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A Mixed Finite Element Method
to Solve the EEG Forward Problem

J. Vorwerk*, C. Engwer, S. Pursiainen, and C.H. Wolters

Abstract—Finite element methods have been shown to achieve
high accuracies in numerically solving the EEG forward problem
and they enable the realistic modeling of complex geometries and
important conductive features such as anisotropic conductivities.
To date, most of the presented approaches rely on the same
underlying formulation, the continuous Galerkin (CG)-FEM.
In this article, a novel approach to solve the EEG forward
problem based on a mixed finite element method (Mixed-FEM)
is introduced. To obtain the Mixed-FEM formulation, the electric
current is introduced as an additional unknown besides the
electric potential. As a consequence of this derivation, the Mixed-
FEM is, by construction, current preserving, in contrast to the
CG-FEM. Consequently, a higher simulation accuracy can be
achieved in certain scenarios, e.g., when the diameter of thin
insulating structures, such as the skull, is in the range of the
mesh resolution.

A theoretical derivation of the Mixed-FEM approach for EEG
forward simulations is presented, and the algorithms imple-
mented for solving the resulting equation systems are described.
Subsequently, first evaluations in both sphere and realistic head
models are presented, and the results are compared to previously
introduced CG-FEM approaches. Additional visualizations are
shown to illustrate the current preserving property of the Mixed-
FEM.

Based on these results, it is concluded that the newly presented
Mixed-FEM can at least complement and in some scenarios
even outperform the established CG-FEM approaches, which
motivates a further evaluation of the Mixed-FEM for applications
in bioelectromagnetism.

Index Terms—EEG, forward problem, source analysis, mixed
finite element method, realistic head modeling.

I. INTRODUCTION

THE EEG forward problem is to simulate the electric
potential on the head surface that is generated by a

minimal patch of active brain tissue. Its accurate solution is
fundamental for precise EEG source analysis. An accurate
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solution can be achieved via numerical methods that allow to
take the realistic head geometry into account. In this context,
finite element methods (FEM) achieve high numerical accura-
cies and enable to realistically model tissue boundaries with
complicated shapes, such as the gray matter/CSF interface, and
to incorporate tissue conductivity anisotropy. The importance
of incorporating these model features for the computation
of accurate forward solutions and, in consequence, also for
precise source analysis has been shown in multiple studies
[1]–[3].

Different FEM approaches to solve the EEG forward prob-
lem have been proposed, e.g., St. Venant, partial integration,
Whitney, or subtraction approaches [4]–[9]. These approaches
differ in the way the dipole source is modeled, but the
underlying discretization of the continuous partial differential
equation (PDE) is the same: a conforming Galerkin-FEM (CG-
FEM) with most often linear Ansatz-functions. The necessary
discretization of the head volume can be achieved using either
tetrahedral or hexahedral head models. Hexahedral models
have the advantage that they can be directly generated from
voxel-based magnetic resonance images (MRI), whereas the
generation of surface-based tetrahedral meshes can be com-
plicated. Therefore, hexahedral meshes are more and more
frequently used in praxis [10], [11] and have, furthermore,
recently been positively validated in an animal study [12].

In this article, a mixed finite element method (Mixed-
FEM) to solve the EEG forward problem is introduced.
Compared to the CG-FEM, it has the advantage that the
current source can be represented in a direct way, whereas
either an approximation using electrical monopoles has to be
derived or the subtraction approach has to be applied when
using the CG-FEM. Furthermore, the Mixed-FEM is current
preserving and thereby prevents the effects of the (local)
current leakages through the skull that might occur for the CG-
FEM [13], [14]. Mixed- and CG-FEM are compared in such
a leakage scenario in Section IV-C. An accurate simulation of
the currents penetrating the skull is important, as the influence
of an accurate representation of the skull for accurate forward
simulations has been shown [15]–[17]. The accuracy of the
Mixed-FEM in comparison to CG-FEM approaches and a
recently presented approach based on a discontinuous Galerkin
(DG) FEM formulation [14] is evaluated in sphere and realistic
head models. It is shown that the Mixed-FEM achieves higher
accuracies in solving the EEG forward problem than the CG-
FEM for highly eccentric sources in sphere models and than
both CG- and DG-FEM in realistic head models.

II. THEORY



IEEE TRANSACTIONS ON MEDICAL IMAGING 2

APPLYING the quasistatic approximation of Maxwell’s
equations [18], [19], the forward problem of EEG is com-

monly formulated as a second-order PDE with homogeneous
Neumann boundary condition

∇ · (σ∇u) = ∇ · jp in Ω, (1a)
σ∂nu = 0 on ∂Ω = Γ. (1b)

Here, u denotes the electric potential, jp the source current,
and σ the conductivity distribution in Ω. In (1), the electric
current j is already eliminated as an unknown. For our purpose,
we start at the previous step in the derivation of the quasistatic
approximation and keep the electric current as an unknown.
Thus, our starting point is the system of first-order PDEs

j + σ∇u = jp (2a)
∇ · j = 0 in Ω, (2b)
〈j,n〉 = 〈jp,n〉 on ∂Ω = Γ. (2c)

Since the source current jp in general fulfills 〈jp,n〉 = 0 on
Γ, as supp jp ⊂ Ω◦ for physiological reasons (there are no
sources in the skin), (2c) can be simplified to 〈j,n〉 = 0 on Γ.
The Mixed-FEM formulation for the EEG forward problem is
now derived from (2), instead of discretizing (1) as would be
done for the CG-FEM.

A. A (Mixed) Weak Formulation of the EEG Forward Problem

Due to the vector-valued equation (2a), it is necessary to
introduce a space of vector-valued test functions to be able to
derive a weak formulation of (2). A natural function space for
the current in the mixed formulation is H(div; Ω):

H(div; Ω) =
{
q ∈ L2(Ω)3 : ∇ · q ∈ L2(Ω)

}
. (3)

Akin to the scalar-valued Sobolev spaces Hk(Ω), this space
becomes a Hilbert space with the norm

‖q‖H(div;Ω) =
(
‖q‖2L2(Ω)3 + ‖∇ · q‖2L2(Ω)

) 1
2

. (4)

We introduce a subspace H0(div,Ω) of H(div; Ω), in which
the boundary condition 〈j,n〉 = 0 on ∂Ω = Γ is fulfilled by
construction:

H0(div,Ω) = {q ∈ H(div; Ω) : 〈q,n〉 = 0 on ∂Ω} . (5)

For the scalar-valued equation (2b), one can simply choose the
space of square-integrable functions L2(Ω) as the test space.

Now, we can introduce a weak formulation of (2)∫
Ω

〈σ−1j,q〉dx −
∫

Ω

∇ · qudx =∫
Ω

〈σ−1jp,q〉dx for all q ∈ H0(div,Ω), (6a)∫
Ω

∇ · jv dx = 0 for all v ∈ L2(Ω). (6b)

This is the so-called dual mixed formulation [20]–[22]. The
Neumann boundary condition (2c)/(5) is an essential boundary
condition in the (dual) mixed formulation and has to be

imposed explicitly in solving the discrete problem. We define
the bilinear forms

a(p,q) = (σ−1p,q)L2(Ω)3 , (7a)
b(p, v) = (∇ · p, v)L2(Ω) (7b)

and the functional

l(q) = (σ−1jp,q)L2(Ω)3 (7c)

for p,q ∈ H0(div,Ω), v ∈ L2(Ω), jp ∈ L2(Ω)3, σ ∈ L∞(Ω),
σ > 0. Therefore, to solve (6) is to

find (u, j) ∈ L2(Ω)×H0(div,Ω), such that

a(j,q) + b(q, u) = l(q) for all q ∈ H0(div,Ω), (8a)

b(j, v) = 0 for all v ∈ L2(Ω). (8b)

In this notation, the saddle point structure of problem (8) and
thus also (6) is recognizable. As a consequence, the existence
and uniqueness of a solution cannot be shown using the
Lemma of Lax-Milgram.

Instead, it can be shown that a solution to (8) exists, if
the operator a is H0(div,Ω)-elliptic on the kernel of b, and
b fulfills an inf-sup condition, which in this case is also
called the LBB condition, named after the mathematicians
Ladyzhenskaya, Babuska, and Brezzi. At this point, we shall
note only that these conditions are fulfilled by a and b
defined as in (7) and thereby the existence of a solution
(u, j) ∈ L2(Ω) × H0(div,Ω) is given. While the solution
for j is unique, u is defined up to an element of ker b(j, v),
v ∈ L2(Ω) [20], [23]. Uniqueness for u can be obtained by
introducing an additional condition, such as fixing the value
of
∫

Ω
u or

∫
∂Ω
u. For a detailed proof and discussion we refer

the reader to, e.g., [20], [22], [24].

B. Mixed Finite Element Method

Obtaining a numerical solution for (6)/(8) necessitates
choosing suitable discrete approximations for the test function
spaces H0(div,Ω) and L2(Ω). Utilizing a Galerkin approach,
these are also the spaces in which the discrete solution (uh, jh)
lies.

In order to construct the discrete subspaces, the volume Ω
is subdivided and approximated by a set of simple geometrical
objects. In three dimensions, these objects are usually tetrahe-
dra or hexahedra. For the sake of simplicity, any subdivision
of Ω into either tetrahedra or hexahedra is henceforth referred
to as triangulation T = {T1, T2, T3, ..., Tm}. In this paper, we
follow the definition of a triangulation according to [24]. We
further assume that the triangulation T is admissible [24] and
write Th instead of T , if each element T ∈ T has a diameter
of maximally 2h.

We can now choose the space P0 of piecewise constant
functions on each element as a discrete subspace of L2(Ω):

P0(Th) =
{
v ∈ L2(Ω) : v|T ≡ cT , cT ∈ R for all T ∈ Th

}
.

A basis of this space is given by the set of characteristic
functions 1T ∈ L2(Ω) for each element T ∈ Th. We denote
this set of P0 basis functions by SP0

h = {1T , T ∈ Th}.
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For H0(div,Ω), we start by defining the space RT0 of
the lowest-order Raviart-Thomas elements on a single, regular
hexahedron T [25], [26]:

RT0(T ) =P1,0,0(T )× P0,1,0(T )× P0,0,1(T ),

where Pi,j,k(T ) denotes the set of polynomial functions
defined on T of degrees i, j, and k in x1, x2, and x3. We
expand this definition to a discrete subspace of H(div; Ω):

RT0(Th) =
{
q ∈ L2(Ω)3 : q|T ∈ RT0(T ) and [q]∂T = 0

for all T ∈ Th
}

= {q ∈ H(div; Ω) : q|T ∈ RT0(T ) for all T ∈ Th} .

[·]γ indicates the jump of the normal component at a
boundary γ.

Using Fortin’s criterion [22], [24], it can be shown that
the existence and uniqueness of a solution to (8) – as noted
in Section II-A – are conserved when replacing L2(Ω) and
H0(div,Ω) by their discrete approximations P0 and RT0. For
details, we refer the reader to [22].

A basis of the space RT0 can be defined for both tetrahedral
and hexahedral elements. We explicitly note only the hexahe-
dral case, which is also used in the numerical evaluations. For

h

nk

fk
Q1 Q2

Fig. 1. Zeroth-order Raviart-Thomas basis function supported on two hexa-
hedra Q1 and Q2.

a regular, hexahedral mesh with edge length h, a RT0 basis
function wk is supported on the two hexahedra Q1, Q2 ∈ Th
sharing the face fk = Q̄1 ∩ Q̄2 with normal vector nk and
centroid x̄k. It can be defined via

wk(x) =


(

1− |〈x− x̄k,nk〉|
h

)
nk, if x ∈ Q̄1 ∪ Q̄2,

0, otherwise.
(9)

This definition can be transferred to nondegenerated paral-
lelepipeds using a Piola transformation to preserve the normal
components [22], [25], [27]. We denote the set of Raviart-
Thomas basis functions wk by SRT0

h .
The discrete approximation of (8) can now be written as a

matrix equation: (
A BT

B 0

)
︸ ︷︷ ︸

=K

(
j
u

)
=

(
b
0

)
(10)

with

Ai,j =

∫
Ω

〈σ−1wi,wj〉dx Bk,j =

∫
Ω

vk(∇ ·wj) dx

(11)

bi =

∫
Ω

〈σ−1jp,wi〉dx (12)

for vk ∈ SP0

h , wi,wj ∈ SRT0

h .

For the submatrices A and B, we have mA = nA = #faces
and mB = #elements, nB = #faces, respectively, and thus
the dimension of K is mK = nK = #faces + #elements.
Using SRT0

h for the matrix setup in (10), we did not enforce
the Neumann boundary condition (2c) in the discrete equation
system so far. This has to be done explicitly when solving (10)
by eliminating the respective degrees of freedom.

C. Comparison to Other FE Methods for Solving the EEG
Forward Problem

The state-of-the-art FE method to solve the EEG forward
problem is the CG-FEM, for which a variety of different
source models has been derived [4]–[9]. In addition, in [14]
a discontinuous Galerkin (DG)-FEM for the EEG forward
problem has been proposed. The DG-FEM, like the Mixed-
FEM, is current preserving and was derived to prevent skull
leakages and to obtain more accurate and reliable results. How-
ever, whereas the Mixed-FEM actually preserves the physical
current, jh = σ∇uh, the DG-FEM preserves jh = {σ∇uh}−
η
σ̂γ

ĥγ
[uh]n at each element boundary, which converges to the

physical current for h → 0. Here, {·} and [·] indicate the
average and jump of the limit values from both sides at an
(element) boundary γ, η is a regularization parameter, and σ̂γ
and ĥγ are local definitions of electric conductivity and mesh
width at the surface γ [8], [14], [28], [29].

For sufficiently regular solutions, all three methods are con-
sistent with the strong problem and show optimal convergence
rates, i.e., O(h2) in the L2-norm and O(h) in the energy
norm for CG- and DG-FEM and O(h) in the L2-norm for
the Mixed-FEM. Furthermore, the Mixed-FEM and the DG-
FEM are locally charge preserving. For details, we refer the
reader to [24] for the CG-FEM, to [30] for the DG-FEM, and
to [22] for the Mixed-FEM.

Remark 1: The above-mentioned a priori convergence re-
sults will in general not apply in our case, as the dipole
on the right-hand side is not in L2(Ω). For classical, global
convergence results for the CG-FEM and singular right-hand
sides, we refer the reader to [31], [32].

CG- and DG-FEM will be used to evaluate the numerical
accuracy of the approaches based on the Mixed-FEM in the
numerical evaluations in Section IV.

D. Solving the Linear Equation System (10)

Due to the size of the matrix K in (10), the application
of direct solvers is not feasible. Since the matrix K has a
large 0-block, Krylov subspace algorithms, such as variants of
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the conjugate gradient (CG) or generalized minimal residual
(GMRES) method, are also not as efficient as for many
other problems, since the commonly used methods for pre-
conditioning fail [23]. Nevertheless, much research has been
performed to find preconditioning techniques that enable a
solution using CG-solvers [33], [34]. A further approach to
solve (10) was proposed based on the idea of introducing
Lagrangian multipliers to achieve the interelement continuity
of the RT0-basis functions, instead of including this condition
by construction [35]. This approach has the advantage that
the resulting equation system has only #faces unknowns, but
the derivation is rather technical [22], [35]. For our first
evaluation of Mixed-FEM to solve the EEG forward problem,
we therefore chose to apply a more direct approach that
makes use of the fact that A is – unlike K – positive (semi-
) definite. The chosen approach follows the ideas of [23]
and is based on a modification of the frequently described
Uzawa-iteration [24], [36]. It was shown that this approach is
competitive with regard to computation time when compared
to the approach based on Lagrangian multipliers, called mixed-
hybrid formulation in [23], and a (preconditioned) Augmented
Lagrangian approach [23], [37], in a similar scenario as the
one considered here. The origin of the derivation is identical
to that of the Uzawa-iteration:

If we write (10) as a system of two equations,

Aj +BTu = b (13a)
Bj = 0, (13b)

we can left-multiply A−1 to (13a) and solve for j, i.e., j =
A−1(b−BTu). Substituting this representation of j into (13b)
leads to

Bj = BA−1(b−BTu) = 0

⇔ BA−1BTu = BA−1b.
(14)

S = BA−1BT is the so-called Schur complement, mS =
ns = #elements. S is positive semidefinite (if ker(B) =
{0} positive definite) and since A is symmetric, also S is
symmetric [22]. Thus, with h = BA−1b, solving (10) is
reduced to solving

Su = h. (15)

(15) could now be solved using the (conjugated) Uzawa-
iteration [22], [24], [36].

However, A−1 is a dense matrix, so that an explicit compu-
tation of A−1 (and S) is not efficient considering the matrix
dimensions occurring in our scenario. Instead, we access A−1

on-the-fly by solving an additional linear equation system for
each iteration, i.e., instead of calculating x = A−1y we solve
Ax = y. This equation system can, for example, be solved
efficiently using preconditioned CG-solvers. With the obtained
implicit representation of S, common solver schemes such as
the gradient descent or CG method can be applied to (15).

When solving (15) via the CG algorithm with the implicit
representation of S, preconditioning is advisable, as S has a
large condition number [23]. Since S is not directly accessible,
it is necessary to use an approximation of S for precondition-
ing. The use of BBT is proposed in [38], but is efficient
only in the case of constant conductivities [23]. Although

BBT approximates the pattern of S well enough, it does not
provide a reasonable approximation of the matrix entries of
S. Instead, it is suggested to choose a diagonal matrix D that
in some sense approximates A and to use BD−1BT as input
to the preconditioner [23]. It is further proposed to choose
Di,i = l2(Ai,:) = (

∑
j A

2
i,j)

1/2. Indeed, this approximation
led to the best results when it was compared to the choices
Di,i = Ai,i, Di,i =

∑
j Ai,j , and Di,i = l1(Ai,:) =

∑
j |Ai,j |

[8].
Since all considered choices for D are diagonal, the struc-

ture of the matrix P = BD−1BT is identical to the structure
of BBT and cannot be easily inverted. Also, due to the
structure of P , commonly chosen preconditioners such as the
incomplete LU-factorization (ILU) cannot be expected to be
efficient [39, p. 330]. We found that approximating P−1 using
an algebraic multigrid (AMG) method leads to a performance
that is sufficient for our first evaluations [8].

Besides preconditioning of the “outer iteration”, a further
speed-up of the solver could be achieved by reducing the
accuracy with which the inner equation, Ax = y, is solved.
This approach can be interpreted to be similar to inexact
Uzawa-algorithms as they are proposed in the literature [40].
Since reducing the number of iterations for solving the inner
equation did not result in an increase in the number of outer
iterations that is necessary to reach the desired solution accu-
racy, performing only one iteration led to the fastest solving
speed. Using this approach, solving the equation system (15)
took less than two minutes for the finest used spherical model
with 1 mm mesh resolution (model seg 1 res 1 in Table II) [8].

Through the integration of algebraic multigrid precondition-
ers to the Uzawa-like method proposed in [23], our solution
algorithm has similarities to the combined conjugate gradient-
multigrid algorithm proposed in [41]. However, in [41] no
preconditioning of the outer iteration is performed.

E. Modeling of a Dipole Source

This section focuses on the exact choice of the source dis-
tribution jp. In principle, arbitrary distributions jp ∈ L2(Ω)3,
supp jp ⊂ Ω◦, can be modeled. The common choice in EEG
forward modeling is jp = mδx0 , where δx0 is the Dirac
delta distribution and m the dipole moment. Since maximally
δ ∈ H−3/2−ε, the assumption jp ∈ L2(Ω)3 is violated.
The authors are not aware of any literature investigating the
influence of singular right-hand sides jp for the Mixed-FEM.
However, in the case of the CG-FEM, it was shown that such
a singular right-hand side does not affect the existence and
uniqueness of a solution in general, but leads to a lower
regularity of the solution, and, in consequence, to worse
global a priori error estimates [31], [32]. (Quasi-) optimal
convergence for the CG-FEM can be shown in seminorms
that exclude the locations of the singularities [42].

As (1) is represented by a system of two PDEs now, there
are two options to model the dipole source. The dipole can be
modeled either in the “current space” (6a) or in the “potential
space” (6b) (sometimes also called “pressure space” due to the
origin of Mixed-FEM in reservoir simulations [38]). The first
option corresponds to an evaluation of the functional l in the
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discrete space RT0 as it was defined in (12). For jp = mδx0
,

i.e., a current dipole with moment m at position x0, we have

bi = bcuri =

∫
Ω

〈σ−1mδx0
,wi〉dx

=

{
〈σ−1m,wi(x0)〉, if x0 ∈ suppwi

0, otherwise.
(16)

This approach will be called the direct approach with h =
hdirect = BA−1bcur.

A representation of the dipole in the potential space, hence-
forth called the projected approach, can be obtained using the
matrix B, which can be interpreted as a mapping between
the current and the potential space. Figuratively, the (source)
current is mapped to the distribution of sinks and sources
generating this current. The projected approach is similar to
the Whitney approach that was introduced for the CG-FEM
[6], [43], except for using the scalar space P0 instead of P1. In
both approaches, a current source, represented by RT0 basis
functions, is mapped to the potential space. To achieve this
representation for the Mixed-FEM, we redefine b to be the
approximation of jp in the space RT0

bpoti =

∫
Ω

〈mδx0
,wi〉dx

=

{
〈m,wi(x0)〉, if x0 ∈ suppwi

0, otherwise.
(17)

bpot is then projected to the space P0 using B. We obtain
h = hproj = Bbpot; the dipole is represented by a source and
a sink in the potential space in this case (Figure 2, top).

Remark 2: If a single RT0 function is chosen as the source
distribution and a hexahedral mesh is used, i.e., the source
is positioned on the face fi and the direction is nfi , only
one entry of b is nonzero (cf. (16), (17)). When applying the
projection to the potential space using the matrix B, which has
only two nonzero entries per column (cf. (11)), the right-hand
side vector, which is given by h = hproj = Bbpot, also has
only two nonzero entries (Figure 2, top). In contrast, the right-
hand side hdirect = BA−1bcur causes a blurring of the current
source when interpreting it as a monopole distribution and
visualizing it in the pressure space. It leads to nonzero right-
hand side entries hi assigned to all elements that are “in the
source direction” (cf. Figure 2, middle and bottom; Figure 2,
bottom shows the sign function of all elements corresponding
to nonzero right-hand side entries through red-blue coloring).
However, most of these values are small.

This structure of b transforms accordingly to the case of
arbitrarily positioned and oriented sources, as the right-hand
side vectors b – and thereby also h – are linear combinations
of the solutions for dipoles oriented in the directions of the
mesh basis vectors in this case. The accuracies of the different
representations are evaluated in Section IV.

III. METHODS

A. Implementation

Fig. 2. Visualization of h = hproj = Bbpot (top), h = hdirect =
BA−1bcur (middle), and full view of the support of hdirect through
visualizing sign(hdirect) (bottom) for a source positioned in the center of a
face fi and direction nfi (green cone). The slice is taken at the dipole position
in the y-plane. The coloring indicates the values for the P0 basis function
corresponding to the respective element; red is positive, blue is negative.

FOR this study, both the direct (i.e., h = hdirect =
BA−1bcur) and the projected (h = hproj = Bbpot)

Mixed-FEM approaches were implemented in the DUNE
framework [44], [45] using the DUNE-PDELab toolbox [46].
In addition, a solver corresponding to a conjugate Uzawa-
iteration with additional preconditioning and implicit represen-
tation of A−1, as derived in Section II-D, was implemented
using the CG-solver template from the DUNE module iterative
solvers template library (DUNE-ISTL) in combination with
the AMG preconditioner [47].

B. Evaluation

In order to evaluate the accuracy of the Mixed-FEM,
different comparisons both in hexahedral four-layer sphere
models and in realistic head models were performed. As is
common for the evaluation of EEG forward approaches, the
error measures RDM (minimal error 0, maximal error 2) and
lnMAG (minimal error 0, maximal error ±∞) were used [48],
[49].

RDM(unum, uref ) =

∥∥∥∥ unum

‖unum‖2
− uref

‖uref‖2

∥∥∥∥
2

lnMAG(unum, uref ) = ln

(
‖unum‖2
‖uref‖2

) (18)
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In the sphere models, the solution was evaluated on the whole
outer boundary instead of using single electrode positions,
so that the results are independent of the choice of sensor
positions. For the realistic head model, the sensor positions of
a realistic 80-electrode EEG cap were used [3], [8].

TABLE I
FOUR-LAYER SPHERE MODELS (COMPARTMENTS FROM IN- TO OUTSIDE)

Compartment Outer Radius σ Reference

Brain 78 mm 0.33 S/m [50]
CSF 80 mm 1.79 S/m [51]
Skull 86 mm 0.01 S/m [17]
Skin 92 mm 0.43 S/m [17], [50]

Besides the two Mixed-FEM approaches, the Whitney CG-
FEM was included in our sphere model comparisons, as it
relies on the same approximation of the dipole source [6], [43].
By including the Whitney CG-FEM, the differences between
Mixed- and CG-FEM can be directly evaluated. Two four-layer
hexahedral sphere models, seg 1 res 1 and seg 2 res 2, with a
mesh resolution of 1 and 2 mm, respectively, were generated
(Tables I, II). Sources were placed at 10 different radii, and
for each radius 10 sources were randomly distributed. This
distribution of the test sources allows us to gain a statistical
overview of the range of the numerical accuracy at each
eccentricity. Since the numerical errors increase along with
the eccentricity, i.e., the quotient of source radius and radius
of the innermost compartment boundary, the radii of the
source positions were chosen so that the distances to the next
conductivity jump (brain/CSF boundary) were logarithmically
distributed. The most exterior eccentricity 0.993 corresponds
to a distance of only ≈ 0.5 mm to the conductivity jump. In
praxis (and for the realistic head model used in this study),
sources are usually placed so that at least one layer of elements
is between the source element and the conductivity jump,
which is fulfilled for the considered eccentricities ≤ 0.987 in
the 1 mm model and the eccentricities ≤ 0.964 in the 2 mm
model. The reference solutions uref were computed using a
quasianalytical solution for sphere models [52].

In the first study, for each model, the sources were placed on
the closest face center and the source directions were chosen
according to the face normals, so that only one basis function

TABLE II
SPHERE MODEL PARAMETERS

Mesh width (h) #vertices #elements #faces

seg 1 res 1 1 mm 3,342,701 3,262,312 9,866,772
seg 2 res 2 2 mm 428,185 407,907 1,243,716

TABLE III
REALISTIC HEAD MODEL PARAMETERS

Mesh width (h) #vertices #elements #faces

6C hex 1mm 1 mm 3,965,968 3,871,029 11,707,401
6C hex 2mm 2 mm 508,412 484,532 1,477,164
6C tet hr – 2,242,186 14,223,508 27,314,610

Fig. 3. Visualization of realistic six-compartment hexahedral (6C hex 2mm,
left) and high-resolution reference head model (6C tet hr, right).

contributes to the right-hand side vectors b (cf. (11), (16)).
Therefore, the results are not influenced by the interpolation
that is needed for arbitrary source directions and positions. For
the Whitney approach, it was shown that it has the highest
accuracy of all CG-FEM approaches in this scenario [43].
Next, the three approaches were compared in the same models
using the initially generated random source positions and
radial source directions, so that neither positions nor directions
were adjusted to the mesh. We limit our investigations to radial
sources, as eccentric radial sources were shown to lead to
higher numerical errors than tangential sources in previous
studies [53]. Finally, the projected Mixed-FEM and Whitney
CG-FEM were evaluated in combination with the models
seg 2 res 2 r82, seg 2 res 2 r83, and seg 2 res 2 r84 generated
from model seg 2 res 2 but with an especially thin skull layer,
again with random positions and radial source directions. Table
IV indicates the outer skull radii of the different models and
the resulting number of leakages, i.e., the number of nodes in
which elements of skin and CSF compartment touch.

Mixed-FEM, CG-FEM, and DG-FEM were further eval-
uated in a more realistic scenario. Two realistic six-
compartment hexahedral head models with mesh widths of
1 mm, 6C hex 1mm, and 2 mm, 6C hex 2mm, were created,
resulting in 3,965,968 vertices and 3,871,029 elements and
508,412 vertices and 484,532 elements, respectively (Table
III, Figure 3). As the model with a mesh width of 2 mm
was not corrected for leakages, 1,164 vertices belonging to
both CSF and skin elements were found, mainly located at the
temporal bone. The conductivities were chosen according to
[3]. Of 18,893 source positions placed in the gray matter with a
normal constraint, those not fully contained in the gray matter
compartment (i.e., where the source was placed in an element
at a compartment boundary) were excluded. In consequence,
17,870 source positions remained for the 1 mm model and
17,843 source positions for the 2 mm model. As sensor
configuration an 80 channel realistic EEG cap was chosen. The
investigated approaches were projected Mixed-FEM, Whitney
CG-FEM, St. Venant CG-FEM [4], and Partial Integration DG-

TABLE IV
MODEL LEAKS

Model Outer Skull Radius #leaks
seg 2 res 2 r82 82 mm 10,080
seg 2 res 2 r83 83 mm 1,344
seg 2 res 2 r84 84 mm 0
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FEM [8], [14]. St. Venant CG-FEM and Partial Integration
DG-FEM were additionally included, since they were shown
to achieve the highest accuracies of the different CG- and DG-
FEM approaches, respectively, when choosing arbitrary source
directions and positions [14], [43]. Solutions for all methods
were computed in the 2 mm model, and a solution in the
1 mm model was calculated using the St. Venant CG-FEM.
In the realistic scenario, RDM and lnMAG were evaluated
in comparison to a reference solution that was computed
using the St. Venant method in a high-resolution tetrahedral
model, 6C tet hr, based on the same segmentation (Table III,
2,242,186 vertices, 14,223,508 elements). For details of this
model, we refer the reader to [3], [8].

IV. RESULTS

In this paper, a new finite element method to solve the
EEG forward problem is introduced. It is expected that it
should be preferrable compared to the commonly used CG-
FEM approaches especially in leakage and realistic scenarios.
The goal of Sections IV-A and IV-B is to show that this new
method performs appropriately when compared to the estab-
lished CG-FEM in common sphere models, and in Sections
IV-C and IV-D the accuracy in leakage and realistic scenarios
is evaluated.

A. Comparison of Whitney CG-FEM and Mixed-FEM for
Optimal Source Positions

COMPARING the three approaches with regard to the
RDM in model seg 1 res 1 (Figure 4), no remarkable

differences are found up to an eccentricity of 0.964 (distance
from next conductivity jump ≥ 2.8 mm) with maximal errors
below 0.05 for all approaches (Figure 4, top row). At an
eccentricity of 0.979 (dist. ≈ 1.6 mm), the maximal errors
for the Mixed-FEM slightly increase. However, the maximal
errors remain clearly below 0.1. Also the Whitney CG-FEM
has a maximal error below 0.1 at this eccentricity, and the
upper quartile and median are lower than for the Mixed-FEM.
For the highest three eccentricities, the RDM clearly increases
for all considered approaches. The variance, especially for the
highest eccentricities, is lowest for projected Mixed-FEM and
Whitney CG-FEM. In the coarser model seg 2 res 2, direct and
projected Mixed-FEM perform similar up to eccentricities of
0.933 or 0.964 (dist. ≥ 2.8 mm), whereas the errors for the
Whitney CG-FEM are lower and have less variance. For higher
eccentricities, a rating of the accuracies is hardly possible due
to the higher variance.

With regard to the lnMAG (Figure 4, bottom row), only
minor differences are recognizable for model seg 1 res 1. In
model seg 2 res 2, it is notable that the direct Mixed-FEM
leads to very high maximal errors for eccentricities of 0.987,
whereas Whitney CG-FEM and projected Mixed-FEM per-
form similar with a tendency of the Whitney CG-FEM toward
lower errors.

B. Comparison of Whitney CG-FEM and Mixed-FEM for
Random Source Positions

The next comparison expands the previous results to random
source positions and radial source orientations. When compar-
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Fig. 4. Comparison of direct and projected Mixed-FEM and Whitney CG-
FEM in meshes seg 1 res 1 and seg 2 res 2. Results for optimized dipole
positions. Visualized boxplots of RDM (top row) and lnMAG (bottom row).
Dipole positions outside the brain compartment in the discretized models are
marked as dots. Note the logarithmic scaling of the x-axes.

ing the two Mixed-FEM approaches with regard to the RDM
(Figure 5, top row), both models show no major differences
up to an eccentricity of 0.964 (dist. ≥ 2.8 mm), but the
Whitney CG-FEM leads to lower errors especially in model
seg 2 res 2. For model seg 1 res 1, the RDM is constantly
below 0.05 at low eccentricities (up to eccentricity ≤ 0.964,
i.e., dist. ≥ 2.8 mm). With increasing eccentricity, the RDM
for the projected Mixed-FEM and Whitney CG-FEM mainly
remains below 0.1, whereas the maximal RDM is at nearly
0.3 for the direct approach and the median is above 0.1. Also
in model seg 2 res 2, the projected approach outperforms the
direct approach with regard to the RDM. The less accurate
approximation of the geometry leads to higher errors in these
models, e.g., the minimal RDM at an eccentricity of 0.964
(dist. ≥ 2.8 mm) is already at nearly 0.1 for both approaches
in model seg 2 res 2. The Whitney CG-FEM performs clearly
better than both Mixed-FEM approaches in this model, with
maximal errors below 0.13 at this eccentricity. For more
eccentric sources, the projected approach, again, performs
better than the direct approach. Nevertheless, the errors for
the Whitney CG-FEM remain at a lower level.

The results for the lnMAG (Figure 5, bottom row) do not
show remarkable differences for all models up to an eccentric-
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Fig. 5. Comparison of direct and projected Mixed-FEM and Whitney
CG-FEM in meshes seg 1 res 1 and seg 2 res 2. Results for random dipole
positions. Visualized boxplots of RDM (top row) and lnMAG (bottom row).
Dipole positions outside the brain compartment in the discretized models are
marked as dots. Note the logarithmic scaling of the x-axes.

ity of 0.964. In model seg 1 res 1, the projected Mixed-FEM
leads to the lowest spread for the three highest eccentricities.
However, the lnMAG decreases from positive values for all
source positions at low eccentricities to completely negative
values at the highest eccentricity. This effect is even stronger
for the Whitney CG-FEM. In contrast, the median of the
direct Mixed-FEM remains close to constant up to the highest
eccentricity, but with a higher spread. The same behavior of
the three approaches, just at a generally higher error level, is
found for model seg 2 res 2.

C. Comparison of Mixed-FEM Approaches in Leaky Sphere
Models

The results of Sections IV-A and IV-B suggest that the
projected Mixed-FEM is superior to the direct Mixed-FEM. To
keep the presentation concise, we from here on compare only
the projected Mixed-FEM with the Whitney CG-FEM. The
results for model seg 2 res 2 r84 (Table IV), which does not
contain any skull leakages, mainly resemble those for model
seg 2 res 2 for both RDM and lnMAG (Figure 6).

In models seg 2 res 2 r82 and seg 2 res 2 r83, the effects
of the leakages become apparent. With regard to the RDM
(Figure 6, top row), the projected Mixed-FEM leads to lower
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Fig. 6. Comparison of projected Mixed-FEM and Whitney CG-FEM in
meshes with thin skull compartment. Results for random dipole positions.
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positions outside the brain compartment in the discretized models are marked
as dots. Note the logarithmic scaling of the x-axes.

errors in both models. In model seg 2 res 2 r83, the differences
between the two approaches are still moderate. However, espe-
cially up to an eccentricity of 0.964 (dist. ≥ 2.8 mm), a higher
accuracy for the projected Mixed-FEM is clearly observable.
The increased number of leakages in seg 2 res 2 r82 intensifies
the difference between the approaches. The errors for the
Whitney CG-FEM are clearly higher than for the Mixed-FEM
here, with maximal errors larger than 0.5 at eccentricities
above 0.964 (dist. ≤ 1.6 mm).

Also with regard to the lnMAG (Figure 6, bottom row),
the influence of the skull leakages is apparent. In models
seg 2 res 2 r82 and seg 2 res 2 r83, the lnMAG increases up
to an eccentricity of 0.964, and only decreases for higher
eccentricities. This effect is clearly stronger for the Whitney
CG-FEM than for the Mixed-FEM. In contrast, the lnMAG for
the Whitney CG-FEM decreases clearly stronger than for the
Mixed-FEM in model seg 2 res 2 r84 with increasing eccen-
tricity, leading to a switch from about 0.2 for eccentricities
below 0.964 to values lower than 0.2 at an eccentricity of
0.993. Especially in model seg 2 res 2 r83 the Whitney CG-
FEM also leads to a higher variance of the lnMAG, but this
variance is less distinct in the other models.

For a single, exemplary dipole, the distribution of the
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Fig. 7. Geometry of leaky four-layer sphere model (left, compartments from in- to outside/bottom left to top right are brain, CSF, skull, skin, and air) and
visualization of strength (only skull and skin, in µA/mm2) and direction of volume currents for CG-FEM (middle) and Mixed-FEM simulation (right).

volume currents in skull and skin in model seg 2 res 2 r82
simulated with the Whitney CG- and projected Mixed-FEM
is visualized in Figure 7. The leakage effect for the CG-
FEM (Figure 7, middle) is obvious. While the Mixed-FEM
(Figure 7, right) leads to a smooth current distribution and
the highest current strengths among skull and skin elements
are found in the skull compartment (up to ≈ 13 µA/mm2), the
current strength peaks in the skin compartment for the Whitney
CG-FEM (maximum ≈ 144 µA/mm2) and is increased by a
factor of more than 11 compared to the Mixed-FEM (note the
different scaling of the colorbars). Compared to the maximal
current strength in the skin compartment, the current strength
in the skull is very low here, showing the leakage of the
volume currents through the nodes shared between CSF and
the skin.

D. Realistic Head Model Study

The cumulative relative frequencies of RDM and lnMAG
are displayed in Figure 8. Due to the rough approximation
of the smooth surfaces, all models consisting of regular
hexahedra (especially at the mesh width of 2 mm) lead to rel-
atively high topography and magnitude errors when compared
to the surface-based tetrahedral reference model. Comparing
the results in model 6C hex 2mm with regard to the RDM
(Figure 8, top), the projected Mixed-FEM performs best with
roughly 95% of the errors below 0.31 (95% indicated by upper
horizontal bar in Figure 8, top). Therefore, the result is nearly
as good as that achieved with the St. Venant approach in the 1
mm model, 6C hex 1mm, where 95% of the errors are below
0.28. The partial integration DG-FEM performs nearly equally
well to the Mixed-FEM with 95% of the errors reached at
about 0.36. Whitney and St. Venant CG-FEM perform nearly
identically and for these approaches the 95th percentile is
reached at an RDM of nearly 0.4.

With regard to the lnMAG, the differences between the
results obtained using the mesh resolutions of 1 and 2 mm and
also between Mixed-, DG- and the two CG-FEM approaches
are larger than for the RDM (Figure 8, bottom). The projected
Mixed-FEM performs best for model 6C hex 2mm, with 90%
of the errors in the range from -0.15 and 0.35 (interval between
lower and upper horizontal lines in Figure 8). The partial
integration DG-FEM performs only slightly worse with 90%
of the errors in the range from -0.15 and 0.4. Again, Whitney
and St. Venant CG-FEM lead to nearly identical accuracies
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Fig. 8. Cumulative relative errors of RDM (top) and lnMAG (bottom) for
EEG in realistic six-layer head model. The horizontal lines indicate the 5th
and 95th percentile (lower and upper lines, respectively)

and show the highest errors for the model 6C hex 2mm, both
with regard to absolute values and spread (90% of the errors in
the range from -0.1 to 0.54). The increase in accuracy when
using model 6C hex 1mm instead of model 6C hex 2mm is
clearer for the lnMAG than for the RDM. For the St. Venant
CG-FEM, 90% of the lnMAG-errors are in the range from -0.2
to 0.25, thus showing both a smaller spread than the results
in the model 6C hex 2mm and also lower absolute values.

V. DISCUSSION AND CONCLUSION
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THIS study introduced the Mixed-FEM approach for the
EEG forward problem. Two approaches to model the

dipole source were derived, the direct and the projected.
Numerical results for sphere and realistic head models were
presented and compared to different established numerical
methods.

The results suggest that the Mixed-FEM achieves an appro-
priate accuracy for common sphere models, especially the pro-
jected approach. The comparison with the Whitney CG-FEM
approach with optimized positions and orientations shows that
the Mixed-FEM leads to comparable accuracies (Figure 4). For
both optimized and arbitrary source positions, the projected
approach achieved a superior accuracy compared to the direct
approach. Previous publications concentrated on evaluating the
Whitney CG-FEM in tetrahedral models [43]. In these studies,
the accuracy of the Whitney approach deteriorated when using
arbitrary source positions and orientations, potentially due
to the interpolation necessary to represent arbitrary source
positions and orientations with the Whitney approach. This
effect is not found in the hexahedral models used here and
a high accuracy is achieved (Figure 4). These results should
be investigated in more depth in further studies. In the leaky
models seg 2 res 2 r82 and seg 2 res 2 r83, the Mixed-FEM
performs better than the Whitney CG-FEM (Figure 6). This
higher accuracy was expected from the Mixed-FEM based
on theoretical considerations, since the Mixed-FEM is by
construction charge preserving, which should prevent current
leakages [54].

For EEG forward modeling, the Mixed-FEM approaches
share this current preserving property with the recently pro-
posed approaches based on the DG-FEM [14]. Both the
direct Mixed-FEM and the partial integration DG-FEM were
evaluated against CG-FEM approaches in the realistic six-
compartment head model 6C hex 2mm. In this head model,
both Mixed- and DG-FEM were advantageous in comparison
to the CG-FEM (Figure 8). The projected Mixed-FEM clearly
outperforms both Whitney and St. Venant CG-FEM in this
scenario and achieves a slightly higher accuracy than the
partial integration DG-FEM. Since only a few skull leakages
occurred in this model and as these were concentrated in
the area of the temporal bone, leakage effects do not suffice
to explain the higher accuracy of Mixed- and DG-FEM. An
overall higher accuracy of these approaches in this kind of
model, i.e., regular hexahedral with a mesh resolution of 2
mm, can be assumed. The relatively high level of errors is
a consequence of the coarse regular hexahedral meshes that
were used, whereas the reference solution was computed in
a highly resolved tetrahedral model. The result for the St.
Venant CG-FEM in the model with a mesh resolution of
1 mm, 6C hex 1mm, helps to estimate the relation between
the influence of the different numerical approaches and the
accuracy of the approximation of the geometry. It is shown that
the difference between projected Mixed-FEM and Whitney
and St. Venant CG-FEM in model 6C hex 2mm is nearly as
big as the difference between using models 6C hex 1mm and
6C hex 2mm for the St. Venant CG-FEM.

Realizing these differences in accuracy directly leads to
the three main sources of error in these evaluations. Besides

the previously discussed leakage effects, these are inaccurate
representation of the geometry and numerical inaccuracies. A
major source of error is the representation of the geometry.
Since regular hexahedral meshes were used, the influence of
geometry errors is significant, especially for coarse meshes
with resolutions of 2 mm or higher. No explicit convergence
study comparing the results in models with increasing mesh
resolution but a constant representation of the geometry was
performed. However, it can be assumed from the results
of previous studies that the geometry error dominates the
numerical errors due to lower mesh resolutions [8], [14].

In order to reduce the geometry error, the use of geometry-
adapted meshes was considered for the CG-FEM. Such
meshes have been shown to clearly improve the represen-
tation of the geometry in previous studies [53], [55], [56].
Although the use of nondegenerated parallelepipeds is un-
critical for the Mixed-FEM, “some complications may arise
for general elements” [22]. However, it was shown that the
H(div; Ω)-convergence is preserved on shape-regular asymp-
totically parallelepiped hexahedral meshes [27] and, for the
two-dimensional case, error estimates for general quadrilat-
eral grids can be obtained when modifying the lowest-order
Raviart-Thomas elements [57], [58] and for convex quadri-
laterals even superconvergence was shown [54]. The use of
geometry-adapted hexahedral meshes in combination with the
Mixed-FEM should therefore be evaluated in future studies.

Regarding the numerical inaccuracy due to the discretization
of the equations and the source singularity, the Mixed-FEM
allows to increase the regularity of the right-hand side by
one degree. As a consequence of the first-order formulation
(6), applying the derivative to the delta distribution included
in the primary current jp can be circumvented. The results
obtained show high numerical accuracies, especially at the
highest eccentricities, and particularly for the projected Mixed-
FEM. This increase in accuracy comes at the cost of a higher
number of degrees of freedom than that of the CG-FEM, as
the current j is also considered as an unknown now, meaning
that it has to be discretized. Furthermore, the discrete problem
has a saddle point structure (10) and cannot be efficiently
solved with AMG-CG solvers without further modifications.
Although the number of unknowns is clearly increased com-
pared to the CG-FEM, e.g., in model seg 2 res 2 we have
#DOFM = 1, 243, 716 + 407, 904, and #DOFCG = 428, 185
(cf. Table II), by introducing an algorithm based on the idea
of the conjugated Uzawa-iteration (Section II-D), the solving
time even in the finest model seg 1 res 1 was reduced to less
than two minutes. This solving time is only a few seconds
slower than that for the CG-FEM. Furthermore, as the equation
system (10) is symmetric, the transfer matrix approach [59],
[60] can be applied for the Mixed-FEM to reduce the number
of equation systems that have to be solved to equal the number
of sensors.

As an alternative to the straightforward approach presented
here for solving the linear equation system (13) using the
Schur complement, an approach based on the method of
Lagrange multipliers has been proposed [35]. In this approach,
the continuity of the vector-valued basis functions is no longer
enforced by the definition of the basis functions, but by intro-
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ducing interelement Lagrange multipliers. This approach leads
to a linear equation system having as many unknowns as the
number of faces in the case of lowest-order Raviart-Thomas
elements. This equation system is symmetric, positive definite,
and sparse. Although this approach does not necessarily lead
to a decrease of the solving time [23], [41], a higher order
of convergence is predicted in theory when employing the
information contained in the Lagrangian multipliers [22], [61].
Therefore, it is desirable to evaluate this solution approach in
subsequent studies.

The lowest-order Raviart-Thomas elements used in this
study are the most classical, but only one of many dif-
ferent elements that have been developed to approximate
H(div; Ω). Further element types are, e.g., Brezzi-Douglas-
Marini (BDM) [62], [63] and Brezzi-Douglas-Fortin-Marini
(BDFM) [64] elements. To overcome known limitations of
these classical element types, further elements to approximate
H(div; Ω) were developed more recently [65], [66]. Due to
different approximation properties of the element types, the
evaluation of further element types for solving the EEG for-
ward problem using the Mixed-FEM in future studies might be
worthwhile. Also the use of higher-order Raviart-Thomas ele-
ments, e.g., RT1 elements in combination with discontinuous
linear Ansatz-functions for the potential, should be considered,
as the theoretically predicted convergence rates improve for
higher element orders. For an overview of the most common
finite element spaces to approximate H(div; Ω), including
higher-order elements, and their convergence properties, we
refer the reader to [22]. However, the use of higher order
elements comes at the cost of an increased number of degrees
of freedom. Thus, the use of higher mesh resolutions should
always be considered as an alternative to the use of higher-
order elements.

As mentioned, the Mixed-FEM guarantees the conserva-
tion of charge by construction. In consequence, especially
in models with thin insulating compartments and at highest
eccentricities, it still leads to high accuracies, which also
encourages the use of the Mixed-FEM in related applications
that depend on an accurate simulation of the electric current,
such as the magnetoencephalography (MEG) forward problem,
transcranial direct current stimulation (tDCS), or deep brain
stimulation (DBS) simulations.

Overall, we conclude that the Mixed-FEM is an interesting
new approach that can at least complement and in some
scenarios even outperform standard continuous Galerkin FEM
approaches for simulation studies in bioelectromagnetism. The
use of different element types and solving algorithms should
be investigated in further studies.
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M. Ohlberger, and O. Sander, “A generic grid interface for parallel
and adaptive scientific computing. Part II: Implementation and tests in
DUNE,” Computing, vol. 82, no. 2–3, pp. 121–138, July 2008.

[46] P. Bastian, F. Heimann, and S. Marnach, “Generic implementation
of finite element methods in the distributed and unified numerics
environment (DUNE),” Kybernetika, vol. 46, no. 2, pp. 294–315, 2010.

[47] M. Blatt, “A parallel algebraic multigrid method for elliptic problems
with highly discontinuous coefficients,” PhD thesis in Mathematics,
Heidelberg University, 2010.

[48] J. W. H. Meijs, O. W. Weier, M. J. Peters, and A. van Oosterom,
“On the numerical accuracy of the boundary element method,” IEEE
Transactions on Biomedical Engineering, vol. 36, pp. 1038–1049, 1989.

[49] D. Güllmar, J. Haueisen, and J. R. Reichenbach, “Influence of
anisotropic electrical conductivity in white matter tissue on the
EEG/MEG forward and inverse solution. a high-resolution whole head
simulation study,” NeuroImage, 2010.

[50] C. Ramon, P. Schimpf, J. Haueisen, M. Holmes, and A. Ishimaru,
“Role of soft bone, CSF and gray matter in EEG simulations,” Brain
Topography, vol. 16, no. 4, pp. 245–248, 2004.

[51] S. B. Baumann, D. R. Wozny, S. K. Kelly, and F. M. Meno, “The elec-
trical conductivity of human cerebrospinal fluid at body temperature,”
IEEE Transactions on Biomedical Engineering, vol. 44, no. 3, pp. 220–
223, 1997.

[52] J. C. de Munck and M. J. Peters, “A fast method to compute the
potential in the multisphere model,” IEEE Transactions on Biomedical
Engineering, vol. 40, no. 11, pp. 1166–1174, 1993.

[53] C. H. Wolters, A. Anwander, G. Berti, and U. Hartmann, “Geometry-
adapted hexahedral meshes improve accuracy of finite element method
based EEG source analysis.” IEEE Transactions on Biomedical Engi-
neering, vol. 54, no. 8, pp. 1446–1453, 2007.

[54] R. E. Ewing, M. M. Liu, and J. Wang, “Superconvergence of mixed
finite element approximations over quadrilaterals,” SIAM Journal on
Numerical Analysis, vol. 36, no. 3, pp. 772–787, 1999.

[55] D. Camacho, R. Hopper, G. Lin, and B. Myers, “An improved method
for finite element mesh generation of geometrically complex structures
with application to the skullbase,” Journal of Biomechanics, vol. 30,
no. 10, pp. 1067–1070, 1997.

[56] S. Wagner, F. Lucka, J. Vorwerk, C. S. Herrmann, G. Nolte, M. Burger,
and C. H. Wolters, “Using reciprocity for relating the simulation of tran-
scranial current stimulation to the EEG forward problem,” NeuroImage,
2016.

[57] S. H. Chou, D. Y. Kwak, and K. Y. Kim, “Flux recovery from primal
hybrid finite element methods,” SIAM Journal on Numerical Analysis,
vol. 40, no. 2, pp. 403–415, 2002.

[58] D. Y. Kwak and H. C. Pyo, “Mixed finite element methods for general
quadrilateral grids,” Applied Mathematics and Computation, vol. 217,
no. 14, pp. 6556–6565, 2011.

[59] D. Weinstein, L. Zhukov, and C. Johnson, “Lead-field bases for elec-
troencephalography source imaging,” Annals of Biomedical Engineering,
vol. 28, no. 9, pp. 1059–1066, 2000.

[60] C. H. Wolters, L. Grasedyck, and W. Hackbusch, “Efficient computation
of lead field bases and influence matrix for the FEM-based EEG and
MEG inverse problem,” Inverse Problems, vol. 20, no. 4, pp. 1099–1116,
2004.

[61] D. N. Arnold and F. Brezzi, “Mixed and nonconforming finite element
methods: implementation, postprocessing and error estimates,” RAIRO-
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