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The Unfitted Discontinuous Galerkin Method
for Solving the EEG Forward Problem:
A Second Order Study

Andreas Niifing, Carsten H. Wolters, Heinrich Brinck, Christian Engwer

Abstract—We present a study of the unfitted discontinuous
Galerkin finite element method (UDG-FEM) for solving the
electroencephalography forward problem (EEG) using second
order polynomial functions. In [1] UDG-FEM was introduced
as a method for solving the EEG forward problem. Convergence
could be validated numerically and it performed similarly or even
better than competitive methods on hexahedral or conforming
tetrahedral meshes. The method in [1] used linear local polyno-
mial spaces in its mathematical formulation. However, given a
smooth level set representation of the different tissue boundaries,
UDG-FEM can also be used with polynomials of higher order.
We present a first evaluation of UDG-FEM with second order
polynomials and compare it to the linear case. The results show
that for the same number of degrees of freedom, second order
polynomials achieve an overall higher accuracy than linear ones.

Index Terms—Unfitted Discontinuous Galerkin, Finite Element
Method, Second Order, EEG Forward Problem

I. INTRODUCTION

The unfitted discontinuous Galerkin finite element method
(UDG-FEM) as a method for discretizing partial differential
equations was first introduced in [2]. In [1] UDG-FEM has
been used to solve the electroencephalography forward prob-
lem (EEG). It showed an overall good accuracy when com-
pared to competitive methods on conforming meshes, while
providing a less complex simulation pipeline. In addition, it
derived properties of the discontinuous Galerkin finite element
method (DG-FEM), such as for example conservation proper-
ties on a discrete level. Locally, the discrete model employs
polynomial basis functions. In [1], results where presented
only for linear polynomials. For the standard finite element
method (CG-FEM) with conforming tetrahedral meshes results
for second order finite elements have been presented [3]-
[5]. The accuracy could be increased, but the geometric
representation has been identified as a possible error source.

This study focusses on comparing the results for UDG-
FEM with first order functions to the ones obtained by using
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quadratic polynomials. As UDG-FEM uses level set functions
for the representation of the model geometry, a better geo-
metric representation of the smooth surfaces can be obtained,
which can be beneficial for a second order method. In Section
I, the UDG-FEM approach is recalled and extended to second
order polynomials. Section III presents results of a comparison
in four-layer sphere model which are discussed in Section IV.
Finally, a short conclusion is given in Section V.

II. METHODS
A. An unfitted discontinuous Galerkin method

In the following, we will describe the unfitted discontinuous
Galerkin finite element method (UDG-FEM) for solving the
EEG forward problem. We will closely follow the description
in [1] and note on the differences when introducing second
order polynomials.

The EEG forward problem is solved by providing a solution
to the inhomogeneous Poisson equation on the head domain
) C R3 with homogeneous Neumann boundary conditions,
ie.

V-oVu=f
oVu-n=20

in Q (D
in 99 )

o : Q — R3*3 denotes the symmetric and positive definite
conductivity tensor. We will assume that the domain 2 is
embedded in a larger domain Q) C R3. To derive a discrete
model, we introduce a structured mesh 7, of this outer

domain:

Th={E;cQlieZ={0,...,N—1}} (3)
EnE=0vi#j |JE =9 4)
i€l

of open sets E; C R3. h € R is defined as the mesh width,
i.e., h :=max{diam(F) : E € T,}. In the following, we will
call this structured mesh fundamental mesh.

A way of describing the head domain (2 is to use a level set
function. A level set function for 2 is a function ® : Q — R
with the property

<0 ,xef
=0 ,ze€dN 3)
>0 ,zeQ\Q

o(z)

On the fundamental mesh 7y, the level set function is ap-
proximated as a piecewise multilinear Q; function ®; by
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evaluating ® at each grid node. In order to provide a better
geometric representation, we will also consider discrete level
set functions defined on a finer mesh, which resulted from
a regular global refinement of the fundamental mesh. By
employing multiple level set functions <I>(,)L,...7®£71, we
can differentiate between multiple domains. Each such level
set function separates Q) into two parts with respect to its
sign. We will denote these parts by €; _ and Q;  for the
negative and positive side of the level set function i. From
these parts, we can create domains Dy, ..., Dp_1, consisting
of intersections of negative and positive sides of the level
set functions, i.e. Dy,...,Dp_1 C {ﬂ(i’p)el Qip : I C
{0,...,L — 1} x {—,+}}. For a domain D; we define its
support as Q(D;) := |JD; and require that the supports of all
domains are pairwise disjoint, i.e., Q(D;) N Q(D;) = 0 holds
for i # j. For each element F;, we set its set of intersecting
domains to D(E;) := {D; : E; N Q(D;) # 0}. From this
domain information we generate a cut cell triangulation:

T, = U {E;NQ(D;): Dj € D(E;)} (6)

The elements of this triangulation, i.e. the intersections of the
fundamental mesh elements with tlEtd difjeérent _domains are
called cut cells. The skeleton I'y, :=I';, UT";, of T, is defined
as the union of the inter-domain skeleton fi = {ﬂ’k =
ENE, : B EY € Thk # j,|v"*| > 0} and the inter-
element skeleton T, = {7F, := By ﬁff CEF EY € Ty,i#
Js \’yzk j\ > 0}. For simplicity reasons, we introduce a global cut
cell numbering and denote the cut cells by Ey, ..., En, 1.

Let VIF = {u € L2(Q) : ulp € P*(E) VE € T} denote
the broken polynomial space on 7 ,. P*(E) denotes a space
of polynomials on E of degree £ € N. We will assume that o
is constant on each E; € T and denote its value by o;. The
unfitted discontinuous Galerkin method for solving (1), which
we will use, then reads: Find u;, € V}f’ such that

a(up,vp) + J(up,vp) = U(vy) Yop € th 7

holds. The bilinear forms a and J are given as

a(up, vp) :/ oVuy, - Vopdr —/
Q

[ur]{cVur)ds (8)

Tn
— | [on]{oVun)ds )
I'n
T (un, o) =n /, 2 fun] fon]ds (10)
Tn o
l(vp) :/ fopdx (11)
Q

The jump [uy] on the intersection between two cut cells E;
and F; with unit outer normals n; and n;, respectively, is
defined as Jup] := uh|En1 + un|g;nj. (0Vuy) denotes the
weighted average of the flux of uy, on the interface. With §; :=
nioin; and d; := nko;n;, this can be defined as

0 d;

o;Vuy, E; "N+ 4ajVuh\Ej Sy

__ j
(oVun) := 0; + 0; 0; + 9,

The factor 7., € R scales the penalty term at conductivity
jumps on an edge v = <; ;. It is defined as the harmonic
average of d; and §;: 7, := 20;9,/(; + J;). To accommodate
for different polynomial orders, the penalty term is scaled by
v, = k(k + 2) € R as described in [6]. Note that the bilinear
form a+.J is symmetric. As a DG-FEM approach, this method
is also called symmetric weighted interior penalty Galerkin
(SWIPG) method [7]. If the penalty parameter is large enough,
ie., 7 > no > 0 for a specific 79 € R, the problem has a
unique solution. Note that each integral can be replaced by a
sum over cut cell local contributions.

In the following we will assume that the elements of the
fundamental mesh are hexahedrons. We thus use Qy(F) for
the local polynomial spaces in th- On each cut cell, the
local polynomial space is spanned by N, € N local basis
functions ¢y, ...,pn,—1. For K = 1 we obtain N, = 8
and for £ = 2 we obtain N, = 27 local basis functions
respectively. By introducing a global numbering of the local
basis functions and inserting these into the model, we can
assemble a sparse linear equation system, which can be
subsequently solved numerically. The integration over the cut
cells and the skeleton is performed by a modified marching
cubes algorithm. It creates a subtriangulation of a cut cells
domain and its boundary consisting of simpler, polyhedral
elements, where common quadrature rules such as Gaussian
quadrature are available. A further explanation of this method
can be found in [1], while a detailed study has been performed
in [8]. The numerical solution u is evaluated at the electrode
positions xg,...,xn,—1 Which results in a potential vector
U € R¥e. To reduce the computational load of solving the
linear system for each dipole position, fast transfer matrix
approaches are used (see e.g. [9]).

B. Source model

A common source model used for the EEG forward problem
is the mathematical dipole with a moment M € R3 and
location o € R3. Using the mathematical dipole in the
Poisson equation results in the source term f = V - Md,,,
with the Dirac delta distribution J,,. As this source term is
highly irregular, we use the partial integration approach as an
approximation. The resulting right hand side of the discretized
model for a basis function ¢; then reads:

Up;) = {_M -Vi(zg) ,xo € support(yp;) 12

0 ,else

C. Meshes

In order to compare the results of first and second order
polynomials, we use a four-layer sphere model. For such a
model geometry, quasi analytic solutions of the EEG forward
problem can be provided [10]. The radii of the different
spheres along with the conductivity values of the tissue com-
partments are given in Table I. For the conductivity values,
we followed the recommendations of [11]. To obtain a fair
comparison, the number of degrees of freedom (DOFs) for
the first and second order models should be comparable.
As the local polynomial spaces have a different number of
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TABLE I: Sphere radii, tissue labels and conductivity values
from outer to inner compartment.

Radius 92 mm 86 mm 80 mm 78 mm
Tissue skin skull CSF brain
Conductivity | 043 S/m | 0.0l S/m | 1.79 S/m | 0.33 S/m

TABLE II: Number of cut cells and thus number of degrees
of freedom (DOFs) for the different cut cell models

degree N N3 cut cells DOFs
1 58 | 195.112 | 126.152 1.009.216
2 36 | 46.656 35.672 963.144

basis functions, we use different fundamental mesh sizes for
both models. For the level set representations, both meshes
where two times globally refinement to obtain a more accurate
geometric representation. Note that the local basis function are
still defined on the unrefined fundamental mesh. The number
of elements, the resulting number of cut cells and thus the
number of DOFs can be seen in Table II. The second order
model has slightly less DOFs than the first order model. In
the following, we will denote these models by UDG(1) 1009k
and UDG(2) 963k for first and second order respectively.

D. Sources

We created two sets of test sources, one consisting of
radial and the other of tangential dipoles. For each set, we
generated 1000 dipoles on each of 10 eccentricities in the
inner compartment, scaled logarithmically towards the first
conductivity jump. The most eccentric sources where located
at a distance of 0.48mm from the boundary of the inner
compartment, which corresponds to an eccentricity of 0.9939.

E. Error measures

The error of a numerical solution Upy, € RNe evaluated
at the electrodes and an analytic solution U,,, € RMe is
measured by the relative difference measure (RDM%) and
the magnitude error (IMAG%) which are defined as.

100 || U, U
RDM%(UnuI‘ﬂ? U ) I H num ana ‘ (13)
ana 9 ||UnumH ||UanaH
MAGT (Vs Usna) = 100 (IIU |||| B 1) (14)

The error given by both measures is better, the closer it is to
0. The results are presented as box plots (see Fig. 1), where a
black horizontal line shows the median, a colored box shows
the interquartile range (IQR) and vertical black lines show the
total range (TR) for a given source eccentricity.

III. RESULTS

In this study we compared the first order to the second
order UDG-FEM method in a four-layer sphere model. The
RDM% and MAGY% statistical errors can be seen in Fig. 1. For
both, radial and tangential dipoles and first and second order,
we observe an increasing RDM% error and an increasing

TABLE II: Maximal RDM% error and maximal absolute
value of MAG% error of UDG(1) and UDG(2) for radial and
tangential dipoles with an eccentricity below 0.95.

radial tangential
method || RDM% | |[MAG%| | RDM% | |[MAG% |
UDG(1) 1.96 % 3.63 % 1.83 % 2.76 %
UDG(2) 0.45 % 235 % 0.44 % 0.88 %

total range (TR) of the MAG% error for higher eccentricities.
The maximal RDM% error and the median RDM% value of
each eccentricity of UDG(2) is below the respective value of
UDG(1). The interquartile range (IQR) of the RDM% error
of UDG(2) is always below the one of UDG(1). The maximal
RDM% error and the maximal abolute value of the MAG%
error for radial and tangential dipoles with eccentricities below
0.95 can be seen in Table III. Up to an eccentricity of 0.95,
the MAG% error for radial dipoles of UDG(2) has a smaller
TR and IQR than UDG(1) and the median values are closer
to 0. Above an eccentricity of 0.95, the MAGY% error for both
methods show a stronger increase in TR and IQR and both
methods perform similarly. Above an eccentricity of 0.95, the
TR of the RDM% error for UDG(2) increases, but the median
and IQR are still below the respective values of UDG(1). The
TR and IQR of the MAG% error for tangential dipoles of
UDG(2) are overall smaller than the ones of UDG(1) and the
median values are closer to 0.

IV. DISCUSSION

In this paper, we presented a study of second order poly-
nomials in the unfitted discontinuous Galerkin finite element
method (UDG-FEM) for solving the EEG forward problem.
We recalled the mathematical formulation of the underlying
model and described differences to the first order model.
We performed a comparison of the first order UDG-FEM,
(UDG(1)) to the second order method (UDG(2)) in a multi-
layer sphere model. Both methods had approximately the same
number of degrees of freedom. The second order method
showed overall better results than the first order model. Only
for sources with a higher eccentricity, the MAG% error for
radial dipoles and the RDM% error for tangential dipoles
where not influenced as strong as for the remaining sources.
In [1] an extensive study of the UDG-FEM method has
been performed. It was compared to a DG-FEM method
on hexahedral and conforming tetrahedral meshes and the
geometric representation of the model could be identified as
a main error source. By maintaining the good approximation
of the geometry of UDG-FEM we can show a benefit of the
better approximation quality of the higher polynomial order.

For the standard finite element approach on conforming
tetrahedral meshes, second order finite elements have been
studied [3]-[5]. An increase in the approximation quality
could be found in these studies, while it was concluded that
with a better geometric representation of the different tissue
compartments, the effect might be more pronounced. We
obtain similar results with regard to the increasing accuracy
for a second order method.
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Fig. 1: Comparison of the first (light blue) and second (green) order UDG-FEM model: RDM% (upper row) and MAG%
(lower row) errors for radial (left column) and tangential (right column) sources. Note that the x-axis is logarithmically scaled.

V. CONCLUSION

We presented a study of the unfitted discontinuous Galerkin
method for solving the EEG forward problem with second
order polynomials. Second order polynomials could achieve a
better accuracy while using the same number of degrees of
freedom compared to linear polynomials.
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