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Abstract

Brain stimulation via transcranial direct current stimulation (tDCS) is a non-invasive
technique to alternate brain activities through constant current injection. Reaching
the right intensity and direction at a specific target in the brain to reach inhibitory
or exhibitory currents is the main problem in tDCS-stimulation. In the past different
kind of approaches were used to optimize stimulation protocols. In this thesis we will
compare four approaches and give an overview over their advantages and disadvantages.
To do so we will use two highly realistic FEM head models of a human and a ferret.
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1
Introduction

1.1 Overview

In the past, a lot of techniques for brain stimulation have been developed, namely
transcranial magnetic stimulation (TMS), repetitive transcranial magnetic stimulation,
transcranial alternating current stimulation (tACS), and transcranial direct current
stimulation(tDCS).
First of all there are a lot of possible configurations for electrodes. The simplest one
has one cathode and one anode and is thus, with the head tissue as conductor, a full
electric circuit. Configurations with a multiset of electrodes provide the possibility to
use more complex stimulation protocols.
In this thesis we will consider a more complex electrode setup. The question that
arises is what stimulation protocol is optimal for different treatments or experiments
with tDCS. A novel work on this topic has been published by Dmochowski et al.
[1]2011optimized. In addition we want to mention the PhD-thesis from Sven Wagner [2],
where an optimization technique for tDCS was mathematically developed and analysed.
Within this thesis we want to compare these different approaches and want to give a
guideline in which cases the approaches perform best.

1.2 Structure of the thesis

The thesis is structured as follows:

Chapter 2 gives a short introduction on how a neuron works, and a short introduction
to tDCS.
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Chapter 3 provides the basic mathematical background which is used in this thesis.
It starts with a short introduction of the EEG forward problem and the lead field.
Furthermore, it gives an overview of how we formulate convex problems and puts light
on the singular value decomposition and the earth mover’s distance.

Chapter 4 pictures the general optimization problem we focus on.

Chapter 5 formulates and investigates the different optimization approaches that we
use to obtain an optimal tDCS stimulation protocol.

Chapter 6 describes the setup and evaluation of the different simulations we perform.
We investigate, based on the humand head model, the performance of the optimization
approaches with different predefined targets. Moreover, we will investigate the robustness
of the approaches with regards to misspecification of the targets angle. The ferret head
model will be used for a simple stimulation, to verify the model. In addition, we take a
further look on the approaches based on their behaviour in the ferret head model.
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2
Basics

This chapter will give a brief overview about neurological basics and transcranial direct
current stimulation.

2.1 Neuron

2.1.1 Physiology of a neuron

A neuron (or nerve cell) is a fundamental part of the human central nervous system.
They transmit nerve signals from and to the brain at up to 360 km/h.
We can divide the neuron into 3 subparts: the dendrites, the cell body (or soma) ,and
the axon (see figure 2.1). The branching dendrites which pick up signals from other
nerve cells, transmit those to the soma. In the soma all the received signals are combined
and, under certain conditions, it will generate its own signal (see figure 2.2). This
signal will be sent to other nerve or muscle cells through the axon. At the end of the
axon there are the axon terminals, which transmit an electro-chemical signal that can
stimulate another neuron or another type of cell.

2.1.2 Action potential

In the state where a neuron doesn’t receive any signal there is a potential between the
intracellular and extracellular domain of approximatively -70 mV. We call this difference
the resting membrane potential [4]. The dendrites can change the potential in soma.
This is based on an chemical process, which is influenced by the signals they receive from
other neurons. If a potential threshold of -55 mV is reached in the soma, the neuron
sends down a signal through the axon. After sending this signal the neuron remains in
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Figure 2.1: Simplified neuron
[3]

a refractory state, which means it doesn’t send any signal until it has recovered from
this state.

Figure 2.2: Different states of a neuron
[5]

2.2 Transcranial direct current stimulation

The non-invasive technique of tDCS can be manufactured very cheaply and is an easy
way to perform brain stimulation. TDCS has been around for over 200 years [6] and
was first used on animals. In the last centuries this method was investigated a lot,
i.e. [7–9]. Furthermore, to its scientific value, tDCS is also used to treat diseases like
depression [10], schizophrenia [11] and Alzheimer’s dementia [12]. Another possibility
to use tDCS is to enhance cognitive activity like perception [13], attention [14] and
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learning [7].

2.3 Basic setup of a tDCS-device

Basically a tDCS-device requires just a few parts, i.e. two electrodes and a battery.
With these parts and a conductor like a human head, one can create a circuit.
However, with this small setup one is very limited in case of stimulation. More complex
tDCS-devices (see figure 2.3) consists of more than two electrodes, which can be
distributed over the conductor and thus allow for a more controlled stimulation.

Figure 2.3: Example of a tDCS electrode configuration
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2.4 The influence of tDCS on a neuron

With tDCS we are able to influence the firing rate of a neural network. In [15], and
[28] was shown that with different directions of stimulation we are able to increase or
decrease the amount of spikes a neural network produces. This can cause an alteration
of the neural activity in many ways as discussed beforehand.

However, with tDCS we can only use currents below a certain safety constrained, and
therefore we only achieve subthreshold stimulation. This means we cannot generate an
action potential. However,there are stimulation techniques that can do so, i.e. TMS
[16].
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3
Mathematical basics

In this chapter we want to provide the mathematical background that we will use in
the course of this thesis. We introduce the EEG forward problem and the basic idea of
the lead field method. In addition, we discuss the Helmholz’ principle of reciprocity
and its connection to the lead field theory. Furthermore, we introduce convex problems,
singular value decomposition, and the earth mover’s distance.

3.1 EEG forward problem

Maxwell equations, which describe a relation between electrical and magnetic fields
are crucial for EEG and MEG source analysis. Due to the low-frequency spectrum of
EEG/MEG we can use the quasistatic Maxwell equation [17]:

Definition 3.1. Let E be an electric field, B be a magnetic field, µ0 be the magnetic
permittivity and ε0 the electric permittivity. Then the quasistatic formulation of the
Maxwell equations is

∇ · E =
ρ

ε0
, (3.1)

∇× E = −∂B
∂t
, (3.2)

∇ ·B = 0, (3.3)

∇×B = µ0(j + ε0
∂E

∂t
). (3.4)

The computation of the electric field follows from
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E = −∇Φ, (3.5)

where Φ is the potential field.
The current density j can be divided into two parts, the primary current density jp and
the secondary current density -σ∇ · jp. Mathematically,that is

j := jp + σE = jp − σ∇Φ. (3.6)

Since it is physically realistic, we assume continuous crossings between the boundaries.
For the headsurface (Γ) we assume

〈σ∇Φ, n〉|Γ = 0.

Now we use the divergence operator on (3.3), put (3.6) into the resulting formula, and
we obtain:

Definition 3.2. The potential equation for the EEG forward problem is given by

∇ · σ∇Φ = ∇ · Jp in Ω, (3.7)

〈σ∇Φ, n〉 = 0 on ∂Ω\ΓD, (3.8)

Φ = 0 on ΓD. (3.9)

The added homogenous Dirichlet boundary condition ensures a unique solution for the
EEG forward problem [2].

Remark 1. The conductivity tensor σ differs between the tissues and as a consequence
the boundaries of the tissues have conductivity jumps. Therefore, σ is not in C1, but in
a three dimensional scenario σ ∈ L∞.

Remark 2. With regards to the previous remark classical the solution is not fea-
sible. Since σ has conductivity jumps at the tissue boundaries, it is discontinues.
And as σ∇Φclassic is continous in Ω,∇Φclassic has to be discontinues, which leads to
Φclassic 6∈ C1(Ω).

However, a weak solution is given under certain regularity assumptions. If we assume
that Ω has a Lipschitz continous boundary, 0 < σ ∈ L∞, and ∇Jp ∈ L2(Ω), we obtain
Φ ∈ H1(Ω).
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3.2 Lead field

We will now introduce a technique which is very useful in EEG/MEG source analysis,
the so-called lead field. Once derived, the lead field can be used to compute the
forward problems of EEG/MEG multiple times with a little effort. With a discretized
formulation of the forward problem we will be able to compute flow fields induced by
tDCS.

We will now fix a set of surface electrodes S = {s1, ..., sl}. Let c ∈ R3×1 be the potentials
at an arbitrary position p ∈ Ω, which are generated by a unit vector parallel to the
x,y,z axis, respectivly. To get an estimation of the potential vector c, we have to solve
the EEG forward problem for every direction once. With a given dipole position p and
its moment q we can easily calculate the potential field

Φ(p) = 〈c, q〉. (3.10)

Definition 3.3. Let Φ(si) and Φ(si) be the potentials at electrode locations si and sj
generated by a dipole at x0 with moment q. csi and csj are the potentials alongside
the cartesian axis, respectively. 3.10 now allows us to easily calcutate the potential
difference

Φ(si)− Φ(sj) = 〈csi , q〉 − 〈csj , q〉 = 〈csi − csj , q〉 := 〈lsisj , q〉

between the surface electrodes.

We name lsisj the lead vector. If we compute the lead vector for every element in the
source space we obtain the so-called lead field vector Li,j ∈ R3M , where M is the amount
of source space nodes.

Definition 3.4. Let Li,j ∈ R3M be the lead field vector according to the electrodes sisj .
The so-called lead field matrix L can now be obtained by fixing the first electrode as
reference, calculating the lead field vectors L2,1, ..., Ll,1 and defining L := [L2,1, ..., Ll,1].

3.3 Helmholtz’ principle of reciprocity

In the following section we will introduce Helmholtz’ principle of reciprocity. This will
provide a technique to calculate the lead field matrix from a sensor point view, which
we exploit for tDCS simulation and optimization.
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Theorem 1. (Helmholtz’ principle of reciprocity) In a volume conductor model a source
at a given position psource and a sink at a given position psink are generating a source

I = I∗δ(psource − x0)− I∗δ(psink − x0)

In addition, a current density J is introduced at pin and removed at pout on the boundary
of the volume conductor ∂Ω

J = J∗δ(pin − x0)− J∗δ(pout − x0).

Then

I∗[Φ2(psource)− Φ2(psink)] = J∗[Φ1(pin)− Φ1(pout)]

holds, where Φ1 and Φ2 being the potential field generated by the volume current source
I and the surface density J , respectively.

Proof. see [2]

3.4 Calculating lead field via reciprocity

Let Ω be a volume conductor with a fixed pair of electrodes. Currents injected with
one electrode and withdrawn with the other generate a reciprocal potential field Φrec.
Thus the electric field is given by Erec = −∇Φrec and the current density field is given
by Jrec = σErec.

Lemma 1. Let Φrec be the reciprocal potential field and let us consider a current source
and sink generating a current dipole with strength I*. In addition, let q be a dipole
moment that is orientated from source to sink

q = I(psource − psink). (3.11)

Then

I(Φrec(psource)− Φrec(psink) = 〈∇Φrec(psource), q〉 (3.12)

holds.

Proof. see [2]

The following theorem will describe the relation between Φ and Φrec.
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Theorem 2. Let Φin,out = Φ(pin)− Φ(pout) be the potential difference at the surface
electrodes. Then

Φin,out = 〈−∇Φrec(psource), q〉 (3.13)

holds.

Proof. see [2]

The last theorem shows that we are not only able to compute the lead field matrix from
a source point of view, but from a sensor point of view as well.

3.5 Convex problems

In this section we will give a brief overview about convex problems. The following
section is based on [18]. For further reading we recommend that script.

3.5.1 Basic terminology

The following formulation

minimize f0(x)

subject to fi(x) ≤ 0, fi(x) i = 1, ...,m

hj(x) = 0, j = 1, ...p

(3.14)

describes the problem of finding an x that minimizes f0 and also fulfils the constraints
fi(x) ≤ 0 for i=1,...,p, and hj(x) = 0 for j=1,...,p. We call x ∈ Rn the optimization
variable and f0(x) : Rn → R is called the cost function. The inequalities fi(x) ≤ 0 are
called inequality constraints and the equalities hj(x) = 0 are called equality constraints.
Analogously we call the functions fi : Rn → R and hj : Rn → R inequality and equality
constraint functions.
We call a point p feasible, if it satisfies the constraints of the problem. Furthermore
we call a problem feasible if it has at least one feasible point. Otherwise we call it
infeasible.

p∗ = inf{f0(x) | fi(x) ≤ 0 for i = 1, ...,m and hi(x) = 0 for i = 1, ..., p} (3.15)

is called the optimal value of the problem 3.14. In case of p∗ = ∞, we call it an
infeasible problem. If there is a sequence of feasible points (xk)k with f0(xk)→ −∞,
then p∗ = −∞ and we call (3.14) unbounded below.
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3.6 Singular value decomposition

Let A ∈ Rm×n. Then there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such
that

UTAV = Σ = diag(σ1, ..., σp),

where p = min(m,n) and σ1 ≤ σ2 ≤ ... ≤ σp ≤ 0.

Proof. see [19]

3.7 Earth mover’s distance

We will now introduce the earth mover’s distance (EMD) based on [20].

The EMD is a measure of distance between two normalized distributions over a given
region. It provides an indicator of the similarity of different distributions. To give a
visual explanation, imagine two piles of sand. The EMD gives the minimum cost of
turning the one pile into the other.

Let P = {(p1, wp1), ..., (pm, wpm)} be a signature with m cluster, pi the representative,
and wpi the weight of the cluster, analoguesly let Q = {(q1, wq1 , ..., (qn, wqn)} be. Let
D = (dij)ij be the ground distance between the cluster pi and qj.

We are looking for a flow matrix F = (fij)ij, where fij describes the flow between pi
and qj, that minimizes a given cost function.

This leads to the following formulation:

minimize f(F ) =
m∑
i=1

n∑
j=1

dijfij,

subject to fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n, (3.16)
n∑
j=1

fij ≤ wpi 1 ≤ i ≤ m, (3.17)

m∑
i=1

fij ≤ wqj 1 ≤ j ≤ n, (3.18)
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m∑
i=1

n∑
j=1

fij = min(
m∑
i=1

wpi ,
n∑
j=1

wqj). (3.19)

Now we can compute the

EMD =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij
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4
General problem

In this chapter we describe the tDCS optimization problem. It is based on paper [1].
For further information we highly recommend reading it.

In tDCS we try to stimulate regions in the brain through direct currents. These currents
are injected by given electrodes which are distributed over the head, e.g. the 10-20
or 10-10 EEG electrode set up. The optimal stimulation protocol highly depends on
different factors, e.g. the target (orientation, location), positions of the electrode, and
the head model. A stimulation experiment may have different requirements on the
stimulation. Some may need high current density at the target, others need high focality,
and others need a precise orientation of the stimulus. These constraints may need
different optimization approaches to achieve an optimal stimulation protocol.

We will provide a forward model of the current flow, which are similar to the models used
to solve EEG inverse problems. We will use this forward model to optimize stimulation
to obtain a desired electric field.

A head has different tissues with different kind of conductivities. These tissues are not
isotropic and this leads to a very complex volume conductors. In the different tissues
there are neither sources nor sinks in the different tissues, thus the current density J
can be described by the Laplace equation

∇J = 0.

In tDCS we apply current at the surface electrodes. Therefore, if we want to compute
the resulting potential distribution Φ, we can use the modified Laplace equation
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Figure 4.1: 10-10 system Electrode setup

∇J = (σE) = ∇(−σ∇Φ) = 0.

Under certain assumptions we can find a unique solution [2], however, in general
this approach doesn’t hold. Therefore, we may find a numerical solution through
discretisation of the volume conductor into a set of finite elements. In our set up we
have the electrodes which inject a given current density at the surface of our volume
conductor. The rest of the outer boundary can thus be set to zero.

Let M be the number of electrodes and add a reference electrode to this setup. We
assume M different boundary conditions. The mth boundary condition will be denoted
as Bm. So under the condition Bm, the boundary is zero everywhere, except at the
mth electrode and the reference electrode. These two electrodes will act as cathode
and anode (doesn’t matter which way we choose cathode/anode, but it has to be
the same in all boundary conditions). For each boundary condition we compute the
lead field matrix to obtain the effective resistivity am ∈ R3. The effective resistivity
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Figure 4.2: Visualization of influence matrix

describes the quantity of the magnitude of applied current to the induced electric field.
In other words, we can compute the electric field vector em ∈ R3 at a certain position
rn ∈ R3, n ∈ {1, ..N}, where N is the amount of FEM nodes, through

em(rn) = smam(rn),

where sm is the applied current density.

We now consider a situation where we stimulate through more than one electrode. Due
to the linearity of the Laplace equation we can easily compute the electric field

e(rn) =
M∑
m=1

em(rn) =
M∑
m=1

smam(rn).

In addition, we can rewrite this in matrix form
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e = As

where

e =


e(r1)

e(r2)
...

e(rN)

 , A =


a1(r1) · · · am(r1)

...
...

a1(rN) · · · am(rN)

 , s =


s1

s2

...
sm

 .

The optimization problem we have to solve is to find the right s. For this we have M
degrees of freedom because we can choose the current density at the M electrodes. To
avoid loading or deloading of the head the electrode that has been used as reference
electrode is set to −

∑
m sm, so that the sum of all electrodes is zero. How the

optimization for the current applied at the electrodes can be carried out is part of the
next chapter.
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5
Optimization

Finding an optimal stimulation is a crucial part of brain stimulation. Certain experiments
require different set-ups of the hardware and thus leading to different optimization
problems. In this chapter we want to focus on techniques that can be used for tDCS
stimulation protocol optimization.

5.1 Alternating direction method of multipliers

This section introduces the alternating direction method of multipliers (ADMM). We will
do this step by step. First we will discuss the dual ascent, then the dual decomposition,
augmented Lagrangians and the method of multipliers. Finally we will put the previous
mentioned methods together to get the basic idea of ADMM. The following section
refers directly to [21].

5.1.1 Dual ascent

We will look at a simple equality-constrained convex optimization problem

minimizef(x),

subject to Ax = b,
(5.1)

where x ∈ Rn, A ∈ Rm×n and f : Rn → R is a convex function

Thus we can write the Lagrangian of 5.1 as

L(x, y) = f(x) + yT (Ax− b).
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Furthermore, we define the so called dual function as

g(y) = inf
x
L(x, y) = −f ∗(−ATy)− bTy,

And we call

max
y

g(y)

the dual problem.
The dual ascent method uses the gradient ascent to solve the dual problem. Under the
assumption that g is differentiable following iteration

xk+1 := argmin
x

L(x, yk),

yk+1 := yk + αk(Axk+1 − b),

solves the problem, where αk is the step size. The interesting part of this algorithm is
the y-update. It can be seen as a price update we have to pay for every iteration step.
Thus the dual function increases in every step.

5.1.2 Dual decomposition

Now we want to introduce a method that can improve the dual ascent in terms of
computation speed. If

f(x) =
N∑
i=1

fi(xi), (5.2)

is fulfilled,where x = (x1,...,xN) and xi ∈ Rni are subvectors of x, it is possible to
alternate the iterations Furthermore the Matrix A = (A1,...AN ) is partitioned so Ax =∑N

i=1 Aixi. In addition we write the Lagrangian as

L(x, y) =
N∑
i=1

Li(xi, y) =
N∑
i=1

(fi(xi) + yTAixi − (1/N)yT b). (5.3)

So if we reconsider the dual ascent, we can use the algorithm

xk+1
i := argmin

xi

Li(xi, y
k), (5.4)

yk+1 := yk + αk(Axk+1 − b) (5.5)
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to solve the decomposed problem. The main advantage is that we can solve the N
problems for the x-minimization step parallel. However the cost we have to pay is the
effort of distributing the N xi-minimization problems on the different processors. Also
after this step we have to merge the xi together for the y-update.

5.1.3 Augmented Lagrangians and the method of multipliers

In this section we improve the dual ascent in terms of robustness and convergence.

The augmented Lagrangians for 3.14 is

Lp(x, y) = f(x) + yT (Ax− b) + (ρ/2) ‖Ax− b‖2
2 (5.6)

with a penalty parameter ρ.

The augmented Lagrangians is the classic Lagrangians for the problem

minimize f(x) + (ρ/2) ‖Ax− b‖2
2

subject to Ax = b
(5.7)

It is easy to see that 5.7 and 5.1 are equivalent problems, since for all feasible points
the constraint Ax = b implies ‖Ax− b‖2

2 = 0. gρ = argmin
x

Lρ(x, y) is the dual function

for 5.7 and is differentiable under far less assumptions than the dual function of 5.1.

To solve 5.7 we will also make use of the ascent gradient method in terms of dual ascent

xk+1 := argmin
x

Lρ(x, y
k), (5.8)

yk+1 := yk + ρ(Axk+1 − b). (5.9)

We call this "method of multipliers" for solving 3.14. A different Lagrangian and the
step size αk was subsidized by the penalty parameter ρ.

5.1.4 ADMM-Algorithm

The next algorithm we will present tries to combine the decomposability of dual ascent
and the superior convergence of the method of multipliers. Problems solved by ADMM
have the form

minimize f(x) + g(x)

subject to Ax+Bz = c
(5.10)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, and C ∈ Rp.
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This leads to the augmented Lagrangian

Lρ(x, y, z) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖2
2 . (5.11)

Thus with the method of multiplier we obtain

(xk+1, zk+1) := argmin
x,z

Lρ(x, y
k, z), (5.12)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c). (5.13)

In this case we minimize the two primal variables jointly. However in the ADMM case
we use following iteration

xk+1 := argmin
x

Lρ(x, y
k, zk), (5.14)

zk+1 := argmin
z

Lρ(x
k+1, yk, z), (5.15)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c). (5.16)

So the ADMM does not minimize the two dual variables at the same time. Due to
sequential computation of these two dual variables we add the term alternating direction
to the method of multipliers. It is nearly the same as the method of multipliers, but
instead of jointly minimizing, we use a Gauss-Seidel step for each dual variable. Another
advantage of this separation of x and z is that we are now able to use the decomposition
approach if f or g are separable. It is also worth mentioning that one can exchange the
update order of x and z. As in the above case in a step k + 1 the zk+1 update depends
and the xk+1 update, the iteration could behave differently with a different order of
updates. Additionally, one can easily extend this algorithm with more dual variables.

5.1.5 Convergence of ADMM

For analysing the convergence we make two assumptions.

Assumption 1. The functions f : Rn → R∪∞ and g : Rn → R∪∞ are closed, proper,
and convex.

This assumption can also be expressed with the epigraph of f and g.
A function f : Rn → R ∪∞ is closed, proper and convex if and only if

epif = {(x, t) ∈ Rn × R|f(x) ≤ t} (5.17)
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is a closed convex set.

Assumption 2. The augmented Lagrangian L0 has a saddle point. In other words
there exists (x*,z*,y*) where

L0(x∗, z∗, y) ≤ L0(x∗, z∗, y∗) ≤ L0(x, z, y∗) (5.18)

holds for all x, z, y.

These assumptions allow us to show following convergence statements:

1. Residual convergence: rk = Axk +Bzk − c→ 0 as k →∞

2. Objective convergence: pk = f(xk) + g(xk)→ f(x∗) + g(x∗) = p∗ as k →∞

3. Dual variable convergence: yk → y∗ as k→∞

Proof. First of all we will show the inequalities

p∗ − pk+1 ≤ y∗T rk+1, (5.19)

pk+1 − p∗ ≤ −(yk+1)T rk+1 − ρ(B(zk+1 − zk))T (−rk+1 +B(zk+1 − z∗)), (5.20)

V k+1 ≤ V k − ρ
∥∥rk+1

∥∥2

2
− ρ

∥∥B(zk+1 − zk)
∥∥2

2
(5.21)

where

V k = (1/ρ)
∥∥yk − y∗∥∥2

2
+ ρ

∥∥B(zk − z∗)
∥∥2

2
. (5.22)

Assumption 2 provides the inequality

p∗ = f(x∗) + g(z∗)

= f(x∗) + g(z∗) + (y∗)T (Ax∗ +Bz∗ − c)

= L0(x∗, z∗, y∗)

≤ L0(xk+1, zk+1, y∗)

= f(xk+1) + g(xk+1) + (y∗)T rk+1

= pk+1 + (y∗T )rk+1

and thus 5.19 is shown.
Since xk+1 is a minimizer of Lρ(x, zk, yk), the optimal condition is
0 ∈ ∂

∂x
Lρ(x

k+1, zk, yk) = ∂
∂x
f(xk+1) + ATyk + ρAT (Axk+1 +Bzk − c).

Furthermore, we make use of the relation yk+1 = yk + ρrk+1 and rearrange it to
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yk = yk+1 − ρrk+1. Thus it is
0 ∈ ∂

∂x
f(xk+1) + AT (yk+1 − ρB(zk+1 − zk)).

Therefore, xk+1 minimizes f(x) + (yk+1 − ρB(zk+1 − zk))TAx.

Also zk+1 is a minimizer of Lρ(xk, z, yk) and thus we obtain the optimality condition
0 ∈ ∂

∂z
Lρ(x

k, zk+1, yk) = ∂g(zk+1) +BTyk + ρBT (Axk +Bzk+1 − c).
With the previous relation of yk and yk+1 we obtain
0 ∈ ∂

∂x
g(zk+1) +BTyk+1

Consequently zk+1 minimizes g(z) + y(k+1)TBz.

This leads to the inequalities

f(xk+1) + (yk+1 − ρB(zk+1 − zk))TAxk+1 ≤ f(x∗) + (yk+1 − ρB(zk+1 − zk))TAx∗

g(zk+1) + y(k+1)TBzk+1 ≤ g(z∗) + y(k+1)TBz∗.

With these equalities we can show

pk+1 − p∗ =f(xk+1) + g(zk+1)− f(x∗)− g(x∗)

≤(yk+1 − ρB(zk+1 − zk))TAx∗

− (yk+1 − ρB(zk+1 − zk))TAxk+1

+ (yk+1)TB(z∗ − zk+1)

=− (yk+1)T (Axk+1 +Bzk+1 − c)

+ (yk+1)T (Ax∗ +Bz∗ − c)

+ ρ(B(zk+1 − zk)T )(Axk+1 − Ax∗)

=− (yk+1)T rk+1 + ρ(B(zk+1 − zk)T (rk+1 +B(zk+1 − z∗))

and thus (5.20) is shown.

Now we will add (5.19) and (5.20) together, multiply it by 2, and rearrange the terms,
hence

0 ≥ y∗T rk+1 − (yk+1)T rk+1 − ρ(B(zk+1 − zk))T (−rk+1 +B(zk+1 − z∗))

= 2(yk+1 − y∗)T rk+1 − 2ρ(B(zk+1 − zk))T rk+1 + 2ρ(B(zk+1 − zk))T (B(zk+1 − z∗)).

In the next step we will rewrite the last part of the upper equation. First we will
substitute yk+1 = yk + ρrk+1,so we get
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2(yk+1 − y∗)T rk+1 = 2(yk − y∗)T rk+1 + ρ
∥∥rk+1

∥∥2

2
+ +ρ

∥∥rk+1
∥∥2

2

=
2

ρ
(yk − y∗)T (yk+1 − yk) +

1

ρ

∥∥yk+1 − yk
∥∥2

2
+ ρ

∥∥rk+1
∥∥2

2

=
1

ρ
(
∥∥yk+1 − y∗

∥∥2

2
−
∥∥yk − y∗∥∥2

2
) + ρ

∥∥rk+1
∥∥2

2

In addition, we can write

ρ
∥∥rk+1

∥∥2

2
− 2ρ(B(zk+1 − zk))T rk+1 + 2ρ(B(zk+1 − zk))T (B(zk+1 − z∗))

=ρ
∥∥rk+1

∥∥2

2
− 2ρ(B(zk+1 − zk))T rk+1 + 2ρ(B(zk+1 − zk))T (B((zk+1 − zk) + (zk − z∗))

=ρ
∥∥rk+1

∥∥2

2
− 2ρ(B(zk+1 − zk))T rk+1 + 2ρ

∥∥B(zk+1 − zk)
∥∥2

2
+ 2ρ(B(zk+1 − zk)T −B(zk − z∗))

=ρ
∥∥rk+1 +B(zk+1 − zk)

∥∥2

2
+ ρ

∥∥B(zk+1 − zk)
∥∥2

2
+ 2ρ(B(zk+1 − zk)T −B(zk − z∗))

=ρ
∥∥rk+1 +B(zk+1 − zk)

∥∥2

2
+ ρ

∥∥B((zk+1 − z∗) + (z∗ − zk))
∥∥2

2
+ 2ρ(B(zk+1 − zk)T −B(zk − z∗))

=ρ
∥∥rk+1 +B(zk+1 − zk)

∥∥2

2
+ ρ

∥∥B(zk+1 − z∗)
∥∥2

2
+ ρ

∥∥B(z∗ − zk)
∥∥2

2
.

Taking all the results together, we obtain

0 ≥ 1

ρ
(
∥∥yk+1 − y∗

∥∥2

2
−
∥∥yk − y∗∥∥2

2
) + ρ

∥∥rk+1 +B(zk+1 − zk)
∥∥2

2
+ ρ

∥∥B(zk+1 − z∗)
∥∥2

2

+ ρ
∥∥B(zk − z∗)

∥∥2

2
.

which provides

V k − V k+1 ≥ ρ
∥∥rk+1 +B(zk+1 − zk)

∥∥2

2

= ρ
∥∥rk+1

∥∥2

2
+ 2ρrk+1B(zk+1 − zk) + ρ

∥∥zk+1 − zk
∥∥2

2

Furthermore, we need to show

2ρrk+1B(zk+1 − zk) ≥ 0. (5.23)

Remember that zk+1 minimizes g(z) + y(k+1)TBz and zk minimizes g(z) + ykTBz. Now
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we can combine

g(zk+1) + y(k+1)TBzk+1 ≤ g(zk) + (yk+1)TBzk

and

g(zk) + y(k)TBzk ≤ g(zk+1) + y(k)TBzk+1

to get

0 ≥ (yk+1 − yk)T (B(zk+1 − zk))

= ρ(r(k+1)T )(B(zk+1 − zk)).

Since ρ is non-negative we have shown 5.23.

Since
∥∥rk+1

∥∥2

2
and

∥∥(zk+1 − zk)
∥∥2

2
are positive and V k ≤ V 0 by 5.21 it follows that yk

and Bzk are bounded.

No we can sum up the V k

∞∑
k=0

V k = ρ(
∞∑
k=0

∥∥rk+1
∥∥2

2
+
∥∥zk+1 − zk

∥∥2

2
) ≤ V0,

which implies
∥∥zk+1 − zk

∥∥2

2
and

∥∥rk+1
∥∥2

2
→ 0 for k →∞. So the residual convergence

5.19 and dual variable convergence5.21 is shown.

As yk is bound and rk B(zk+1 − zk) converges to zero, we can conclude from 5.19 and
5.21 the objective convergence.
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5.2 Linearly constrained minimum variance

In this section section we will discuss another optimization problem called "Linearly
Constrained Minimum Variance" (LCMV). This approach is especially interesting as it
focuses on optimizing a vector at a specific location.

minimize f(x)

subject to Cx = e
(5.24)

where f(x) = ‖Ax‖2
2, x ∈ Rm, A ∈ Rn×m with full rank, C(i) = [ai1ai2 · · · aim] 6= 0 ,

and e ∈ Rn.

Theorem 3. The solution to (5.24) is

(ATA)−1C[CT (ATA)−1C]−1e.

Proof. First we will define the Lagrangian

L(x) =
1

2
f(x) + λT (CTx− e).

Taking the gradient of L and set it equal 0, we obtain

ATAx+ Cλ = 0.

Thus

xopt = −(ATA)−1Cλ

is an optimal.
Since e has to satisfy the constrained of 6.3

e = CTxopt = −CT (ATA)−1Cλ

As (ATA)−1 is positive definite [CT (ATA)−1C]−1 exists and thus the Lagrangian multi-
plier is

λ = −[CT (ATA)−1C]−1e.
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All in all we get

xopt = (ATA)−1C[CT (ATA)−1C]−1e.

5.3 Maximal intensity

The maximal intensity approach tries to reach a value e at a predefined point under a
certain constraint. This approach is similar to the LCMV approach as it focuses on
optimizing a certain vector at a specific location. However, the overall vectorfield is not
minimized.

maximize f(x) = eTCx

subject to h(x) ≤ a

g(x) = b

(5.25)

where C is defined as in (5.24).

5.4 Least square

The least-square method is a well known and easy to compute approach to optimization
problems.

5.4.1 Unweighted least square

The problem is to

minimize ‖Ax− e‖2
2 (5.26)

where x ∈ Rm A ∈ Rn×m with full rank, e ∈ Rn

and the solution can be easily computed by

xopt = (ATA)−1AT e. (5.27)
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5.4.2 Weighted least square

minimize ‖W (Ax− e)‖2
2

(5.28)

where x ∈ Rm A ∈ Rn×m and invertible, W ∈ Rn×n, e ∈ Rn,
and the solution can easily computed by

xopt = [(WA)TWA]−1(WA)TWe (5.29)

5.4.3 Least square and SVD

Th singular value decomposition from section 3.6 will now be used to reformulate 5.26.
A matrix A ∈ Rn×m can be rewritten as

A = UΣV T

with U ∈ Rn×m, V ∈ Rm×m being unitary, and Σ ∈ Rm×m being diagonal. Thus we can
reformulate 5.26 to

‖Ax− e‖2
2

=
∥∥UΣV Tx− e

∥∥2

2

=
∥∥ΣV Tx− UT e

∥∥2

2
.

With this formulation the dimension of the problem is now equal the number of electrodes
m, which is far less than the amount of nodes n, which leads to faster computation.
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6
Simulation: Human

In this chapter we want to simulate tDCS. For this we will provide a FE head models that
will be used for simulation and optimization. This is a highly-realistic geometry-adapted
hexahedral FE 6-compartment human head model with white matter anisotropy.

6.1 Human head model

In this section we want to provide a broad overview of the highly-realistic geometry-
adapted hexahedral FE 6-compartment human head model. For further reading we
suggest [22].

Figure 6.1: T1-weighted human MRI
Sagittal(left), coronal (middle) and axial (right) slice of a T1-image.

First of all we acquire the T1w-, T2w- and DW-MRI (compare figure 6.1 and 6.2). With



32 6 Simulation: Human

Figure 6.2: T2-weighted human MRI
Sagittal (left), coronal (middle) and axial (right) slice of a T2-image.

Figure 6.3: Segmentation of human head
Sagittal (left), coronal (middle) and axial (right) slice of the segmentation of the

human head model.

the T1w- and T2w-MRI we are able to manually or automatically (i.e. segmentation
software like FSL, Seg3D, SPM, etc.) obtain a segmentation of the different tissues.

Based on the segmentation we are able to generate a geometry-adapted hexahedral
FE mesh (i.e. meshing toolboxex like vgrid). Additionally, we use the DW-MRI to
calculate the conductivity tensors of the white matter. With these tensors we simulate
the anisotropic conductivity the fiber tracts causes in white matter cause.

Another important aspect of the head model is the conductivities for the different tissues.
These values are based on following papers: skin [23], skull compacta and spongiosa
[10], CSF [24] and grey matter [25], and are shown in table 6.1.
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Tissue Conductivity(Sm −1)
Skin 0.43

Skull compacta 0.007
Skull spongiosa 0.025

Electrodes 1.4
CSF 1.79

Brain gray matter 0.33
Brain white matter anisotropic

Table 6.1: Conductivities of the different tissues.

6.2 Optimization with different approaches

In this section we will use different optimization approaches on predefined targets. We
introduce the different targets and the electrode mask. After this we will formulate the
optimization problems.

6.2.1 Targets and electrode mask

A brief overview about the targets and the electrode mask we want to use for stimulation
is given in this section.
We have chosen four targets. A tangential, Fig. 6.9, a radial, Fig. 6.5, a deep tangential,
Fig. 6.15 and a patch, Fig. 6.13 target. All of them are cortical and surface near targets
on the frontal lobe, except the deep tangential which is is located deeper in the cortex
as the other three.

Figure 6.4: Tangential target vector Figure 6.5: Radial target vector

For our electrode mask we use a extended 10-10 EEG electrode configuration with 74
electrodes (see figure 6.8). With this electrode configuration we should have a sufficient
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Figure 6.6: Deep tangential target vector Figure 6.7: Patch target vector

coverage of the whole head. Important to mention is that these electrode position
are fixed. The optimization approach just optimizes the stimulation protocol, not the
position of the electrodes.

6.2.2 Approaches

We will now formulate the different optimization approaches. For the safety of the
patient, all approaches need to fulfil a safety constrained. Thus we limit the total and
individual current to 2mA (=: smax) as in [1] suggested. As the sum of all positive
electrodes is equal to the sum of all electrodes, we can also limit the sum of all absolute
values by 4mA. In addition, we want to mention that the value of the reference electrode
is the negative sum of all other electrodes, as we want to avoid (de)loading of the
patient’s head. Thus we can rewrite the constrained as:

2 · smax ≥
M∑
m=1

|sm| =
M∑
m=2

|sm|+ |
M∑
m=2

sm|.

Weighted least square

minimize ‖W (As− e)‖2
2

subject to
∑
|sm|+ |

∑
sm| ≤ 2 · smax

(6.1)

where s ∈ Rm A ∈ Rn×m, W ∈ Rn×n e ∈ Rn

The most interesting part of this approach is the weighting matrix W . W is a diagonal
matrix and is defined as
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Figure 6.8: 10-10 system Electrode setup

Wij =


ω in T ∧ i = j

ωc in Tc ∧ i = j

0 i 6= j

(6.2)

where T is the predefined target region and ω, ωc are the different weightings which
fulfil ω|T|

ωc|Tc| = k. So the the solution highly depends on k, which acts as a trade-off
parameter for focality and intensity. In our approach we used k = 1 to counterbalance
the difference of nodes in T and Tc.

To solve this problem we use the method called least-absolute shrinkage and selection
operator (lasso) [26]. Part of the inequality constrained is a `1- norm,

∑
|sm| = ‖s‖1.

Therefore the lasso algorithm provides a sparse solution.
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Linearly constrained minimum variance

minimize ‖As‖2
2

subject to Cs = e∑
|sm|+ |

∑
sm| ≤ 2 · smax

(6.3)

where x ∈ Rm A ∈ Rn×m, C = [ai1ai2 · · · aim] , e ∈ R3

The most interesting part of this approach is the definition of C. If we multiply C with
an artificial stimulation protocol s, we receive the electric field at the target node. Thus
we can specify the desired direction and intensity at the target with e.

To solve this problem we used the toolbox CVX mentioned in [27]. This toolbox provides
tools for disciplined convex programming and therefore a solver for 6.3.

Maximal intensity

maximize f(x) = eTCx

subject to
∑
|sm|+ |

∑
sm| ≤ 2 · smax

(6.4)

This approach is straight forward. We specify a desired target with C and a desired
direction with eT . The only limitations set is the applied current, there is no penalization
of wide spread stimulation, thus leading to a very broad but intense stimulus.

Alternating direction method of multipliers

minimize f(s) =−
∫

Ωt

〈As, e〉+ α

∫
Γ

s2dx+ β||s||M(Γ)

subject to ω|As| ≤ ε

(6.5)

This formulation of the optimization problem and the algorithm for a solution was
developed in [2], which is highly recommended for further reading. The first term of
the minimization problem favours solution with the right direction and high intensity
at the target. It has the highest value if the direction at the target node is the same
as the desired target, 0 if it is orthogonal, and, in a worst case, it has the opposite
direction. The second term penalizes concentrated applied current, thus leading to
a spread stimulation protocol in terms of applied current. The last term provides
sparseness for the solution. In addition, the constraint provides focality as it forces the
overall field outside the target region to be below a certain value ε.
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6.3 Characteristic numbers

In this section we introduce some unitless charistic numbers that help us to understand
and compare the outcomes of the different approaches.

Average intensity at the target region

One of the most interesting part of stimulation is what applied current we can reach at
our target region as it is the main part we focus on in brain stimulation. This will be
computed as

IT =

∫
Ωt
|As| dx
|Ωt|

. (6.6)

Average Intensity at the non target region

In contrast to IT we will also compute the average intensity at the non target region as

INT =

∫
Ω\Ωt
|As| dx

|Ω \ Ωt|
(6.7)

to get a better understanding of the focality.

Direction of the current flow in the target region

Another interesting aspect to consider is the scalar product of the applied current and
the desired current in the target region. It is computed as

DIR =

∫
Ω
〈As, e〉 dx
|Ωt|

(6.8)

Focality

In brain stimulation it is often the case that one want to stimulate a specific region of
the brain. However to reach certain targets we also have to stimulate other regions. The
following measure provides some insight of the actual focality of the applied current.

FOC =
IT

INT
(6.9)

Corrected earth mover’s distance

In addition to FOC we will introduce another measure to compare the focality of the
applied current. For this we make use of the earth mover’s distance (see 3.7).
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cEMD =
EMD(As, e)

IT
(6.10)

We normalize the EMD by IT to make this measure more comparable. I.e. if we double
the applied current at every electrode, the current density field would be doubled and
therefore we would obtain a doubled EMD.

Parallelity

Another important factor to look at is the amount of current density that flows parallel
to our target. It is evaluated as

PAR =
DIR

IT
(6.11)

6.4 Comparison of the different optimization approaches

We show the stimulation protocols and applied current density for the different targets
and give the characteristic numbers to compare the different approaches.
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6.4.1 Tangential target

Figure 6.9: Tangential target vector

[Am−2] [%]

Method IT INT DIR FOC cEMD PAR

LCMV 0.03196 0.00145 0.03079 22.04 1263 96.34%
ADMM 0.03785 0.00151 0.03302 25.07 1096 87.24%
W-LS 0.09077 0.00527 0.08262 17.22 1647 91.02%

max. Intensity 0.21188 0.04657 0.19783 4.55 7911 93.37%

Table 6.2: Characteristic values for the simulation of tangential target stimulation.
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Figure 6.10: Stimulation protocols for the tangential target (from top to bottom:
LCMV, ADMM, W-LS, max. Intensity.)
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Radial target

Figure 6.11: Radial target vector

[Am−2] [%]

Method IT INT DIR FOC cEMD PAR

LCMV 0.03325 0.000695 0.03325 47.84 995 100%
ADMM 0.04504 0.00071 0.04341 63.44 671 96.38%
W-LS 0.07190 0.00154 0.06952 46.69 975 96.69%

max. Intensity 0.19844 0.04890 0.18307 4.06 19729 92.25%

Table 6.3: Characteristic values for the simulation of a radial target stimulation.
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Figure 6.12: Stimulation protocols for the radial target (from top to bottom: LCMV,
ADMM, W-LS, max. Intensity.)
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Patch target

Figure 6.13: Patch target vector

[Am−2] [%]

Method IT INT DIR FOC cEMD PAR

LCMV 0.11490 0.00978 0.10708 11.75 3278 93.19%
ADMM 0.03700 0.00157 0.03330 23.57 1123 90.00%
W-LS 0.07329 0.00356 0.06667 20.59 1250 90.97%

max. Intensity 0.21195 0.04657 0.19883 4.55 7872 93.80%

Table 6.4: Characteristic values for the simulation of a patch target stimulation.
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Figure 6.14: Stimulation protocols for the patch target (from top to bottom: LCMV,
ADMM, W-LS, max. Intensity.)
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Deep tangential target

Figure 6.15: Deep tangential target vector

[Am−2] [%]

Method IT INT DIR FOC cEMD PAR

LCMV 0.03180 0.00494 0.03162 6.44 4759 99.43%
ADMM 0.01883 0.00249 0.01765 7.56 2153 96.29%
W-LS 0.08231 0.01973 0.08061 4.17 9144 97.93%

max. Intensity 0.11700 0.05662 0.11476 2.07 21511 98.09%

Table 6.5: Characteristic values for the simulation of deep tangential target stimulation.
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Figure 6.16: Stimulation protocols for the deep tangential target (from top to bottom:
LCMV, ADMM, W-LS, max. Intensity.)
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Summary

[Am−2] [%]

Target Method IT INT DIR FOC cEMD PAR

tangential LCMV 0.03196 0.00145 0.03079 22.04 1263 96.34%
ADMM 0.03785 0.00151 0.03302 25.07 1096 87.24%
W-LS 0.09077 0.00527 0.08262 17.22 1647 91.02%

max. Intensity 0.21188 0.04657 0.19783 4.55 7911 93.37%
radial LCMV 0.03325 0.000695 0.03325 47.84 995 100%

ADMM 0.04504 0.00071 0.04341 63.44 671 96.38%
W-LS 0.07190 0.00154 0.06952 46.69 975 96.69%

max. Intensity 0.19844 0.04890 0.18307 4.06 19729 92.25%
patch LCMV 0.11490 0.00978 0.10708 11.75 3278 93.19%

ADMM 0.03700 0.00157 0.03330 23.57 1123 90.00%
W-LS 0.07329 0.00356 0.06667 20.59 1250 90.97%

max. Intensity 0.21195 0.04657 0.19883 4.55 7872 93.80%
deep tang. LCMV 0.03180 0.00494 0.03162 6.44 4759 99.43%

ADMM 0.01883 0.00249 0.01765 7.56 2153 96.29%
W-LS 0.08231 0.01973 0.08061 4.17 9144 97.93%

max. Intensity 0.11700 0.05662 0.11476 2.07 21511 98.09%

Table 6.6: Characteristic values for all simulations.

In terms of IT we see that max. Intensity performs best in any given target. This seems
reasonable as it is not restricted to any focality optimization. If we look close to the
formulation (6.4) we only see an interest in maximizing the intensity.

If we look at the FOC and cEMD ADMM performs best in all cases. A close look at the
formulation (6.5) shows that the constraint favours low currents in the non-target region.

LCMV provides good results in terms of PAR. Despite the patch target it performs best
in all other cases. This also seems reasonable as the LCMV formulation (6.3) favours
solution with a small difference between desired and actual solution.

This simulation shows that the experimenter has to be aware of what stimulation is
optimal, as the before discussed methods can only provide guidance when the needs
and demands of the experiment are defined.
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6.5 Two-target stimulation

In some cases it is interesting to stimulate two regions at the same time. In this section
we will compare the different approaches from the previous section on how they perform
on stimulation of two-targets. For this we use the same electrode setup as in 6.2.1.

6.5.1 Targets

The targets we used are two artificial tangential targets.

Figure 6.17: Two tangential targets

6.5.2 Evaluation

We will look at the different current density maps and stimulation protocols to evaluate
the different approaches. What we are interested in is how the approaches behave on a
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two-target setup or if they are even applicable for this problem.

Figure 6.18: LCMV optimization for two-target setup
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Figure 6.19: ADDM optimization for two-target setup
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Figure 6.20: W-LS optimization for two-target setup
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Figure 6.21: Max. Intensity optimization for two-target setup
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[Am−2] [%]

Method IT-L IT-R INT DIR-l DIR-r PAR-l PAR-r

LCMV 0.03234 0.03184 0.01450 0.03234 0.03184 100% 100%
ADMM 0.01048 0.02101 0.00183 0.00754 0.01546 71.94% 73.58%
W-LS 0.02388 0.07358 0.00947 0.01815 0.05297 76.00% 71.98%

max. Intensity 0.03327 0.12595 0.06340 0.03031 0.10772 91.10% 85.52 %

First we have a look at the different IT values. In all approaches we see an imbalance
in the achieved IT. The target on the right side seem to got higher IT values than the
left ones. The only exception is the LCMV approach which yields nearly the same IT
for both targets.

In additon we see a good performance with regards to PAR in LCMV. Both targets are
stimulated perfectly in the right direction. The other approaches only carry out PAR
values far below LCMV.

As a conclusion of this simulation we suggest the LCMV approach for a two-target
stimulation.

6.6 Misspecification of target angle

In this section we want to analyse the influence of a misspecification of the angle of
a target. As shown in [28], and [15] the direction of stimulation is very important.
However in practice the specification might not be very accurate. Therefore, the
computed stimulation protocol doesn’t fit perfectly for the desired target.

6.6.1 Targets

As target we choose a deep location with tangential orientation. Furthermore we define
4 distorted targets. All of them have angle difference of 8◦ from the right target. In all
cases the location is still the same.
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Figure 6.22: Deep tangential target with right angle

6.6.2 Evaluation

First of all we will define some new indicators for our evaluation.

Relative direction of the current flow in the target region

This measure is nearly the same as DIR with the small difference that we compute the
scalar product from the original target despite the disorientated one.

rDIR =

∫
Ω
〈As, eoriginal〉 dx

|Ωt|
(6.12)

Relative parallelity

Respectively to rDIR the relative parallelity considers the intensity of the original target.

rPAR =
rDIR

IT
(6.13)
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[Am−2] [%]

Target Method IT INT rDIR FOC rPAR

original LCMV 0.03356 0.00818 0.03356 4.10 100%
ADMM 0.01860 0.00165 0.01752 11.27 94.19%
W-LS 0.05552 0.01204 0.05136 4.61 92.50%

max. Intensity 0.10304 0.04226 0.9658 2.43 93.73%
1st misangled LCMV 0.2049 0.00653 0.01866 3.14 91.06%

ADMM 0.01878 0.00168 0.01758 11.17 93.61%
W-LS 0.06782 0.01567 0.05922 4.32 87.31%

max. Intensity 0.10304 0.04225 0.09658 2.43 93.73%
2nd misangled LCMV 0.02253 0.00698 0.02052 3.23 91.08%

ADMM 0.01800 0.00158 0.01694 11.39 94.11%
W-LS 0.04896 0.00999 0.04030 4.90 82.31%

max. Intensity 0.10304 0.04225 0.09658 2.43 93.73%
3rd misangled LCMV 0.02302 0.00725 0.02097 3.17 91.09%

ADMM 0.01850 0.00163 0.01710 11.34 92.43%
W-LS 0.05702 0.01238 0.05204 4.60 91.26%

max. Intensity 0.10304 0.04225 0.09658 2.43 93.73%
4th misangled LCMV 0.02152 0.00679 0.01960 3.17 91.08%

ADMM 0.01858 0.00167 0.01782 11.13 95.90%
W-LS 0.05366 0.01163 0.05036 4.62 93.85%

max. Intensity 0.10304 0.04225 0.09658 2.43 93.73%

Table 6.7: Characteristic values of the original and the four distorted targets.

LCMV is very sensitive to misspecification of the angle. In any given case it loses 9% of
its PAR and 33% of its IT.

ADMM performs very robust to this misspecification. Every characteristic number in
any simulation is nearly the same.

W-LS is also very sensitive. In some cases the performance is increased and in other it
is decreased, but no direct correlation can be concluded.

The max. Intensity approach is the most robust one, as it isn’t affected at all by the
misspecification.
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7
Simulation: Ferret

Validation of tDCS simulation in humans is quite difficult. Using depth electrodes to
measure the ongoing stimulation is invasive, and therefore not optimal.

However, performing the same technique in ferrets is another option to validate the
tDCS simulations. Therefore, we provide a highly-realistic FE 4-compartment isotropic
ferret head model which can be used for tDCS simulation.

Based on this model we optimize the stimulation protocol with different approaches
and compare these with the characteristic values we developed in the previous chapter.

7.1 Ferret head model

First of all we set up the highly-realistic ferret head model. For this we have used a
T2w-MRI to obtain a segmentation of the desired tissues.



58 7 Simulation: Ferret

Figure 7.1: Atlas of a ferret skull
[29]

Figure 7.2: Slice of the MRI of a ferret
sagittal (left), coronal (middle) and axial (right)
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Figure 7.3: Slice of the segmentation of the ferret head model
sagittal (left), coronal (middle) and axial (right)

Finding conductivity values for ferret tissues is quite difficult. Therefore we used tissue
conductivity from other species to match them to the ferret. We used conductivity data
from rats which was obtained in [30].

Tissue Conductivity(Sm −1)

Skin 0.33
Skull 0.042
CSF 1.79

White Matter 0.14
Grey Matter 0.33
Electrodes 1.4

Figure 7.4: Conductivities for ferret

7.2 Electrode setup and stimulation protocol

We want to perform a simulation of a simple stimulation. We use only four electrodes
placed on the back of the head. The stimulation is a front-back and a right-left
stimulation. As in practice we are able to stimulate on the skull we removed the skin in
our model.
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Figure 7.5: Simple stimulation protocoll

Figure 7.6: Front-back stimulation
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Figure 7.7: Right-left stimulation

As seen in the figures 7.6, and 7.7 we can visually validate the stimulation. Both electric
fields are aligned from the cathodal to the anodal electrodes.

7.3 Advanced electrode setup

We will elaborate a more complex electrode configuration which allows us to use an
optimized stimulation protocol to stimulate a desired region in the brain.

7.3.1 Electrode setup

We use 35 electrodes distributed over the head to cover most of the skull. We reduced
the amount of electrodes compared to the human head model due to practical reasons
as a ferret head is way smaller than a human head.
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Figure 7.8: Advanced electrode setup

7.3.2 Simulation

As target we use surface near tangential target.
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Figure 7.9: Target

Figure 7.10: Optimization with LCMV
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Figure 7.11: Optimization with LS

Figure 7.12: Optimization with max. Intensity
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Figure 7.13: Optimization with ADMM

7.3.3 Evaluation

[Am−2] [%]

Method IT INT DIR FOC cEMD PAR

LCMV 0.06202 0.00330 0.6202 18.79 2140 100%
ADMM-L1R 0.05995 0.00319 0.05834 18.79 1245 97.31%

W-LS 0.12218 0.00397 0.09192 30.77 1169 75.23%
max. Intensity 0.24434 0.00453 0.24416 53.93 564 99.92%

In this simulation we see that the max. Intensity approach yields best results with
regards to the characteristic values. It has the highest IT and FOC while the PAR is
nearly perfect.
These results quite differ from the simulation on a human head model which could be
caused by the stimulation without a scalp. A scalp has a much higher conductivity than
a skull. This causes the current directly flowing into the head despite being blurred by
the skin.
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8
Summary

In this thesis we provided an insight in simulation of tDCS and optimization of its
stimulation protocol.

EEG and tDCS

With the Helmholtz reciprocity principle we made a bridge between EEG-source recon-
struction and brain stimulation via tDCS. We showed the usage of the lead field, which
is highly used in EEG source reconstruction, in optimization of the tDCS stimulation
protocol.

Mathematical problem

We defined the mathematical problem of tDCS. We discussed a source and sink free
volume conductor and described the relation between current density and the electric
field. This would provide us a partial differential equation on which we can base a
volume conduction model that help use to simulate tDCS.

Optimization

With regards to stimulation we introduced approaches like alternating direction and
methods of multiplier, least square, minimum variance linearly constrained and the
maximal intensity, to optimize the stimulation protocol.

Simulation and evaluation

We introduced a human and a ferret head model. These are based and MRI-measurements
which allowed a sufficient segmentation of different head tissues. Based on these models
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we could perform different simulations. To compare the performed simulation we intro-
duced different unitless characteristic numbers on which we could compare the different
approaches.

First of all we compared the different performances of the approaches on different single
targets in the human head. In addition we simulated a two-target setup and evaluated
the different outcomes of each approach. As last simulation on the human head model
we simulated a misspecification of the target’s angle to get and insight to the robustness
of the different approaches.

A simple stimulation simulation was performed on the ferret head model. We showed
that it was possible to achieve reasonable results on another species than a human.
Furthermore we did a stimulation optimization on an advanced electrode setup with
the head model of the ferret to get a further insight of the optimization approaches.

As a conclusion we can’t provide evidence for an overall best approach for tDCS protocol
optimization. As discussed in this thesis the needs of the experiment have to be specified
and actually how an optimal solution would look like. So as an optimal solution is
defined, the evaluation of these simulations can provide the optimal approach.
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9
Outlook

In this thesis we focused on the optimization of the stimulation protocol of tDCS,
however there are more parameters that can be optimized.

First of all the electrode configuration is a crucial part of the stimulation. One can
imagine a very sparse setup i.e. four electrodes won’t provide as good results as a 74
electrode configuration. However the location of the electrodes isn’t arbitrary. In an
extreme case no electrode is located on the head surface near our target and therefore
the stimulation protocol wouldn’t optimal with regards to location of the electrode,
focality and stimulation direction of the target.

Another topic that can be investigated is different approaches of tMS or even combined
tMS/tDCS, as a multi-coil set up of tMS which is also a well known and used technique
[31] [32]. In [2] we can find optimization approaches for tMS and combined tMS/tDCS.
The interest of more optimization approaches with regards to these techniques and the
simulation and evaluation of them could also be a research topic.
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