u,∇v〉dx −
∫

Γint

{σ∇u} JvK ds, (4.12)

l(v) :=

∫
Ω

fv dx , (4.13)

one has the weak formulation

Find u ∈ V, such that ã(u, v) = l(v) for all v ∈ V. (4.14)

A subscript DG for ã and l is dispensed in the following for the sake of simplicity, despite
competing previous definitions in Chapter 2. The formulation (4.14) is by construction
consistent with the strong problem (1.11), however, it does not show adjoint consistency, i.e.,
consistency of the adjoint problem, and is not stable since it lacks coercivity. As discussed by
Arnold et al. (2002), consistency of the adjoint problem is important to ensure conservation
properties, i.e., the conservation of charge in the present case, as it is directly linked to
conservation properties of the discrete fluxes. The conservation of charge is equivalent to the
continuity of the electric current j (= σ∇u):

∫
∂K

σ∂nuds =

∫
K

f dx , (4.15)

for any control volume K ⊆ Ω. Furthermore, adjoint consistency is necessary to obtain optimal
L2-error estimates, where a duality argument has to be used (Arnold et al., 2002). A lack
of adjoint consistency leads to non-smooth adjoint solutions and a sub-optimal convergence
(Harriman et al., 2003; Hartmann, 2007). In the context of inverse problems, the adjoint
approach can be used to reduce the computational effort (Vallaghé et al., 2009) and is closely
linked to the transfer matrix approach. In both cases the discrete representation of the adjoint
operator is needed and for the transfer matrix approach also a self-adjoint/symmetric operator
(cf. Section 2.9). Coercivity is necessary to ensure existence and uniqueness of the solution.

To gain adjoint consistency, symmetry of the operator ã has to be achieved by adding the
term

ã
sym

(u, v) := −
∫

Γint

{σ∇v} JuK ds, (4.16)

and we define

a(u, v) = ã(u, v) + ã
sym

(u, v)

=

∫
Ω

〈σ∇u,∇v〉dx −
∫

Γint

{σ∇u} JvK + {σ∇v} JuK ds. (4.17)
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To obtain coercivity, the left-hand side is supplemented with the additional penalty term

J(u, v) = η

∫
Γint

σ̂γ
hγ

JuKJvK ds, (4.18)

where hγ and σ̂γ denote local definitions of the mesh width and the electrical conductivity on
an edge γ, respectively. This penalty term represents the idea of weakly enforcing the interior
boundary conditions. After addings these terms, the operator a + J is still continuous as
shown below after some general remarks.

Remark 11. If the problem (1.11) is not posed with pure Neumann boundary conditions, the
integral defining J in (4.18) has to be evaluated on Γint ∪ ΓD.

hγ is chosen following Giani and Houston (2012) and the isotropic conductivities σ̂γ are defined
as the harmonic average of the conductivities of the adjacent elements, following Di Pietro
and Ern (2011, 2012):

hγe,f :=
min(|Te|, |Tf |)
|γe,f |

(4.19)

σ̂γe,f :=
2σeσf
σe + σf

. (4.20)

For the proper choice of σ̂γe,f in the case of anisotropic conductivities the reader is referred to
Di Pietro and Ern (2011). To ensure coercivity, it is important that the penalty parameter
η > 0 is chosen large enough.

This yields the symmetric interior penalty Galerkin (SIPG) formulation or in the case of
weighted averages the symmetric weighted interior penalty Galerkin (SWIPG or SWIP) method.
After showing continuity of the bilinearform a+ J on a properly defined subspace of V , V
is restricted to a discrete space Vh and it is shown that the discrete formulation is coercive,
consistent, and adjoint consistent. The SIPG formulation now reads

Find u ∈ V such that a(u, v) + J(u, v) = l(v) for all v ∈ V, (4.21)

with a, J , and l as previously defined.

In the following, k = 1, i.e., V = H1(Ω), is assumed. To show existence and uniqueness of
(4.21), a subspace of H1(Th) has to be defined analog to Chapter 2

H1
∗ (Th) :=

{
v ∈ H1(Th) :

∫
Ω
v dx = 0

}
(4.22)

and akin to Babuška et al. (1999) the norm

‖v‖2η := ‖σ1/2∇hv‖2L2(Ω) + η|v|2J ,

~v~2
η := ‖v‖2η + η−1‖ {v} ‖2L2(Γ),

(4.23)
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where ∇hv denotes the piecewise gradient of v, i.e., (∇h·)|T = ∇(·|T ) for T ∈ T , and | · |J is
the jump seminorm

|v|2J :=
∑
γ∈Γ

σ̂γ
hγ
‖JvK‖2L2(γ).

The restriction of H1(Th) in (4.22) is necessary so that ‖ · ‖η is actually a norm.

Lemma 4 (Continuity). Let a+ J be the SIPG bilinearform as in (4.17) and (4.18) and η
the constant in (4.18). Then,

‖a(v, w) + J(v, w)‖ ≤ C~v~η~w~η for all v, w ∈ H1
∗ (Th), (4.24)

where C is a constant, C ≤ 2.

Proof. cf. Hartmann (2008); Prudhomme et al. (2000)

To show existence and uniqueness of a solution for (4.21), it is necessary to show the coercivity
of a + J in the space H1

∗ (Th). For the conforming approach in Chapter 2, coercivity was
implicitly given as the bilinearform is elliptic. However, to the best of our knowledge, to date
no such proof for the SIPG bilinearform a+ J exists (Hartmann, 2008; Prudhomme et al.,
2000). Instead, coercivity can be shown for a finite dimensional subspace of V . Therefore, the
broken polynomial spaces of degree k on a partition Th(Ω) are defined ,

V k
h =

{
v ∈ L2(Ω) : v|T ∈ Pk(T ) for all T ∈ Th(Ω)

}
, (4.25)

where Pk denotes the space of polynomial functions of degree k (cf. Section 2.1). For hexahedral
meshes, the definition follows accordingly when replacing Pk by Qk. The elements of this
space are functions that exhibit elementwise polynomial behaviour, but may be discontinuous
across element interfaces (in contrast to the elements of the space Mk

0 that was introduced in
Chapter 2, which are by construction continuous on Ω). In the following, k = 1 is assumed
and V 1

h is denoted by Vh.

Lemma 5 (Discrete coercivity). Let a+ J be the SIPG bilinearform as in (4.17) and (4.18)
and η the constant in (4.18). For a sufficiently large η > 0, it exists a constant κ > 0, such
that

a(vh, vh) + J(vh, vh) ≥ κ‖vh‖2η for all vh ∈ Vh.

Proof. cf. Hartmann (2008); Prudhomme et al. (2000)

With Lemma 1 (Lax-Milgram), existence and uniqueness of a solution to (4.21) follow from
continuity and coercivity.

Remark 12. A relation between the upper bound for the constant κ and the parameter η
in (4.18), depending on the mesh width h and the polynomial degree k of Vh, is shown by
Hartmann (2008).
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Remark 13. The discrete coercivity as proven in Lemma 5 can also be proven with differently
defined norms on the space H1

∗ (Th(Ω)) than the here used definition of ~ · ~η. For example,
Di Pietro and Ern (2012) use the energy norm

‖vh‖E(a+J) := ‖vh‖L2(Ω) + ‖σ1/2∇hvh‖dL2(Ω) + |JvK|γ (4.26)

with

|JvhK|2γ :=
∑
γ∈Γ

σ̂γ
hγ
‖JvhK‖L2(γ). (4.27)

Again, it is necessary to define the restricted space H1
∗ (Th) so that ‖ · ‖E(a+J) is actually a

norm. However, using this norm the proof of continuity of a+J requires a special construction
of the space V (Di Pietro and Ern, 2012).

Though the continuous formulation (4.14) is by construction consistent with the strong
problem, it is not per se clear that this also holds true for the discrete problem (Di Pietro and
Ern, 2011).

Lemma 6 (Discrete consistency). The SIPG discretization (4.21) is consistent with the strong
problem (1.11).

Proof. For a solution u of (1.11), the jump JuK vanishes on Γint since u is continuous, so that
ã
sym

(u, vh) = 0 in (4.16) and J(u, vh) = 0 in (4.18) for vh ∈ Vh. Using partial integration and
the homogeneous Neumann boundary condition (1.11b), (4.21) reduces to

a(u, vh)− l(vh)

=

∫
Ω

〈σ∇u,∇vh〉 dx −
∫

Γint

{σ∇u} JvhK ds +

∫
Ω

fvh dx

=

∫
Ω

〈σ∇u,∇vh〉 dx −
∫
Γ

{σ∇u} JvK ds +

∫
Ω

fvh dx

=

∫
Ω

(∇σ∇u)vh dx +

∫
Ω

fvh dx

=0

Thus, u is also a solution of the weak formulation.

Furhtermore, adjoint consistency is obtained.

Definition 5 (Adjoint consistency; Hartmann, 2008). Given a function gΩ ∈ L2(Ω) and
gN ∈ L2(Γ), let z ∈ V be the exact solution of the dual or adjoint problem

∇ · (σ∇z) = gΩ in Ω,

nz = gN on Γ.
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Then, the discretization of (4.21) is adjoint consistent, iff

a(v, z) + J(v, z) =

∫
Ω
gΩ dx for all v ∈ V.

Lemma 7 (Adjoint consistency). The SIPG discretization (4.21) is adjoint consistent.

Proof. cf. Arnold et al. (2002); Hartmann (2007)

A goal of the introduction of the DG-FEM was to formulate an approach that fulfills fun-
damental physical properties, in our case the conservation of charge (cf. (4.15)). Due to
the construction, it is easy to show that – in contrast to the conforming approach with test
space P1 as in Chapter 2 – the DG approach with the test space Vh fulfills this property in a
discrete sense, i.e., for an arbitrary domain being a union of triangulation elements, K =

⋃
Te,

Te ∈ Th. This is possible since the indicator function for each element is an element of the
test space now. Therefore, the discrete current jh = {σ∇u} − η σ̂γ

ĥγ
JuK is defined.

Lemma 8 (Discrete conservation property). For an arbitrary volume K ⊆ Th(Ω), the SIPG
discretization (4.21) fulfills a discrete conservation property

∫
∂K〈{σ∇u} − η

σ̂γ

ĥγ
JuK,n〉ds =∫

K f dx , which converges to (4.15) for h→ 0.

Proof. Testing with vh = 1K ∈ Vh on a control volume K ∈ T (Ω), we observe that ∇vh = 0

inside K and JvhK = n on ∂K. The boundary ∂K is partitioned into boundary facets ∂K ∩∂Ω

and internal facets ∂K \ ∂Ω. Then, (4.21) simplifies to

a(u, vh) + J(u, vh) = l(vh)

⇔ −
∫

∂K\∂Ω

〈{σ∇u} ,n〉ds −
∫
∂K

η〈 σ̂γ
ĥγ

JuK,n〉ds =

∫
K

f dx

⇔ −
∫
∂K

〈{σ∇u} ,n〉ds −
∫
∂K

η〈 σ̂γ
ĥγ

JuK,n〉ds =

∫
K

f dx

and we obtain the discrete conservation property

⇔
∫
∂K

〈{σ∇u} − η σ̂γ
ĥγ

JuK︸ ︷︷ ︸
jh

,n〉ds =

∫
K

f dx .

Thus, the discrete problem (4.21) fulfills a conservation property with discrete flux jh =

{σ∇u} − η σ̂γ
ĥγ

JuK. For h→ 0, JuK vanishes and the discrete flux jh converges to the flux j as
defined in (4.15).

A basis of the space Vh could be generated by restricting the hat functions hk introduced in
Section 2.1 to single elements:

S
DG

h := {v ∈ L2(Ω) : v|T = hk ∈ Sh, v|Ω\T̄ = 0, T ∈ Th} (4.28)
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However, this is not reasonable, as the elements of SDGh do not inherit the advantages of Sh (e.g.,
the unique identification between basis function and mesh vertices) and lack other advantageous
features, e.g., they are not L2(Ω)-orthonormal. Instead an L2(Ω)-orthonormal basis is used
here, i.e., for each tetrahedral mesh element a basis is given by an orthonormalization of
{1, x, y, z} ∈ Vh(T ) for all T ∈ Th. This can be achieved by a Gram-Schmidt process. For
hexahedral elements, an orthonormalization of {1, x, y, z, xy, yz, zx, xyz} ∈ Vh(T ) has to be
performed. It is obvious that the discrete space Vh is clearly larger than in the continuous
case, as we have 4/8 basis functions per (tetrahedral/hexahedral) mesh element instead of one
per mesh vertex now.
Just like for the CG-FEM (cf. Chapter 2), u can now be replaced by its approximation in the
discrete space of test functions, uh(x) =

∑
j ujvj(x) and we obtain a linear system Au = b,

where A is the matrix representation of the bilinear operator a+ J and b the right hand side
vector:

Aij = a(vj , vi) + J(vj , vi), (4.29)

bi = l(vi). (4.30)

In the test setup (polynomial degree k = 1, hexahedral mesh), the number of unknowns per
mesh cell is eight for the DG approach, so that the dimension of A is m = n = 8 ×#cells
(compared to one degree of freedom per vertex for the CG approach, i.e., m = n = #vertices).
For a sufficiently large η > 0, the matrix A is symmetric positive definite after fixing a Dirichlet
node (Rivière, 2008), where the lower bound for η depends on the shape regularity of the mesh
and the polynomial degree k. Nevertheless, η should not be chosen too high, as the condition
number of A increases rapidly with the penalty parameter (Castillo, 2002). After a proper
(re-)arrangement, A has sparse block structure with small dense blocks; in the present setup
with polynomial degree k = 1 and hexahedral meshes each block is a 8× 8 matrix (Figure 4.3).
The outer structure is similar to that of a finite volume discretization, i.e., rows corresponding
to each grid cell and one off-diagonal entry for each cell neighbour. Principally, the resulting
equation system can, e.g., be solved using BiCGStab- or MINRES-solvers. By now, a range of
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Figure 4.3.: Matrix Structure of a DG-FEM discretization (left) on a 3x3x3 cubic domain using a
polynomial degree of k = 1 for the local basis functions compared to that of a conforming CG-FEM
discretization using Lagrange basis functions (right). Source: Ludewig (2013)
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efficient solvers for DG discretizations is available, using techniques like multigrid methods
(Bastian et al., 2012) or domain decomposition methods (Antonietti and Houston, 2011).
As in the CG case in Chapter 2, the question how to deal with the irregular source term
f , which can not be evaluated directly, was set aside until now. In the following, two of
the approaches already used in the continuous case, namely the partial integration and the
subtraction approach, are adapted to the DG-framework.

4.1.2. The Partial Integration (PI) Direct Approach

As in the continuous scenario in Section 2.2, also in the discontinuous case the derivation of
the partial integration approach is fairly simple. Starting from the definition of the right-hand
side vector b in (4.13) and (4.30) for a source term f = ∇· jp and jp = pδx0 , the distributional
derivative is used to shift the derivative to the test function. The remaining integral can be
easily evaluated and we obtain a sparse rhs-vector:

bpii =

∫
Ω

fvi dx =

∫
Ω

∇ · jpvi dx =

∫
Ω

〈jp,∇vi〉 dx

=

{
〈p,∇vi(x0)〉 if x0 ∈ supp vi ∈ Th(Ω),

0 otherwise.

(4.31)

Considering the discussion conducted in Section 2.5 regarding the extent of the monopole
distributions for the direct approaches, the partial integration DG approach has the advantage
that all test functions corresponding to non-zero entries in bpi are supported only on a single
mesh element. The numerical accuracy of the partial integration DG approach is evaluated in
Section 4.2.

4.1.3. The Subtraction Approach

Two ways to derive a DG formulation of the subtraction approach have been considered so far.
The first idea is to exploit the derivation performed in Section 4.1 and replace the potential u in
(4.14) by the correction potential uc from (2.35) (Ludewig, 2013). This causes additional terms
in the definition of l(v) in (4.13) as a consequence of the inhomogeneous Neumann boundary
condition (2.35b). A second approach is presented by Engwer et al. (submitted). Taking
the strong formulation (2.35) as a starting point, the derivation performed in Section 4.1 is
repeated for the correction potential uc from (4.4) onwards. In both cases, basic properties
like the coercivity of the bilinear form a – and thereby also existence and uniqueness of a
solution – and the discrete conservation property for the current uc are passed on. Here, it
shall suffice to adapt the weak form (4.14) to the subtraction approach and provide the proofs
of consistency and the charge preserving property of the correction potential uc as derived by
Engwer et al. (submitted).
First of all, it is noted that akin to (4.15) also the correction potential uc fulfills a conservation
property that can be derived by inserting the decomposition (2.34) to (4.15):
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∫
∂K

σ∂nu
c ds = −

∫
∂K

σc∂nu
∞ dx −

∫
∂K

σ∞∂nu
∞ ds +

∫
K

fdx

︸ ︷︷ ︸
≡0

.

Applying Gauss’ theorem to the right hand side, a conservation property for the correction
potential is obtained, ∫

∂K

〈σ∇uc︸ ︷︷ ︸
jc

,n〉ds =

∫
K

∇ · σc∇u∞︸ ︷︷ ︸
fc

dx , (4.32)

which basically states that uc is a conserved property with flux jc = σ∇uc and a source term
f c = ∇ · σc∇u∞.

Using the same assumptions and notations as in Section 2.6, the weak formulation of the
subtraction approach in the DG formulation reads

a(uc, v) + J(uc, v) = l(v) for all v ∈ V (4.33)

with a(uc, v) and J(uc, v) defined as in (4.17) and (4.18), respectively, uc and u∞ defined as
in (2.34a), σc and σ∞ defined as in (2.34b), and

l(v) = −
∫
Ω

〈σc∇u∞,∇v〉 dx +

∫
Γint

{σc∇u∞} JvK ds −
∫
∂Ω

σ∞∂nu
∞v ds. (4.34)

Compared to (2.37) in Section 2.6, the second term in the defintion of l(v) is an additional
term accounting for the inter-element discontinuities of the test functions v.

The bilinearform a is unchanged compared to Lemma 5, thus existence and uniqueness of a
solution follow directly. To show consistency of the DG subtraction approach, we note

Lemma 9. Given a strong solution u of (1.11) with a continuous flux σ∇u as a result of the
subtraction approach, also σ∇uc + σc∇u∞ is continuous.

Proof. Considering an arbitrary interface γ, at each point x along γ the fluxes σ∇u and
σ∞∇u∞ are continuous. Thus, the jump terms vanish and we obtain

[σ∇u] = 0 = [σ∞∇u∞]. (4.35)

Rewriting [σ∇u] in terms of σc, σ∞, uc, and u∞, we have

⇔ [σ∞∇uc] + [σc∇uc] + [σc∇u∞] = 0

⇔ [σ∇uc] = −[σc∇u∞]

⇔ [σ∇uc + σc∇u∞] = 0. (4.36)

As this property holds for any control volume and for any interface γ, the combined flux
σ∇uc + σc∇u∞ is also continuous.
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Note that this also implies the identity

[σ∇uc] = −[σc∇u∞]. (4.37)

Lemma 10 (Consistency). The SIPG discretization (4.33) for the subtraction approach is
consistent with the strong problem (2.35).

Proof. For a solution uc of the strong problem for the correction potential (2.35), the jump
JucK vanishes since minimally uc ∈ H1, so that ãsym(uc, vh) = 0 in (4.16) and J(uc, vh) = 0 in
(4.18). Using partial integration and both (2.35a) and (2.35b), (4.33) reduces to

a(uc, vh)− l(vh)

=

∫
Ω

〈σ∇uc,∇vh〉dx −
∫

Γint

{σ∇uc} JvhK ds

+

∫
Ω

〈σc∇u∞,∇vh〉 dx −
∫

Γint

{σc∇u∞} JvhK ds

+

∫
∂Ω

(σ∞∂nu
∞)vh ds

=
(2.35b)

∫
Ω

〈σ∇uc,∇vh〉dx −
∫
Γ

{σ∇uc} JvhK ds

+

∫
Ω

〈σc∇u∞,∇vh〉 dx −
∫
Γ

{σc∇u∞} JvhK ds.

We use (4.36) and add 0 = −
∫

ΓJσ∇ucK {vh} ds −
∫

ΓJσc∇u∞K {vh} ds to obtain

=

∫
Ω

〈σ∇uc,∇vh〉dx −
∫
Γ

{σ∇uc} JvhK + Jσ∇ucK {vh} ds

+

∫
Ω

〈σc∇u∞,∇vh〉dx −
∫
Γ

{σc∇u∞} JvhK + Jσc∇u∞K {vh} ds

=
(4.10)

∫
Ω

〈σ∇uc,∇vh〉dx −
∫
Γ

Jσ∇ucvhK ds

+

∫
Ω

〈σc∇u∞,∇vh〉dx −
∫
Γ

Jσc∇u∞vhK ds

=−
∫
Ω

(∇ · σ∇uc)vh dx −
∫
Ω

(∇ · σc∇u∞)vh dx

=
(2.35a)

0.

Thus, uc is also a solution of the weak formulation.

Furthermore, the conservation of charge in the discrete problem as shown in Lemma 8 also
holds true for the discrete correction potential uch and the discrete flux jch = {σ∇uc}−η σ̂γ

ĥγ
JucK,
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which converges to jc = σ∇uc for h→ 0:

Lemma 11 (Discrete conservation property). For a control volume K ∈ Th(Ω), a solution
uh of the SIPG discretization (4.21) fulfills the discrete conservation property

∫
∂K〈j

c
h,n〉ds =∫

K f
c dx with f c according to (2.35a). The numerical flux jch converges to (4.32) for h→ 0.

Proof. Testing with vh = 1K ∈ Vh on a control volume K ∈ Th(Ω) and 0 everywhere else, we
observe that ∇vh = 0 inside K and JvhK = n on ∂K. The boundary ∂K is partitioned into
boundary facets ∂K ∩ ∂Ω and internal facets ∂K \ ∂Ω. (4.33) simplifies to

a(uch, vh) + J(uch, vh) = l(vh)

⇔ −
∫

∂K\∂Ω

〈{σ∇uch} ,n〉ds +

∫
∂K

η〈 σ̂γ
ĥγ

JuchK,n〉ds =

+

∫
∂K\∂Ω

〈{σc∇u∞} ,n〉ds −
∫

∂K∩∂Ω

σ∞∂nu
∞ ds

We exploit
∫
∂K\∂Ω =

∫
∂Ω−

∫
∂K∪∂Ω, {σ

c∇u∞}+ σ∞∇u∞ = {σ∇u∞}, rearrange terms, and
obtain

⇔ −
∫

∂K\∂Ω

〈{σ∇uch} ,n〉ds +

∫
∂K∩∂Ω

〈{σ∇u∞} ,n〉ds

+

∫
∂K

η〈 σ̂γ
ĥγ

JuchK,n〉ds =

∫
∂K

〈{σc∇u∞} ,n〉ds.

As σc is continuous on K, we obtain the discrete conservation property

⇔
∫
∂K

〈{σ∇uch} − η
σ̂γ

ĥγ
JuchK︸ ︷︷ ︸

jch

,n〉ds =

∫
K

−∇ · σc∇u∞︸ ︷︷ ︸
fc

ds

Thus, the discrete problem (4.33) fulfills a conservation property with numerical flux jch =

{σ∇uc}−η σ̂γ
ĥγ

JucK, which converges to jc = σ∇uc for h→ 0, and source term f c = −∇·σc∇u∞

for each control volume K ∈ Th(Ω).

4.1.4. Error Estimates for the Discrete Solution

When deducing error estimates for the CG-FEM in Section 2.7, two main pitfalls occured:
The discontinuity of the conductivity distribution σ and the singular source term f /∈ L2(Ω)

for partial integration and Venant approach. Also for the DG-FEM, most error estimates rely
on the assumption of a source term f ∈ L2(Ω), which is apparently still only fulfilled for the
subtraction approach and not for the partial integration approach. While in the CG-case, as
presented in Section 2.7, also error estimates for singular source terms f exist, such estimates
are to the best of the author’s knowledge only derived in the two-dimensional case for DG
methods so far, e.g., by Houston and Wihler (2012). Thus, the estimates presented in this
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section can only strictly be applied to the subtraction approach.
Unlike for the CG-case in Section 2.7, the assumption of σ ∈ H1(Ω) is usually dropped for
the DG error estimates as a consequence of the discontinuous formulation and replaced by the
weaker condition σ ∈ L∞(Ω). As a further consequence of the discontinuous formulation, only
piecewise regularity of the solution u is assumed instead of demanding global regularity. A
common assumption is that the exact solutions u lives in the previously introduced broken
Sobolev spaces, W k,p(Th) or Hk(Th). Other assumptions such as homogeneous Dirichlet
boundary conditions and Ω being a convex polyhedral domain are already known from the
CG-case.

Theorem 4 (Arnold et al., 2002). Let Ω be a convex polyhedral domain. Let u ∈ H2(Th) be a
solution of the Poisson problem (1.11a) with homogeneous Dirichlet boundary conditions and
coefficients σ ∈ L∞(Ω). One obtains the L2-estimate

‖u− uh‖L2(Ω) ≤ Chk+1|u|Hk+1(Ω)

for a constant C > 0 and k being the polynomial degree of the space Vh.

Proof. Arnold et al. (2002)

This error estimate can be seen as an equivalent to the estimate (2.44) that was derived for
the CG-FEM. This or similar error estimates still hold under the slightly weaker assumption
of u ∈ H3/2+ε(Th), ε > 0 (Cai et al., 2011; Ern et al., 2009).

Corollary 3 (Quantitative error estimate for the DG subtraction approach). Let uc ∈ H2(Th)

be a solution of 2.35a and let Ω and σ fulfill the assumptions of Theorem 4. Then, for
polynomial degree k = 1 the estimate

‖uc − uch‖L2(Ω) ≤ Ch2|uc|H2(Ω)

holds for a constant C > 0 independent of h.

Though no error estimates for singular data, as occuring for the partial integration approach,
have been derived up to now, at least error estimates for solutions with lower regularity
than assumed in Theorem 4 exist and one example shall be given. Di Pietro and Ern (2012)
derived a priori error estimates for u ∈ W 2,p(Th), p ≥ 2d/(d+ 2), and weights chosen as in
(4.9) and (4.20). At least in the 2d-case it has been shown that such a solution exists for a
conductivity distribution σ that is constant on each element T ∈ Th (Kellogg, 1974; Nicaise
and Sändig, 1994). Following the Sobolev embedding theorem, this yields u ∈ H1+α(Th) with
α := 1 + d(1/2− 1/p) > 0. Based on the already introduced norm ‖ · ‖E(a+J), the estimate

‖u− uh‖E(a+J) . λ̄1/2
σ hα‖u‖W 2,p(Th) (4.38)

can be derived, where λ̄σ indicates the maximal eigenvalue of σ.
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The recitation of further a priori or a posteriori error estimates is omitted at this point. For
an overview on error estimates for a variety of different DG formulations, it is referred to
Arnold et al. (2002); Hartmann (2008).

4.2. Numerical Evaluation

After describing the methods used for the numerical evaluation, i.e., the used implementa-
tions, models, sensor setups, and methods for visualization, the results of various evaluations
of the two source modelling approaches in the DG-formulation are presented in this sec-
tion. Furthermore, these results are compared to the corresponding approaches in the CG
formulation.

4.2.1. Methods

Implementation and parameter settings

The DG-FEM subtraction and partial integration approach were implemented in the DUNE
framework (Bastian et al., 2008a,b) using the DUNE PDELab-toolbox (Bastian et al., 2010).
For comparison, also the CG-FEM subtraction and partial integration approach were re-
implemented in the same framework. Linear Ansatz-functions were used for both DG (i.e.,
k = 1 in (4.25)) and CG approaches throughout this study. For the DG approaches, the
penalty parameter was chosen to η = 0.390625 according to Engwer et al. (submitted); Ludewig
(2013) and for both CG and DG approaches an AMG-CG solver was used.

Volume conductor models

To validate and compare the accuracy of these numerical schemes, four layer sphere models
were again chosen as test scenario making use of the analytical solution as reference (cf. Section
1.6). The parameters of the models are the same as indicated in Table 2.2. As motivated in
the introduction to this chapter, hexahedral meshes were used in this study. To distinguish
between numerical and geometrical errors, a variety of head models was constructed with
different geometry/segmentation accuracies (1 mm, 2 mm, and 4 mm) and for each of these
geometries different mesh resolutions (1 mm, 2 mm, and 4 mm) were used. The details of
these head models are listed in Table 4.1 and Figure 4.4 visualizes a some of the used models.

To further evaluate the sensitivity of the different numerical methods to leakage effects, spherical
models with intentional skull leakages were generated. Therefore, the model seg 2 res 2 was
chosen as basis and the radius of the outer skull boundary was reduced from the original
86 mm to 82 mm, 83 mm, and 84 mm, resulting in skull thicknesses of 2 mm, 3 mm, and
4 mm, respectively. Thereby, a leakage scenario similar to the one presented in Figure 4.1
was generated, while preserving the advantage of a spherical solution that can be used for
error evaluations. Table 4.2 indicates the number of leaks for each model, i.e., the number of
vertices belonging to both an element labeled as skin and an element labeled as CSF or brain.
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seg 1 res 1 seg 2 res 2 seg 4 res 4

Figure 4.4.: Visualization of models seg 1 res 1, seg 2 res 2, and seg 4 res 4 (from left to right), cut in
x = 0 plane and detail taken for positive y- and z-axis; coloring is brain - red, CSF - yellow, skull -
green, skin - blue.

Table 4.1.: Model parameters

Segmentation res. Mesh res. (h) #vertices #elements

seg 1 res 1 1 mm 1 mm 3,342,701 3,262,312

seg 2 res 1 2 mm 1 mm 3,343,801 3,263,232

seg 2 res 2 2 mm 2 mm 428,185 407,907

seg 4 res 1 4 mm 1 mm 3,351,081 3,270,656

seg 4 res 2 4 mm 2 mm 429,077 408,832

seg 4 res 4 4 mm 4 mm 56,235 51,104

Sources

10 different source eccentricities were used and for each eccentricity 10 sources were randomly
distributed to gain a statistical overview of the numerical accuracy, which is expected to
depend on the local mesh structure especially for the partial integration approach (cf. Section
2.1). The accuracy for both radial and tangential dipole directions was evaluated. For reasons
of clarity and since they are more interesting with regard to the assumption of realistic sources
being oriented perpendicular to the cortex surface, only the results for radial directions are
presented here.
To make the effect of skull leakage better accessible, visualizations of the volume currents
were generated for a dipole at position (1, 47, 47), which corresponds to an element center,
and direction (0, 1, 1) for both CG- and DG-FEM and for all three models with reduced skull
thickness that are listed in Table 4.2. A cut through the x-plane at the dipole position is
visualized and both the direction and strength of the electric current is depicted for each

Table 4.2.: Model leaks

Model Outer Skull Radius #leaks

seg 2 res 2 r82 82 mm 10,080

seg 2 res 2 r83 83 mm 1,344

seg 2 res 2 r84 84 mm 0
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numerical method and model (Figure 4.15). To visualize the differences between the CG and
DG methods, the relative change in current strength and the difference between the simulated
current vectors between the two numerical methods is depicted for each model using the error
metrics lnMAGj,loc and totDIFFj,loc as defined in the following section (cf. Figure 4.16).

Error metrics

To achieve a result that purely represents the numerical and geometrical accuracy and that is
independent of the chosen sensor configuration, the solutions were evaluated on the whole
outer layer instead of choosing single points as “sensor nodes”. Again, the difference measures
RDM and lnMAG were used and besides presenting the mean RDM and lnMAG errors for
all sources at a certain eccentricity (cf. Figure 4.5, left), the results are also presented using
boxplots (cf. Figure 4.5, right).
To evaluate the local changes of the electric current, for each mesh element E furthermore the
logarithm of the local change in current magnitude,

lnMAGj,loc(E) = ln (‖jh,CG(xE)‖2/‖jh,DG(xE)‖2) , (4.39)

and the difference between the simulated current for the two methods,

totDIFFj,loc(E) = jh,CG(xE)− jh,DG(xE), (4.40)

are visualized, where xE denotes the centroid of mesh element E and jh,CG(xE) and jh,DG(xE)

the electric current at position xE computed using the CG- and DG-FEM, respectively (cf.
Figure 4.16). These metrics are denoted as lnMAGj,loc and totDIFFj,loc . As for the common
lnMAG, also for the lnMAGj,loc the change in percent can be estimated to be 100 · lnMAGj,loc

for small deviations (cf. Section 2.10.1).

4.2.2. Results

To gain a deep understanding of the differences between the two derived DG approaches and
the approaches based on the CG-FEM, a variety of comparisons was conducted. First, the
results in the sphere models with common geometry but different resolutions of the geometry
and different mesh widths are presented for each DG approach. This helps to obtain a
general overview of the influence of the mesh resolution on the accuracy of the DG approaches.
Second, the results of the DG approaches are compared to those of the corresponding CG-FEM
approaches in the models seg 1 res 1, seg 2 res 2, and seg 4 res 4. Thereby, the differences in
performance for the DG and CG approaches in regular geometries can be analyzed. Finally,
the accuracy of DG and corresponding CG approach is again compared, this time in the sphere
models with a thin skull compartment, i.e., seg 2 res 2 r82, seg 2 res 2 r83, and seg 2 res 2 r84,
to investigate the behaviour in leaky scenarios. To further illustrate the differences, this
chapter is concluded with the visualizations of the volume currents for DG and CG approaches
in a single source scenario.
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Convergence of the DG approaches
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Figure 4.5.: Convergence with increasing mesh and/or geometrical resolution for partial integration
DG approach. Results of radial dipole computations. Visualized are the mean error (left column)
and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions that are
outside the brain compartment in the discretized models are marked as dots. Note the different scaling
of the x-axes.

Figure 4.5 shows the convergence of RDM and lnMAG errors for the partial integration
DG approach when increasing the geometrical accuracy. Comparing the results for meshes
seg 1 res 1, seg 2 res 2, and seg 4 res 4 shows the clear reduction of both RDM and lnMAG
when increasing the mesh resolution and improving the representation of the geometry at the
same time. The finest mesh seg 1 res 1 achieves maximal errors below 0.05 with regard to the
RDM for eccentricities up to 0.964, i.e., a distance of 2.8 mm to the brain/CSF boundary. For
an eccentricity of 0.979, i.e., a distance of 1.6 mm to the brain/CSF boundary, the maximal
error increases to about 0.1. For even higher eccentricities, the maximal errors remain at
about 0.2. However, the median error remains below 0.1 for all eccentricities and the minimal
errors are below 0.05. The behaviour for the same mesh with regard to the lnMAG is very
similar, having a nearly constant median up to an eccentricity of 0.979 with a slight increase
of the maximal error. For higher eccentricities, the spread and IQR increase and the median
drops from about 0.05 to below 0. The errors for meshes seg 2 res 2 and seg 4 res 4 are clearly
higher than for mesh seg 1 res 1. However, additionally displaying the results for the refined
meshes seg 2 res 1, seg 4 res 1, and seg 4 res 2, where the geometry error is kept constant, allows
to estimate whether the increased errors are due to insufficient numerical accuracy or the
inaccurate resolution of the geometry. For both a geometry resolution of 2 mm and 4 mm, the
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Figure 4.6.: Convergence with increasing mesh and/or geometrical resolution for subtraction DG
approach. Results of radial dipole computations. Visualized are the mean error (left column) and
boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions that are outside
the brain compartment in the discretized models are marked as dots. Note the different scaling of the
x-axes.

errors are dominated by the geometry error; this is especially visible for the lower eccentricities.
The observed errors for models with the same geometry are very similar. Comparing the
models with a geometry resolution of 2 mm, the errors are at a similar level with regard to
the RDM up to an eccentricity of 0.964 and the median of the errors is below 0.1 (Figure 4.5,
top right). For higher eccentricities, where sources are already placed in the outermost layer
of elements that still belong to the brain compartment, the errors increase clearly and almost
double for the two highest eccentricities. Furthermore, the higher mesh resolution does not
positively influence the accuracy here. Also with regard to the lnMAG, the effect of the higher
mesh resolution is only weak, notable differences can only be seen at the highest eccentricities.
For the meshes with a geometry resolution of 4 mm, only negligible differences can be seen at
low eccentricities; the medians of the errors are very similar. For high eccentricities, the errors
are even higher for the finer mesh resolutions. However, the errors are anyway already clearly
increased compared to the models with a better approximation of the geometry: Already at
an eccentricity of about 0.5 the median RDM is only slightly below 0.1, increasing to values
above 0.4 for the highest eccentricities. The same behaviour is observed for the lnMAG,
again finding significantly increased errors compared to the models with a more accurate
representation of the geometry.

The results for the subtraction DG approach are overall very similar to those for the partial
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integration DG approach (Figure 4.6). Here, it should be kept in mind that the scaling of
the y-axis differs when comparing Figure 4.6 to Figure 4.5. This is due to the high errors for
sources that are already outside the brain compartment (indicated by black dots in the graph).
To avoid repetitions, a detailed general discussion is skipped here and only the main differences
between the results for partial integration and subtraction DG approach are stressed. With
regard to the RDM, the errors for both approaches are very similar for low eccentricities.
For high eccentricities, the subtraction DG approach overall shows a slightly worse accuracy
than the partial integration DG approach. However, the subtraction DG approach shows very
similar errors for the differently resolved meshes with the same geometry; this is especially
visible for the coarsest geometry with a mesh width of 4 mm. The same holds true for the
lnMAG, where again the errors for different mesh resolutions and the same geometry differ
less than for the partial integration DG approach.

Comparison of DG and CG approaches in common sphere models
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Figure 4.7.: Convergence with increasing mesh and geometrical resolution for both partial integration
CG-FEM and DG-FEM. Results of radial dipole computations. Visualized are the mean error (left
column) and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions
that are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

In Figure 4.7 the results for the newly proposed partial integration DG-FEM are presented
side by side with those of the CG-FEM for the meshes seg 1 res 1, seg 2 res 2, and seg 4 res 4.
For the model seg 1 res 1 the only notable differences with regard to the RDM can be observed
for the three highest eccentricities. Here, the DG-FEM achieves slightly higher accuracies for
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the two highest eccentricities. Similarly, also the evaluation of the lnMAG shows differences
for the highest eccentricities. Also for model seg 2 res 2 the two approaches achieve a very
similar numerical accuracy for the lower eccentricities with RDM errors clearly below 0.1;
for eccentricities higher than 0.871 the CG-FEM performs slightly better and at the highest
eccentricity this difference becomes more distinct. However, as analyzed before, also in this
scenario the main error source is the inaccurate representation of the geometry. With regard
to the lnMAG, the DG-FEM achieves a similar level of accuracy as in model seg 1 res 1, while
the CG-FEM leads to huge deviations for the highest eccentricities. In the coarsest model,
seg 4 res 4, the DG-FEM performs better than the CG-FEM already for low eccentricities,
leading to lower spread and IQR. Regardless of the high geometry errors observed in Figure
4.5, the differences in numerical accuracy between DG- and CG-FEM are large for both RDM
and lnMAG up to an eccentricity of 0.964. For higher eccentricities, possible differences can
be less clearly distinguished due to the dominance of the geometry error and the as a result of
that generally increased error level.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
D

M

Eccentricity

seg_1_res_1 DG-FEM

seg_1_res_1 CG-FEM

seg_2_res_2 DG-FEM

seg_2_res_2 CG-FEM

seg_4_res_4 DG-FEM

seg_4_res_4 CG-FEM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

0.010 0.502 0.748 0.871 0.933 0.964 0.979 0.987 0.991 0.993

R
D

M

Eccentricity

seg_1_res_1 DG-FEM

seg_1_res_1 CG-FEM

seg_2_res_2 DG-FEM

seg_2_res_2 CG-FEM

seg_4_res_4 DG-FEM

seg_4_res_4 CG-FEM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ln
M

A
G

Eccentricity

seg_1_res_1 DG-FEM

seg_1_res_1 CG-FEM

seg_2_res_2 DG-FEM

seg_2_res_2 CG-FEM

seg_4 res_4 DG-FEM

seg_4_res_4 CG-FEM

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

0.010 0.502 0.748 0.871 0.933 0.964 0.979 0.987 0.991 0.993

ln
M

A
G

Eccentricity

seg_1_res_1 DG-FEM

seg_1_res_1 CG-FEM

seg_2_res_2 DG-FEM

seg_2_res_2 CG-FEM

seg_4_res_4 DG-FEM

seg_4_res_4 CG-FEM

Figure 4.8.: Convergence with increasing mesh and geometrical resolution for both subtraction
CG-FEM and DG-FEM. Results of radial dipole computations. Visualized are the mean error (left
column) and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions
that are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

Again, the results gained for the subtraction approach are similar to those of the partial
integration approach (Figure 4.8). For the finest model seg 1 res 1, CG- and DG-FEM perform
nearly identical, only for the highest eccentricity the DG-FEM is slightly favored with regard
to the RDM. Also for model seg 2 res 2, though the errors for both approaches vary more
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strongly, no tendency which approach performs better can be determined. For the coarsest
model seg 4 res 4, the DG-FEM leads to lower errors both with regard to RDM and lnMAG.

Comparison of DG and CG approaches in leaky sphere models
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Figure 4.9.: Comparison of increase of errors for decreasing skull thickness between partial integration
CG-FEM and DG-FEM. Results of radial dipole computations. Visualized are the mean error (left
column) and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions
that are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

The most significant accuracy differences between DG- and CG-FEM can be seen in Figures
4.9 and 4.10, where the increase of errors for decreasing skull thickness and a consequent
increase of the number of skull leakages is studied (cf. Table 4.2). Again, Figure 4.9, i.e.,
the partial integration approaches, is discussed first. While the CG-FEM achieves higher
accuracies than the DG-FEM in the leakage-free model seg 2 res 2 r84 (4 mm skull thickness),
the DG-FEM performs clearly better in the leaky models seg 2 res 2 r82 (2 mm skull thickness)
and seg 2 res 2 r83 (3 mm skull thickness). Already for low eccentricities the sensitivity of
the CG-FEM to leakages is distinct. The accuracy of the DG-FEM only slightly decreases
when reducing the skull thickness, as can be seen when comparing the results for the three
different models, showing that this approach shows only little, if any, sensitivity to leakages. In
contrast, the errors of the CG-FEM grow strongly with decreasing skull thickness. Especially
model seg 2 res 2 r82 leads to high errors already at low eccentricities, but also the errors
for model seg 2 res 2 r83 are clearly higher for the CG- than for the DG-FEM. Overall, the
DG-FEM achieves a significantly higher numerical accuracy than the CG-FEM already for low
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eccentricities in the leaky models, both with regard to RDM and lnMAG, while the differences
in the non-leaky model seg 2 res 2 r84 are rather small.
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Figure 4.10.: Comparison of increase of errors for decreasing skull thickness between subtraction
CG-FEM and DG-FEM. Results of radial dipole computations. Visualized are the mean error (left
column) and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions
that are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

The main tendency for the leaky models seg 2 res 2 r82 and seg 2 res 2 r83, i.e., clearly higher
errors for the CG- than for the DG-FEM, also holds true when appyling the subtraction
approach (Figure 4.10). As in Figure 4.9, the differences in the leakage-free model seg 2 res 2 r84
are clearly diminished, so that CG- and DG-FEM perform very similar both with regard to
RDM and lnMAG.

Comparison of partial integration and subtraction DG approach

Until now, the evaluation concentrated on comparing the differences between the CG- and DG-
FEM implementations of the same source model. Various comparisons between subtraction
and partial integration approach using the CG-FEM implementation were already conducted
in Chapter 2. Here, the differences between partial integration and subtraction approach in
the DG-FEM implementation are discussed.
Using the common sphere models the results already shown in Figures 4.7 and 4.8 are combined
to Figure 4.11 to allow for an easier comparison. For all models very similar accuracies are
found for low eccentricities (up to 0.933) both with regard to RDM and lnMAG. For model
seg 1 res 1, the subtraction approach performs better at eccentricities of 0.964 (maximal RDM
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Figure 4.11.: Convergence for both partial integration (PI) and subtraction DG-FEM with increasing
mesh and geometrical resolution. Results of radial dipole computations. Visualized are the mean
error (left column) and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole
positions that are outside the brain compartment in the discretized models are marked as dots. Note
the different scaling of the x-axes.

partial integration ≈ 0.1, subtraction ≈ 0.05) and 0.979 (maximal RDM partial integration
≈ 0.2, subtraction ≈ 0.1), while for the even higher eccentricities the partial integration
approach performs better (maximal RDM partial integration < 0.2, subtraction > 0.2). In the
coarser model seg 2 res 2, the partial integration approach even outperforms the subtraction
approach for the three highest eccentricities with regard to the RDM. Also in model seg 4 res 4
advantages for the partial integration approach at high eccentricities can be observed. Also
with regard to the lnMAG, major differences are only found for eccentricities of 0.964 and
higher. In model seg 1 res 1, except for some outliers at highest eccentricities, no advantages
of one approach are recognizable. Using model seg 2 res 2, the subtraction approach leads to a
higher spread and IQR than the partial integration approach, while for model seg 4 res 4 both
approaches lead to a high spread at the highest eccentricities but with a better accuracy for
the subtraction approach.

Looking at the results for the leaky models (Figure 4.12), both approaches again perform
very similar for both RDM and lnMAG for eccentricities up to 0.964. With regard to the
RDM, the partial integration approach outperforms the subtraction approach for the higher
eccentricities, when considering median and upper quartile, in all tested models (e.g., median
partial integration < 0.3, subtraction > 0.4 for all models at highest eccentricity). For the
maximal error, this is only as clear for the two highest eccentricities. With regard to the
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Figure 4.12.: Comparison of increase of errors for decreasing skull thickness between partial integration
(PI) and subtraction DG-FEM. Results of radial dipole computations. Visualized are the mean error
(left column) and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole
positions that are outside the brain compartment in the discretized models are marked as dots. Note
the different scaling of the x-axes.

lnMAG, a decrease of the median for the partial integration approach is recognizable at the
highest eccentricities, while this change is smaller for the subtraction approach. However,
spread and IQR are higher for the subtraction approach at high eccentricities.

Visualization of volume currents in leaky head models

To illustrate the effect of skull leakage, the visualizations shown in Figures 4.13 - 4.16 were
generated. In Figures 4.13 and 4.15, the electric current direction and strength for a radial
dipole with fixed position and orientation (turquoise cone in middle and right column) in the
models seg 2 res 2 r82 (top row), seg 2 res 2 r83 (middle row), and seg 2 res 2 r84 (bottom
row) and with the two numerical approaches CG-FEM (middle column) and DG-FEM (right
column) are visualized for partial integration (Figure 4.13) and subtraction approach (Figure
4.15), respectively. In Figures 4.14 and 4.16 lnMAGj,loc and totDIFFj,loc between DG- and
corresponding CG-FEM approach are visualized. As previously, the results for the partial
integration approach are discussed first (Figures 4.13, 4.14). When using CG-FEM in the
model with the thinnest skull compartment (2 mm), seg 2 res 2 r82, very strong currents
are found in the innermost layer of skin elements, i.e., at the interface to the skull. This is
especially distinct for those elements the dipole is nearly directly pointing at. In comparison,
the current strengths found in the skull compartment are negligible, which is a clear sign for a
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Figure 4.13.: Visualization of model geometry (left column), current direction and strength for
partial integration approach and CG-FEM (middle column) and DG-FEM (right column) for models
seg 2 res 2 r82 (top row), seg 2 res 2 r83 (middle row), and seg 2 res 2 r84 (bottom row). The left
column shows the model geometry, interior to exterior from bottom left to top right, brain in white,
CSF, skull and skin in increasingly dark gray, and air in white. Dark gray lines mark compartment
boundaries. In the middle and right columns, the large turquoise cone represents the dipole source. The
small and normalized grey cones show the directions of the current flow and, for elements belonging to
skull and skin compartments, the coloring indicates the current strength. For each model the color
scale is kept constant for both approaches.

current leakage through the vertices shared between CSF and skin compartment, bypassing the
thin and leaky skull compartment. For the DG approach, these extreme peaks are not found
and the maximal current strength amounts to only about 30% of that of the CG approach. In
the other two models (note the much lower scaling in the middle and bottom row in Figure
4.15), a clear decrease of the current strength compared to the seg 2 res 2 r82 model is found,
especially in the skin compartment. In these two models and with the given source scenario,
none of the approaches seems to be obviously affected by skull leakage. While in model
seg 2 res 2 r83 (middle row), the DG approach shows about 4% higher peak currents in the
innermost layer of skin elements compared to the CG-FEM, the maximal current strength for
the CG-FEM is about 9% higher than for the DG-FEM and found in the skull compartment
in model seg 2 res 2 r84 (bottom row). These deviations seem reasonable considering the
relatively coarse representation of the geometry and the thereby limited numerical accuracy.
The visualizations show that the interplay between source position and direction and the local
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Figure 4.14.: Visualization of current flow differences for partial integration approach between CG-
and DG-FEM in models seg 2 res 2 r82 (left), seg 2 res 2 r83 (middle), and seg 2 res 2 r84 (right). The
turquoise cone represents the dipole source. The coloring shows the lnMAGj,loc (increase/decrease of
the current strength simulated with the CG- compared to the DG-FEM solution). For all models the
maximum of the color scale is chosen as the maximal value in the skin and skull compartment. Grey
cones, having the same linear scaling for all models, show the totDIFFj,loc (difference in current flow).
In models seg 2 res 2 r83 and seg 2 res 2 r84 the arrows in skin and skull are not visible due to the
relatively small values. Dark gray lines mark compartment boundaries.

geometry strongly influence the local current flow in these models, leading to current peaks in
some elements while neighbouring elements show relatively low currents, as it is clearly visible
in model seg 2 res 2 r84. In this model strong currents are found in the two skull elements the
dipole is pointing at. These are providing a “shortcut” between CSF and skin compartment
and thereby the lowest resistance.

In Figure 4.14 the two measures lnMAGj,loc and totDIFFj,loc are visualized to show the
differences between the two methods more clearly. As Figure 4.13 already suggests, the current
strength for model seg 2 res 2 r82 is clearly higher for the CG-FEM compared to the DG-FEM
in those elements of the innermost layer of the skin compartment that share a vertex with the
CSF compartment; this is indicated by the high lnMAGj,loc (red coloring). The visualization
of the totDIFFj,loc (gray arrows) clearly shows that the leakage generates a strong current
from the CSF compartment directly into the skin compartment that is not existing for the
DG-FEM. At the same time, the current in the skull compartment is decreased in the CG-FEM
compared to the DG-FEM, as the visualization of the totDIFFj,loc shows (inwards pointing
arrows visible when zooming into Figure 4.14, left). High values for the totDIFFj,loc are also
visible in the CSF compartment, which are most probably caused by effects similar to the
“leakage” effects, i.e., a mixing of conductivities in boundary elements/vertices. However, in
model seg 2 res 2 r82, the color-coding for the lnMAGj,loc shows that this is not related to
significant relative differences in current strength. The strongest values for the lnMAGj,loc can
be found in the skin and skull compartment, here. In turn, for the other two models the
largest deviations are found in the CSF compartment, both with regard to totDIFFj,loc and
lnMAGj,loc . However, these values are at a clearly lower level than in model seg 2 res 2 r82.
For model seg 2 res 2 r83 further strong values in lnMAGj,loc , i.e., relative differences of
current strength, are found for the innermost layer of skin elements. In these elements also
the highest absolute current strength among skin and skull compartment is found (cf. Figure
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Figure 4.15.: Visualization of model geometry (left column), current direction and strength for subtrac-
tion approach and CG-FEM (middle column) and DG-FEM (right column) for models seg 2 res 2 r82
(top row), seg 2 res 2 r83 (middle row), and seg 2 res 2 r84 (bottom row). The left column shows the
model geometry, interior to exterior from bottom left to top right, brain in white, CSF, skull and
skin in increasingly dark gray, and air in white. Dark gray lines mark compartment boundaries. In
the middle and right columns, the large turquoise cone represents the dipole source. The small and
normalized grey cones show the directions of the current flow and, for elements belonging to skull and
skin compartments, the coloring indicates the current strength. For each model the color scale is kept
constant for both approaches.

4.13). Also in the outermost layer of skin elements the values for the lnMAGj,loc are high.
These might be artifacts due to the “staircase”-like geometry of the outer surface in the
regular hexahedral model. In contrast to this, the totDIFFj,loc in skin and skull is negligible
compared to the values in the CSF compartment. The same holds true for model seg 2 res 2 r84,
where a high lnMAGj,loc in the skin compartment mainly occurs for elements with a small
absolute current strength as a comparison to Figure 4.13 shows. Still, high differences in
lnMAGj,loc and totDIFFj,loc are visible in the CSF compartment. These results indicate that
model seg 2 res 2 r83 and seg 2 res 2 r84 are less affected by skull-leakage, the differences are
rather due to the different computational approaches and do not show obvious errors resulting
from the model geometry.

No major differences between the visualization of the volume currents for partial integration
and subtraction approach can be identified when comparing Figures 4.13 and 4.15. The color
bar indicates that the maximal current strength in model seg 2 res 2 r82 is reduced by about
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Figure 4.16.: Visualization of current flow differences for subtraction approach between CG- and
DG-FEM in models seg 2 res 2 r82 (left), seg 2 res 2 r83 (middle), and seg 2 res 2 r84 (right). The
turquoise cone represents the dipole source. The coloring shows the lnMAGj,loc (increase/decrease of
the current strength simulated with the CG- compared to the DG-FEM solution). For all models the
maximum of the color scale is chosen as the maximal value in the skin and skull compartment. Grey
cones, having the same linear scaling for all models, show the totDIFFj,loc (difference in current flow).
In models seg 2 res 2 r83 and seg 2 res 2 r84 the arrows in skin and skull are not visible due to the
relatively small values. Dark gray lines mark compartment boundaries.

7% when using the subtraction approach, while the general current distribution is very similar.
The same holds true for models seg 2 res 2 r83 and seg 2 res 2 r84, where also the maximal
current strengths are about the same. This also reflects in the distribution of lnMAGj,loc and
totDIFFj,loc as a comparison of the visualizations in Figures 4.14 and 4.16 shows. Again, a
slightly lower difference between CG- and DG-FEM is found for the subtraction approach,
while the general tendencies remain the same.

4.3. Discussion

In this chapter, the theoretical derivation of the Discontinuous Galerkin method for EEG
forward simulations was presented and the partial integration and subtraction approach were
introduced in this framework. It was shown that this scheme is consistent and fulfills a discrete
conservation property. Existence and uniqueness follow from the coercivity of the bilinear
form.

The numerical experiments showed the convergence of the DG solutions towards the analytical
solution with increasing mesh resolution and better approximation of the spherical geometry.
It was furthermore shown that the numerical accuracy of the DG approaches is dominated
by the geometry error, while the actual mesh resolution in a model that badly approximates
the geometry only had a minor influence on the numerical results (Figures 4.5, 4.6). The
inaccurate representation of the geometry, especially in the coarser meshes, is visible by the
“staircase-like” boundaries in Figure 4.4.

In the comparisons of DG- and the commonly used CG-FEM approaches, no remarkable
differences were found for meshes with higher resolutions (1 mm, 2 mm), as the results in
Figures 4.7 and 4.8 are in the same range for both the DG- and CG-based approaches for the
models seg 1 res 1 and seg 2 res 2. In this set of experiments, three main sources of errors can
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be identified; namely geometry errors, numerical inaccuracies, and leakage effects:

First, we have the error due to the inaccurate representation of the geometry, which is especially
strong in the models with low resolution as Figures 4.5 and 4.6 show. It is thus strongly
recommendable to use geometry resolutions, and thereby necessarily MRI resolutions, as high
as practically feasible; possibly even locally-refined when zoomed MRI technology can be
used, as it is available for practical use as of late. This is based on a combination of parallel
transmission of excitation pulses and localized excitation (Blasche et al., 2012). A first usage
of this zoom technique can be found in Aydin (2015, Chapter 5). Moreover, Bastian and
Engwer (2009) presented a cut-cell approach that allows for an accurate representation of
the geometry while only introducing a negligible amount of additional degrees of freedom.
Thereby, the achieved accuracy can be increased while the computational effort is hardly
affected. First results for EEG forward simulations were shown by Nüßing et al. (2015).

A second point, as already discussed in Chapter 2, is the numerical inaccuracy due to the
discretization of Equation (1.11) in combination with the strong singularity introduced by the
assumption of a point dipole. This singularity is the main cause for the numerical inaccuracies
at highest eccentricities, where the source positions are very close to the next conductivity
jump (cf. Figures 4.7, 4.8).

The third source of errors, the “leakage effects”, explains the large differences in numerical
accuracy between CG- and DG-FEM that can be observed in model seg 4 res 4. Due to the
coarse resolution in comparison to the thickness of the skull compartment (4 mm resolution, 6
mm thickness), this model can already be considered as (at least partly) leaky.

This observation motivated the evaluation of the two methods in a scenario where the assumed
advantages of the DG-FEM have a bigger effect. Therefore, spherical models with an especially
thin skull layer were constructed, finally ending up with the model seg 2 res 2 r82 that has a
skull layer as thin as the edge length of the hexahedra (cf. Figure 4.13, left column). Though
a mesh resolution of 1 mm is highly recommendable for practical application of FEM in
source analysis (Aydin et al., 2014; Rullmann et al., 2009), mesh resolutions of 2 mm are still
used even in clinical evaluations (Birot et al., 2014) and indeed there are areas of the skull
such as the temporal bone, where the thickness is actually only 2 mm or even less (Kwon
et al., 2006, Table 2). Thus, the synthetic scenario used here actually has practical relevance.
The DG-FEM achieved a higher numerical accuracy in the two models with the thinnest
skull layers, seg 2 res 2 r82 and seg 2 res 2 r83, while the results for model seg 2 res 2 r84
are comparable for DG- and CG-FEM (Figures 4.9, 4.10). In the latter model, the ratio of
resolution (2 mm) and skull thickness (4 mm) guarantees that the skull compartment can be
appropriately resolved and thus avoids leakages.

To make the difference between CG- and DG-FEM in the presence of skull leakages better
accessible, Figures 4.13 - 4.16 were generated. The skull leakage is clearly visible in all figures
for model seg 2 res 2 r82 and the CG-FEM as described in the results section. There are
also slight differences visible in the CSF in all three models, which might be explained by
the relatively thin CSF layer. At this resolution (2 mm thickness, 2 mm segmentation/mesh
resolution) the elements of the CSF compartment are no longer completely connected via
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faces, but often only via shared vertices (cf. Figure 4.13, left column). Using such a coarse
model, the current is “blocked” in some regions although in the real geometry it is not. In this
case, the CG-FEM shows slightly better results, as it allows the current to also flow through a
single vertex, even though this is not strictly correct from a physical point of view. In contrast,
the DG-FEM solution exactly fulfills the intuitive expactation in this particular geometry; the
main current is channeled through the CSF, but due to the wrong representation of the CSF it
yields slightly wrong currents (compared to the real geometry) and thereby reduces the usually
very strong current in the highly-conductive CSF compartment. This might explain the slight
advantages of the CG-FEM with regard to numerical accuracy for model seg 2 res 2 r84 (cf.
especially lnMAG in Figures 4.9, 4.10), which are in agreement with the strong lnMAG effect
of the CSF as shown in Chapter 3. Still, it has to be pointed out that these geometry errors
in the CSF only have a minor effect, as they do not block the current completely but only
divert it slighty.

Overall, these results show benefits of the newly derived DG-FEM approach and motivate
the introduction of this new numerical approach for solving the EEG forward problem.
Furthermore, the DG-FEM approach allows for an intuitive interpretation of the results in
the presence of geometry artifacts.

As shown in the presented studies, inaccuracies in the approximation of the geometry and
resulting current leakages might become significant sources of error when using regular
hexahedral meshes with coarse resolutions. However, possibilities to avoid such errors have
been proposed. Vallaghé and Papadopoulo (2010) introduced a trilinear immersed finite
element method to solve the EEG forward problem, which allows the use of structured
hexahedral meshes, i.e., the mesh structure is independent of the physical boundaries. The
interfaces are then represented by level-sets and finally considered using special basis functions.
This method is still based on a CG-FEM formulation, so that the behaviour when the thickness
of single compartments is in the range of the resolution of the underlying mesh is unclear,
especially when both the compartment boundaries between CSF and skull (inner skull surface)
and skull and skin (outer skull surface) are contained in one element; it is probable that it
suffers from the same problems as the common CG-FEM in such situations. Unfortunately,
no further in-depth analysis of this approach has been performed until now to the best of the
author’s knowledge. The cut-cell DG approach presented by Nüßing et al. (2015) has the
same advantageous features with regard to the representation of the geometry as the approach
presented by Vallaghé and Papadopoulo (2010), but additionally fulfills the charge preserving
property of the DG-FEM as demonstrated here.

The charge preserving property could also be achieved by certain implementations of finite
volume methods (FVM). Cook and Koles (2006) presented a vertex-centered finite volume
approach to solve the EEG forward problem, which shares the advantage that anisotropic
conductivities can be treated quite naturally with the here presented FEM approaches.
However, due to its construction, the vertex-centered approach can also be affected by
unphysical current flow between high-conducting compartments that touch in single vertices
as seen for the CG-FEM. This problem could be avoided using a cell-centered finite volume
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Figure 4.17.: Visualization of current direction and strength for partial integration DG-FEM and dif-
ferent choices of η for models seg 2 res 2 r82 (top row), seg 2 res 2 r83 (middle row), and seg 2 res 2 r84
(bottom row). Dark gray lines mark compartment boundaries, the large turquoise cone represents the
dipole source. The small and normalized grey cones show the directions of the current flow and, for
elements belonging to skull and skin compartments, the coloring indicates the current strength. For
each model the color scale is chosen according to the maximal current strength over all choices of η.

approach.

Two aspects concerning the DG approaches were not explicitly evaluated in this chapter.
One is the computational effort. Due to the more complex structure (cf. Equation (4.33)),
the setup of the stiffness matrix and the iterative solving is more time-consuming for DG-
than for CG-FEM when using the same mesh for both approaches. Also the setup of the
right-hand side for the subtraction approach is even more time consuming for DG- than for
CG-FEM. However, the setup time for a single right-hand side can be kept in the range of
tens of milliseconds for the less computationally demanding partial integration DG approach.
Since moreover, as for CG-based approaches, the number of equation systems that have to be
solved can be limited to the number of sensors by the implementation of transfer matrices (cf.
Section 2.9), the additional time effort can be reduced to an increase of the unique setup time.
For a detailed analysis of computation times and memory demands for the subtraction DG
approach reference is made to Ludewig (2013).

The second aspect that could not be evaluated in the scope of this thesis is the choice of
the penalty parameter η. This is interesting both with regard to numerical accuracy and
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computational performance. That the numerical solution is actually influenced by the choice
of η, can directly be seen in the derivation of the conservation property of the discrete solution,
as jh = {σ∇u} − η σ̂γ

ĥγ
JuK depends on η. Figuratively speaking, a higher value of η penalizes

jumps of the solution and could possibly diminish the advantages of the DG approaches as
the solution is forced towards the solution of the conforming formulation (Arnold et al., 2002).
In contrast, a low value of η to a certain degree allows jumps of the numerical solution for the
originally continuous potential u. Castillo (2002) compared numerical accuracy and speed
of different DG formulations, namely SIPG, local discontinuous Galerkin (LDG), and non-
symmetric interior Penalty Galerkin (NIPG) method, for different choices of η and concluded
that for large values of η all methods achieve the same accuracy, while the symmetric methods
SIPG and LDG perform better than non-symmetric methods for lower values.
Some of the computational issues that have to be considered in the choice of η were already
mentioned at the end of Section 4.1.1. To ensure coercivity of the bilinear form the value of
η has to be chosen high enough (cf. Lemma 5), but at the same time high values of η may
cause an increase of the condition number of the system matrix A and as a consequence a
decrease of the solver performance (Castillo, 2002). From this point of view, it seems desirable
to choose η as low as possible. To avoid a loss of stability, lower bounds for η in the SIPG
or SWIPG formulation were derived in different scenarios (Ainsworth and Rankin, 2012;
Di Pietro and Ern, 2012; Epshteyn and Rivière, 2007; Shahbazi, 2005). However, these bounds
have practical limitations, such as being mesh dependent, costly to compute, or limited to
the 2d-case. Thus, η is often chosen user-dependent as it was also done here (Di Pietro and
Ern, 2012). In the numerical evaluations, η = 0.390625 was chosen according to Engwer et al.
(submitted); Ludewig (2013), so that coercivity of the bilinearform was guaranteed for all
considered models.
Figure 4.17 illustrates the effect of varying η on the simulated volume currents for the partial
integration DG approach. These are visualized for the models seg 2 res 2 r82, seg 2 res 2 r83,
and seg 2 res 2 r84 and η = 0.1, which just guarantees convergence in these head models,
η = 0.390625, and η = 0.8. The results underline the interpretation that choosing a high value
for η forces the solution towards the CG-FEM solution, leading to higher peak currents, while
choosing a very low η results in a smoother current distribution. This is especially visible for
model seg 2 res 2 r82. The influence on the numerical accuracy of the EEG forward solution
should therefore be investigated in further studies.
In conclusion, optimizing the value of η could possibly help to further increase accuracy and
speed of the DG approaches on the one hand. On the other hand, empirically estimating an
optimal value of η for each considered mesh would clearly complicate the application in praxis
and is a complicated task if no reference solution is known. These aspects have to be balanced
and should be kept in mind in the comparisons with the Mixed-FEM in the following chapter,
where the choice η = 0.390625 is retained.



5
A MIXED-FEM APPROACH TO SOLVE

THE EEG FORWARD PROBLEM

In Section 2.4, an approach to model the source dipole by lowest-order Raviart-Thomas (RT0)
basis functions as it was proposed by Pursiainen et al. (2011) was evaluated. RT0 elements
are particularly interesting as a source model as they provide a simple means to model a
divergence-conforming primary current vector field that is square integrable.

However, the presented approach still relies on the same CG-FEM formulation as introduced in
Chapter 2. As shown in Chapter 4, this formulation can lead to numerical inaccuracies in some
scenarios, e.g., when the volume conductor contains very thin, low-conducting layers such as
the skull compartment. A first approach to tackle these problems was presented in Chapter 4,
where formulations of subtraction and partial integration approach in the DG-framework were
derived and it was shown that the effect of unwanted leakages through the skull compartment
can thereby be prevented.

This chapter is devoted to the derivation of an approach to solve the EEG forward problem using
a mixed finite element method (M-FEM). This method shares the property of conservation of
charge with the DG-FEM by construction (Barrenechea et al., 2007; Ewing et al., 1999) and
should thereby also prevent unwanted current leakages. Furthermore, it provides a natural
way to implement RT0 elements as primary current jp, since these elements are used as test
and trial functions in this approach.

To derive the M-FEM formulation of the EEG forward problem, the equation system (1.10)
instead of the previously used Poisson-type equation (1.11) is used as starting point. Thereby,
the current flow j, which was eliminated in the original derivation to achieve the second order
PDE (1.11), becomes an additional unknown besides the potential u.

Before deriving the discretization, we recall the function spaces and basis functions that are
used. While lowest-order Raviart-Thomas functions are used to discretize the electric current j
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in this chapter, also the use of higher order functions is possible. The potential u is discretized
using P0 functions, i.e., the indicator function on each element.

5.1. Variational Formulation

As mentioned, the basic function space in which we search for a solution for the potential u
is the space of square integrable functions, L2(Ω). To model the current, the vector-valued
function space H(div; Ω) is used, which is a natural solution space for the current in the mixed
formulation of the forward problem. We recall its definition,

H(div; Ω) :=
{
q ∈ L2(Ω)3 : ∇ · q ∈ L2(Ω)

}
,

and note that akin to the scalar-valued Sobolev spaces H k this space becomes a Hilbert space
with the norm

‖q‖H(div;Ω) :=
(
‖q‖2L2(Ω)3 + ‖∇ · q‖2L2(Ω)

) 1
2
. (5.1)

The choice of H(div; Ω) can be motivated by the fact that with E also j − jp is a gradient
field in the case of piecewise constant conductivities, as it is clear from the definition of the
potential u in (1.8), and thereby curl-free. We introduce a subspace H∗(div,Ω) of H(div; Ω),
such that the boundary condition 〈j,n〉 = 0 on ∂Ω = Γ is fulfilled by definition:

H∗(div,Ω) := {q ∈ H(div; Ω) : 〈q|∂Ω,n〉 = 0} (5.2)

Using these spaces, we introduce the weak formulation of (1.10):

∫
Ω
〈σ−1j,q〉 dx −

∫
Ω
∇ · qudx =

∫
Ω
〈σ−1jp,q〉 dx for all q ∈ H∗(div,Ω), (5.3a)∫

Ω
∇ · jv dx = 0 for all v ∈ L2(Ω). (5.3b)

The derivatives are shifted to the vector-valued functions here; this is the so-called dual mixed
formulation of the Poisson problem (Arnold, 1990). For the following proof of existence and
uniqueness of a solution of (5.3) it is reasonable to define the bilinearforms

a(p,q) := (σ−1p,q)L2(Ω)3 , (5.4a)

b(p, v) := (∇ · p, v)L2(Ω) (5.4b)

and the functional

l(q) := (σ−1jp,q)L2(Ω)3 (5.5)

for p,q ∈ H∗(div,Ω), v ∈ L2(Ω), l ∈ H(div; Ω)′, σ ∈ L∞(Ω), σ > 0. As in the previous
derivations, we leave the subspace of L2(Ω) in which v lives, the actual definiton of jp, and
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possible further restrictions on σ open for now and specify them when it is necessary.
Thereby, (5.3) reads

Find (u, j) ∈ L2(Ω)×H∗(div,Ω), such that

a(j,q) + b(q, u) = l(q) for all q ∈ H∗(div,Ω), (5.6a)

b(j, v) = 0 for all v ∈ L2(Ω). (5.6b)

In this formulation the saddle point structure of problem (5.6) and thus also (5.3) is recognizable.
As a consequence, the so far developed theory for proving existence and uniqueness of a
solution, which mainly relied on the Lemma of Lax-Milgram (Lemma 1), is not applicable.
Indeed, while the boundedness is satisfied for operator a as defined in (5.4a), ellipticity is not
given. Thus, our theoretical framework needs to be expanded.

5.2. Existence and Uniqueness of a Weak Solution

As mentioned, the so far derived theory for systems of PDEs does not apply for problem
(5.3)/(5.6). To prove existence and uniqueness of a solution, it is necessary that the operator
b fulfills an inf-sup condition, which is in this case also called LBB condition, named after the
mathematicians Ladyzhenskaya, Babuska, and Brezzi.
First, necessary conditions to show existence and uniqueness of a solution for general problems
of saddle point structure are derived and it is then shown that problem (5.6) fulfills these
conditions.
Let Q and V be Hilbert spaces and X := Q× V . We consider a general saddle point problem
of structure

Find (p, u) ∈ X, such that

a(u, v) + b(v, p) = 〈l, v〉 for all v ∈ V (5.7a)

b(u, q) = 〈g, q〉 for all q ∈ Q. (5.7b)

with continuous bilinear forms

a : V × V → R, b : V ×Q→ R, and l ∈ V ′, g ∈ Q′.

Theorem 5. Problem (5.7) admits a unique solution (p, u) ∈ X, iff

(i) The bilinear form a is V0-elliptic, i.e., it exists α > 0 such that

a(v, v) > α‖v‖2V for all v ∈ V0 (5.8)

with V0 being the kernel of b, V0 := {v ∈ V : b(v, q)L2(Ω) = 0 for all q ∈ Q}.
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(ii) The bilinear form b fulfills an inf-sup condition (LBB condition), i.e., it exists β > 0

such that
inf

q∈Q\{0}
sup

v∈V \{0}

b(v, q)

‖v‖V ‖q‖Q
≥ β. (5.9)

Proof. Braess (2007, p. 124ff); Braack (2012, 9.1)

A useful tool to proove the inf-sup condition for discrete subspaces, Vh ⊂ V , Qh ⊂ Q, when it
is already known to hold in the continuous formulation, is Fortin’s criterion.

Theorem 6 (Fortin’s criterion; Braess, 2007; Brezzi and Fortin, 1991). Let the bilinearform
b : V ×Q→ R fulfill the inf-sup condition. Further assume that for the subspaces Vh and Qh
there exists a bounded, linear projection Πh : V → Vh, such that

b(v −Πhv, qh) = 0 for all qh ∈ Qh. (5.10)

If ‖Πh‖ < C for some constant C independent of h, also Vh and Qh fulfill the inf-sup condition.

Proof. For qh ∈ Qh, we have

β‖qh‖Q ≤ sup
v∈V \{0}

b(v, qh)

‖v‖V
= sup

v∈V \{0}

b(Πhv, qh)

‖v‖V
≤ c sup

v∈V \{0}

b(Πhv, qh)

‖Πhv‖V
= c sup

vh∈Vh\{0}

b(vh, qh)

‖vh‖V
.

Corollary 4. For every l ∈ H1(Ω)′, the problem (5.6) admits a unique solution (u, j) ∈
L2(Ω)×H(div; Ω). Furthermore, u ∈ H1(Ω).

Proof. This proof mainly follows the ideas of the proof given by Braack (2012, 9.5). We have
V = H∗(div,Ω) and Q = L2(Ω). Following Theorem 5 it has to be shown that the bilinear
form a from (5.4a) is V0-elliptic and b from (5.4b) fulfills the inf-sup condition.

(i) a is V0-bounded and thus continuous. The kernel of b is

V0 = {v ∈ V : (∇ · v, q) = 0 for all q ∈ L2(Ω)}. (5.11)

Since with v ∈ V0 ⊂ H(div; Ω) we have ∇ · v ∈ L2(Ω), it follows that ‖∇ · v‖L2(Ω) = 0

and thus

a(v, v) ≥ min
x∈Ω

σ−1(x)︸ ︷︷ ︸
=α

‖v‖2L2(Ω)3 = α‖v‖2L2(Ω)3

= α(‖v‖2L2(Ω)3 + ‖∇ · v‖2L2(Ω)) = α‖v‖2H(div;Ω). (5.12)

(ii) Let q ∈ L2(Ω)\{0}. Since C∞0 (Ω) is dense in L2(Ω), it exists a q̃ ∈ C∞0 (Ω), such that

‖q − q̃‖2L2(Ω) ≤
1

2
‖q‖2L2(Ω) (5.13)
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We now define a v ∈ L2(Ω)3 by setting its first component

v1(x) = v1(x1, x2, x3) :=

∫ x1

−∞
q̃(t, x2, x3)dt . (5.14)

The integral is well-defined, since Ω is by assumption bounded. The other components
of v are set to zero, v2 = v3 ≡ 0. We now have

∇ · v =
∂v1

∂x1
= q̃. (5.15)

Using the properties of the scalar product and the parallelogram equality (1 ), (5.13),
and Young’s inequality (2 ), we have

b(v, q) = (∇ · v, q)L2(Ω) = (q̃, q)L2(Ω)

(1 )
=

1

2

(
‖q̃‖2L2(Ω) + ‖q‖2L2(Ω) − ‖q̃ − q‖

2
L2(Ω)

)
(5.13)
≥ 1

2

(
‖q̃‖2L2(Ω) +

1

2
‖q‖2L2(Ω)

)
≥ 1

4

(
‖q̃‖2L2(Ω) + ‖q‖2L2(Ω)

)
(2 )

≥ 1

2
‖q̃‖L2(Ω)‖q‖L2(Ω).

With Friedrichs’ inequality and a constant c = c(Ω), we have

‖v‖L2(Ω)3 ≤ c|v|H1(Ω) = c‖∇ · v‖L2(Ω),

‖v‖2H(div;Ω) = ‖v‖2L2(Ω)3 + ‖∇ · v‖2L2(Ω)

≤ (1 + c2)‖∇ · v‖2L2(Ω)

≤ (1 + c2)‖q̃‖2L2(Ω).

With c′ = (1 + c2)−1/2 > 0 it follows that

b(v, q)

‖v‖H(div;Ω)‖q‖L2(Ω)
≥ 1

2

‖q̃‖L2(Ω)‖q‖L2(Ω)

‖v‖H(div;Ω)‖q‖L2(Ω)
≥ c′

2

‖q̃‖L2(Ω)‖q‖L2(Ω)

‖q̃‖L2(Ω)‖q‖L2(Ω)
≥ c′

2
. (5.16)

Thus, the LBB condition is fulfilled and we have a unique solution (u, j) ∈ L2(Ω) ×
H(div; Ω).

Since C∞0 (Ω)3 ⊂ H∗(div,Ω), we have for any ϕ ∈ C∞0 (Ω)3 and the solution u

(∇ · ϕ, u)L2(Ω) = b(ϕ, u) = −a(j, ϕ) + l(ϕ)

= −(σ−1j, ϕ)L2(Ω)3 + (σ−1jp, ϕ)L2(Ω)3

= (σ−1(jp − j), ϕ)L2(Ω)3 for all ϕ ∈ (C∞0 Ω)3. (5.17)

For i ∈ {1, 2, 3} we now explicitly set ϕi = ϕ̃, ϕ̃ ∈ C∞0 (Ω), and ϕj ≡ 0 for j 6= i. We
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have (u, ∂ϕ̃/∂xi)L2(Ω) = ((σ−1(jp− j))i, ϕ̃)L2(Ω) for any ϕ̃ ∈ C∞0 (Ω) and i ∈ {1, 2, 3} and
thus the weak derivative ∂u/∂xi = (σ−1(jp − j))i. It follows that u ∈ H1(Ω) with weak
derivative ∇u = σ−1(jp − j).

5.3. Discretization

Next, the finite dimensional subspaces of L2(Ω) and H(div; Ω) to which we restrict the
numerical solution are fixed. As mentioned, H(div; Ω) is approximated using the space RT0 of
lowest-order Raviart-Thomas elements that was already introduced in Section 2.4. Here, the
continuity of the normal component 〈q,n〉 becomes especially important, as it is a necessary
requirement to ensure that the integration by parts formula holds, which was used in the
construction of the dual mixed formulation. Some further properties of these elements are
recited here, for a more detailed presentation it is referred to Brezzi and Fortin (1991); Nédélec
(1980).

Proposition 7. For any tetrahedral/hexahedral element T we have for q ∈ RTk(T )

∇ · q ∈ Pk(T )/Qk(T ),

〈q,n∂T 〉 ∈ Rk(∂T )

with
Rk(∂T ) = {p ∈ L2(∂T ) : p|fi ∈ Pk/Qk(fi) for all fi ∈ F(T )}

Proof. q ∈ RTk(T ) can be written as q = q0 + xpk with q0 ∈ (Pk/Qk)
d, pk ∈ Pk/Qk. Thus,

it is clear that also ∇ · q ∈ Pk/Qk.
We multiply q by the face normal vector n∂T , 〈q,n∂T 〉 = 〈q0,n∂T 〉 + 〈x,n∂T 〉pk. Since
〈x,n∂T 〉 is constant on a face fi, 〈q,n∂T 〉 ∈ Pk/Qk.

While the introduction of the RT0 elements in Section 2.4 was rather informal, these would
commonly be defined by fixing the degrees of freedom on each element T ∈ Th. For reasons of
completeness, we indicate the definition of the degrees of freedom here. To ensure continuity of
〈q,n〉 over element interfaces, the degrees of freedom Σk for q ∈ RTk(T ) are in the tetrahedral
case chosen to be (Brezzi and Fortin, 1991)

∫
∂T
〈q,np〉 ds, p ∈ Pk(∂T ),∫
T
〈q,p〉 dx , p ∈ (Pmax(k−1,0)(T ))3,

(5.18)

and accordingly with properly defined subspaces of Qk in the hexahedral case. We have
q ≡ 0 if the degrees of freedom are 0 for all p ∈ Pk(∂T ) and p ∈ (Pmax(k−1,0)(T ))3. From
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this definition, it can be deduced that the dimensions of the RTk space for each element are
(Brezzi and Fortin, 1991)

dimRTk(T ) =
1

2
(k + 1)(k + 2)(k + 4) for a tetrahedron T,

dimRTk(H) = 3(k + 1)2(k + 2) for a hexahedron H.

In the following, k = 0 is chosen and it suffices to recognize that dimRT0(T ) is just the number
of faces per element, corresponding to the previous interpretation of face-bound degrees of
freedom. We furthermore note that the set of RT0 elements is unisolvent in H(div; Ω) (Nédélec,
1980).

To approximate L2(Ω), the space of piecewise constant functions P0 = M0 is chosen (cf. (2.4))

P0(Th) :=
{
v ∈ L2(Ω) : v|T ∈ P0(T ) for all T ∈ Th

}
. (5.19)

In the following, this space is simply denoted as P0. It is obvious that P0 is not a subspace of
H1(Ω), however, we have divRT0 ⊂ P0. For the 2d-case the resulting degrees of freedom on
each element are illustrated in Figure 5.1 (right).

Figure 5.1.: RT0 basis function on hexahedral mesh elements (left), degrees of freedom for rectangular
mesh, qi indicating vector-valued, v indicating scalar ones, respectively (right)

Corollary 5. The choice Vh = RT0 and Qh = P0 fulfills the conditions of Theorem 5.

Proof. The V0-ellipticity follows directly, since RT0(Th(Ω)) ⊂ H(div; Ω). To prove the inf-sup
condition, Fortin’s criterion (Theorem 6) can be used, i.e., it has to be shown that for the
operator b and the subspaces Vh and Qh a bounded, linear projection Πh : V → Vh exists,
such that

b(v −Πhv, qh) = 0 for all qh ∈ Qh.

This can be fulfilled by defining Πh via a PDE of type (5.6) (Braess, 2007, p. 143f; Brezzi and
Fortin, 1991, p. 137f; Arnold et al., 2006).

As next step to discretize the equation system (5.3), the basis functions for the discrete spaces
are defined. For the space P0, this can simply be done by choosing the indicator function on
each element Ti ∈ Th
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vi(x) := 1Ti(x) =

{
1 if x ∈ Ti
0 otherwise

for Ti ∈ Th. (5.20)

Due to the face-bound degrees of freedom, the basis functions for the Raviart-Thomas space
can be defined by the normal component of the flux over the face fj ∈ F (Th) between two
elements of the triangulation. The actual definitions were given in Section 2.4. We denote by
SP0
h the set of P0(Th) basis functions and by SRT0h the set of RT0(Th) basis functions.

Writing the discrete solutions uh and jh in the basis of the respective function space, i.e.,
uh =

∑
i uivi, vi ∈ S

P0
h , jh =

∑
k jkwk, wk ∈ SRT0h , and defining bi :=

∫
Ω〈σ

−1jp,wi〉dx , we
have the matrix equation (

A BT

B 0

)
︸ ︷︷ ︸

:=K

(
j

u

)
=

(
b

0

)
(5.21)

with

Ai,j =

∫
Ω
〈σ−1wi,wj〉 dx Bk,j =

∫
Ω
vk(∇ ·wj) dx (5.22)

for vk ∈ SP0
h , wi,wj ∈ SRT0h .

For the submatrices A and B we have mA = nA = #faces and mB = #elements, nB = #faces,
respectively, and thus the dimension of K is mK = nK = #faces + #elements.

In the following, we assume a partition Th(Ω) into hexahedra throughout.

Similarly to the Whitney approach presented in Section 2.4, the definition of b easily allows
to solve the EEG forward problem for a primary current distribution jp ∈ L2(Ω). However,
in contrast to the so far presented approaches, also for the choice of a current dipole, jp =

mδx0 /∈ L2(Ω), the integral
∫

Ω〈σ
−1jp,wi〉dx can be directly evaluated now. We can define b

as

bi =

∫
Ω
〈σ−1mδx0 ,wi〉 dx =

{
〈σ−1m,wk(x0)〉 if x0 ∈ suppwi

0 otherwise.
(5.23)

In the following, directly applying b as a right-hand side is called the direct approach. It can
be interpreted as a smoothing/blurring of the singular primary current jp. In contrast to the
Whitney CG approach, the basis functions used to approximate the current distribution are
this time naturally occuring in the finite element space.

Besides this intuitive way to calculate the right-hand side vector it is also possible to proceed
similar as in Section 2.4, i.e., to calculate a projection of the current source from the vector-
valued current space to the potential space. A projection matrix is already given by the matrix
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B, which is similar to the matrix G in Section 2.4, just that the potential is approximated in
P0 instead of P1 here. The projected right-hand side is then given by

hproj = Bb (5.24)

and (5.21) becomes (
A BT

B 0

)(
j

u

)
=

(
0

hproj

)
. (5.25)

Both approaches are evaluated in Section 5.7.

5.4. Error Estimates for the Discrete Solution

As for the CG- and DG-FEM in Section 2.7 and 4.1.4, this section is devoted to error bounds
for the previously derived discretization. These are mainly given without proof, for details,
unless indicated differently, it is referred to the book of Brezzi and Fortin (1991).
While the discontinuous conductivity distribution σ remains a problem and general error
estimates for solutions of (5.7) can again only be derived under the simplifying assumption
of a single-layer model, the regularity of the source term is unproblematic when adapt-
ing the interpretation also used for the Whitney approach in Section 2.7. The definition
(5.23) of bi allows to interpret the right-hand side as a superposition of RT0 basis functions,
jprt =

∑
〈jp,wi〉wi ∈ H(div; Ω), instead of the singular source term jp. A drawback of this

interpretation is that only the convergence towards the mollified source jprt is evaluated, while
it remains unclear how well jprt approximates the dipole source jp.
We start with a general derivation of error estimates, again assuming σ constant and ∂Ω

(piecewise) C2. For general finite dimensional subspaces Qh ↪→ Q and Vh ↪→ V existence and
uniqueness of a solution ph ∈ Qh and uh ∈ Vh are given after a straight-forward definition of
the operators ah and bh (Brezzi and Fortin, 1991). We define

KerBh = {vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh}, (5.26a)

KerBt
h = {qh ∈ Qh : b(vh, qh) = 0 for all vh ∈ Vh} (5.26b)

and have the general approximation properties

Theorem 8. Let (1.13) admit a unique solution. Let ah fulfill the condition

inf
uh∈KerBh

sup
v∈KerVh

ah(uh, vh)

‖uh‖V ‖vh‖V
≥ α (5.27)

and KerBh 6= ∅. Let (ph, uh) ∈ Xh be a solution of the redefined problem (5.7). Then, there
exist constants c1 and c2 independent of h such that

‖u− uh‖V ≤ c1 inf
vh∈Vh

‖u− vh‖V + c2 inf
qh∈Qh

‖p− qh‖Q. (5.28)
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If moreover KerBh ⊂ KerB, we have

‖u− uh‖V ≤ c1 inf
vh∈Vh

‖u− vh‖V . (5.29)

With k0 being a constant depending on b and bh and kh ≥ k0 depending on h, we have

‖p− ph‖Q/KerBth
≤
(

1 +
‖b‖
kh

)
inf

qh∈Qh
‖p− qh‖Q +

‖a‖
kh
‖u− uh‖V . (5.30)

Proof. Brezzi and Fortin (1991, p. 56)

Theorem 9. Let (p, u) ∈ Q× V and (ph, uh) ∈ Qh × Vh be solutions of (5.7). Assume that
the inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖Vh‖qh‖Qh/KerBt
≥ κ0 > 0 (5.31)

is satisfied and let a be uniformly coercive on KerBh, i.e., there exists α0 > 0 such that

a(v0h, v0h) ≥ α0‖v0h‖2Vh for all v0h ∈ KerBh. (5.32)

Then, one has the following estimate with a constant c depending on ‖a‖, ‖b‖, κ0, and α0 but
independent of h:

‖u− uh‖Vh + ‖p− ph‖Qh/KerBt ≤ c
(

inf
vh∈Vh

‖u− vh‖V + inf
qh∈Qh

‖p− qh‖Q
)
. (5.33)

Proof. Brezzi and Fortin (1991, p. 60)

With the choices V = H(div; Ω), Vh = RT0(Th), Q = L2(Ω), and Qh = P0(Th) the conditions
of Theorems 8 and 9 are fulfilled (Brezzi and Fortin, 1991, p. 139) and one can conclude the
approximation properties

‖u− uh‖L2(Ω) ≤ C1 inf
vh∈P0

‖u− vh‖L2(Ω), (5.34)

‖j− jh‖H(div;Ω) ≤ C2

(
inf

qh∈RT0
‖j− qh‖H(div;Ω) + inf

vh∈P0

‖u− vh‖L2(Ω)

)
. (5.35)

Using mesh dependent approximation properties of the spaces RT0(Th) and P0(Th), an upper
bound for the approximation accuracy depending on ‖u‖Hs(Ω), ‖j‖Hs(Ω), and h can be derived
(Brezzi and Fortin, 1991, p. 139)

‖u− uh‖L2(Ω) ≤ C1h
s‖u‖Hs(Ω), (5.36)

‖j− jh‖L2(Ω) ≤ C2h
s(‖j‖Hs(Ω)3 + ‖u‖Hs(Ω)) (5.37)

for s ≤ k + 1 and k being the degree of the discrete spaces RTk and Pk as before, i.e., in our
case k = 0.
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Corollary 6 (Quantitative error estimate for the Mixed-FEM direct approach in a one-layer
model). Let (u, j) be a solution of (5.7), V = H(div; Ω) and Q = L2(Ω), with 〈l, v〉 = jprt =∑
〈jp,wi〉wi ∈ H(div; Ω) and constant conductivity σ. Let (uh, jh) be a solution of the discrete

problem, Vh = RT0 and Qh = P0. Then, we have

‖u− uh‖L2(Ω) ≤ C1h‖u‖H1(Ω), (5.38)

‖j− jh‖L2(Ω) ≤ C2h(‖j‖H1(Ω)3 + ‖u‖H1(Ω)) (5.39)

for constants C1, C2 > 0 independent of h.

We note that by modifying the space RT0 (dropping the requirement of a continuous normal
component and imposing it via a Lagrangian multiplier instead) the rate of convergence
in h can be improved by one degree (Arnold and Brezzi, 1985; Brezzi and Fortin, 1991).
Furthermore, under certain assumptions superconvergence of uh and jh can be proven (Brezzi
and Fortin, 1991; Durán, 1990).
Especially in the present case, where the source term may admit large values but is only
supported in a small neighborhood, error estimates in other norms, here particularly the
L∞-norm, are interesting. As an example, the inequality

‖u− uh‖L∞(Ω) + ‖j− jh‖L∞(Ω)3 ≤ chk+1. (5.40)

holds (Brezzi and Fortin, 1991, p. 192).
As in Corollary 6, this estimate can be directly applied to the EEG forward problem in a
one-layer model. Further error estimates in different norms were, e.g., derived by Douglas
and Roberts (1985); Gastaldi and Nochetto (1987, 1989). As previously, most of these error
estimates are derived under the assumption of Dirichlet boundary conditions.

5.5. Solving the Saddle-Point Problem

The matrix K is indefinite as no ground potential was fixed until now and has a large 0-block.
Thus, directly solving 5.21 is not recommendable (Bergamaschi et al., 1994). Krylov subspace
algorithms, such as variants of the CG or GMRES method, are not as efficient as for many
other problems, since the commonly used methods for preconditioning fail. Nevertheless, much
research has been performed trying to find preconditioning techniques that make a solution
using CG-solvers possible (Axelsson, 1994; Golub and Van Loan, 1989). A different solution
strategy that makes use of the fact that – unlike K – A is positive definite and non-singular
is presented in this chapter following Braack (2012); Braess (2007). If we write (5.21) as a
system of two equations and for now assume the direct approach, i.e.,

Aj +BTu = b (5.41a)

Bj = 0, (5.41b)
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we can left-multiply A−1 to (5.41a) and solve for j, i.e., j = A−1(b−Btu). Inserting this into
(5.41b) leads to

Bj = BA−1(b−BTu) = 0

⇔ BA−1BTu = BA−1b.
(5.42)

S := BA−1BT is the so-called Schur complement.

Lemma 12. S is positive definite. If A is symmetric, also S is symmetric.

Proof. Braess (2007, p. 216)

Thus, with h = hdirect := BA−1b (direct approach) or h = hproj (projected approach), solving
(5.21) is reduced to solving

Su = h. (5.43)

Figure 5.2.: Visualization of h = hproj (left), hdirect = BA−1bdirect (middle), and full view of the
support of hdirect = BA−1bdirect (right) for a source positioned in the center of face fi and direction
nfi . The coloring indicates the values for the P0 basis function corresponding to the respective element;
red is positive, blue is negative.

Remark 14. The projection hdirect = BA−1b to the potential space causes a blurring of the
current source. If a single RT0 function is chosen as source, i.e., the source is positioned on
the face fi and the direction is nfi, for a hexahedral mesh this leads to non-zero entries for
all elements that lie “in the source direction” in the potential space (cf. Figure 5.2, middle
and right; the white line indicates all elements with non-zero entries). However, most of
these values are relatively small, as the truncated visualization for arbitrary dipole position
and direction indicates (Figure 5.3, middle). In contrast, when applying the projection only
using B as proposed in (5.24), the right-hand side vector is given by h = hproj, which only has
two non-zero entries (Figure 5.2, left). This transforms accordingly to the case of arbitrarily
positioned and oriented sources (Figure 5.3). The accuracies of the different representations
are evaluated in Section 5.7.

Due to the size of A, it is usually not efficient to calculate A−1 – and thereby also S –
explicitly. Instead, A−1 is accessed implicitly by solving a linear equation system, i.e., instead
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Figure 5.3.: Visualization of h = hproj (left), hdirect = BA−1bdirect truncated at 5% of maximum
(middle), and full visualization of hdirect = BA−1bdirect (right) for dipole with random position and
orientation. The coloring indicates the values for the P0 basis function corresponding to the respective
element; red is positive, blue is negative.

of calculating x = A−1y we solve Ax = y. This can usually be done very fast, e.g., using
preconditioned CG-solvers. The influence of the accuracy with which this step is performed
on the convergence of the solution algorithm for the full problem is evaluated in Section 5.6.1.
The more challenging task is to solve Equation (5.43). A frequently described algorithm to
solve (5.43) with an implicit representation of A−1 is the UZAWA-algorithm (Algorithm 1).

Algorithm 1 UZAWA algorithm with fixed step width.
Let α ∈ R+, u0 ∈ Rm and Aj1 = b−BTu0.
For k = 1, 2, . . . calculate

qk = −Bjk,
pk = BT qk,

hk = A−1pk,

uk = uk−1 − αqk,
jk+1 = jk + αhk.

The convergence of the UZAWA-algorithm with fixed step width depends on the parameter α.
Thus, the choice of α is critical. It can be shown that

Lemma 13. For
α < 2‖S‖−1

2

Algorithm 1 converges (Braess, 2007).
Let λmin, λmax be the minimal and maximal eigenvalue of S, respectively. Then, the optimal
choice for α is

α =
2

λmin + λmax
.

Proof. The UZAWA-algorithm with fixed step width corresponds to a Richardson-iteration,
so that the optimal step width follows accordingly (Braack, 2012, p. 178).

Since S is not explicitly computed, neither λmin nor λmax are easily accessible (this would
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surely also be the case if S was explicitly computed due to the dimension of S). To resolve
this problem and, even more important, to achieve a better convergence, it is useful to use an
optimized step width (Braess, 2007, p. 217).

Algorithm 2 UZAWA algorithm with optimal step width.
Let u0 ∈ Rm and Aj1 = b−BTu0.
For k = 1, 2, . . . calculate

qk = −Bjk,
pk = BT qk,

hk = A−1pk,

uk = uk−1 − αkqk, αk =
q′kqk
p′khk

,

jk+1 = jk + αkhk.

It can be shown that the UZAWA-algorithm with optimal step width (Algorithm 2) is equivalent
to the gradient descent method. This motivates the idea that the convergence can be further
improved when switching to conjugated search directions (Algorithm 3). This algorithm is
essentially equivalent to a CG algorithm for the equation system Su = h, where S is only
implicitly given and an inner equation system has to be solved to invert A.

Algorithm 3 Conjugate UZAWA algorithm with optimal step width.
Let u0 ∈ Rm and Aj1 = b−BTu0. Set d1 = −q1 = Bjk.
For k = 1, 2, . . . calculate

pk = BTdk,

hk = A−1pk,

uk = uk−1 + αkqk, αk =
q′kqk
p′khk

,

jk+1 = jk − αkhk,

qk+1 = −Bjk+1,

dk+1 = −qk+1 + βkdk, βk =
q′k+1qk+1

q′kqk
.

Several approaches to accelerate the UZAWA-algorithm are found in the literature, mainly
concentrating on accelerating the inner iteration Ahk = pk and improving the bad condition
number of S. A frequent proposal is to replace the inner iteration Ahk = pk by an approximate
solution. Therefore, A is replaced by an approximation M that can be easily inverted (Elman
and Golub, 1994; Golub and Overton, 1988). It can be shown that this leads to an improved
performance at the cost of a slightly worse convergence. However, instead of this approach,
we keep the original matrix A here and use a preconditioned CG-solver to solve the inner
iteration. Thereby, a reasonable speed can be achieved in the present scenario. Furthermore,
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one can vary the accuracy with which the inner iteration is solved. The effect on speed and
convergence is investigated in Section 5.6.1. Decreasing the accuracy of the inner iteration
can also be considered as an inexact UZAWA-algorithm. An optimal performance, i.e., an
optimal combination of convergence and speed, was found when imposing a defect reduction
in the inner iteration by a factor between 1e-3 and 1e-2 as stopping criterion.

The problem that S has a bad condition number is not resolved so far, so that it is suggested
to use preconditioning also for the outer iteration. Since Algorithm 3 is equivalent to a CG
algorithm for the equation system Su = h, the application of preconditioners in combination
with Algorithm 3 can be simplified by implementing the algorithm using a CG-solver template
with an implicit matrix operator to calculate Su, instead of explicitly implementing the
algorithm. In the literature, several preconditioners were proposed for solving saddle point
problems originating from mixed finite element formulations with the UZAWA-algorithm. It
is frequently proposed to use the mass matrix of the potential space (also called pressure
space due to the application in flow dynamics), i.e., Mi,j =

∫
Ω σvivj dx , vi, vj ∈ P0(Th), as

preconditioner (Elman and Golub, 1994). However, due to the choice of P0 as scalar test-space
this matrix is diagonal here and not expected to be an efficient preconditioner as it does not
approximate S well. Also the use of BBT as proposed by Ng et al. (1993) is only efficient
in the case of constant conductivities as shown by Bergamaschi et al. (1994). Though BBT

approximates the pattern of S well enough, it does not provide a reasonable approximation of
the matrix entries of S. Bergamaschi et al. (1994) instead suggest to choose a diagonal matrix
D that in some sense approximates A and use BD−1BT input to the preconditioner. They
propose to choose Di,i = (

∑
j A

2
i,j)

1/2 (denoted ‖Ai·‖2 in the following). Besides this, also
Di,i = Ai,i (denoted diag(A)), Di,i =

∑
j Ai,j (denoted

∑
Ai·), and Di,i =

∑
j |Ai,j | (denoted

|Ai·|) are tested as preconditioners in Section 5.6.1.

The structure of the matrix P = BD−1BT is identical to the structure of BBT , since all
considered choices for D are diagonal. Hence, it cannot be directly inverted. Also, due
to the band structure of P , commonly chosen preconditioners such as the incomplete LU-
factorization (ILU(0)) cannot be expected to be efficient (Chen, 2005, p. 330). In Section
5.6.1, the efficiency of the conjugated UZAWA-algorithm using no preconditioner, a Jacobi-
preconditioner, successive over-relaxation (SOR), ILU(0)-factorization, an algebraic multigrid
(AMG) method, and approximating P−1 by an iterative solution using an ILU(0)-CG solver is
compared. All approaches were tested with different choices ofD. Besides this, the performance
was also compared to that of directly solving (5.21) with iterative solvers in Section 5.6.1. For
this, a CG- and a BiCGStab-solver each in combination with an ILU(0)-preconditioner were
used.

5.6. Implementation

Both the direct (i.e., h = hdirect = BA−1b) and the projected (h = hproj) M-FEM approach
were implemented in the DUNE framework (Bastian et al., 2008a,b) using the DUNE PDELab
toolbox (Bastian et al., 2010). In addition, a solver based on the UZAWA-algorithm was
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implemented using the CG-solver template from the DUNE module iterative solvers template
library (DUNE-ISTL) in combination with AMG, ILU(0), iterative, and further preconditioners.

5.6.1. Solvers

This section mainly focuses on the conjugate UZAWA-algorithm (Algorithm 3) for solving
(5.21). For comparison, the performance when solving the full system (5.21) using a CG- and
BiCG-solver with ILU(0) preconditioning was evaluated as well. For the UZAWA-algorithm,
the interplay between accuracy of the inner solver and solving speed/convergence of the outer
solver for different choices of the preconditioner was investigated. As a test scenario the single
dipole scenario also used for the visualizations in Section 4.2 and the models seg 1 res 1 and
seg 2 res 2 were chosen. In all tests the stopping criterion for the outer iteration was a relative
reduction of the residual to 1e-8.
To evaluate the performance of the different solvers, besides evaluating solving times and
necessary iterations, also convergence rate and defect reduction are visualized. The convergence
rate indicates the ratio between the defect in the current and the previous iteration; the lower
the convergence rate, the better. The defect reduction indicates the overall reduction relative
to the initial defect up to the respective iteration, the steeper the decay of the curve, the
better. The timing results were obtained on a PC with an Intel Core-i7 Processor at 3.40 GHz
with 16 Gb of RAM running Ubuntu 14.04.

Table 5.1.: Timing of different solvers for different choices of preconditioner, matrix D, and accuracy
of inner iteration for model seg 2 res 2.

Solver Prec. D Accuracy Iterations Solving time

BiCG-Stab ILU(0) - - 601.5 134.32 s

CG ILU(0) - - 1072 121.14 s

UZAWA AMG |Ai·| 1e-1 33 5.79 s

UZAWA ILU(0) |Ai·| 1e-1 250 30.35 s

UZAWA Iter ‖Ai·‖2 1e-2 16 10.78 s

UZAWA Jac diag(A) 1e-2 398 106.26 s

UZAWA ILU(0) / M - 1e-1 746 219.23 s

UZAWA none - 1e-1 1274 270.12 s

UZAWA SOR diag(A) 1e-2 121 34.81 s

In the UZAWA-algorithm A−1 has to be evaluated once per iteration. This step is uncritical
and can be performed easily and fast by using a CG-solver with ILU(0) preconditioning. In
the performed tests, a defect reduction of 1e-8 was achieved with 5 iterations and in ≈ 0.3 s
or 4 iterations and ≈ 2.4 s for the meshes seg 2 res 2 and seg 1 res 1, respectively. Therefore,
no effort was made to achieve a further optimization of the inner iteration. Instead, for each
of the different preconditioners (Table 5.1) and for each different choice of D (Tables 5.2 and
5.4) the influence of the accuracy of the inner solution on computation time and convergence,
i.e., the number of necessary iterations, was tested. Between each step in accuracy a factor of
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10 was chosen. The results of this evaluation for the two different meshes are given in Tables
5.3 and 5.5, respectively. For the investigated range of values, it was found that the accuracy
with which the inner solution is computed does not noticeably influence the convergence of the
solution. However, the influence on the speed of the computation is significant. The fastest
computation time is reduced by more than 60% for the 2 mm model and nearly 50% for the 1
mm model in comparison to the highest considered relative reduction of 1e-8.
In Table 5.1, the computation times for the different combinations of solver and preconditioner
are listed. Only the best choice of preconditioner, and also D in case of the UZAWA-algorithm,
is presented. Table 5.1 and Figure 5.4 show that neither the CG- nor the BiCG-solver

Table 5.2.: Timing of UZAWA-algorithm with AMG preconditioner for different choices of D for
model seg 2 res 2. Only the best performing accuracy for the inner iteration is noted.

D Accuracy Iterations Solving time

diag(A) 1e-2 34 5.97 s

|Ai·| 1e-1 33 5.79 s∑
Ai· 1e-1 35 6.14 s

‖Ai·‖2 1e-1 34 5.97 s
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Table 5.3.: Timing of UZAWA-algorithm with AMG preconditioner and D = |Ai·| for different choices
of accuracy of inner iteration for model seg 2 res 2.

Accuracy Iterations Solving time

1e0 33 5.79 s

1e-1 33 5.79 s

1e-2 33 5.79 s

1e-3 33 6.11 s

1e-4 33 7.29 s

1e-5 33 8.86 s

1e-6 33 9.61 s

1e-7 33 11.35 s

1e-8 33 13.20 s

1e-9 33 14.71 s

Table 5.4.: Timing of UZAWA-algorithm with AMG preconditioner for different choices of D for
model seg 1 res 1. Only the best performing accuracy for the inner iteration is noted.

D Accuracy Iterations Solving time

|Ai·| 1e-1 42 60.42 s∑
Ai· 1e-1 42 60.53 s

‖Ai·‖2 1e-1 41 59.24 s

Table 5.5.: Timing of UZAWA-algorithm with AMG preconditioner and D = ‖Ai·‖2 for different
choices of accuracy of inner iteration for model seg 1 res 1.

Accuracy Iterations Solving time

1e0 41 59.16 s

1e-1 41 59.24 s

1e-2 41 59.28 s

1e-3 41 59.28 s

1e-4 41 72.49 s

1e-5 41 86.23 s

1e-6 41 95.79 s

1e-7 41 110.59 s

1e-8 41 117.78 s
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Figure 5.6.: Convergence rate (left) and defect reduction (right) of the UZAWA-algorithm for AMG-
and iterative preconditioners in model seg 1 res 1 and seg 2 res 2.

are adequate to solve (5.21). In both cases, after few iterations the convergence rates are
fluctuating just under 1 and are partly even above 1. Accordingly, the number of iterations
needed is very high and so is the solving time. Comparing the different preconditioners used
for the UZAWA-algorithm, the concerns discussed earlier are confirmed, as the ILU(0) as well
as the other preconditioners perform suboptimal (Figure 5.5). The best convergence rates
are found for the iterative and the AMG-preconditioner. The convergence rates for these two
preconditioners for models seg 1 res 1 and seg 2 res 2 are shown in Figure 5.6 in more detail.
The iterative preconditioner achieves slightly better convergence rates and thus requires less
iterations than the AMG-preconditioner. However, due to the lower computational effort per
iteration, the AMG-preconditioner leads to a faster solving time (Table 5.1). Therefore, the
further evaluations were focussed on the AMG-preconditioner, particularly to find the optimal
choice for the approximation of matrix A and to estimate the optimal solving accuracy for
the inner iteration.

The computation times in model seg 1 res 1 (Table 5.4) and seg 2 res 2 (Table 5.2) yield
different optimal choices for approximating A, ‖Ai·‖2 for model seg 1 res 1 and |Ai·| for
seg 2 res 2. As the differences for model seg 2 res 2 are in the range of milliseconds, ‖Ai·‖2 was
chosen for the following computations. For these choices the solving time for different solving
accuracies of the inner iteration was evaluated. For model seg 1 res 1 the fastest solving time
was found for an accuracy of 1e0. However, up to an accuracy of 1e-3 the solving time only
changes in the range of milliseconds, as only one iteration step is performed for a stopping
criterion of 1e-3 and higher. The number of necessary iterations of the UZAWA-algorithm
remained constant at 41 for all accuracies (Table 5.5). Also in the coarser model, the fastest
solving time is achieved when only one iteration is performed for the inner solver. This is the
case for accuracies of 1e0 to 1e-2 (Table 5.3). The number of iterations constantly remained
at 33 for all tested accuracies. An accuracy of 1e-2 for the inner iteration was chosen for the
following evaluations, corresponding to a single iteration in the inversion of A.
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5.7. Numerical Evaluation I: Sphere Studies

In this section, the numerical performance of the M-FEM achieved in solving the EEG forward
problem in sphere models is evaluated. First, the numerical accuracy of the M-FEM for
the two approaches derived is analyzed and also compared to that of the previously derived
Whitney approach (cf. Section 2.4) as it is very similar with regard to source modeling.
Thereafter, the accuracy of the M-FEM is compared to that of the partial integration DG
approach (cf. Section 4.1.2). Therefore, the previously generated evaluation scenarios (cf.
Section 4.2) are used, i.e., first common sphere models and subsequently the models with a
reduced skull thickness are used. Finally, the current flow is visualized to help understand the
differences of the M-FEM compared to the previously evaluated CG- and DG-FEM.

5.7.1. Methods

In a first comparison, besides the two M-FEM approaches, the Whitney CG-FEM was included,
as it relies on the same approximation of the dipole source (cf. Section 2.4). The models
seg 1 res 1 and seg 2 res 2 were considered. The model seg 2 res 1 and the coarse models
with a geometry resolution of 4 mm were omitted here for reasons of conciseness and due
to the limited additional insight they offer, as the results in these models are dominated
by the geometry error (cf. Section 4.2). For each model, the source positions already used
in Section 4.2 were projected to the closest face center and the source directions were then
chosen according to the face normals. Thereby, the result should not be influenced by the
interpolation that is needed for arbitrary source directions and positions. Next, the two
M-FEM approaches were compared using the models seg 1 res 1, seg 2 res 2, and seg 4 res 4
with random source positions and radial source directions. As the interpolation method in
hexahedral models is the same for all approaches and the general results should thus not
differ strongly from the previous comparison, the Whitney CG-FEM was not included here to
allow for a more detailed comparison of projected and direct M-FEM approach. Finally, the
two M-FEM approaches were evaluated in the leaky models seg 2 res 2 r82, seg 2 res 2 r83,
and seg 2 res 2 r84, again with random positions and radial source directions. As before,
no approach based on the CG-FEM was included, since the sensitivity of the CG-FEM to
leakages was already shown in the previous chapter and does not differ between the direct
source modeling approaches (and as shown not even for the subtraction approach). As in the
previous chapter, the solution is evaluated on the whole outer boundary using the measures
RDM and lnMAG, so that the results are independent of the choice of the evaluation points.

The studies of the numerical accuracy in sphere models are again complemented by visualiza-
tions of the volume currents and of lnMAGj,loc and totDIFFj,loc for a single dipole source in
the models seg 2 res 2 r82, seg 2 res 2 r83, and seg 2 res 2 r84. Here, the (projected) M-FEM
is compared to both the Whitney CG approach and the partial integration DG approach.
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Figure 5.7.: Comparison of direct and projected Mixed-FEM and Whitney CG-FEM in meshes
seg 1 res 1 and seg 2 res 2. Results for optimized dipole positions. Visualized are the mean error (left
column) and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions
that are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

5.7.2. Results

Comparison of Whitney CG-FEM and M-FEM for optimal source positions

Comparing the three approaches considered in Figure 5.7 with regard to the RDM in model
seg 1 res 1, no remarkable differences are found up to an eccentricity of 0.964 with maximal
errors below 0.05 for all approaches (Figure 5.7, top row). At an eccentricity of 0.979 the
maximal errors for the M-FEM slightly increase, however, the maximal errors remain below
0.1. The Whitney CG-FEM has a maximal error above 0.1 here, while upper quartile and
median are lower than for the M-FEM. For the highest three eccentricities, the RDM clearly
increases for all considered approaches. The errors for the M-FEM are constantly increasing
with the eccentricity but the variance at the different eccentricities is relatively weak and the
maximal errors are below 0.2. The Whitney CG approach shows a high variance with high
spread and maximal errors above 0.2 for eccentricities of 0.987 and 0.991. In constrast, it has
the lowest maximal error (< 0.15) at the highest eccentricity. Furthermore, the projected
M-FEM approach leads to lower errors than the direct approach, with maximal errors and
median constantly below 0.15 and 0.1, respectively. In the coarser model seg 2 res 2, all
approaches perform similar up to an eccentricity of 0.933. For higher eccentricities, the
Whitney CG-FEM again shows a high variance and leads to the highest maximal errors of all
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Figure 5.8.: Convergence with increasing mesh and geometrical resolution for Mixed-FEM approaches.
Results of radial dipole computations. Visualized are the mean error (left column) and boxplots (right
column) of RDM (top row) and lnMAG (bottom row). Dipole positions that are outside the brain
compartment in the discretized models are marked as dots. Note the different scaling of the x-axes.

considered approaches with values over 0.8. The projected M-FEM performs better than the
direct approach in most instances also in this model.
With regard to the lnMAG (Figure 5.7, bottom row), only minor differences, e.g., an in-
creased spread for the Whitney CG-FEM at an eccentricity of 0.987, are recognizable for
model seg 1 res 1, while otherwise all approaches mostly achieve very similar accuracies. In
model seg 2 res 2, the Whitney CG-FEM shows an increased spread for eccentricities of 0.964
and higher. Direct M-FEM and Whitney CG-FEM lead to very high maximal errors for
eccentricities of 0.987 and higher with maximal absolute values above 1 and 2.5 and a spread
larger than 2 and 2.5, respectively. Here, the projected M-FEM clearly performs best with a
maximal spread of about 0.5 and maximal absolute values below 0.25.

Comparison of M-FEM approaches in common sphere models

The next comparison expands the previous results to random source positions. When comparing
the two M-FEM approaches with regard to the RDM (Figure 5.8, top row), no major differences
are found up to an eccentricity of 0.964 for all models. For model seg 1 res 1, the RDM is
constantly below 0.05. With increasing eccentricity, the RDM for the projected approach
mainly remains below 0.1, while the maximal RDM is at nearly 0.3 for the direct approach
and the median is above 0.1. Also in models seg 2 res 2 and seg 4 res 4, the projected approach
outperforms the direct approach with regard to the RDM. As previously observed for the
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DG-FEM in Chapter 4, the worse approximation of the geometry leads to higher errors in
these models, e.g., the minimal RDM at an eccentricity of 0.964 is already at nearly 0.1 for
both approaches in model seg 2 res 2. At an eccentricity of 0.979, the direct approach has
a lower value for the upper quartile and a smaller IQR than the projected approach in this
model, while the maximal error is still higher. For more eccentric sources, the projected
approach, again, performs clearly better than the direct approach. This is also the case for
model seg 4 res 4, where minor differences are found up to an eccentricity of 0.933 and larger
differences with increasing eccentricity.

The results for the lnMAG (Figure 5.8, bottom row) again do not show remarkable differences
for all models up to an eccentricity of 0.933. In model seg 1 res 1, the projected approach
leads to a lower spread for the three highest eccentricities, however, the lnMAG decreases
from positive values for all source positions at low eccentricities to completely negative values
at the highest eccentricity. In contrast, the direct approach leads to a higher spread, but the
median remains nearly constant up to the highest eccentricity. The same behaviour of both
approaches, just at a generally higher error level, i.e., lower spread but general decrease of
errors for projected approach and high spread but constant median for direct approach, is
found for model seg 2 res 2. For the coarsest model, the errors are clearly increased. Here, the
direct approach performs better for the four highest eccentricities than the projected approach,
especially with regard to the spread (< 1 for direct approach, > 1.8 for projected approach
for eccentricities > 0.979).

Comparison of M-FEM approaches in leaky sphere models

As in the common sphere models, also in the models with the thin skull compartment the
projected approach mostly outperforms the direct approach (Figure 5.9). However, both with
regard to the RDM and the lnMAG, no notable differences between the two approaches are
observable at low eccentricities. With regard to the RDM (Figure 5.9, top row), an increase
of the errors with increasing eccentricity is found and clearly higher errors with decreasing
skull thickness for both approaches (median ≈ 0.15 for model seg 2 res 2 r84, ≈ 0.25 for model
seg 2 res 2 r82 at an eccentricity of 0.964). At higher eccentricities, the projected approach
shows clearly lower maximal errors for all models (difference > 0.075 at 0.979 and clearly
increasing for higher eccentricities). Except for an outlier at an eccentricity of 0.979, the
projected approach also leads to a lower median of the errors and a smaller IQR.

With regard to the lnMAG (Figure 5.9, bottom row), the maximal errors – and thereby also
spread (≈ 0.4) and IQR (≈ 0.1) – for the direct approach increase at an eccentricity of 0.979
for all models, while the spread remains low for the projected approach (≈ 0.1). The spread
remains at the same level also for higher eccentricities for the direct approach, while the IQR
grows slightly. For the projected approach, growth of spread and IQR are less severe and
highest spread and IQR are found at an eccentricity of 0.987. However, as for the common
sphere models, a clear decrease of the lnMAG errors is observed for high eccentricities.
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Figure 5.9.: Comparison of increase of errors for decreasing skull thickness between the two Mixed-
FEM approaches. Results of radial dipole computations. Visualized are the mean error (left column)
and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions that are
outside the brain compartment in the discretized models are marked as dots. Note the different scaling
of the x-axes.

Comparison of projected M-FEM and PI DG approach in sphere models

The studies in sphere models are concluded with a comparison between the projected M-FEM
approach and the partial integration DG approach both in common (Figure 5.10) and leaky
sphere models (Figure 5.11), as these approaches turned out to be the most accurate ones of
the newly introduced approaches. The displayed results are the same as previously presented,
just depicted side by side to allow for an easier comparison.

In the common sphere models, the PI DG approach is found to be slightly more accurate
with regard to the RDM (Figure 5.10, top row) up to an eccentricity of 0.933, as it leads
to lower maximal errors in all considered models. For eccentricities of 0.964 and 0.979 both
approaches perform similar especially in model seg 1 res 1, while for the highest eccentricities
(0.987 and higher) the projected M-FEM performs better than the PI DG approach both with
regard to maximal errors and median of the errors. Also with regard to the lnMAG (Figure
5.10, bottom row) the projected M-FEM mainly leads to a slightly smaller IQR and spread,
however, most of the differences between the two approaches are rather subtle. An exception
are the results for model seg 4 res 4 at high eccentricities, where the projected M-FEM leads
to very high errors as previously recognized (cf. Figure 5.8).

In the sphere models with a thin skull compartment, the DG approach again performs
slightly better than the M-FEM approach with regard to the RDM up to an eccentricity
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Figure 5.10.: Convergence for projected Mixed-FEM and PI DG approaches with increasing mesh
and geometrical resolution. Results of radial dipole computations. Visualized are the mean error (left
column) and boxplots (right column) of RDM (top row) and lnMAG (bottom row). Dipole positions
that are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

of 0.979 (Figure 5.11, top row). While the maximal errors are in the same range at this
eccentricity, the projected M-FEM clearly leads to a higher IQR and in models seg 2 res 2 r83
and seg 2 res 2 r84 also to higher error medians. At the highest eccentricities, the projected
M-FEM leads to clearly lower maximal errors than the PI DG-FEM amongst all models and
especially for the two highest eccentricities also to a lower median of the errors and a smaller
IQR.
With regard to the lnMAG (Figure 5.11, bottom row), no significant differences between the
two approaches are visible up to an eccentricity of 0.964. For higher eccentricities, spread and
IQR increase for both approaches; the projected M-FEM performs slightly better than the
PI DG-FEM. For both approaches the already mentioned decrease of the lnMAG for highest
eccentricities is observed. The strength of this effect is similar for both approaches.

Visualization of volume currents in leaky head models

In this section, visualizations of the current flow in the same scenario as in the previous
chapter are presented. First, current direction and strength for partial integration DG-FEM
and projected M-FEM are shown in models seg 2 res 2 r82, seg 2 res 283, and seg 2 res 2 r84
and also lnMAGj,loc and totDIFFj,loc for partial integration DG in relation to the projected
M-FEM are visualized. As a comparison, lnMAGj,loc and totDIFFj,loc are also presented for
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Figure 5.11.: Comparison of increase of errors for decreasing skull thickness between the projected
Mixed-FEM and partial integration DG-FEM. Results of radial dipole computations. Visualized are
the mean error (left column) and boxplots (right column) of RDM (top row) and lnMAG (bottom
row). Dipole positions that are outside the brain compartment in the discretized models are marked as
dots. Note the different scaling of the x-axes.

the Whitney CG-FEM in relation to the projected M-FEM.

In Figure 5.12, the current strength and direction for a single dipole simulated using the
partial integration DG-FEM and the projected M-FEM are presented side by side. For model
seg 2 res 2 r82 (top row), higher current strengths in the outermost layer of skin elements
are found for the PI DG-FEM than for the projected M-FEM. However, for both approaches
the maximal current strength is clearly lower than for the CG-FEM approaches (maximum
of colorbar at ≈ 40 here, ≈ 137 in Figure 4.13 (partial integration), and ≈ 126 in Figure
4.15 (subtraction)). In contrast to the current strength peaking in two skin elements for the
DG-FEM, the distribution is clearly smoother for the M-FEM, where also the current in the
skull compartment is clearly recognizable in the visualization as the values are in the middle
of the colorbar. Also in model seg 2 res 2 r83 (middle row) and seg 2 res 2 r84 (bottom row)
the current distribution for the M-FEM is clearly smoother, while it is again peaking in single
elements for the DG-FEM. In model seg 2 res 2 r83 the maximal values for the M-FEM are
furthermore clearly lower than for the DG-FEM, while they are at the same level for model
seg 2 res 2 r84. For the M-FEM, a blurring effect of the low-conducting skull compartment is
visible, as the highest current strengths are found in the innermost layer of elements belonging
to the skull compartment and smoothly decaying for more superficial elements.

When comparing lnMAGj,loc and totDIFFj,loc for partial integration DG-FEM and projected
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Figure 5.12.: Visualization of model geometry (left column), current direction and strength for partial
integration DG approach (middle column) and projected M-FEM approach (right column) for models
seg 2 res 2 r82 (top row), seg 2 res 2 r83 (middle row), and seg 2 res 2 r84 (bottom row). The left
column shows the model geometry, interior to exterior from bottom left to top right, brain in white,
CSF, skull and skin in increasingly dark gray, and air in white. Dark gray lines mark compartment
boundaries. In the middle and right columns, the large turquoise cone presents the dipole source. The
small and normalized grey cones show the directions of the current flow and, for elements belonging to
skull and skin compartments, the coloring indicates the current strength. For each model the color
scale is kept constant for both approaches.

M-FEM (Figure 5.13), the strongest differences with regard to the lnMAGj,loc occur in model
seg 2 res 2 r82, while the distribution of the totDIFFj,loc is very similar for all models and
dominated by differences in the CSF compartment. In model seg 2 res 2 r82 (left), major
differences in the skull and the outermost layer of skin elements are observed. Here, as already
indicated by Figure 5.12, the current strength for the DG-FEM is higher than for the M-FEM
in the skin elements, while it is clearly lower in the skull compartment. This can even be
observed when looking at the totDIFFj,loc , where the slight absolute differences of the volume
currents in these compartments are visible. This indicates a stronger current flow into the
skin compartment for the DG-FEM than for the M-FEM, while an opposite effect is found in
the skull. However, the highest differences with regard to the totDIFFj,loc are found in the
CSF compartment. Furthermore, some high values with regard to the lnMAGj,loc show up at
the surface of the skin compartment, these are probably due to the staircase-like geometry.
In models seg 2 res 2 r83 (middle) and seg 2 res 2 r84 (right), the lnMAGj,loc in skull and



5 A Mixed-FEM Approach to Solve the EEG Forward Problem 165

seg 2 res 2 r82 seg 2 res 2 r83 seg 2 res 2 r84

0.50

0.00

-0.50

-0.99

0.99

Figure 5.13.: Visualization of current flow differences between PI DG-FEM approach and projected
M-FEM approach in models seg 2 res 2 r82 (left), seg 2 res 2 r83 (middle), and seg 2 res 2 r84 (right).
The turquoise cone presents the dipole source. The coloring shows the lnMAGj,loc (increase/decrease
of the current strength simulated with the CG- compared to the DG-FEM solution). For all models
the maximum of the color scale is chosen as the maximal value in the skin and skull compartment.
Grey cones, having the same linear scaling for all models, show the totDIFFj,loc (difference in current
flow). In models seg 2 res 2 r83 and seg 2 res 2 r84 the arrows in skin and skull are not visible due to
the relatively small values. Dark gray lines mark compartment boundaries.

seg 2 res 2 r82 seg 2 res 2 r83 seg 2 res 2 r84

1.00

0.00

-1.00

-2.01

2.01

Figure 5.14.: Visualization of current flow differences between Whitney CG-FEM approach
and projected M-FEM approach in models seg 2 res 2 r82 (left), seg 2 res 2 r83 (middle), and
seg 2 res 2 r84 (right). The turquoise cone presents the dipole source. The coloring shows the
lnMAGj,loc (increase/decrease of the current strength simulated with the CG- compared to the DG-
FEM solution). For all models the maximum of the color scale is chosen as the maximal value in
the skin and skull compartment. Grey cones, having the same linear scaling for all models, show the
totDIFFj,loc (difference in current flow). In models seg 2 res 2 r83 and seg 2 res 2 r84 the arrows in
skin and skull are not visible due to the relatively small values. Dark gray lines mark compartment
boundaries.

skin is clearly reduced and no differences with regard to the totDIFFj,loc are visible in these
compartments. In contrast, both measures are essentially unchanged in the CSF in comparison
to model seg 2 res 2 r82.

To be able to estimate the significance of these differences, also lnMAGj,loc and totDIFFj,loc

for the Whitney CG-FEM in relation to the projected M-FEM are visualized in Figure
5.14. Here, the maximal lnMAGj,loc is doubled compared to Figure 5.13. This corresponds
to a factor of ≈ 2.7 as the lnMAGj,loc scales logarithmically. Also the visualization of the
totDIFFj,loc shows that the differences between CG-FEM and M-FEM are clearly stronger than
those between DG-FEM and M-FEM. This is especially visible for model seg 2 res 2 r82, but
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also in models seg 2 res 2 r83 and seg 2 res 2 r84 the differences found in the CSF compartment
are huge.

5.8. Numerical Evaluation II: Realistic Head Model Study

To augment the studies in the various sphere models, the three approaches Venant CG-
FEM, partial integration DG-FEM, and projected M-FEM are compared in a realistic six-
compartment hexahedral head model with a mesh width of 2 mm in this section. As a
reference the high-resolution tetrahedral head model generated in Section 2.11.2 is used and,
as a comparison, the results for the Venant approach in a hexahedral head model with a
resolution of 1 mm are shown as well.

5.8.1. Methods

Based on the segmentation also used for the comparisons in Section 2.11.2 and Chapter 3,
two realistic six-compartment hexahedral head models with mesh widths of 1 mm and 2 mm
were created, resulting in 3,965,968 vertices and 3,871,029 elements and 508,412 vertices and
484,532 elements, respectively. As the model with a mesh width of 2 mm was not corrected for
leakages, 1,164 vertices which belong to both CSF and skin elements were found, which is an
amount comparable to model seg 2 res 2 r83. These were mainly located at the temporal bone.
The conductivities were chosen according to Table 3.1. Out of the 18,893 source positions
also used in Section 2.11.2, those that were not contained in the gray matter compartment in
the hexahedral models were excluded, resulting in 17,870 remaining source positions for the 1
mm model and 17,843 source positions for the 2 mm model. As sensor configuration the 80
channel realistic EEG cap was chosen and as error measures RDM and lnMAG in reference to
the solution computed using the Venant CG-FEM in the high-resolution tetrahedral model
were calculated.

5.8.2. Results
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Figure 5.15.: Cumulative relative errors of RDM (left) and lnMAG (right) for EEG in realistic
six-layer head model
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The cumulative relative frequencies of RDM and lnMAG are displayed in Figure 5.15. Due to
the relatively bad approximation of the geometry that is achieved when using a mesh width
of 2 mm and regular hexahedra, both RDM and lnMAG are relatively high. Comparing the
results in the 2 mm model with regard to the RDM (Figure 5.15, left), the M-FEM performs
best with roughly 95% of the errors below 0.31. Thereby, the result is nearly as good as that
achieved with the Venant approach in the 1 mm model, where 95% of the errors are below
0.28. The partial integration DG-FEM performs slightly worse than the M-FEM with 95% of
the errors reached at about 0.36. For the Venant CG-FEM this mark is reached at an RDM
of nearly 0.4.

With regard to the lnMAG, the differences between the results obtained using the different
mesh resolutions and also between M- and DG-FEM approaches and the Venant CG-FEM
approach are larger than for the RDM (Figure 5.15, right). The projected M-FEM performs
best when using the 2 mm model, with 90% of the errors in the range from -0.15 and 0.35.
The partial integration DG-FEM performs only slightly worse with 90% of the errors in the
range from -0.15 and 0.4. Again, the Venant CG-FEM show the highest errors for the 2 mm
model, both with regard to absolute values and spread (90% of the errors in the range from
-0.1 to 0.54). The increase in accuracy when using a mesh resolution of 1 mm is clearer for
the lnMAG than for the RDM, as for the Venant CG-FEM 90% of the lnMAG-errors are in
the range from -0.2 to 0.25, thus showing both a smaller spread than the results in the 2 mm
model and also lower absolute values.

5.9. Discussion

In this section, theoretical derivation and numerical experiments in sphere and realistic head
models for an approach to solve the EEG forward problem based on the mixed finite element
method (M-FEM) were presented. Existence and uniqueness of a solution were proven and a
selection of a-priori error measures was stated. Two approaches to model the dipole source
were derived, the direct and the projected approach.

The numerical experiments show a high accuracy of the newly introduced method, especially
of the projected approach. The comparison with the Whitney CG-FEM approach in models
seg 1 res 1 and seg 2 res 2 with optimized positions and orientations shows that the M-FEM
leads to higher accuracies at high eccentricities, while the differences for lower eccentricities
are small (Figure 5.7). The same holds true for arbitrary source directions, where again
the projected approach shows higher accuracies than the direct approach, except for model
seg 4 res 4, and also outperforms the partial integration DG approach that was introduced in
the previous chapter (Figures 5.8, 5.10). The M-FEM is by construction charge preserving
so that it was expected to prevent leakages (Barrenechea et al., 2007; Ewing et al., 1999).
This is confirmed by the comparisons and visualizations in the head models with a thin skull
compartment, seg 2 res 2 r82, seg 2 res 2 r83, and seg 2 res 2 r84. These show that, as the
DG-FEM, the M-FEM is leakage preventing and leads to higher accuracies and smoother –
and thereby more realistic appearing – current distributions than the DG-FEM (Figures 5.11 -
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5.14). However, it has to be kept in mind that the DG approach might lead to better results
when optimizing the value of η, as discussed in Chapter 4.

The results gained for the realistic six-compartment head model underline the results gained
in the sphere studies (Figure 5.15). Again, the projected M-FEM achieves a slightly higher
accuracy than the partial integration DG-FEM, while both approaches clearly outperform the
Venant CG-FEM. It is difficult to quantify the influence of the leakages on the results obtained
here. However, as these were mainly located in the area of the temporal bone, leakage effects
do not suffice to explain the higher accuracy of M- and DG-FEM. An overall higher accuracy
of these approaches in this kind of model, i.e., regular hexahedral with mesh resolution of 2
mm, can be assumed.

The three main sources of error in the evaluations – inaccurate representation of the geometry,
numerical inaccuracies, and leakage effects – were already discussed in Chapter 4 and are still
valid here.

No changes occurred for the first point, the errors due to the representation of the geometry.
Since again regular hexahedral meshes were used here, the influence of geometry errors remains
at a high level, especially for the coarse meshes. No explicit convergence study including
results using the models with a coarse representation of the geometry but a higher mesh
resolution (seg 2 res 1, seg 4 res 1, and seg 4 res 2 ) was performed. However, the comparison
with the PI DG approach (Figure 5.11) shows that the projected M-FEM approach performs
mainly as good and in some cases even better than the DG approach also in the coarse models
seg 2 res 2 and seg 4 res 4.

Regarding the second point, the numerical inaccuracy due to the discretization of the equations
and the strong singularity, the M-FEM approach allows to increase the regularity of the right-
hand side by one degree, since the splitting into two first order PDEs in (5.3) allows to get
rid of the derivative applied to the delta distribution included in the primary current jp.
The obtained results show high numerical accuracies, especially at highest eccentricities, and
particularly for the projected M-FEM. This comes at the cost of a higher number of degrees
of freedom than for the CG-FEM, as also the current j is considered as an unknown now and
has to be discretized. Furthermore, the discrete problem has saddle point structure (5.21)
and can no longer be efficiently solved with the previously used AMG-CG solvers. Though
the number of unknowns is clearly increased compared to the CG-FEM, it is still lower
than for the DG-FEM, e.g., in model seg 2 res 2 we have #DOFM = 1, 243, 716 + 407, 904,
#DOFDG = 3, 263, 232, and #DOFCG = 428, 185. By introducing a conjugated UZAWA-
algorithm with proper preconditioning, the solving time even in the finest model seg 1 res 1
was reduced to less than a minute, which is only few seconds slower than for the CG-FEM
and clearly faster than for the DG-FEM at the moment. Furthermore, as the equation system
(5.21) is symmetric, also for the M-FEM the transfer matrix approach can be applied to reduce
the number of equation systems that has to be solved to the number of sensors.

As the DG-FEM, also the M-FEM guarantees the conservation of charge and achieved high
accuracies also in the sphere models with a thin skull compartment. Therefore, also the
M-FEM can be considered as “leakage preventing”. Especially at highest eccentricities, it leads
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to even higher accuracies than the DG-FEM approaches. The resulting current distribution
seems smoother than for the DG-FEM and appeared physically reasonable (Figure 5.13).
However, as discussed in the previous chapter, the numerical solution obtained using the
DG-FEM can possibly still be improved by optimizing the penalty parameter η. These results
encourage the use of the M-FEM also in related applications, such as tDCS or DBS simulations.
For the DG-FEM, the use of an unfitted method, the cut-cell DG approach, was discussed
in Chapter 4 in order to improve the approximation of the underlying geometry and reduce
the geometry error. To the best of the author’s knowledge, no comparable method has been
proposed for mixed finite elements so far. For the CG-FEM, the use of geometry-adapted
meshes to reduce the geometry error was considered and it was shown in a variety of studies that
this already clearly improves the representation of the geometry (Camacho et al., 1997; Vorwerk,
2011; Wolters et al., 2007a). However, while the use of non-degenerated parallelepipeds is
uncritical for the M-FEM, “some complications may arise for general elements” (Brezzi and
Fortin, 1991). At least for the two-dimensional case, error estimates for general quadrilateral
grids can be obtained when modifying the lowest-order Raviart-Thomas elements (Chou et al.,
2002; Kwak and Pyo, 2011) and for convex quadrilaterals even superconvergence could be
shown (Ewing et al., 1999). Therefore, future experiments should investigate the accuracy of
the cut-cell DG approach in comparison to the M-FEM using regular or geometry-adapted
hexahedral meshes for which the convexity of the elements is ensured. Furthermore, the
accuracies in realistic head models with finer mesh widths than the here used 2 mm should
be evaluated. This is uncritical for M- and CG-FEM, while the memory demand for the
DG-FEM is in this case in a range that would be too high for nowadays common PCs.
A point that was not discussed so far in the past two chapters are the consequences of the
obtained results, especially those in the leaky head models, for the MEG forward solution.
On the one hand, the simulation of the secondary magnetic flux Φs (cf. Sections 1.5 and 2.8)
directly depends on an accurate simulation of the volume currents (cf. Equations 1.27, 1.32b,
and 2.56). On the other hand, the leakage effects are only local and the currents incorrectly
penetrating the skull are relatively weak compared to those in the CSF compartment. This
aside, the MEG solution should also in non-leakage scenarios profit from a physically correct
and charge preserving simulation of the volume currents, as it is guaranteed by DG- and
M-FEM approaches, and the use of DG- and M-FEM for MEG forward simulations should
therefore be considered.



6
SUMMARY AND OUTLOOK

This thesis was devoted to studying different aspects influencing the accuracy achieved in
solving the EEG/MEG forward problem using finite element methods. Both the numerical
accuracy of established and newly introduced numerical methods as well as the influence of a
differently detailed approximation of the human head by the volume conductor model were
investigated.

Summary

After introducing the basic assumptions and equations underlying the forward problem of EEG
and MEG (Chapter 1), it was shown that FEM approaches based on a continuous Galerkin
formulation (CG-FEM) achieve a high numerical accuracy both in sphere and realistic volume
conductor models (Chapter 2) and that the necessary computational effort can be kept in
a range that makes a practical application feasible. Based on various comparisons of the
different approaches to model the dipole source – Venant, partial integration, subtraction, and
Whitney – it was concluded that the Venant approach offers the best compromise between
numerical accuracy and computational effort when considering arbitrary source positions and
directions. For fixed dipole directions, also the Whitney approach might be considered. Taking
the modeling of the CSF as an example it was further shown that the effects of simplifications
in the head model generation might be clearly higher than the errors of the numerical methods.
This result encouraged the more detailed investigation of the effects of head model simplifi-
cations in Chapter 3. Based on the studies by Cho et al. (2015); Vorwerk et al. (2014) the
effects of modeling/not modeling different conductive compartments on both the forward
and inverse problem of EEG/MEG were investigated. It was shown that distinguishing the
conductive compartments CSF, gray matter, and white matter has a huge influence on both
EEG and MEG forward solutions with regard to topography and magnitude of the solution.
Also the modeling of white matter anisotropy was found to have a considerable effect, while
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the distinction of skull compacta and spongiosa only showed recognizable effects for few brain
areas and only in the EEG. A MATLAB-based pipeline to perform EEG source analysis with
FEM forward solutions including the simple generation of realistic five-compartment head
models distinguishing skin, skull, CSF, gray matter, and white matter was presented and
evaluated.

Finally, in Chapters 4 and 5 derivation and numerical evaluation for two novel approaches to
solve the EEG forward problem were presented, the DG- and the Mixed-FEM. While for the
DG-FEM the partial integration and subtraction approach that were previously derived for
the CG-FEM could easily be adapted to the new framework, the Mixed-FEM allowed the
derivation of two new source modeling approaches, the direct and the projected Mixed-FEM.
The introduction of these approaches was motivated by the observation of leakage effects for
the CG-FEM, where inaccurate current flow occurs for low-conducting compartments whose
thickness is in the range of the mesh width. Both newly introduced approaches fulfill the
physical property of conservation of charge and thereby help to prevent leakage effects and
achieve a more realistic modeling of the volume currents. This was experimentally confirmed
both by statistically evaluating topography and magnitude errors and by visualizing the
volume currents. Both in spherical and realistic head models the projected Mixed-FEM
achieved the best results for regular hexahedral meshes.

Outlook

Three main sources of errors were identified in the previous discussions following the respective
chapters – insufficient resolution of the underlying geometry, numerical inaccuracies due to
the discretization of the equations and the modeling of the source, and leakage effects. It was
shown that the problem of leakage effects is successfully diminished by the introduction of DG-
and Mixed-FEM. Nevertheless, these sources of error give rise to further topics of research.

Some approaches to further increase the numerical accuracy were already discussed in the
respective Chapters 2, 4, and 5. One possibility is to try to improve the modeling of the current
dipole for the direct approaches such as Venant or Whitney approach, e.g., by achieving a
better approximation of the moments of the source distribution or by optimizing the placement
of the monopole loads. Some recent improvements for the CG-FEM were proposed by Hanrath
et al. (in prep.); Medani et al. (in prep.); Pursiainen et al. (submitted). Such approaches
might also be adapted to the DG-framework.

As the up to now performed evaluations using higher order test and trial functions (Grüne,
2014) and adaptive mesh refinement (Meyer, 2013) did not lead to satisfying results especially
with regard to the proportion of increase in computational effort and gained numerical accuracy,
more sophisticated approaches might be needed, as discussed in Chapter 2. However, due
to the large number of sources that has to be calculated for EEG/MEG inverse analysis,
these techniques can possibly not be directly used in practical applications, but their results
rather allow to draw conclusion for, e.g., the generation of the individual meshes by providing
evidence for efficient mesh refinements. One possible outcome – as also discussed in Section



172

2.7 – might be a global refinement in the source compartment, i.e., the gray matter.

A first step to reduce the geometry error is the use of meshes that approximate the underlying
geometry as good as possible. Here, tetrahedral meshes are clearly superior to regular
hexahedral meshes. As already mentioned, a simple possibility to overcome this problem when
willing to use hexahedral meshes due to their practical advantages, is the use of geometry-
adapted hexahedral meshes (Camacho et al., 1997). These were positively evaluated in
combination with the CG-FEM (Vorwerk, 2011; Wolters et al., 2007a), but so far not applied
in combination with DG- or Mixed-FEM. An even better approximation of the geometry
can probably be achieved using unfitted discontinuos Galerkin-methods (UDG) (Bastian and
Engwer, 2009; Nüßing et al., 2015). Principally, these allow to directly operate on the output
of the segmentation algorithm, e.g., level-set functions, instead of relying on the discretized
voxel-based segmentation. Thereby, it is possible to achieve a sub-voxel representation of the
geometry. A fundamentally different approach was presented by Koulouri (2015); Stahlhut
et al. (2009, 2011). They propose to account for the geometry uncertainties in the computation
of the inverse solution by means of Bayesian inversion.

One finding of this thesis was that in many scenarios the effects of model simplifications clearly
exceed the numerical inaccuracies. Though the modeling of six conductive compartments
and white matter anisotropy as done in Chapter 3 is already a clear improvement compared
to three-layer head models, this surely still does not lead to a completely anatomically
correct representation of the head’s tissues. Further tissues whose influence on EEG forward
solutions has yet been investigated are, e.g., blood vessels (Fiederer et al., 2013, to appear)
or the dura mater (Ramon et al., 2014), but the accurate (automatic) segmentation of these
compartments is still complicated using images obtained with common 3 T MRI scanners.
Modern segmentation algorithms are principally able to distinguish eight or more different
tissues (Lanfer, 2014), however, the usually achieved image resolutions are insufficient to
reasonably resolve these often thin structures, such as the dura mater. Thus, both freely
available open-source toolboxes such as FSL or SPM and commercial tools like BESA are
usually still restricted to segmenting four or five compartments as it was also done in Section
3.2. Though segmentation was no topic of this thesis, the results gained in Chapter 3 might
lead to the conclusion that besides distinguishing further conductive compartments that can
hardly be resolved at the current image resolutions, it is also reasonable to spend further efforts
on trying to increase the accuracy of the segmentation of important conductive compartments,
e.g., the skull or the brain structure. The (strong) effect of a simplified segmentation of the
skull on topography and magnitude of EEG forward simulations was involuntarily shown in
Section 3.2 (Figure 3.24).

Besides the complex segmentation of the geometry, also the uncertainty about the respective
conductivities is problematic. While for example the conductivity of the CSF is well-known
and shows only little variance amongst subjects (Baumann et al., 1997), other conductivities
such as that of the skull may strongly vary due to age, disease state, and environmental
factors (Akhtari et al., 2002). This motivates the use of algorithms for individual conductivity
estimation. An algorithm for combined EEG/MEG conductivity calibration was proposed by
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Lew et al. (2007, 2009a) and evaluated for skull conductivity calibration by Aydin et al. (2014,
2015). However, this approach seems to be only stable for the simultaneous fitting of a single
parameter, for fitting multiple parameters at a time the development of new algorithms would
be necessary. Alternatively, just as geometry uncertainties, also conductivity uncertainties
might be taken into account by applying Bayesian approaches for the inverse solution (Stahlhut
et al., 2009, 2011).
An important point that should always be kept in mind besides the theoretical derivations,
numerical evaluations, and simulation studies as they were in the focus of this thesis, is the
practical applicability of these findings when using FEM in EEG/MEG source analysis. Here,
especially a combined analysis of EEG and MEG data justifies the use of individual and
calibrated realistic shaped multi-compartment head models. First examples where combined
EEG/MEG source analysis using FEM forward modeling in combination with individual head
models was performed and validated in clinical epilepsy diagnosis were published by Aydin
et al. (2014, 2015); Rullmann et al. (2009). Though the studies by Aydin et al. (2014, 2015)
were based on a quasi-automatic pipeline including individual skull conductivity calibration
that is suitable for the use with larger patient groups, the presented results are still single
subject studies. Based on these encouraging results, it is desirable that combined EEG/MEG
source analysis using calibrated realistic volume conductor models is also performed and
validated in group studies.
Finally, it should be mentioned that many of the results presented in this thesis can be directly
transferred to other applications. Especially tDCS and DBS are applications for which the
more accurate simulation of the electric current and the conservation of charge achieved by
DG- and Mixed-FEM as shown in Chapters 4 and 5 is at least as desirable as for EEG and
MEG simulations. Thus, the use of DG- and Mixed-FEM for simulating tDCS and DBS
should be evaluated.



A
APPENDIX

Figure A.1.: The tetrahedral sphere models 4layer-802k (top row) and 4layer-519k (bottom row).
The cut is made through the x = 127 plane.
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Table A.1.: (TetGen-) parameters of the tetrahedral sphere models

model 4layer-802k 4layer-519k

# nodes 801,633 518,730
# elements 4,985,234 3,159,575
quality constraint 1.1 1.1
volume constriant 1.12 1 (-1 in brain)

radius (mm) # nodes per surface

92 32,674 35,160
86 28,721 31,059
80 25,022 26,477
78 23,616 20,522

Table A.2.: Parameters of the hexahedral sphere models

Model nodes elements edge length / mm node shift

4layer-hex-1mm 3342701 3262312 1 no
4layer-hex-1mm-ns 3342701 3262312 1 yes

Table A.3.: (TetGen-) Parameters of the Tetrahedral Realistically Shaped Head Models

model 3layer_dir 3layer_sub 3layer_hr 4layer_hr

# nodes 933,038 653,664 2,242,186 2,268,847
# elements 5,891,852 4,075,056 14,223,508 14,353,897
quality constraint 1.1 1.1 1.1 1.1
volume constriant 1.12 1 (-1 in brain) 0.75 1.12

surface # nodes per surface

skin 2,219
outer skull 1,814
inner skull 2,879
brain 84,200



176

Table A.4.: Computation times of the different CG-FEM forward approaches. Setup measures the
time for computing the FE transfer matrix. One forward computation consists of the setup of the right
hand side vector and the resulting matrix multiplication. Leadfield indicates the overall time for 19,000
forward computations.

Forward Model Model Setup Forward Leadfield

Venant 802k-4layer 99 min 26 s 23.4 ms 106 min 51 s
Partial integration 802k-4layer 98 min 58 s 65.1 ms 119 min 34 s
Whitney 802k-4layer 93 min 13 s 39.8 s 107 min 49 s
Subtraction 519k-4layer 76 min 30 s 10.5 s 3394 min 38 s
Venant 4layer-hex-1mm-ns 192 min 57 s 166.2 ms 245 min 34 s
Partial integration 4layer-hex-1mm-ns 183 min 43 s 224.8 ms 254 min 55 s
Subtraction 4layer-hex-1mm 187 min 55 s 12.3 s 4075 min 3 s
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• The BEM-FEM comparison study in Section 2.11.1 is based on Vorwerk et al. (2012) to
which the author contributed the numerical results and was primarily responsible for
writing and publishing as first and corresponding author.

• The evaluation of volume conductor modeling effects on the forward solution (Section
3.1) is based on Vorwerk et al. (2014). The author contributed the results and was
primarily responsible for writing and publishing as first and corresponding author.

• The corresponding results for the inverse solution presented in Section 3.1.5 are recited
from Cho et al. (2015), where the author provided the necessary EEG/MEG forward
solutions, tools for the visualization of the results, and contributed in writing the
publication.

• The realistic head model or at least the surfaces used to generate the realistic six-
compartment head models used in Sections 2.11.2 and 3.1 was used in several further
studies, e.g., Janssen et al. (2013); Lucka et al. (2012); Rampersad et al. (2014).

177



178

• The FieldTrip-SimBio pipeline (Section 3.2) was first presented at the First International
Conference on Basic and Clinical Multimodal Imaging (BaCI) in Geneva, 2013.

• The results for the subtraction DG approach and parts of Theory and Discussion of
Chapter 4 are recited from Engwer et al. (submitted), where the author contributed
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MATLAB was used to create heatmaps in Chapter 3, for the implementation of the FieldTrip-
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http://de.mathworks.com/products/matlab
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