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Abstract

We compare the performance of the variance based beamformer SAM to the
kurtosis based beamformer SAM(g2). The analysis of kurtosis is extended with
a segmentation method to bias for or against signal frequency. The beamformers
are tested in simulations with different noise strengths, signal frequencies, and
two dipole sources. Simulations are done for EEG and MEG in a realistic
6 compartment model with a correct and a 3 compartment leadfield. In this
simulations kurtosis has shown to be better suited to localize sources when noise
is not very low. The segmentation methods have worked well to separate high
and low frequency sources. The model error for the 3 compartment leadfield
was moderate for the EEG but high for the MEG.
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Chapter 1

Introduction

Epilepsy is a neurological disease characterized by epileptic seizures. These
seizures can vary in length and intensity, but their unpredictability and con-
sequences reduce the life quality of affected persons enormously. Electroen-
cephalography (EEG) and magnetoencephalography (MEG) measure the activ-
ity in the brain without the need to open the head. These methods can be used
by doctors to confirm epilepsy and localize the part of the brain that starts the
seizures. If treatment with drugs does not help, removal of these parts can be
necessary. To localize the source traditionally the spikes have to be marked by
hand so averaging can cancel the effects of noise. Marking the spikes, however,
is a difficult and tiring work when hours of activity have to be searched. Beam-
former approaches differ from traditional approaches as they work on raw data
without the need for averaging and marking. This is done by spatial filtering to
separate possible sources and analysing activity by statistical means. At first,
variance was used to describe source strength. In recent times the outlier test
kurtosis was introduced as an alternative approach to the variance. In prac-
tice the EEG/MEG measurements are segmented into small time samples and
beamforming is applied to each segment to localize possible sources. Perfect
localization would be optimal, but if the existence of spikes correspond to high
beamformer output values, this would already be a great help for doctors. The
goal of this thesis is to introduce different methods of kurtosis analysis and to
compare them to the classic variance approach. This can all be done by varia-
tions of the SAM beamformer. To do this the following topics are discussed:

• First the general approach to a spatial filter and the vector beamformer
is given. A detailed derivation of the Linear Constraint Minimum Vari-
ance (LCMV) beamformer is given as it sets the foundation to the other
approaches.

• As all beamformers use the covariance matrix to determine source activity,
the estimation error is discussed.

• The Synthetic Aperture Magnetometry (SAM) approach is described.
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• The outlier test kurtosis is introduced and two methods to change kurtosis
behaviours to frequency are explained. The application of kurtosis in
beamforming is discussed.

• To show the performance of the beamformers different tests are evaluated.
These tests include noise strength, signal frequency, and two dipoles. The
model error is done for both the EEG and MEG.

• At the end the results are summarized and an outlook is given.
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Chapter 2

Beamformer

Beamformers are spatial filtering techniques that can be used to solve the
EEG/MEG inverse problem. Instead of signal amplitude they use statistical
methods to describe source strength. The basis of spatial filtering and covari-
ance localization will be derived in this chapter as a wide introduction to beam-
forming in brain research. We will use the term ”sensor” for both EEG elec-
trodes, MEG magnetometers or gradiometers, or a combination of those. The
beamformer is independent of the measurement technique as long as the lead-
field is appropriate. The whole chapter is directly based on Stephanie Sillekens’
diploma thesis [16] in its structure and content.

2.1 Data Model

In this section the general idea of the beamformer and the covariance as source
strength is derived as done by Van Veen et al [19] and the review by Stephanie
Sillekens [16].

Let there be N sensors and let q be a 3 × 1 source location. Let H(q)
represents a N × 3 solution matrix to the forward problem of a single dipole at
location q with strength 1 in direction x, y and z, respectively. H(q) is called
the leadfield matrix to q. It represents the physical properties of the head and
the sensors. In practice H is of course dependent on the head model and can
never be fully realistic, but for the theory a perfect leadfield will be assumed.
If x is a N × 1 vector representing the noise free measurement of a dipole at
location q and m(q) is the 3× 1 moment of the source, then x = H(q)m(q).

Because the brain can be considered a linear medium the potential at the
sensors is the superposition from all active sources. If we assume that x is
only composed of the potentials due to K active dipole sources at locations qi,
i = 1 . . .K, and noise, then

x =

K∑
i=1

H(qi)m(qi) + n, (2.1)
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2.1. DATA MODEL

where n is the N × 1 additive measurement noise.

The essential concept of beamformers is to treat the moments m(qi)) as
random variables and describe them in terms of mean and covariance. Every
measurement is treated as a realization of these random variables.

The moment mean vector m (qi) and the data covariance matrix Cov(qi)
are denoted as

m(qi) = E[m(qi)], (2.2)

Cov(qi) = E[m(qi)−m(qi))(m(qi)−m(qi))
T ]. (2.3)

Three basic assumptions are that the noise n is of zero mean, that is E[n] = 0,
uncorrelated with the dipole moments with a N ×N covariance matrix Q, and
that the moments associated with different dipoles are uncorrelated, this is

Cov(qi,qk) = E[(m(qi)−m(qi))(m(qk)−m(qk))T ] = 0 ∀i 6= k. (2.4)

Section 2.2.6 deals with the problem of correlated sources, as this is the most
problematic assumption for practical purposes.

With the assumptions the mean of the data vector x is

x = E[x]

= E

[
K∑
i=1

H(qi)m(qi) + n

]

=

K∑
i=1

E [H(qi)m(qi)] + E [n]

=

K∑
i=1

E [H(qi)m(qi)]

=

K∑
i=1

H(qi)E [m(qi)]

=

K∑
i=1

H(qi)m(qi). (2.5)

Note that H(qi) is deterministic as it is a function of the location of qi and not
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2. Beamformer

of the moment’s realisation. The data covariance matrix C(x) is given by

C(x) =E
[
(x− x)(x− x)T

]
=E

[((
K∑
i=1

H(qi)m(qi) + n

)
−

K∑
i=1

H(qi)m(qi)

)
((

K∑
i=1

H(qi)m(qi) + n

)
−

K∑
i=1

H(qi)m(qi)

)T ]

=E

[(( K∑
i=1

H(qi)(m(qi)−m(qi))
)

+ n

)
(( K∑

i=1

H(qi)(m(qi)−m(qi))
)

+ n

)T ]

=E

[
(

K∑
i=1

H(qi)(m(qi)−m(qi)))(

K∑
i=1

H(qi)(m(qi)−m(qi))
T

+

K∑
i=1

H(qi)(m(qi)−m(qi))n
T

+

K∑
i=1

n(m(qi)−m(qi))
TH(qi)

T + nnT

]

=E

[
K∑
i=1

K∑
j=1

H(qi)(m(qi)−m(qi))(m(qj)−m(qj))
TH(qj)

T

]
+ Q

=

K∑
i=1

K∑
j=1

H(qi)Cov(qi,qj)︸ ︷︷ ︸
=0 for i6=j

H(qj)
T + Q (2.6)

=

K∑
i=1

H(qi)C(qi)H(qi)
T + Q. (2.7)

As it can be seen in (2.7) the covariance matrix C gives a good indicator
of the influence of the source at qi. As a scalar is more convenient to measure
strength, C(qi) is replaced by it’s trace. The source strength of qi is therefore
estimated as

Var(qi) = tr(C(qi)). (2.8)

In case of one dipole with a fixed direction this yields the true source
strength:
The source moment m(q) can be divided into a dipole direction d(q) and a
time dependent source strength s(t) = sq(t). Then,

m(q) = d(q)s(t) (2.9)
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2.2. LINEARLY CONSTRAINED MINIMUM VARIANCE

and the source covariance is given by ([14])

Cov(q) = Var(s)ddT (2.10)

and Var(s) is the only non-zero eigenvalue. Because the trace of a matrix is
invariant to basis transformation, this yields

tr(Cov(q)) = Var(s). (2.11)

2.2 Linearly Constrained Minimum Variance

Before the covariance matrix for a source location qi can be estimated, the
source moment m(qi) has to be acquired. This is done by weighting the data
according to the source’s influence to gain spatial samples. In this section the
concept of the Linearly Constrained Minimum Variance (LCMV) beamformer
is derived as done by van Veen et al. [19] and the review of Sillekens [16]. First
the concept of an optimal spatial filter will be discussed. As this will show to
be impractical, the LCMV filter will be derived. Then the localization with the
LCMV beamformer is described.

2.2.1 Optimal Filter Design

The signal at each location in the brain consists of the three component dipole
moment m(qi) which provides information about the strength and direction of
the dipole. So for each location a filter with three components is constructed
to estimate these moments. The filter focusing on location q0 is expressed as
the N × 3 matrix W(q0). Then the 3× 1 filter output m̂ is given by the inner
product of W(q0) and

m̂ = W(q0)Tx. (2.12)

An ideal narrow-band spatial filter passes the signal from a specific location
and fully suppresses every other signal. Mathematically, it satisfies

WT (q0)H(q) =

{
I if q = q0

0 if q 6= q0

,q ∈ Ω (2.13)

where Ω represents the volume of the brain. This can be divided into the linear
response constraint

WT (q0)H(q) = I (2.14)

and the zero response constraint

WT (q0)H(qs) = 0 for q0 6= qs. (2.15)

If (2.13) is satisfied, the filter output of a noise free measurement is m̂ =
m(q0), which is exactly the dipole moment at the location of interest.

If N ≥ 6 and the columns of H(q0) and H(qs) are linearly independent, it
is mathematically possible to satisfy (2.13). However, only a limited number of
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2. Beamformer

source locations other than q0 can be completely blocked by the filter, depending
on its degree of freedom. Each column of W(q0) only has N degrees of freedom.
The unit constraint (2.14) uses three of these and each independent null uses
additional three, so only N/3− 1 locations can be optimally filtered. As this is
far to few for most practical purposes, a non-ideal filter has to be designed to
enable performance for more locations. One basic approach is the LCMV filter
discussed next.

2.2.2 LCMV Problem

The filter output for a location qi will consist of the desired moment m(qi) and
the influence of other sources qj . Fulfilling the linear response constraint (2.14)
is needed so the desired moment is not suppressed. As the variance of m(qi)
will be used as source measurement, minimizing the influence of other sources
means to minimize the trace of the estimated covariance matrix.

The LCMV problem is therefore mathematically posed as

min
W(q0)

tr
(
C(m̂)

)
= min

W(q0)
tr
(
C(WT (q0)x

)
subject to WT (q0)H(q0) = I.

(2.16)
Using (2.12) and considering that W is not a random quantity, C(m̂) can be
written as (see [14])

C(m̂) = WT (q0)C(x)W(q0). (2.17)

Therefore, the LCMV problem can also be expressed as

min
W(q0)

tr
(
WT (q0)C(x)W(q0)

)
subject to WT (q0)H(q0) = I. (2.18)

2.2.3 Solution to the LCMV Problem

The solution to (2.18) can be obtained using Lagrange multipliers. Let L be a
3×3 matrix of Lagrange multipliers. For readability the terms (q0) and (x) are
omitted. As WTH is a 3 × 3 matrix, 9 Lagrange multipliers are needed. Let
those be denoted as λ1,1 . . . λ1,3, λ2,1 . . . λ2,3, λ3,1 . . . λ3,3 and let Λ be the 3× 3
matrix of them. Note that λi,j is the multiplier for (WTH− I)j,i to account for
the later matrix multiplication. Again for readability W and Λ are written for
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2.2. LINEARLY CONSTRAINED MINIMUM VARIANCE

the arguments of L instead of the single variables. The Lagrangian is

L(W,Λ) =tr
(
WTCW

)
+

3∑
i,j=1

λj,i(W
TH− I)i,j

=tr
(
WTCW

)
+

3∑
i=1

3∑
j=1

λj,i(W
TH− I)i,j

=tr
(
WTCW

)
+

3∑
i=1

((WTH− I)Λ)i,i

=tr
(
WTCW

)
+ tr

(
(WTH− I)Λ

)
=tr

(
WTCW + (WTH− I)Λ

)
. (2.19)

Substituting Λ with 2Λ and using that the trace is invariant against transposi-
tion for any square matrix, (2.19) can be rewritten as

L(W,Λ) =tr
(
WTCW + (WTH− I)2Λ

)
=tr

(
WTCW + (WTH− I)Λ + (WTH− I)Λ

)
=tr

(
WTCW + (WTH− I)Λ + ΛT (HTW − I)

)
(2.20)

and further expanded to

L(W,Λ) =tr
(
WTCW + (WTH− I)Λ + ΛT (HTW − I)

)
=tr

(
WTCW + (WTHΛ− Λ) + (ΛTHTW − ΛT )

)
=tr

(
WTCW + WTCC−1HΛ + ΛTHTW

+ ΛTHTC−1HΛ− Λ− ΛT − ΛTHTC−1HΛ
)

=tr
(
(WTC + ΛTHTC−1C)(W + C−1HΛ)− Λ− ΛT

− ΛTHTC−1HΛ
)

=tr
(
(WT + ΛTHTC−1)C(W + C−1HΛ)− Λ− ΛT

− ΛTHTC−1HΛ
)

=tr
(
(W + C−1HΛ)TC(W + C−1HΛ)− Λ− ΛT

− ΛTHTC−1HΛ
)
. (2.21)

Here C is assumed to be invertible in the presence of noise. As C is a symmetric
matrix, it is C = CT and thus C−1 = (C−1)T . Since C is a covariance matrix,
it is positive semi-definite and as only the first term is a function of W the
minimum of L(W,Λ) is attained by setting the first term to zero, that is

W = −C−1HL. (2.22)

Λ is now obtained by substituting W in the constraint WTH = I to get

− ΛTHTC−1H = I (2.23)
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2. Beamformer

or
ΛT = −(HTC−1H)−1. (2.24)

Substituting (2.24) into (2.22) yields the solution

WT =
(
−C−1HL

)T
=
(
−C−1H

(
− (HTC−1H)−1

)T)T
=
(
C−1H

(
(HTC−1H)−1

)T)T
=(HTC−1H)−1(C−1H)T

=(HTC−1H)−1HT (C−1)T

=(HTC−1H)−1HTC−1,

or, writing all arguments again,

W(q0)T =
(
H(q0)TC(x)−1H(q0)

)−1

H(q0)TC(x)−1. (2.25)

2.2.4 LCMV Localization

Using the filter derived in the previous subsection, (2.25), the estimated strength
or variance at a location q0 is the minimum of the cost function in (2.16) or
(2.18).

Substituting (2.25) into (2.18) leads to

V̂ar(q0) =tr
(
WTCW

)
=tr

(
(HTC−1H)−1HTC−1C(C−1)TH

(
(HTC−1H)−1

)T)
=tr

(
(HTC−1H)−1(HTC−1H)

(
(HTC−1H)−1

)T)
=tr

((
(HTC−1H)−1

)T)
=tr

(
(HTC−1H)−1

)
or with the arguments

V̂ar(q0) = tr
((

H(q0)TC(x)−1H(q0)
)−1
)
. (2.26)

For localization (2.26) is calculated as a function of the locations qi within
the brain volume. Regions of large variance are presumed to have substantial
neural activity. The result of (2.26) is referred to as neural activity or ”spatial
spectrum” of neural activity. This approach does not require specification of
the number of dipole sources in the brain.

However, it should be mentioned that it is up to interpretation what values
should be considered high. As noise leads to a spread of the signal, separation of
a spread signal and more than one dipole is a task left open for the researcher.
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2.2. LINEARLY CONSTRAINED MINIMUM VARIANCE

2.2.5 The Neural Activity Index and Noise

Of course, noise has an influence on the beamformer performance and is often
a significant part of the estimated spatial spectrum. Especially brain noise that
appears concentrated or non-uniformly distributed will interfere with localiza-
tion. To handle the influence of noise, it is useful to consider a measurement
x consisting entirely of spatial (sensor) white noise with a mean of µ = 0 and
standard deviation σ = 1, C(x) = I. In this case, (2.26) simplifies to

V̂ar(q0) = tr
((

H(q0)TH(q0)
)−1
)
. (2.27)

Hence, the noise spatial spectrum just depends on the leadfield matrices
H(q0). For locations q0 far from any sensor, the elements of H(q0) are gener-

ally quite small, so
(
H(q0)TH(q0)

)−1
will have large elements, resulting in a

large value for V̂ar(q0). Therefore, noise generally has a dome shaped spatial
spectrum corresponding to the deepness of the location. Locations of sensors
and unusual head geometry can of course alter this shape significantly. While
the LCMV spatial spectrum is not linear, the Woodbury matrix identity states
that that it contains an additive noise component of the form

tr
((

H(q0)TQ−1H(q0)
)−1
)
. (2.28)

By normalizing the estimated spatial spectrum the influence of noise should
be reduced. The normalized term is named the ”neural activity index” and is
defined as

V̂arN (q0) =
tr
((

H(q0)TC(x)−1H(q0)
)−1
)

tr
((

H(q0)TQ−1H(q0)
)−1
) . (2.29)

The neural activity index requires knowledge of the noise covariance ma-
trix. If noise is assumed to be spatial white noise that is uncorrelated between
channels, then Q = σ2I.

2.2.6 Correlated Sources

The moments associated with distinct dipoles were assumed to be uncorrelated
(2.4). This is problematic in practice because high correlation is not unusual.
Auditory sources for example fire at the same time on both sides of the brain.
This leads to a strong reduction of the estimated activity for the correlated
sources.Using that (2.6) applies for correlated sources, it can be derived that
the output variance at location qk is given by
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2. Beamformer

V̂ar(qk) = tr
(
W(qk)TC(x)W(qk)

)
=tr

(
K∑
i=1

K∑
n=1

W(qk)TH(qi)Cov(qi,qn)H(qn)TW(qk)

+ W(qk)TQW(qk)

)

=tr

(
W(qk)TH(qk)︸ ︷︷ ︸

=I (2.14)

Cov(qk,qk)H(qk)TW(qk)︸ ︷︷ ︸
=I

+

K∑
n=1
n 6=k

W(qk)TH(qk)︸ ︷︷ ︸
=I

Cov(qk,qn)H(qn)TW(qk)

+

K∑
i=1
i 6=k

W(qk)TH(qi)Cov(qi,qk)H(qk)TW(qk)︸ ︷︷ ︸
=I

+

K∑
i=1
i 6=k

K∑
n=1
n 6=k

W(qk)TH(qi)Cov(qi,qn)H(qn)TW(qk)

+ W(qk)TQW(qk)

)

=tr

(
C(qk) +

K∑
i=1
i 6=k

W(qk)TH(qi)C(qi)H(qi)
TW(qk)

+

K∑
i=1
i 6=k

(
Cov(qk,qi)H(qi)

TW(qk) + W(qk)TH(qi)Cov(qi,qk)
)

+
∑
n,i=1
n,i6=k
n6=i

(
W(qk)T

(
H(qi)Cov(qi,qn)H(qn)T

+ H(qn)Cov(qn,qi)H(qi)
T
)
W(qk)

)
+ W(qk)TQW(qk)

)
. (2.30)

The cross terms on the right-hand side of (2.30) are not positive for all
W(qk). By exploiting the correlation between sources the estimated vari-
ance can thus be much lower than the real variance. For full correlation even
tr
(
W(qk)TC(x)W(qk)

)
= 0 hold. That means that the beamformer is blind

to full correlated sources, which is a well known phenomenon of LCMV in radar
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2.3. COVARIANCE MATRIX ERROR AND FINITE INTEGRATION

and sonar [21].
[15] have shown that the reductions in the reconstructed signal intensities is

small for sources with a medium degree of correlation (less than 20% for two
correlated sources (correlation coefficients of 0.7-0.8) can still be reconstructed
if their intensities are strong enough to overcome the signal cancellation. This
can be achieved by manipulating the sensors to weight the signals. For auditory
sources only one side of the head can be measured, for example.

2.3 Covariance Matrix Error and Finite Integra-
tion

From (2.26) it is obvious that the spatial filters and therefore the source recon-
struction depends directly on the covariance matrix. This stays true for the
SAM filter as SAM described in section 2.4.

As the real data covariance matrix is unknown, the covariance matrix used
is a data driven estimation. In this section the error gained by finite integration
time in estimating the covariance matrix is derived analogously to Sillekens [16]
revision of Brookes et al [2]. Even though Brookes focuses on the MEG, there
is no reason the calculations do not hold for the EEG as well.

In this section we assume a correct leadfield matrix H and one active source
with a forward solution h and variance ρ2. Noise is assumed to be of zero mean
and uncorrelated to the signal and among sensors with a covariance matrix
Q = σ2I. Noise is assumed to be independent in time. Furthermore, the
measurement is assumed to be of zero mean. With (2.7) and (2.8) the true
covariance matrix is

C0 = ρ2hhT + σ2I. (2.31)

The first term represents the real source power, the second the additive
sensor noise power. The data covariance matrix is in practice estimated as

Cij =
1

T

T∑
l=1

(xi(tl))(xj(tl)), (2.32)

where T is the number of recorded samples and xi(tl),xj(tl) represents the
lth measurement of the ith or jth sensor at time point tl.

Let the true covariance matrix be denoted as C0 and C be its estimation.
We assume that the difference of the matrices is only due to finite integration
time and define the covariance matrix error as

∆C = C−C0. (2.33)

Under our assumptions xi(tl) is given by

xi(tl) = x0i(tl) + ni(tl), (2.34)
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2. Beamformer

where x0i(tl) is the noise free measurement and ni the additional sensor noise.
Substituting (2.34) into (2.32) yields

Cij =
1

T

T∑
l=1

(
x0i(tl) + ni(tl)

)(
x0i(tl) + nj(tl)

)
. (2.35)

By expanding product and sum it can be shown that

Cij = C0ij + ∆Cij , (2.36)

where C0ij = 1
T

∑T
l=1 x0i(tl)x0j(tl) holds.

For a sufficiently large T the estimation on the right hand side is assumed
to be equal to the analytical C0ij from (2.33) due to the sampling theorem.

The remaining terms of (2.35) are ∆Cij = A1 +A2 +A3 with

A1 =
1

T

T∑
l=1

x0i(tl)nj(tl), (2.37)

A2 =
1

T

T∑
l=1

x0j(tl)ni(tl), (2.38)

A3 =
1

T

T∑
l=1

ni(tl)nj(tl). (2.39)

(2.40)

With the assumptions ∆Cij tends to zero in the limit of infinite integra-
tion time. Brookes assumes that the Ak are uncorrelated, but Sillekens [16] has
noted that for i = j Ai = Aj holds. To estimate the error, the cases i = j and
i 6= j must separated.

Let i 6= j.
In this case A1 is uncorrelated to A2 and A3:
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2.3. COVARIANCE MATRIX ERROR AND FINITE INTEGRATION

Cov(A1, A2) =E[A1A2]− E[A1]E[A2]

=E[A1A2]− E

[
1

T

T∑
l=1

x0j(tl)ni(tl)

]
E[A2]

=E[A1A2]−

(
1

T

T∑
l=1

E[x0j(tl)ni(tl)]

)
E[A2]

=E[A1A2]−

 1

T

T∑
l=1

E[x0j(tl)] E[ni(tl)]︸ ︷︷ ︸
=0

E[A2]

=E[A1A2]− 0

=E

[
1

T 2

T∑
r=1

T∑
l=1

x0j(tl)ni(tl)x0i(tr)nj(tr)

]

=

(
1

T 2

T∑
r=1

T∑
l=1

E[x0j(tl)ni(tl)x0i(tr)nj(tr)]

)

=

 1

T 2

T∑
r=1

T∑
l=1

E[x0j(tl)ni(tl)x0i(tr)] E[nj(tr)︸ ︷︷ ︸
=0

]


=0 (2.41)

and

Cov(A1, A3) =E[A1A3]− E[A1]E[A3]

=E[A1A3]− 0E[A3]

=E

[
1

T 2

T∑
r=1

T∑
l=1

x0i(tl)nj(tl)ni(tr)nj(tr)

]

=E

(
1

T 2

T∑
r=1

T∑
l=1

E[x0j(tl)ni(tl)x0i(tr)nj(tr)]

)

=E

 1

T 2

T∑
r=1

T∑
l=1

E[x0j(tl)ni(tl)x0i(tr)] E[nj(tr)]︸ ︷︷ ︸
=0


=0. (2.42)

A2 and A3 can be shown to be uncorrelated analogously. In this case

Var(∆Cij) = Var(A1) + Var(A2) + Var(A3). (2.43)

holds.
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2. Beamformer

Let now be i = j.
Then A1 = A2 and A1 is uncorrelated with A3:

Cov(A1, A3) =E[A1A3]− E[A1]E[A3]

=E[A1A3]− 0E[A3]

=E

[
1

T 2

T∑
r=1

T∑
l=1

x0i(tl)ni(tl)ni(tr)
2

]

=

(
1

T 2

T∑
r=1

T∑
l=1

E[x0i(tl)ni(tl)ni(tr)
2]

)

=

 1

T 2

T∑
r=1

T∑
l=1

E[ni(tl)]︸ ︷︷ ︸
=0

E[x0i(tl)ni(tr)
2]


=0. (2.44)

in this case ∆Cii = 2A1 +A3 holds and (2.43) must be rewritten to

Var(∆Cij) =Var(2A1 +A3)

=Var(2A1) + Var(A3)

=4Var(A1) + Var(A3)

=2(Var(A1) + Var(A2)) + Var(A3) (2.45)

for i = j.

By using the Pearson product-moment correlation coefficient the terms in
(2.37),(2.38), and (2.39) can be further expanded. Let ·̂ indicate empirical quan-
tities and || · ||F the Frobenius norm. Then it is

A3 =
1

T

T∑
l=1

ni(tl)nj(tl) (2.46)

= ̂Cov(ni,nj) · 1

= ̂Cov(ni,nj)

√
T∑
l=1

ni(tl)2

√
T∑
l=1

nj(tl)2

T 1
T

√
T∑
l=1

ni(tl)2

√
T∑
l=1

nj(tl)2

= ̂Cov(ni,nj)
||ni||F ||nj ||F

T Ŝtd(ni)Ŝtd(nj)

=
r̂(ni,nj)||ni||F ||nj ||F

T
. (2.47)
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2.3. COVARIANCE MATRIX ERROR AND FINITE INTEGRATION

If T is sufficiently large, the Frobenius norm can be estimated by

||ni||F =

√√√√ T∑
l=1

ni(tl)2 ≈
√
σ2
i T = σi

√
T . (2.48)

where σi represents the level of the uncorrelated noise at sensor i.
Since ni and nj are uncorrelated random processes, r(ni,nj) → 0 holds

in the limit to infinite integration. For finite integration times the standard
deviation of the correlation coefficient Std((r̂(ni,nj)) is given by [1]

Std((r̂(ni,nj)) =
1√
T

for i 6= j (2.49)

and

Std((r̂(ni,nj)) =
2√
T

for i = j. (2.50)

Note that the correlation coefficient in (2.49) is defined as
̂Cov(ni,nj)

Std(ni)Std(nj) and

not
̂Cov(ni,nj)

Ŝtd(ni)Ŝtd(nj)
as in (2.47).

The autocorrelation coefficient in (2.50) is defined analogously. Combining
(2.46)-(2.50) gives

Std(A3) ≈ σiσj√
T

for i 6= j (2.51)

and

Std(A3) ≈
√

2

T
σ2
i for i = j. (2.52)

This is shown by

Std(A3) =
√

Var(A3)

=

√
Var

(
r̂(ni,nj)||ni||F ||nj ||F

T

)

≈

√√√√Var

(
r̂(ni,nj)σi

√
Tσj
√
T

T

)

=

√
σ2
i σ

2
jT

2

T 2
Var(r̂(ni,nj))

=σiσj

√
Var(r̂(ni,nj))

=σiσjStd(r̂(ni,nj))

=


σiσj√
T
, i 6= j√

2
T σ

2
i , i = j.

(2.53)
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2. Beamformer

The standard deviations of A1 and A2 are derived similarly. A1 can be
written as

A1 =
1

T

T∑
l=1

x0i(tl)nj(tl)

=Ĉov(x0i,nj) (2.54)

=r̂(ni,nj)Ŝtd(x0i)Ŝtd(nj)

=r̂(ni,nj)Ŝtd(x0i)
||nj ||F√

T
.

Ŝtd(x0i) is given by

Ŝtd(x0i) =

√√√√ 1

T

T∑
i=1

(x0i(tl))2 ≈ ρ2hi, (2.55)

with h representing the forward solution to the fixed dipole at the ith sensor.
Analogous to equation (2.49), it is

Std(r̂(x0i,nj)) =
1√
T
. (2.56)

Together with (2.48) and (2.54) this concludes to

Std(A1) =
√

Var(A1)

=

√
Var

(
r̂(x0i,nj)Ŝtd(x0i)

||nj ||√
T

)

≈

√√√√Var

(
r̂(x0i,nj)Ŝtd(x0i)

σj
√
T√
T

)

=
√
σ̂2(x0i)σ2

jVar(r̂(x0i,nj))

=Ŝtd(x0i)σj

√
Var(r̂(x0i,nj))

=Ŝtd(x0i)σj
1√
T

=
Ŝtd(x0i)σj√

T
. (2.57)

The standard deviation of A2,

Std(A2) ≈ Ŝtd(x0j)σi√
T

, (2.58)

is derived analogously.
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2.3. COVARIANCE MATRIX ERROR AND FINITE INTEGRATION

As the noise levels were assumed to be equal at all channels, that is σi =
σj = σ, substituting of (2.53),(2.57), and (2.58) into (2.43) yields

Var(∆Cij) =Var(A1) + Var(A2) + Var(A3)

=
(
Std(A1)

)2
+
(
Std(A2)

)2
+
(
Std(A3)

)2
≈

(
Ŝtd(x0i)σ√

T

)2

+

(
Ŝtd(x0j)σ√

T

)2

+

(√
1

T
σ2

)2

=
σ2

T

(
(Ŝtd(x0i))

2 + (Ŝtd(x0j))
2 + σ2

)
(2.59)

for i 6= j.
Substituting into (2.45) yields

Var(∆Cij) =2Var(A1) + 2Var(A2) + Var(A3)

=2
(
Std(A1)

)2
+ 2
(
Std(A2)

)2
+
(
Std(A3)

)2
≈2

(
Ŝtd(x0i)σ√

T

)2

+ 2

(
Ŝtd(x0j)σ√

T

)2

+

(√
2

T
σ2

)2

=
σ2

T

(
2(Ŝtd(x0i))

2 + 2(Ŝtd(x0j))
2 + 2σ2

)
=

2σ2

T

(
(Ŝtd(x0i))

2 + (Ŝtd(x0j))
2 + σ2

)
(2.60)

for i = j.
Var(∆Cij) for i = j and i 6= j only differ by a factor of two which can be
disregarded.

To derive a scalar value for the error we use Jensen’s inequality and
E[∆Cij ] = 0.
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2. Beamformer

Combining the results above, it is

E[||∆C||F ] =E

√√√√ N∑
i=1

N∑
j=1

∆C2
ij


≤

√√√√ N∑
i=1

N∑
j=1

E[∆C2
ij ]

=

√√√√ N∑
i=1

N∑
j=1

Var(∆Cij)

=

√√√√√ N∑
i=1

N∑
j=1
j 6=i

Var(∆Cij) +

N∑
i=1

Var(∆Cii)

≈ σ√
T

(
N∑
i=1

N∑
j=1

(
(Ŝtd(x0i))

2 + (Ŝtd(x0j))
2 + σ2

)

+

N∑
i=1

(
(Ŝtd(x0i))

2 + (Ŝtd(x0j))
2 + σ2

)) 1
2

. (2.61)

The summations in this expression can be done separately, so ||C||F can be
rewritten to

E[||∆C||F ] /
σ√
T

(
N∑
i=1

N∑
j=1

(
(Ŝtd(x0i))

2 + (Ŝtd(x0j))
2 + σ2

)

+

N∑
i=1

(
(Ŝtd(x0i))

2 + (Ŝtd(x0j))
2 + σ2

)) 1
2

=
σ√
T

(
N∑
i=1

N∑
j=1

(Ŝtd(x0i))
2 +

N∑
i=1

N∑
j=1

(Ŝtd(x0j))
2 +

N∑
i=1

N∑
j=1

σ2

+

N∑
i=1

(Ŝtd(x0i))
2 +

N∑
i=1

(Ŝtd(x0j))
2 +

N∑
i=1

σ2

) 1
2

=
σ√
T

(
N

N∑
i=1

(Ŝtd(x0i))
2 +N

N∑
i=1

(Ŝtd(x0j))
2 +N2σ2

+

N∑
i=1

(Ŝtd(x0i))
2 +

N∑
i=1

(Ŝtd(x0j))
2 +Nσ2

) 1
2

=σ

√√√√N + 1

T

(
2

N∑
i=1

((
Std(x0i)

)2)
+Nσ2

)
. (2.62)
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To conclude,

E[||∆C||F ] /σ

√√√√N + 1

T

(
2

N∑
i=1

((
Std(x0i)

)2)
+Nσ2

)

=σ

√√√√N + 1

T

(
2

N∑
i=1

(
ρ2h2

i

)
+Nσ2

)

=σ

√
N + 1

T
(2ρ2||h||2F +Nσ2)

=σ

√
N + 1

T
(2Nσ2SNR +Nσ2)

=σ

√
N(N + 1)σ2

T
(2SNR + 1)

=σ2

√
N(N + 1)

2SNR + 1

T
. (2.63)

For large N � 1 the limit reduces to

E[||∆C||F ] /σ2

√
N2

2SNR + 1

T

=σ2N

√
2SNR + 1

T
. (2.64)

This formula gives an estimation of the expected upper boundary of the
covariance error. Increasing the noise level σ2 increases the error, which was
to be expected. Increasing the number of sensors increases the cross talk and
therefore the errors. Unexpectedly, the covariance matrix error for increases

with the SNR. The relative covariance error ||∆C||F
SNR , however, decreases because

||∆C||F
SNR

≈
σ2N

√
2SNR+1

T

SNR
∼
√

SNR

SNR
=

1√
SNR

. (2.65)

Increasing the number of time samples decreases the error. As T is the only
parameter which can be strongly influenced, large time samples are surely to be
preferred.

2.4 Synthetic Aperture Magnetometry (SAM)

In this section the Synthetic Aperture Magnetometry (SAM) approach to beam-
forming is described as done by Sillekens [16]. SAM differs to LCMV in the
computation of the direction. While LCMV constructs a filter with a vector
output from which source direction can be estimated, SAM computes the direc-
tion before constructing the filter. The filter output is then the moment of the
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source in the precomputed direction and therefore a scalar value.

In this case the filter W(q) is no longer a N × 3 matrix but a N × 1 vector.
Let the dipole orientation at a location q be given by the 3 × 1 vector

e = e(q), then the dipole moment at q can be expressed as m(q) = ae for a
scalar value a. Omitting the arguments (q) and (x) in this section, the N × 3
leadfield matrix H(q) reduces to a N × 1 matrix

h = He (2.66)

and the spatial filter in (2.25) simplifies to

wT =
hTC−1

hTC−1h
. (2.67)

Like in (2.27) the estimated spatial spectrum of the data can be written as

V̂ar(q) =
1

hTC−1h
. (2.68)

Unlike in the LCMV approach this is a scalar value, so the trace does not need
to be considered.

As in the LCMV approach the projected sensor noise can be described. It
is again assumed that the noise is distributed with zero mean, variance σ2, and
uncorrelated for all sensors. Then the noise covariance matrix Q can be written
as

Q = σ2I. (2.69)

The noise spatial spectrum is now obtained by applying the spatial filter w to
the noise covariance matrix (2.69)

η2 = wTσ2Iw = σ2wTw. (2.70)

In order to write (2.70) in full detail, note that

w = (wT )T =(hTC−1(hTC−1h)−1)T

= ((hTC−1h)−1)T︸ ︷︷ ︸
=((hTC−1h)T )−1

(hTC−1)T

=
C−1h

(hTC−1h)T

=
C−1h

hTC−1h
(2.71)

and therefore

η2 = σ
hTC−1

hTC−1h

C−1h

hTC−1h
= σ2 hTC−2h

(hTC−1h)2
. (2.72)
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Using (2.68) and (2.72) the pseudo-Z notation is given as

V̂arN =
1

hTC−1h

(hTC−1h)2

σ2hTC−2h
=

hTC−1h

σ2hTC−2h
. (2.73)

The next step is to interpret (2.73) as a function of the dipole orientation e.
As H = He, it is

V̂arN (e) =
eTHTC−1He

σ2eTHTC−2He
(2.74)

=
eTAe

σ2eTBe
, (2.75)

with A = HTC−1H and B = HTC−2H. As (2.74) is the generalized Rayleigh
Quotient, the dipole direction maximizing the pseudo-Z value is given by an
eigenvector e0 corresponding to the biggest eigenvalue of B−1A and

V̂arN (e0) = max
||e||=1

V̂arN (e). (2.76)

It should be noted, that the direction is invariant to the assumed noise
strength σ2 and thus it only serves as a scaling factor.
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Chapter 3

Kurtosis and Beamforming

In chapter 2 the source strength was defined by its variance. In this chapter
excess kurtosis is introduced as an alternative definition for source strength.

If the measurement is composed only of white noise and the source signal,
the signal can be characterised simply by not being noise. Thus, a statistical
outlier test like excess kurtosis can be used to estimate the source strength.
Kurtosis will be described in the first section of this chapter. Then the sliding
window will be introduced to extend the analytical possibilities of kurtosis as
done by Prendergast et al. [11]. In section 3.3 kurtosis will combined with the
SAM filter as first done by Robinson et al [13] and Kirsch et al. [8] and extended
by Prendergast et al. [11].

3.1 Kurtosis and g2

Kurtosis is a statistical method to measure the ”tailedness” of a distribution in
comparison to the normal distribution. The section is based on Westfall [20]
and DeCarlo [3].

Let f be a distribution with expected value µ. The variance σ2 is defined
as E[(f − µ)2]. This means that the variance is higher the more f differs from
its mean. As x2 < x for x < 1 the variance favours larger deviation. The
fourth moment µ4 is analogously defined as µ4 = E[(f − µ)4] and can be con-
sidered a stronger weighted version of the variance. By squaring the variance
and comparing it to the fourth moment a measurement of high deviation from
the expected value is gained.

Kurtosis is defined as the ratio of µ4 and σ4, that is

KURT (f) =
µ4

σ4
=

E[(f − µ)4]

E[(f − µ)2]2
. (3.1)

With Jensen’s inequality the fourth moment is equal or larger than the squared
variance. KURT is therefore bound from below by 1. As the deviation gets
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higher, the fourth moment grows faster than the variance and the quotient is
not bound from above.

For every normal distribution N (µ, σ2) it is µ4 = 3σ4, so

KURT (N (µ, σ2)) =
3σ4

(σ2)2
= 3. (3.2)

For a better comparison to the normal distribution the ’excess kurtosis’ is
adjusted so the normal distribution has a value of zero. It is defined as

γ2(f) =
µ4

σ4
− 3 =

E[(f − µ)4]

E[(f − µ)2]2
− 3. (3.3)

Today both definitions are used and often simply referred to as kurtosis. In this
work kurtosis will always mean the sample excess kurtosis described next.

In practice only a sample of data can be measured. Then the distribution of
the sample is derived and a discreet version of the excess kurtosis is applied.
For a sample x = (xt)

T
t=1 the sample (excess) kurtosis is defined as

g2(x) =

1
T

T∑
t=1

(xt − x)4

( 1
T

T∑
t=1

(xt − x)2)2

− 3, (3.4)

where x is the mean of x.
Note that the sample kurtosis is not a measure of distributions but of the data
itself. If the data is supposed to be normally distributed, kurtosis can be used
to test for outliers as high kurtosis is gained through sample values away from
x [9]. This can lead to the data looking spiky, even though the its distribution
may not. This is probably the reason why kurtosis is described as a measure-
ment of peakedness in many articles. Westfall [20], however, has shown that the
description of kurtosis as peakedness is false as the center has only a small in-
fluence on kurtosis and minimal changes in the center shape of the distribution
can drastically change kurtosis.
Therefore, a clear separation of sample kurtosis and kurtosis should be kept in
mind.
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(a) 1 spike yielding a g2value of 4.44
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(b) 2 spikes yielding a g2value of 0.16
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(c) Oscillation yielding a g2value of -1.08
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(d) Noise between 1 and -1 with a g2value
of -1.09

Figure 3.1: g2 values for different examples

3.2 Metrics for Brain Research

As it can be seen in figure 3.1 kurtosis favours high spikes and punishes high
frequency. This can be a disadvantage in brain research when sources with a
low amplitude and high frequency should be separated from high amplitude, low
frequency sources. Segmentation of the measured data into small epochs could
solve this problem but would negate the positive effects of a long measurement
time discussed in section 2.3. Segmentation of the filtered data, however, can
combine both positive effects and change the bias of kurtosis to favour frequency.
This method was introduced by Harpaz et al. [4] is described in this section.

A sliding window of length n is a separation of a sample into overlapping
segments of length n. In practice the last segments are reduced to a length
smaller than n so sample length is not required to be a multiple of n. The g2

value of each interval is computed individually and then combined to one value
with a chosen metric.
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To find the highest spike regardless of frequency, the maximum of the values
is taken. In mathematical terms we get for a sample x = (xk)Kk=1 and a window
of length n

gn2max = max
k

( g2(x(1 + kn/2)), . . . , g2(x(1 + (k/2 + 1)n))). (3.5)

If frequent, possibly weak spikes should be favoured over strong, single spikes,
the sum metric can be used. By adding the values of the intervals, frequency
is strongly favoured. Note that only positive values are added, so baseline and
noise will not reduce signal strength. Using the same notation as above,

gn2sum =
∑
k

[g2((x(1 + kn/2), . . . , x(1 + (k/2 + 1)n)))]+. (3.6)

The window length n should be chosen to separate the spikes of the source.
However, as the window gets shorter kurtosis values decrease as spikes stop to
be significant outlier. This will lead to a bias to high values that cannot be
satisfied by realistic data and eventually to no detection of any activity. The
high sample rate of EEG and MEG helps to reduce this effect as even small time
intervals have a lot of time sample points, but the problem still persists. Harpaz
et al. [4] suggest that a window length with one spike per window is optimal, but
as spikes do not occur regularly and timing is often unknown, optimal window
length must be gained heuristically.

3.3 SAM(g2)

SAM(g2) combines the filter of the SAM approach (2.67) with the g2 formula
(3.4). It was described and tested by Robinson[13] et al. and Kirsch et al. [8].
Using a filter w an estimation of the of the dipole moment m in direction e at
q is gained by

m̂(q) = w(q)Tx. (3.7)

Using this for all locations q and for all samples x = x(1) . . .x(T ), SAM virtual
sensors are constructed that estimate the source waveforms. At each location
the spike activity can now be evaluated with g2. For a location q the estimated
epileptic activity is

activity(q) = g2(w(q)Tx). (3.8)

As tested by Harpaz et al [4] and described in section 3.2, the performance of g2

and therefore SAM(g2) can be changed by a sliding window. Using the notation
as in chapter 3.2, the activity at location q with a sliding window of length n is

activitynsum(q) = gn2sum(w(q)Tx) (3.9)

or
activitynmax(q) = gn2max(w(q)Tx) (3.10)

for the sum and the maximum metric, respectively.
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Chapter 4

Test and Discussion

In this chapter SAM, SAM(g2), and the metric beamformer are tested with
synthetic EEG and MEG data. Therefore, the model and software used in the
simulations is described and general information to the test environments are
given. Then the results are shown and discussed.

4.1 Model

For simulating the sources a realistic head model is used. After written informed
consent had been obtained, MR images of a healthy 25-year-old male were taken
and analysed. Using T1- and T2-weighted images the head was separated into
skin, skull compacta, skull spongiosa, cerebrospinal fluid (CSF), cerebral gray
(GM) and white matter (WM), cerebellar gray (cGM) and white matter (cWM),
brainstem, eyes, and neck muscles. These surfaces were combined into one mesh.
As the modelling is not the focus of this work, the exact procedure will not be
mentioned here, but can be found in [12]. For more information on the model
[10] and [7] are recommended. The conductivities used for simulating the sources
are given in figure 4.1. Anisotropy was not used in the simulations.

6 Compartment 3 Compartment
Skin 0.43 0.43
Compacta 0.007 0.01
Spongiosa 0.025 0.01
CSF 1.79 0.33
GM 0.33 0.33
WM 0.14 0.33

Figure 4.1: Conductivities for the 6 and 3 compartment model
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4.2. SOFTWARE

4.2 Software

The synthetic data was simulated using SimBio [17]. The SimBio code provides
algorithms to solve the EEG/MEG inverse and analytical and quasi-analytical
solutions to the forward problem. The subtraction FEM method of SimBio was
used to generate the leadfields and dipole output.
All beamformer algorithms were implemented in MATLAB[6]. Visualisation of
the data was done in MATLAB, too.

4.3 Methods

4.3.1 Grid

For source locations a 1325 × 1715 × 1175 mm3 grid with a width of 5 mm
was created. Every point was tested whether it was inside the pial surface and
rejected, if it it was not. This lead to 8694 source locations for which leadfields
were computed.

4.3.2 Signal

If not stated otherwise, all measurements were simulated using EEG and 80
sensors. Location of the sensors are shown in figure 4.3 The signal was assumed
to be measured at 1200 Hz, that is 1200 samples per second. The dipole strength
was set to 0, 10, 0, -5, 0 mAm over a time of five samples. This leads to a
roughly realistic shape seen in figure 4.2. The dipoles were simulated in the
6 compartment model. This means that the model error was zero for the 6
compartment model. The source dipoles are not grid points to prevent an
inverse crime and the dipole used in all tests has a minimal distance to the
grid of 2.1mm. Achieving this localization error will be denoted as optimal or
perfect.
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Figure 4.2: A spike measured at the 80th EEG sensor
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4. Test and Discussion

Figure 4.3: The EEG sensors on the head

4.3.3 Noise

Sensor noise was created using the MATLAB random generator randn() that
creates normally distributed numbers. For every sensor a vector n of noise was
created with

|mean(n)| ≤ 0.1,

|Var(n)− 1| ≤ 0.1,

|g2(n)| ≤ 0.1,

practically fulfilling the assumptions made in chapter 2. This vector was then
multiplied with the square root of the noise strength to gain noise of proper
variance.
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4.4. NOISE TEST

4.3.4 Window Length

The window length for the metric beamformers was set to 1/4, 1/2, 1, 2 seconds,
that is 300, 600, 1200, 2400 samples, to test for optimal length. For better read-
ability in the legends they are denoted as sum(window length) and max(window
length) instead of the notation used in chapter 3.

4.3.5 Trials

To see the influence of noise every test had 10 trials per parameter. The location
error given in the result sections is the mean of these trials. Values in the
visualisation are the mean of the trials, too. The single trial value did not
change much for the given figures.

4.3.6 Visualisation and Interpretation

As described in chapter 2 the filter of the beamformer is not perfect and the
output value is always a combination of the actual activity at a point and non-
filtered activity of other locations. Thus, there can’t be a criterion which value
represents an active source, but all values and locations must be interpreted to-
gether to separate noise and source activity. The global maximum of the output
will be the reference for the localization error in the analysis. For visualisation
the values of one trial are linearly mapped to the MATLAB default colormap
parula which can be seen in figure 4.4. This means that every plot has its own
scale and only qualitative distribution of power but not numeric values can be
seen.

The dipole used will be marked with a red arrow pointing to the location of
the dipole in the direction of the dipole moment. In section 4.6 another dipole
will be added and displayed in magenta.

When SNR is measured it is always the SAM-beamformer SNR, that is the
variance of the source divided by the variance of the noise. It was rounded to
one digit after the decimal point in dB.

Figure 4.4: Colorbar for all brain plots from low to high activity

4.4 Noise test

To test how robust to noise SAM, SAM(g2), SAM(g2sum), and SAM(g2max)
are, a 1 minute EEG with 16 activations of one dipole has been created. The
activations have been regularly spread over the time. Noise was scaled to have
a variance of 10−13 to 10−1V2 resulting in SNR between 8,3dB and -3,7dB.
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4. Test and Discussion

4.4.1 Results

The localization error is shown in fig 4.5. The differences in sliding window
length are shown in fig 4.6.
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Figure 4.5: Localization error at different noise levels

At SNR between 8.3dB and 5.3dB g2 approaches had large errors due to
differences in noise. While the source was localized right in 4 and 3 trails for
SAM(g2) and the metrics, other trials had errors bigger than 70 mm. SAM’s
error was low to minimal, choosing the right voxel or an adjacent one.

While the poor performance of the kurtosis beamformer at high SNR seems
counterintuitive at first, it shows both the performance of the beamformer in
regard to noise and the difference between variance and kurtosis. At high SNR
the difference between a grid point’s leadfield and the measurement cannot be
explained by noise. Therefore, the true source’s activity is mainly filtered for
the location. The filter output is only a measurement of low source activity
and noise. This activity increases the variance of the output but does not form
significant outliers. Therefore, SAM can detect this activity, but kurtosis values
are too low to function reliably. To handle this problem a finer grid can be used
to decrease the differences in leadfields. [5]
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4.4. NOISE TEST

At medium SNR more grid point’s leadfield can partially explain the mea-
surement. By ”picking” the suitable part of the measurement and declaring the
rest as noise, the filter output contains the source activity at the price of adding
noise. By measuring variance SAM rewards containing noise if amplitude can
be high. In contrary to variance kurtosis favours outlier and therefore rewards
low noise more than amplitude.

This explains both the poor performance of SAM at medium SNR and the
wide spread of the kurtosis peaks shown in figure 4.7.

Between 4.3dB and 0.3 g2 approaches performed very good with only minor
error at higher noise. The classic SAM(g2) performed best, followed by the sum
metric. The maximum metric was a little less robust to noise and showed higher
error at -0.7dB. At noise level larger than this, all approaches gained large error.

The length of the sliding window had some impact on the error gain at the
border between middle and large noise and broadness of the kurtosis. Larger
windows performed better in regard to noise. The good performance in the
middle noise levels correspond well to the values of kurtosis measured. For
classic g2, values at low error were greater than 6, up to 1944 at level 1.3dB,
and otherwise smaller than 0.1. The same proportions were measured for the
maximum metric and the sum metric, even though not as distinct.
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Figure 4.6: Localization error at different noise for different window lengths
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4. Test and Discussion
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Figure 4.7: Comparison between the mean g2 values at a SNR of 4.3 dB (top-
left) to -0.7dB (down-right)

4.5 Frequency

In the next test the influence of signal repetition should be explored. At a
noise level of 10−6V2 (1.3 dB in section 4.4) the dipole will fire regularly 1,2,4,8,
and 16 times per trial. Furthermore, 120 and 240 repetitions are simulated.
These are frequencies of 2 and 4 spikes per second and should test whether high
frequencies yield low kurtosis, as their mean increases.
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4.5. FREQUENCY

4.5.1 Results

The localization errors are shown in figure 4.8 and figure 4.9. One signal has a
rounded variance of 1, 2 ∗ 10−6 and 16 signals a variance of 18, 7 ∗ 10−6. At a
noise level of 10−6V2 one signal has a SNR of similar to 16 signals at a level of
10−5V2 and both SAM and SAM(g2) performed accordingly compared to figure
4.5.

For the metric beamformers, however, signal repetition is more important
than noise. With a larger window lengths the sum metric performed only slightly
worse than classic g2, but short windows lead to high errors. As the metric is
weighted towards repetition, this was to be expected. The maximum metric had
relatively low errors at all window lengths, but again larger windows performed
better and classic g2 was more precise. As the metric was constructed so signal
repetition is not weighted, this is somewhat disappointing.

At high frequencies the performance of the g2-beamformer is practically the
same with larger windows having a clearer peak. Note that in the figures the
lines overlap and are therefore hard to separate. SAM was not able to localize
the source correctly at high frequencies, making it again worse in comparison.
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Figure 4.8: Localization error at different frequencies
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4. Test and Discussion
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Figure 4.9: Localization error at different frequencies for different window
lengths
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Figure 4.10: Comparison between the mean g2 values at different frequencies
from 1 signal (top-left) to 8 signals (down-right)
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4.6. MULTIPLE DIPOLES

4.6 Multiple Dipoles

As introduced by Harpaz [4], the maximum and sum metrics are constructed to
separate different active dipole sources. To test the performance at two different
sources another dipole is added to the signal. As the second dipole is a deeper
source its measurement was weaker. Thus, the maximum metric should favour
the first one. The dipoles are not active at the same time and the mean of the
signal is low, so correlation between the signals is weak. The noise level is again
set to 10−6V2.

First, both dipoles fire 16 times in 1 minute. To test the possibilities of the
sliding window the time differences between the signals are set to 50 samples
(0.0417 seconds) and 2250 samples (1.8750 seconds).

In a second run the first dipole’s fire rate is reduced to 8 signals to test how
frequency and fire rate are weighted by the beamformers.

4.6.1 Results

The results of SAM(g2) can be seen in figure 4.11. At the same signal frequency
both dipoles are seen and reach a local maximum. Interestingly, lowering the
frequency strengthened the signal and the second dipole was only weakly visible
at 8 to 16 signal fires. At 16 activations the g2 value at 50 samples difference
were 1944 for the first and 1773 for the second. At 8 and 16 activations the value
of the second dipole was 1772, remaining the same. The first dipole doubled its
strength to 3578. So while the dipoles may not be clearly visible in the plot,
looking for local maxima with high kurtosis would still localize both targets.

The time differences between the signals did not change the performance for
SAM(g2) as both the filter and kurtosis are not influenced by signal timing as
long as signals are not timely correlated.
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Figure 4.11: Comparison of g2 values at 16 to 16 signals (left) and 8 to 16 signals
(right)
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4. Test and Discussion

At the same frequency the sum metric performed worse than SAM(g2),
spreading the kurtosis value over a bigger area. After reducing the fire rate
the large 2 second window localized the high frequency target correctly, even
though the peak of values was still broad. At this window length the sum metric
performed as the counterpart to normal g2, which was exactly what was hoped
for.

Shorter windows had much broader peaks, spreading high values over large
areas. The 0.25 second window could not separate the signals, marking a broad
area between the source locations. Unexpectedly, the short time difference be-
tween signals yielded better outcomes, contradicting Prendergast’s [11] one-
spike-per-window criterion about optimal window length at least for spikes from
different locations.
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Figure 4.12: Comparison of sum metric at the large window. 16 to 16 signals
on the top and 16 to 8 signals on the bottom. 50 samples difference on the left,
2250 samples on the right.
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4.6. MULTIPLE DIPOLES

The maximum metric with a large window performed unbiased in compar-
ison, marking both spots at all frequencies and time differences. Reducing the
fire rate broadened the area around the first (red) dipole, but as both locations
are clearly visible the maximum metric can be valuable to determine possible
locations. Shorter windows yielded much broader areas, making the large win-
dow favourable. The peaks in the values, however, were at the correct voxels
even at short windows. This continues the trend of the maximum to be more
robust to short windows, but large windows are still preferable.
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Figure 4.13: Comparison of maximum metric at the large window. 16 to 16
signals on the top and 16 to 8 signals on the bottom. 50 samples difference on
the left, 2250 samples on the right.
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4. Test and Discussion
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Figure 4.14: g2 values of the sum and maximum metric at the 1/4s window and
2250 samples time difference. The sum metric is shown in the first row, the
maximum in the second. Values for 16 to 16 signals on the left, 8 to 16 signals
on the right.

4.7 3 Department Model

In the previous tests the same model was used to generate the signals as well as
the leadfields. As this yields no model error, the influence of modelling should
be tested. For this, the first test 4.4 is evaluated again using leadfields computed
with the three compartment model described in section 4.1. Grid, signal, and
noise are reused.

4.7.1 Results

The localization error can be seen in figures 4.15 and 4.16. The algorithms
performed similar with the three compartment leadfield, but got less robust to
noise. While the source was localized correctly sometimes, none was reliable at
any noise level. With small differences in noise the peak changed to adjacent
voxel, adding small errors between 2,5 mm to 5,3 mm. As in the first test window
length had little influence, but short windows did comparatively better than for
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4.7. 3 DEPARTMENT MODEL

the correct lead field. At very high or low noise levels the errors were lower, but
still too high for practical purposes. Kurtosis values are about the same for the
leadfields. If the aim is only to search for epileptic activity without the need
for correct localization, the model error is insignificant. To help choosing spikey
segments out of long records these results can still be helpful.
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Figure 4.15: Localization error for the 3C model
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Figure 4.16: Localization error for the 3C model at different window lengths
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4. Test and Discussion

4.8 MEG Differences

To test the differences between EEG and MEG the leadfields were computed
for the MEG as well. The MEG sources and leadfields were computed for 273
gradiometers. Noise was computed as for the EEG, the grid points were not
changed.
The signal amplitude was about ten times higher than for the EEG. This led to
a higher signal strength of about 1000 times the EEG strength. At similar SNR
the ratio of amplitude was thus less favourable for the MEG. Noise strength was
between 10−10T2 and 101T2.

4.8.1 Results

The localization error of the MEG analysis can be seen in figures 4.17 and 4.18.
The MEG performed very similar to the EEG at similar SNR. At 0.2dB, 1.2dB,
and 2.2dB the MEG kurtosis peak was steeper than for the EEG. For SAM(g2)
about 10 grid points had over 95% of the maximum kurtosis value at 0.2 dB for
the MEG but about 24 at 0.3dB for the EEG.
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Figure 4.17: Localization error for the MEG

43



4.8. MEG DIFFERENCES
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Figure 4.18: Localization error for the MEG at different window lengths

Using the three compartment model to compute the leadfields the same test
was again evaluated. The results are shown in figures 4.19 and 4.20. The
kurtosis beamformer performed again similarly to the EEG with an additional
error of about 5 mm. SAM, however, was not able to localize the source at all.
This contradicts the work of Steinsträter et al. [18] who found the MEG to be
more robust to deficiencies in forward modelling. As only one source location
was used in this work and Steinsträter has looked for the location with the
highest leadfield error, this might just be luck at choosing the dipole location
and orientation. This should be studied in future works especially for combining
EEG and MEG.
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4. Test and Discussion
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Figure 4.19: Localization error for the MEG 3C leadfield
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Figure 4.20: Localization error for the MEG 3C leadfield at different window
lengths
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Chapter 5

Summary and Discussion

The aim of this thesis was to compare the performance of different beamformer
approaches. The approaches used the same filter and differed only in the analysis
of the filter output. The methods were variance, g2, maximum(g2), and sum(g2).

The kurtosis approaches have shown better performance when noise was not
very low. This should be explained by the distance of the grid points to the
source as the filter worked to well to detect activity. Using a finer grid should
remove this disadvantage of kurtosis. Classic g2 was more robust to noise than
the metrics, but when the window length was large, this effect was rather low.
Higher noise yielded higher kurtosis values and a much broader peak, but local-
isation was still correct when kurtosis values were high.
The variance based SNR is a good indicator for the performance of SAM and
SAM(g2) as the noise and frequency tests showed. Signal frequency has shown
to strengthen the signal, but one spike is enough when SNR is sufficient.
This was not true for the metrics. As the variance of source and noise is esti-
mated over the whole time and both metrics use further segmentation, this was
somehow to be expected. The sum metric is biased to high frequent spikes and
its failure to localize at low frequency is less important. The maximum metric,
however, should not favour frequency and analyse signal amplitude. Its failure
at low frequency is disappointing as it contradicts the concept.
When two dipoles were activated SAM could not localize any source. SAM(g2)
could localize both sources when signal frequency was the same. It highly
favoured the stronger, less frequent source in the second trial as was to be
expected by the work of Prendergast [11]. The sum metric could change this
bias to favour the weaker, more frequent source. Therefore, the usefulness of the
approach seems to be proven. The maximum metric could localize both spikes
in the trials, making it useful as non-biased method for location.
Window length should be rather large, as short windows blur the results and
can even merge two sources into one. The best analysis is to combine all three
g2 methods and look for medically plausible source locations, as false positive
results have not shown for sufficient large window lengths.

The model error for both EEG and MEG was about 5 mm for the kurtosis
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5. Summary and Discussion

based beamformer, changing the peak of kurtosis to adjacent grid points. As
kurtosis values stayed at the same level, it can surely be used to detect the
existence of spikes even at imperfect localization. The model error for SAM
was severe at the MEG, contradicting the normal notion that the MEG is more
robust to model errors. As only one source position has been evaluated, this
could, however, be due to this specific location and not a general trend.

In conclusion, kurtosis beamforming can surely help to point to epileptic ac-
tivity in noisy data. Perfect localization needs a very good modelling of the
head and a fine grid, but the three compartment model can be used to help
doctors by marking time samples with high activity.
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Chapter 6

Outlook

The relationship between grid width and SNR should be researched. Further-
more, a new definition of SNR containing signal frequency should be found to
describe the performance of the metric beamformer and distinguish multiple
dipoles. As the direction of the filter optimizes SNR, this might help to stabi-
lize the kurtosis beamformer as Prendergast already suggested [11]. If kurtosis
is used to describe source strength the filter minimising the kurtosis instead of
the variance might yield better and more coherent results.

The combination of EEG and MEG shows good results for the classical ap-
proach and beamformer should follow to use the strength of both measurements.
The similarity of EEG and MEG in our simulation makes hope that this com-
bination can be done without many problems.

As theory’s worth lies in the application, the next step should be to test the
methods on real data. Only when the methods can actually help to find and
localize epileptic spikes, they can be used in clinical context to help patients
and doctors.

48



List of Figures

3.1 g2 values for different examples . . . . . . . . . . . . . . . . . . . 27

4.1 Conductivities for the 6 and 3 compartment model . . . . . . . . 29
4.2 A spike measured at the 80th EEG sensor . . . . . . . . . . . . . 30
4.3 The EEG sensors on the head . . . . . . . . . . . . . . . . . . . . 31
4.4 Colorbar for all brain plots from low to high activity . . . . . . . 32
4.5 Localization error at different noise levels . . . . . . . . . . . . . 33
4.6 Localization error at different noise for different window lengths . 34
4.7 g2 values at different noise levels . . . . . . . . . . . . . . . . . . 35
4.8 Localization error at different frequencies . . . . . . . . . . . . . 36
4.9 Localization error at different frequencies for different window

lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 g2 values at different frequencies . . . . . . . . . . . . . . . . . . 37
4.11 g2 at two dipoles with different signal frequencies . . . . . . . . . 38
4.12 Comparison of sum metric at large window . . . . . . . . . . . . 39
4.13 Comparison of maximum metric at large window . . . . . . . . . 40
4.14 Sum and maximum metric short window . . . . . . . . . . . . . . 41
4.15 Localization error for the 3C model . . . . . . . . . . . . . . . . . 42
4.16 Localization error for the 3C model at different window lengths . 42
4.17 Localization error for the MEG . . . . . . . . . . . . . . . . . . . 43
4.18 Localization error for the MEG at different window lengths . . . 44
4.19 Localization error for the MEG 3C leadfield . . . . . . . . . . . . 45
4.20 Localization error for the MEG 3C leadfield at different window

lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

49



Bibliography

[1] J. Bendat and A. Piersol. Random data: Analysis and measurement pro-
cedures. John Wiley and Sons, 1986.

[2] Matthew J. Brookes, Jiri Vrba, Stephen E. Robinson, Claire M. Steven-
son, Andrwe M. Peters, Gareth R. Barnes, Arjan Hillebrand, and Peter G.
Morris. Optimising experimental design for meg beamformer imaging. Neu-
roImage, 2008.

[3] Lawrence T. DeCarlo. On the meaning and use of kurtosis. Psychological
Methods, 2, 1997.

[4] Yuval Harpaz, Stephen E. Robinson, Mordekhay Medvedovsky, and Abra-
ham Goldstein. Improving the excess kurtosis (g2) method for localizing
epieptic sources in magnetoencephalogric recordings. Clin Neurophysiol,
2014. http://dx.doi.org/10.1016/j.clinph.2014.09.002.

[5] Arjan Hillebrand, Krish D. Singh, Ian E. Holloday, Paul L. Furlong, and
Gareth R. Barnes. A new approach to neuroimaging with magnetoen-
cephalography. Human Brain Mapping, 25, 2005.

[6] The MathWorks Inc. MATLAB version R2015b (8.6.0.267246) , 2015.

[7] A.M. Janssen, S.M. Rampersad, F. Lucka, B. Lanfer, S. Lew, Ü. Aydin,
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Auffindung von Übereinstimmungen sowie mit einer zu diesem Zweck vorzunehmenden
Speicherung der Arbeit in eine Datenbank einverstanden.

Münster, 14.03.2016

52


	Contents
	Introduction
	Beamformer
	Data Model
	Linearly Constrained Minimum Variance
	Optimal Filter Design
	LCMV Problem
	Solution to the LCMV Problem
	LCMV Localization
	The Neural Activity Index and Noise
	Correlated Sources

	Covariance Matrix Error and Finite Integration
	Synthetic Aperture Magnetometry (SAM)

	Kurtosis and Beamforming
	Kurtosis and g2
	Metrics for Brain Research
	SAM(g2)

	Test and Discussion
	Model
	Software
	Methods
	Grid
	Signal
	Noise
	Window Length
	Trials
	Visualisation and Interpretation

	Noise test
	Results

	Frequency
	Results

	Multiple Dipoles
	Results

	3 Department Model
	Results

	MEG Differences
	Results


	Summary and Discussion
	Outlook

