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Abstract 

Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is 

an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous 

studies have demonstrated that realistic modeling of head anatomy improves the accuracy of 

source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment 

and the anisotropy of white matter electrical conductivity were both shown to significantly reduce 

modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the 

cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly 

arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-

field-strength (7T) structural MRI data sets. Blood vessels (arteries and emissary/intraosseous 

veins) were segmented using Frangi multi-scale vesselness filtering. The final head model 

consisted of a geometry-adapted cubic mesh with over 17x106 nodes. We solved the forward 

model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing 

computation times substantially and quantified the importance of the blood vessel compartment by 

computing forward and inverse errors resulting from ignoring the blood vessels. Our results show 

that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15 

mm. Large errors (>2 cm) were observed due to the carotid arteries and the dense arterial 

vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such 

predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as 

those previously reported for neglecting white matter anisotropy, the CSF or the dura – structures 

which are generally considered important components of realistic EEG head models. Our findings 

thus imply that including a realistic blood vessel compartment in EEG head models will be helpful 

to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas 

with dense vasculature are required. 

 

Key Words: FEM, 7T MRI, blood vessel modeling, submillimeter volume conductor head model, 

forward problem, inverse problem, EEG source localization, extended source model 

 

Highlights:  

 Submillimeter 7T-MRI-based volume conductor head modeling (VCHM) is computationally 

feasible. 

 A detailed blood vessel compartment can be included in VCHMs. 

 Blood vessels can locally be as important as white matter anisotropy, CSF and dura for 

VCHMs. 
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1. Introduction 

Realistic head models are important tools in neuroscience 1–20. The present paper focuses on 

realistic head models for EEG research that are used as volume conductor head models (VCHM) 

for computing the electric fields created by electrical sources in the brain. VCHMs enable to study 

the influence of detailed anatomy on field propagation 6,21,22 and the optimal spatial sampling of 

EEG signals 23–25 and are essential for source localization 1–5.  

For these applications, simplified spherical shell 26 27–30 31 models can be used and solved with 

analytical methods, but they neglect the complex anatomy of the head and the brain. Numerous 

studies have demonstrated that realistic modeling of anatomical structures such as the skull 32–40, 

the dura 24,41,42, the cerebrospinal fluid (CSF) 21,22,24,33,39,40,43–48 and head extent 35,49,50 as well as 

realistic modeling of anisotropy 34,36,40,43,51–58, particularly of the white matter, can substantially 

improve the accuracy of forward and inverse modeling of EEG signals. The strong concerns 

related to anisotropy even prompted the development of new modeling methods to enable its 

implementation 54,58. Thus, most aspects of the cranial macro-anatomy have meanwhile been 

addressed in previous head modeling studies. 

One exception, though, is the role of cranial blood vessels for EEG forward and inverse solutions 

which has only been marginally addressed so far 22. As the influences of gray matter, white matter, 

CSF, dura and skull have all been addressed, blood vessels might be the last uninvestigated 

widespread macroscopic structure within the bounds of the skull. One reason for this has been the 

difficulty in obtaining detailed reconstructions of the complex, highly arborized cerebral blood 

vessels from available imaging data for VCHMs, in particular without application of contrast 

agents. The role of blood vessels in VCHMs however deserve attention as (i) the brain is strongly 

vascularized and, hence, a large number of blood vessels of different calibers are present 

throughout the skull and brain. Blood vessels not only permeate the skull diploe but, at specific 

locations, directly pierce through the skull bone. As in the case of nerve foramina and surgical skull 

holes 34,35,39,59,44,60–63,47, these direct connections (foramina) between brain and head surface may 
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significantly influence the forward and inverse propagation of electrical fields. However, the impact 

of these skull foramina due to blood vessels on VCHMs has thus far not been addressed. (ii) The 

conductivities previously used to simulate blood vessels were quite high (0.417 – 1.25 S/m) 22 and 

while these values appear appropriate for blood per se, they may not be adequate for the blood 

vessel system as a whole, as vessels also include the surrounding layer of endothelium. This 

endothelium, among other tasks, serves as a diffusion barrier with low electrical conductivity, 

preventing substances from freely entering and leaving the blood stream. The importance of taking 

into account the low electrical conductivity of blood vessel walls has recently been demonstrated 

for electrocardiogram (ECG) modeling 64,65. Although direct measurements comparing vessel wall 

resistance in the brain with that in the rest of the body are missing to our knowledge, resistance of 

the former may be even more pronounced, as the endothelium there forms the brain-blood barrier 

(BBB) with a high number of tight junctions between endothelial cells 66, which should further 

decrease electrical conductivity. Thus, the vessel-wall-related effects previously described in ECG 

modeling 64,65 may be even more important for the blood vessels supplying the brain. 

To investigate the role of blood vessels in volume conductor modeling, we needed to create a 

detailed reconstruction of the cerebral blood vessels. 7T MRI can detect blood vessels with a 

particularly high contrast-to-noise ratio (CNR) 67 not achieved at lower field strengths. We 

therefore built a VCHM including a detailed blood vessel compartment based on submillimeter 7T 

anatomical sequences. We assessed the modeling errors induced by neglecting blood vessels 

(arteries and intraosseous/emissary veins) by comparisons with the well-established effect of 

neglecting CSF, as well as with the effect of neglecting the dura. In addition, the feasibility of using 

7T MRI data to build a submillimeter VCHM needed to model near-microscopic blood vessels had 

not been investigated thus far. We therefore implemented this new approach to create the first 

submillimeter 7T-based VCHM and solved it using a Finite Element Method (FEM) transfer matrix 

approach to minimize computational load while maintaining minimal numerical errors.  

The present paper provides a detailed description of the methods used to create our submillimeter 
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FEM model based on 7T MRI data, including the extraction of the blood vessels using spatial 

filtering methods, describes the computational requirements for whole-head submillimeter FEM 

modeling, and presents the forward and inverse modeling results on the role of blood vessels in 

high-resolution volume conductor head modeling of EEG. 

2. Methods 

2.1. 7T MRI data acquisition and pre-processing 

Whole-head 3-D Magnetization Prepared Rapid Gradient Echo (MPRAGE, T1-weighted) and 3-D 

Gradient Echo (GE, PD-weighted) sequences of one male subject (age: 27, right-handed, no 

history of neuropsychiatric disease) were acquired on a Magnetom 7T whole body MRI system 

(Siemens, Germany, Erlangen) at a 0.6-mm isotropic resolution (Fig. 1a,b). Acquisition parameters 

are summarized in Table 1.  

The volumes were co-registered using SPM8 (freely available at http://www.fil.ion.ucl.ac.uk/spm/) 

with default parameters and T1 as reference. Additionally, a third dataset with a more homogenous 

brain was created by dividing the T1 images by the PD images 68. The T1/PD data was used for 

skull stripping and brain segmentation (c.f. Supplementary Methods for a detailed description of 

the segmentation procedure).  

 

Table 1: 7T MRI acquisition parameters 

Sequence TR TI TE 
Flip 

angle 
Bandwidth Field of view Voxel size 

MPRAGE 2500 ms 1050 ms 2.87 ms 5° 150 Hz/pixel 
230.4 mm x 
230.4 mm 

0.6 mm x 0.6 mm x 
0.6 mm 

GE 1630 ms - 2.87 ms 5° 150 Hz/pixel 
230.4 mm x 
230.4 mm 

0.6 mm x 0.6 mm x 
0.6 mm 

 

 

http://www.fil.ion.ucl.ac.uk/spm/
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Figure 1: 7T structural MRI data and segmentation. (a) 7T T1 MPRAGE MRI data at 0.6-mm 
isotropic resolution used to derive the volume conductor head model. Arteries are, for example, 
visible as bright tubular structures in the insular region (white box). Note that the dataset was 

acquired without any contrast agent. (b) 3T T1 MPRAGE dataset obtained in the same subject 
(see 69,70 for acquisition parameters). Arteries in the same region (white box) are not clearly visible. 
(c) Axial slice through the VCHM derived from the 7T data by tissue segmentation. The white box 
again highlights the insular region as in (a) and (b). Segmented blood vessels are shown in red. 
Note that neither the hematopoetic nor the fatty bone marrow was included in the segmentation 
(see 2. Methods). (d) 3-D visualization of intracranial and intraosseous blood vessels (c.f. Fig. 2 
for a 3-D for visualization of extraosseous vessels); the black arrow indicates an example of an 

intraosseous vein. 
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2.2. Segmentation of blood vessels 

To segment cranial blood vessels (intracranial, intraosseous, and extracranial), we utilized a 

Frangi vesselness filter 71. This filter is designed to enhance tubular structures, indicated by the 

eigenvalues of the Hessian of the image data at multiple spatial scales 72,73. In our hands, this filter 

proved well-suited for segmenting arteries and intraosseous/emissary veins, but not as successful 

in detecting draining veins. This could be due to the draining veins’ geometry and lower contrast, 

because of slower blood flow compared to the arteries. Throughout the manuscript, we will use the 

term “blood vessels” when addressing all segmented vessels, and “arteries” or “veins” otherwise. 

Blood vessels were segmented from the Frangi-filtered volumes with an in-house regional growth 

algorithm (see Supplementary Methods for further details). Intraosseous vessels, including veins 

piercing through the skull via foramina, were identified by computing the intersection between the 

blood-vessel and skull compartments. Results were manually inspected and compared with 

anatomy atlases 74–76 to ensure that only blood vessels were segmented. An axial slice as well as 

a 3-D axial cut through the final head model segmentation are shown in Fig. 1(c) & (d), 

respectively. Fig. 2 shows an overview of all segmented blood vessels, including major cerebral 

arteries and their ramifications 74–76  
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Figure 2: Blood vessels extracted from 7T MRI by Frangi vesselness filtering and regional 
growth segmentation. The following cerebral blood vessels are indicated by numbers: (1) internal 

carotid arteries, (2) vertebral arteries, (3) basilar artery, (4) posterior arteries, (5) medial arteries, 
(6) anterior artery. (A) Part of the carotid artery above the foramen lacerum. Draining veins, due to 

the slow flow of their blood, produced insufficient signal for accurate segmentation and are thus 
not included. For orientation, the inset shows the outer surface of the head model from the same 

viewing angle as for the blood vessels in the main figure. 
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2.3. Volume conductor head models 

To quantify and compare the model errors induced by ignoring blood vessels, the CSF, and the 

dura, we created one blood-vessel-free model, three models including blood vessel, one CSF-free 

model and two dura-free models (Fig. 3). 

The blood-vessel-free model was the model as described above, but without the blood vessels, 

which were replaced by the surrounding tissue types, i.e., soft tissue, fat, bone, dura, CSF, GM 

and WM, depending on the vessel location. We shall refer to this model as the no-blood-vessel-

model. 

In the blood vessel model, all blood vessels derived from the imaging data as described in the 

preceding sections were implemented as one blood vessel compartment. For volume conductor 

modeling, a conductivity value needs to be assigned to each volume conductor model 

compartment. In contrast to other tissue types such as skin, bone, or gray matter, there are no 

conductivity values in the literature for the total conductivity of cerebral blood vessels, i.e., 

including both vessel walls and blood-filled vessel lumen. As it is not yet possible to treat vessel 

walls and lumina separately, we modeled them as one compartment and set the compound 

conductivity of this compartment to cover the range of possible scenarios described in the 

Introduction. Because it is highly unlikely that blood vessels as a whole could have a conductivity 

(σ) higher than that of blood alone 22, we used the latter as our upper limit in the high-σ-model. 

Similarly, it is highly unlikely that the combination of blood vessel walls (endothelium) and BBB 

would produce a conductivity lower than that of compact bone. Therefore, we used compact bone 

conductivity 77 as a lower extreme in the low-σ-model. Because the conductivity of cardiac blood 

vessel endothelium is known 64,65, we used this conductivity for our intermediate-σ-model. 

Several previous studies have demonstrated the importance of the CSF on volume conduction. It 

is well established that neglecting the CSF compartment induces severe modeling errors. To 

directly compare model improvement by including CSF with model improvement by including 
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blood vessels, we generated a no-CSF-model by replacing CSF by gray matter in the no-blood-

vessel-model. To also compare blood-vessel-related effects to those related to the dura, we 

replaced the dura of the no-blood-vessel-model by compact bone in the dura-as-bone-model. 

Finally, as an alternative scenario of dura-related model errors, the dura was replaced by CSF in 

the dura-as-CSF-model. Both dura models are included because, in our experience, the dura may 

be misclassified as either bone or CSF, depending on which MRI-weighting the segmentation is 

based on. Fig. 3 shows axial slices through the different models investigated.   
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Figure 3: Volume conductor head models investigated. No-blood-vessel-model: Model 
without any blood vessels, all other segmented tissues are included. Blood vessel model: As 

before, but with blood vessels. This model was used with three different blood vessel 
conductivities (see 2. Methods). No-CSF-model: As the no-blood-vessel-model, but with CSF 
replaced by gray matter. Dura-as-bone-model: As the no-blood-vessel-model, but with dura 

replaced by compact bone. Dura-as-CSF-model: As the no-blood-vessel-model, but with dura 
replaced by CSF. Color-coding as in Fig. 1. Note that the holes in the rendering of the no-CSF-

model are due to the very thin 3D slice used, combined with the geometry-adapted mesh 
described below. These holes are not present in the full volume model.  
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2.4. FEM methods 

FEM forward calculations were computed with SimBio-NeuroFEM 78 using the Saint-Venant direct 

approach 79–81 based on geometry-adapted cubic meshes 82 (c.f. Supplementary Methods for 

details), which improve the precision of the computed potentials by reducing the error due to 

unsmooth transition edges 80. To achieve good RAM efficiency, we used a conjugate gradient 

solver with incomplete cholesky preconditioning (IC(0)-CG) 83. To maximize the accuracy of our 

model, forward solutions were calculated with a residual error in the order of 10-11. All models 

comprised the same 17,606,835 nodes and 17,349,004 elements with an isotropic resolution of 

0.6 mm. To reduce simulation time, a transfer matrix for 329 EEG channel was calculated for each 

model 84. The positions of the 329 electrodes were defined according to the 10-5 system 85 using 

the MATLAB script kindly provided by Giacometti and colleagues 86 on their website. Conductivity 

values of the different tissue compartments are listed in Table 2.  

For building the models, we used a workstation with 4*2.8 GHz cores central processing units 

(CPU) and 16 GB of random access memory (RAM) under Linux. For simulations, three different 

systems were used: the same as for building the models, one with 16*3.1 GHz cores and 256 GB 

RAM and one with 120*2.8 GHz cores and 3 TB RAM, the latter two used to run multiple 

simulations in parallel. 
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Table 2: Overview of algorithms and MRI data used for the segmentation of each model 
compartment. Additionally, the conductivities used for FEM simulations and references for these 

values are given. 

Compartment Segmentation MRI data 
Conductivity 

(σ=S/m) 
References 

White matter FAST MPRAGE 0.1429 
77

 

Gray matter FAST MPRAGE 0.3333 
77

 

Liquor FAST MPRAGE 1.5385 
77

 

Blood vessels 
Frangi filtering + 
regional growth 

MPRAGE+GE 
0.6250 (high-σ) 

0.02 (intermediate-σ) 
0.0063 (low-σ) 

see 2.3. Volume conductor 
head models 

Dura Masking GE 0.0650 
87

 

Compact bone BET2 GE 0.0063 
77

 

Fat Thresholding MPRAGE 0.0400 
77

 

Eye Regional growth MPRAGE 0.5051 
77

 

Soft tissue Regional growth Binary 0.1736 
77

 

Internal air Regional growth MPRAGE 0.0020 
77

 

Skin Isosurface Binary 0.4348 
77

 

 

2.5. Placement of sources 

For forward EEG simulations, one St. Venant dipole 80 was placed at the center of every gray 

matter mesh element of the full model (with blood and CSF compartments). The St. Venant direct 

approach has a high computational efficiency when used in combination with a FEM transfer 

matrix 84. To fulfill the St. Venant condition 35,40, all dipoles neighboring non-gray matter elements 

were discarded using a parallelized version of the sb_check_sources function provided by 

FieldTrip 88, resulting in 2,229,036 remaining dipoles. Inverse localization was performed on a St. 

Venant-condition-fulfilling 1.2-mm isotropic grid (278,565 dipoles). The dipoles were oriented 

normally to the local gray matter surface (see Supplementary Methods for more details). 

Because the dipolar model of brain activity is best used when evaluating the effect of spatially 

smooth structures, like dura and CSF, and blood vessels are heterogeneously distributed within 

the brain, an extended source model could better approximate the effects to expect in vivo. 

Therefore we generated a second source space where the activity of each entry was taken as the 

sum of all dipoles within a cortical area of approx. 6 cm2 which is often assumed to be the area of 

cortex required to be active to generate scalp-visible effects 89. 
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2.6. Error measures 

To quantify and compare the effects of ignoring blood vessels, CSF and dura, we calculated three 

error measures commonly used in the modeling literature. In the following, “reference model” 

always refers to the more detailed model of a tested pair and the “test model” to the less detailed 

model, which is responsible for the investigated error. Seven model pairs were tested, which were 

the no-blood-vessel-model paired with each other model.  

The first error measure investigated was the relative difference measure 83,90 (RDM), defined as  

𝑅𝐷𝑀 =  √∑ (
𝑟𝑒𝑓𝑖

√∑ 𝑟𝑒𝑓𝑗
2𝑛

𝑗=1

−
𝑡𝑒𝑠𝑡𝑖

√∑ 𝑡𝑒𝑠𝑡𝑗
2𝑛

𝑗=1

)

2

𝑛
𝑖=1    (1) 

where n is the number of electrodes, and refi and testi are the voltages of all sources at the ith 

electrode in the reference model and the test model, respectively. The RDM is used to quantify 

forward errors and was calculated for all 2,229,036 cortical sources of each source model. In 

some publications the subtraction of the L2 norms is inverted (test-ref instead of ref-test). From a 

mathematical point of view this makes no difference and is irrelevant for comparability. 

The second error measure was the goal function scan localization error 91, defined as 

𝐺𝑓𝑃𝑜𝑠(𝑡𝑒𝑠𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖(√𝑡𝑒𝑠𝑡𝑖 −  
𝐿𝑖,∙∙ 𝑡𝑒𝑠𝑡𝑖′

∑ 𝐿𝑖,𝑗
2𝑛

𝑗=1

∙ 𝐿𝑖,∙)   (2) 

𝐺𝑓𝐸𝑟𝑟𝑜𝑟 = 𝑃𝑜𝑠(𝑟𝑒𝑓) − 𝐺𝑓𝑃𝑜𝑠(𝑡𝑒𝑠𝑡)   (3) 

where GfPos(test) is the position in the source space of the test models where the goal function 

scan is minimal for the ith source, Pos(ref) is the position in the source space of the reference 

source and GfError is the Euclidian distance between Pos(ref) and GfPos(test), also known as the 

localization error, testi is the voltages at all electrodes of the ith source, Li,∙ is the leadfield matrix of 

the reference model for the ith source and all electrodes, and n is the number of electrodes. The 
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localization error is used to quantify the inverse error and was calculated for a 1.2-mm grid 

comprising 278,565 sources, again for both source models. The number of sources was reduced 

for this error measure because of its high computational load. As sources were reconstructed 

using identical grids perfect source localization (zero localization error) is possible, making our 

estimation of the inverse error conservative. Because sources were always reconstructed in a test 

vs. reference model setting, implying that reconstruction was always performed in a model other 

than the one used for forward simulation, this is not an inverse crime 92. 

We also calculated the logarithmic magnitude error (lnMAG), defined as  

𝑙𝑛𝑀𝐴𝐺 = ln (
√∑ 𝑡𝑒𝑠𝑡𝑖

2𝑛
𝑖=1

√∑ 𝑟𝑒𝑓𝑖
2𝑛

𝑖=1

)   (4) 

where testi and refi are the voltages of all sources at electrode n for the test model and the 

reference model, respectively. This error measure did not provide any additional insights to the 

other two error measures and was therefore later omitted 35.  

RDM, localization errors and lnMAG were computed using in-house Matlab scripts (The 

MathWorks Inc., Natick, MA, USA). Because the RDM is bounded between 0 and 2, it can be 

converted into a percentage by dividing by 2 and multiplying by 100. For more information 

regarding these error measures, we refer to 83,90,91. 

2.7. Analysis of the impact of local blood vessel density on errors 

To quantify the influence of the local blood vessel density on errors, a multi-scale rank correlation 

analysis was performed. This analysis was designed to answer the question: blood vessels at 

which spatial scale around a source are relevant for the observed errors? To this end, the errors 

observed at all source positions were correlated with the local blood vessel density at these 

positions, both for the forward and inverse error measures, using spearmann’s rho93. The local 

blood vessel density was obtained from spherical kernels around each position, their diameters 
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ranging between 0 mm and 100 mm (multiples of the model resolution, 0.6mm). Local blood 

vessel density was expressed as the ratio of blood vessel elements within the kernel to all 

elements within the kernel. Local blood vessel density was chosen as measure because of its 

invariance against blood vessel size (discussed in section 4.3). 

 

3. Results 

In the present study, for the first time, a FEM VCHM with an isotropic submillimeter resolution 

including a detailed blood vessel compartment and skull foramina was used for forward and 

inverse modeling (Figs. 1(c), (d), 2 & 3). In the following, we will present the forward and inverse 

simulation results and also describe the computational requirements of submillimeter FEM 

modeling. 

3.1. Effect of blood vessels 

To understand the role of blood vessels in volume conductor head modeling, three scenarios with 

different blood vessel conductivities were investigated. In the first one, the high-σ-model, blood 

vessels were attributed the conductivity of blood 22. In the second scenario, the intermediate-σ-

model, the conductivity of the cardiac endothelium was used 64. In the third case, the low-σ-model, 

blood vessels were modeled with conductivity of bone as the lower extreme. This wide range of 

conductivities was used to ensure that effects induced by the real bulk conductivity of cerebral 

blood vessels, which can be expected to be somewhere in this spectrum, will be accounted for. To 

ensure that we did not overestimate the effects of blood vessels due to the use of single dipolar 

sources we also calculated the results for an extended source model (c.f. 2. Methods). Results 

obtained with dipolar and extended sources were mostly very similar regarding the conclusions of 

this paper. The reported results thus refer to both source models if not otherwise stated.  

The simulations produced one EEG topography for each model and dipole. The EEG topographies 
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resulting from selected dipoles (with the 100th strongest RDM) for all models are shown in Fig. 4. 

The change in topographies induced by introducing blood vessels and varying their conductivity 

are quite noticeable for the presented example of the topographies with the 100th strongest RDM 

error for each model. As can be seen, blood vessel-related topography changes become visible to 

the bare eye above an RDM of approx. 0.2. Following Lanfer and colleagues, we consider errors 

with an RDM value >= 0.1 and/or a mislocalization >= 5 mm as non-negligible 35. 

RDM and goal function scan localization errors were computed against a model without any blood 

vessels (Figs. 5-8). Maximal error, mean error, the proportion of affected sources and the 5th, 50th 

and 95th percentiles of the error distributions are summarized in Table 3.  

Forward and inverse errors of both source models showed a similar general picture. With the high-

σ-model, non-negligible (see above) errors were mainly located directly adjacent to points with 

blood vessels either passing through or within the skull (emissary or intraosseous vessels, 

respectively) (Figs. 5(a) & 7(a)), namely 5 vessel-related skull foramina and 3 intraosseous veins. 

The foramina were the parietal emissary foramen, the paired carotid canals, parts of the paired 

foramen lacerum, parts of the paired foramen spinosum and two symmetrical foramina located 

above the anterior part of the Sylvian fissure 75. The paired intraosseous veins were the venae 

diploicae frontalis, temporalis posterior and occipitalis 75. The segmentation of the former vein also 

included the entry and exit parts of the canales diploici 74,75.  

With the high-σ-model, non-negligible errors were also found close to the major brain arteries 

(anterior, lateral and posterior arteries) and their branches (Figs. 5(a) & 7(a)). For the intermediate-

σ-model, some non-negligible errors were still found close to emissary or intraosseous vessels, 

but errors mainly clustered around major and minor arteries (Figs. 5(b) & 7(b)). Finally, for the low-

σ-model, non-negligible errors were no longer found close to emissary or intraosseous vessels. 

Instead, errors now clustered strongly around major and minor arteries (Figs. 5(c) & 7(c)). 

With both source models (dipolar and extended sources), the overall strongest and most 

widespread errors were observed for the region of the carotid arteries. An example of the EEG 
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topography differences for a dipole in this region and with the different models investigated is 

shown in Fig. 4, first column. Other areas with dense vasculature and pronounced errors included 

the anterior cingulate, the insula, and the medial temporal lobe (Fig. 4-8).  

 
Figure 4: Effect of the different head models on forward-calculated EEG topographies. (a) 
Location and orientation of the selected example dipoles in sagittal and coronal views (anterior 
point of view) indicated by cyan cones. Red and yellow: intracranial and intraosseous vessels, 
respectively. (b-h) Forward calculated EEG maps resulting from the dipoles shown in (a) and 

obtained with the no-blood-vessel-model (b; with overlaid electrode layout), with the high-σ-model 
(c), intermediate-σ-model (d), low-σ-model (e), no-CSF-model (f), dura-as-CSF-model (g), and 

dura-as-bone-model (h). RDM errors of the EEG maps relative to the no-blood-vessel model are 
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indicated in the upper left corner above each EEG map. In each column, the model used to select 
the example dipole is highlighted by a light-gray box. In each case, the dipole producing the 100th 

strongest RDM error with the indicated model was selected.  

 

Figure 5: Spatial distribution of non-negligible errors induced by ignoring blood vessels: 
RDM errors of dipolar sources. Color and size of spheres represent RDM error at source 

positions. Transparent gray and yellow: brain and skull blood vessels, respectively Note the non-
negligibly affected sources along small vessels (e.g., black box). As draining veins, such as the 
sagittal sinus, were not included in our model, there are no corresponding errors. (a) Results 
obtained with the high-σ-model, (b) the intermediate-σ-model, and (c) the low-σ-model, all in 

coronal and sagittal views. Black arrows: errors due to skull foramina and intraosseous vessels. 
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Figure 6: Spatial distribution of non-negligible errors induced by ignoring blood vessels: 
localization errors of dipolar sources. Cone bases are at the true source localization, cone tip is 

at the erroneous localization due to ignoring blood vessels. As seen for the forward errors, note 
the non-negligibly affected sources along small vessels (e.g., black box). Other conventions as in 

Fig. 5.  
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Figure 7: Spatial distribution of non-negligible errors induced by ignoring blood vessels: 
RDM errors of extended sources. Compared with the results obtained with the dipolar sources, 

there were fewer non-negligibly affected sources along small blood vessels (e.g., black box), while 
errors in vessel-rich areas were not diminished. Conventions as in Fig. 5. 
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Figure 8: Spatial distribution of non-negligible errors induced by ignoring blood vessels: 
localization errors of extended sources. As in the case of forward errors (Fig. 7), non-negligibly 
affected sources along small blood vessels were reduced (e.g., black box). In vessel-rich regions, 

localization errors were magnified (large red cones, c.f. Fig. 6). Conventions as in Fig. 6.  
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3.2. Impact of local blood vessel density on errors 

The spatial error distributions as shown in Fig. 5-8 indicated a close spatial relation of local vessel 

density and error magnitudes for the intermediate- and low-σ-vessel-models, while the spatial 

distribution of errors in the high-σ model appeared to be dictated by the position of vessels 

penetrating the skull. To quantify these relations, we performed a correlation analysis across 

multiple spatial scales. This confirmed the visual impression of a strong relationship between local 

blood vessel density and error measures (c.f. Fig. 9) for both low- and intermediate-σ-models. For 

these models, correlations became maximal with kernels of 20- to 30-mm diameters for forward 

and inverse errors, respectively, indicating a critical spatial scale with the highest relevance of 

local blood vessel density to VCHM modeling (if the low-to-medium conductivity assumption is 

correct). Expectedly, errors obtained in the high-σ-scenario did not show a strong correlation of 

errors with local blood vessel density.  
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Figure 9: Rank correlation between error measures and blood vessel density at multiple 
spatial scales. The diameter of the spherical kernels used to determine the local blood vessel 
density was varied between 0 and 100 mm. Note the calculation of local blood vessel density 

included vessels of all sizes; thus high values may indicate both, the presence of large vessels, or 
local clusters of many small vessels. (a) Results for forward errors, and (b) inverse errors. 

 

3.3. Effect of CSF and dura on modeling errors 

To put vessel-related errors in relation to other model errors, we examined errors due to ignoring 

the CSF and dura. Forward-calculated EEG maps reflecting errors made by ignoring the CSF 

(results for dipoles with the 100th strongest RDM) are shown in Fig. 4(f). The changes in 

topographies induced by replacing CSF by gray matter were, as expected, pronounced (Table 3). 
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Overall, forward and inverse errors showed similar distributions. Non-negligible (>=5 mm or >=0.1 

RDM) errors were found throughout the source spaces, with clusters of higher values, often on 

gyral crowns. Similar results have been reported by Lanfer and colleagues using dipolar sources 

45. The high values and broad spatial distribution of modeling errors are in accordance with the 

literature 21,22,24,33,39,40,43–48. 

Forward-calculated EEG results reflecting errors made by ignoring the dura (replaced by compact 

bone and CSF, respectively) are summarized in Table 3 and shown in Figs. 4 (g) & (h). Ramon 

and colleagues 41,42 have reported lower forward errors (0.057 mean RDM) when replacing the 

dura with CSF using dipolar sources. To the best of our knowledge, no investigation considering 

replacing the dura with compact bone exists for comparison, although such segmentation errors 

may occur.  

3.4. Computational requirements of submillimeter head modeling 

The main criteria for the computational feasibility of forward and inverse EEG modeling are the 

computation time and the amount of memory needed. With the current implementation (cf. Section 

2.4), computing one row of the transfer matrix 84, corresponding to one EEG electrode, took 

approx. 24 min. Computation of the whole transfer matrix (a matrix with approx. 329*17 Mio. 

entries) for all 329 electrodes thus lasted 133.5 ± 3.8 hrs (mean ± std). After having calculated the 

transfer matrix (only once per model and sensor-configuration), one forward simulation could then 

be performed in just approx. 120 ms per dipole. For all 2,229,036 dipoles, the forward simulation 

thus lasted 74.5 ± 0.6 hrs. Times are given for a solver residual error in the range of 10-11 on a 2.8 

GHz CPU and may vary according to the geometrical complexity of the models. No more than 

30.5 GB of RAM were required for any operation.  
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Table 3: RDM and goal function scan localization error. Overview of all test models of this paper, 
together with selected models of Lanfer et al. 2012 35 and Güllmar et al. 2010 52 (details in Section 

4.2). 

  RDM   
Localization 

error 
 

Model 
max 

(unitless) 
mean 

(unitless) 
>=0.1 

max 
(mm) 

mean (mm) >=5 mm 

       
This paper       

       
Dipolar sources       

High-σ 1.354 0.018 0.851% 23.546 0.148 0.676% 
Intermediate-σ 1.622 0.017 2.100% 29.686 0.242 1.322% 

Low-σ 1.651 0.017 2.316% 29.686 0.258 1.436% 
No-CSF 1.567 0.148 61.331% 35.211 3.498 27.605% 

Dura-as-bone 1.91 0.107 34.244% 49.623 2.715 21.859% 
Dura-as-CSF 1.66 0.093 32.872% 35.638 2.748 23.026% 

       
Extended sources       

High-σ 1.199 0.018 0.72% 37.355 0.152 0.495% 
Intermediate-σ 1.661 0.017 1.617% 61.948 0.265 0.944% 

Low-σ 1.718 0.017 1.83% 61.948 0.278 1.017% 
No-CSF 1.974 0.173 68.365% 68.442 3.398 19.045% 

Dura-as-bone 1.753 0.114 39.722% 57.161 2.204 13.507% 
Dura-as-CSF 1.107 0.092 33.019% 59.494 2.539 15.226% 

       
Lanfer et al. 2012 

35
       

Segmentation defects       
10 mm skull hole (1c) 0.889 0.016 1.905% 9.314 1.073 0.343% 

4 mm constant skull & scalp 
(6a) 

1.399 0.12 49.403% 27.1431 5.738 45.220% 

6 mm constant skull & scalp 
(6b) 

1.399 0.091 29.236% 28.227 3.748 23.824% 

       

       

Model 
95

th
 

percentile 
50

th
 

percentile 
5

th
 

percentile 
    

This paper    

    
Dipolar sources    

High-σ 0.042 0.013 0.006 
Intermediate-σ 0.06 0.008 0.003 

Low-σ 0.063 0.008 0.003 
No-CSF 0.342 0.123 0.037 

Dura-as-bone 0.272 0.077 0.033 
Dura-as-CSF 0.186 0.084 0.037 

    
Extended sources    

High-σ 0.039 0.013 0.006 
Intermediate-σ 0.061 0.008 0.003 

Low-σ 0.063 0.008 0.003 
No-CSF 0.407 0.142 0.040 

Dura-as-bone 0.288 0.084 0.034 
Dura-as-CSF 0.171 0.085 0.039 

    
Güllmar et al. 2010 

52
    

Anisotropic 
transversal:lateral ratios 

   

1:2 0.064 0.018 0.004 
1:10 0.265 0.071 0.016 

1:100 0.643 0.191 0.050 
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4. Discussion 

In the present study, we investigated the role of a detailed reconstruction of blood vessels in a 

submillimeter VCHM. This was made possible by the use of anatomical submillimeter 7T MRI 

data. Before such data became available, specific diffusion weighted sequences and contrast 

agents had to be used to create angiograms. Presumably for this reason, the effect of blood 

vessels on forward and inverse modeling has, up to now, never been investigated in detail. In the 

following, we discuss the results of the different conductivity scenarios and the modeling errors 

induced by ignoring the blood vessels located within the skull. Furthermore, we compare our 

simulation results to the literature and make suggestions on how to improve computational speed. 

Finally, we discuss limitations and perspectives of our work. 

4.1. Errors with different blood vessel conductivity 

Our findings, as summarized in Table 3, showed similar mean and percentile errors irrespective of 

the conductivity σ (high, intermediate, low) assumed for the blood vessel compartment, and also 

irrespective of the type of source model (dipole, extended). The maximal inverse errors, however, 

were considerably larger with the extended source model than with the dipoles (discussed in 

section 4.3). There also were more strongly affected inverse localizations (as indicated by the 

large red cones in Fig. 8) in the high- than in the intermediate- and low-σ simulations of extended 

sources. The conductivity of blood vessels, which we varied in our simulations over two orders of 

magnitude, appeared to only marginally influence the strength of the dipolar errors, while the 

extended source errors were stronger for both low- and intermediate-σ-model. The percentage of 

non-negligibly affected sources (RDM >= 0.1, localization error >= 5 mm), however, showed much 

stronger variations. More than twice as many sources were non-negligibly affected in the 

intermediate- and low-σ-models than in the high-σ-model (Table 3). This can be explained by the 

high deviation of the intermediate and low conductivities from those of the surrounding brain 

tissue, which was not the case in the high conductivity scenario. 
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The error measure results summarized in Figs. 5-8 showed two distinct spatial error patterns: (i) 

Errors clustering around cerebral arteries and (ii) errors clustering in the vicinity of skull foramina 

and intraosseous vessels. The latter error type was mainly present in the results obtained with the 

high-σ-model, while the former type errors were present in all 3 cases (all σ-models), but much 

stronger in results obtained with both intermediate- and low-σ-models, reflected in the different 

percentages of affected sources as discussed above.  

Error clusters around arteries were widely distributed, affected the medial temporal lobe and 

followed the paths of the three major brain arteries: the anterior cerebral artery, the middle 

cerebral artery and the posterior cerebral artery. As the arteries branched into smaller vessels, the 

errors became smaller until they vanished completely, which happened earlier (at larger vessel 

diameters) for extended than for dipolar sources (Fig. 5-8). The cingulate and insular cortices were 

strongly affected because of their dense vasculature. Because the draining veins and superficial 

cortical vessels were not included in the model (c.f. 4.5 Limitations and further perspectives), the 

outer surface of the cortex was less affected, with errors mainly at the frontal pole and at the 

intersection of parietal, occipital and temporal cortices (TPO area). Including these missing 

vessels can be expected to further increase the number of affected areas and could also induce 

interesting edge and tunneling effects as some of them pass through the CSF (with high 

conductivity) and some through the dura (with low conductivity). 

Errors clustering in the vicinity of blood vessel skull foramina and intraosseous vessels (black 

arrows in Fig. 5 (a) & (b)) were most pronounced in the region in the vicinity of the carotid canal. 

Errors here may affect source reconstruction in the medial and basal temporal lobe, which is of 

interest in the context of mesial-temporal epilepsy 94–102. The remaining blood vessel skull 

foramina and intraosseous veins were in most cases too small 35 to induce strong and widespread 

errors, despite being located between sources and electrodes 45. Nevertheless, most of these 

produced non-negligible errors (RDM >= 0.1 and localization errors >= 5 mm 35), although in a 

highly localized manner. 
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Results from spatial multi-scaled correlation of errors with local blood vessel density (Fig. 9) also 

pointed to the different mechanisms underlying the error generation in the high-σ-vessel-model 

compared with the low- and intermediate-σ models. Blood vessel densities at the scale of 20 to 30 

mm, i.e. still mostly within the skull, correlated best with forward and inverse errors of both low- 

and intermediate-σ-models. Forward and inverse errors related to the high-σ-model were, 

however, not strongly correlated with local blood vessel density, but rather appeared dominated by 

errors due to vessels piercing the skull (Fig. 5-8), highlighting the different error mechanisms with 

different vessel conductivities and a need for experimental clarification of this issue (see 5. 

Conclusions & Outlook). 

4.2. Blood-vessel-related errors in relation to previously described modeling 

errors 

To relate our findings to previously investigated modeling errors, we compared our results 

obtained with the no-CSF-model, the dura-as-bone/CSF-models and reports by two recent 

publications 35,52 in which detailed error measures such as RDM and localization error were given. 

4.2.1. CSF, dura and skull 

Ignoring the CSF caused similar maximal errors as ignoring vessels (Table 3), but a larger mean 

error and a higher proportion of affected sources. The critical positioning of the CSF between 

sources and electrodes together with its large extend is the main reason why not including it 

creates such strong errors 45, as confirmed by our results and in line with a large number of 

previous modeling studies 21,22,24,33,39,40,43–48 and recent experimental findings 46.  

Replacing the dura by compact bone or CSF caused maximal model errors quite similar to those 

due to blood vessels (Table 3) but again with a larger spatial extent, probably for similar reasons 

as discussed for the case of the CSF above. Our present results confirm that the dura plays a 

major role VCHM accuracy 24,41,42 and that the inclusion of the dura is nearly as important as that 

of the CSF.  
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In summary, on the whole-brain scale, CSF and dura are more important for VCHM accuracy than 

blood vessels. On the other hand, local errors due to ignoring blood vessels were on par with 

those due to ignoring CSF or dura (Table 3, Fig. 5) indicating that for critical regions with dense 

vasculature and/or close to vessels piercing the skull, source localization directed at these areas 

may profit from including blood vessels as much as from modeling the CSF or dura. 

Inaccurate modeling of skull geometry has also been repeatedly reported to be a common source 

of model errors 32–40. Lanfer et al.35 published a thorough investigation of the influence of skull 

segmentation inaccuracies on EEG forward and inverse problems, including effects due to skull 

holes, under- or overestimating skull thickness, or neglecting skull sinuses (cf. Table 3). Among 

these errors, those caused by ignoring a skull hole with a 10-mm diameter were most similarly to 

the errors that we observed in relation to cerebral blood vessels. Lanfer and colleagues 

recommend that skull hole larger than 2 mm should be included in EEG head models. 

4.2.2. Anisotropy 

Another widely discussed source of errors in head modeling are anisotropic conductivities. Several 

authors 36,40,43,51–58 have described the influence of white matter anisotropy in this context. The 

study by Güllmar and colleagues 52 is especially detailed and is therefore used here to compare 

our results with respect to the forward error measures. Güllmar and colleagues used a different 

inverse approach than Lanfer et al. 35 and we did and to the best of our knowledge no study of 

anisotropy with a comparable inverse error metric exists.  

The 95th and 50th percentiles of the RDM values, closest to ours, obtained by Güllmar and 

colleagues with anisotropic models are listed in Table 3. When comparing the RDM values, it 

becomes apparent that the effect of including blood vessels is comparable to the effects due to a 

1:2 transversal to longitudinal anisotropy ratio, which may be a realistic value as suggested by a 

number of recent studies 43,52,55,58. For example, Bangera and colleagues 43 compared simulations 

of anisotropic models with, among others, ratios between 1:2 to 1:10 with in-vivo intracortical 

electrical stimulation measurements in epilepsy patients. They could conclusively show that the 
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1:10 ratio fitted worst to the data for all four measured patients. On average, the best fitting ratio 

was 1:2. Thus, ignoring blood vessels may cause similar forward errors than ignoring white matter 

anisotropy, at least with a presumably realistic transversal to longitudinal anisotropy ratio.  

It is, however, important to keep in mind that our forward and inverse errors were probably 

underestimated as the majority of superficial cortical vessels as well as the veins could not be 

included in our model (c.f. 4.5 Limitations and further perspectives). Furthermore, because of the 

use of identical source grids for forward and inverse modeling, our localization errors are 

conservative (see 2. Methods). We can, therefore, conclude that, regardless of the conductivity 

and of the source model used, blood vessels cause, on a local scale, errors that are comparable 

with errors produced by ignoring anisotropies, unrealistic modeling of the skull, and ignoring the 

CSF or the dura. 

4.3 Impact of source size 

We compared modeling results with dipolar (point-like) and extended (surface of approx. 6cm2) 

source models, respectively. Results obtained with these source sizes both support our general 

conclusions regarding the importance of blood vessels in volume conductor head modeling of 

EEG. However, there were also more subtle differences in the error patterns, providing interesting 

insights on how source model size and VCHM structures interact and shape forward and inverse 

solutions.  

With all other parameters kept constant, one might expect that a structure would have maximal 

local effect onto forward and inverse errors onto sources with a matching spatial extend, thus 

interpreting the volume conductor as a spatial filter according to the principle of the matched filter 

theorem 103. For example, in our simulations, this would mean that dipolar sources, which have 

close to no spatial extent, would be expected to have maximal effect in the vicinity of small 

structures, like small blood vessels. Larger extended sources would be expected to have maximal 

effect when combined with larger structures, like large vessels, or other large-scale spatial smooth 
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structures as the CSF or dura compartment. This is indeed what we observed from the percentage 

of non-negligible forward errors (Table 3). A similar effect was also observed in the spatial 

distribution of errors throughout the volume conductor. As highlighted by the black boxes in Figs. 5 

– 8, non-negligible errors due to dipolar sources aligned along small blood vessels and mostly 

disappeared when switching to extended sources. In contrast, non-negligible errors of the large 

sources close to large blood vessels were enhanced. Our findings point towards complex 

interactions between spatial properties of source and volume conductor models, which have 

received little attention so far but may be practically important, as not all brain activation may be 

well approximated by dipolar sources and may rather involve a wide range of different spatial 

scales 104. 

4.4. Computational requirements of submillimeter head modeling 

We showed that FEM modeling based on submillimeter 7T MRI data with more than 17 Mio. 

voxels is possible with current workstations and using Open-Source software (cf. Section 2.4). 

Improving the speed and memory usage of FEM computations is an important goal in FEM 

research 83,84,105,106. With the chosen solver technique and parametrizations and the current 

implementation in SimBio-NeuroFEM, computing one row of a transfer matrix 84 in a model with 

about 17 Mio. nodes took about half an hour, resulting in an overall computation time for the full 

329 electrodes transfer matrix of about five days. However, this computation step only needs to be 

performed once per model and sensor-configuration. Afterwards, forward simulation can be 

performed in just about a hundred of milliseconds per dipole. For our high source space resolution 

with more than 2 Mio. nodes, the computation of the leadfield for all dipoles still took 3 days. 

Without calculating a transfer matrix beforehand, one forward simulation for a model with about 17 

Mio. unknowns would have lasted approximately half an hour, which would have resulted in an 

excessive computational amount of more than 70 years. The transfer matrix technique 84 was 

hence crucial for the computational feasibility of our study.  
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In the future, computation times may still significantly be reduced: for example, a lower IC(0)-CG 

solver accuracy might be sufficient for nearly all applications 83 which would be interesting to 

evaluate. The setup of the transfer matrix could be sped up by more than ten-fold when using the 

faster Algebraic MultiGrid preconditioned Conjugate Gradient (AMG-CG) FEM solver 83,106,107, at 

the cost of higher memory usage in the current implementation in SimBio-NeuroFEM. 

Parallelization on distributed memory machines 106,108 could still significantly reduce both 

computation time and memory load. Most importantly, in routine source analysis scenarios, usually 

no more than 30,000 source space nodes are used, which would reduce the forward modeling 

computation time from 3 days down to about an hour. With such optimization, together with 

increased hardware performance, we anticipate that sub-mm FEM head modeling may become 

amendable for routine applications in science and neurological diagnostics.  

4.5. Limitations and further perspectives 

Several limitations have to be considered when interpreting the presented results. First, our results 

are based on only one subject, and blood vessels show inter-individual variability 74,109–111. Yet, the 

general layout of the cerebral vasculature is quite similar across individuals, both with respect to 

the major vessels and the location of brain regions with a dense vasculature, such as the insular 

region 74,75. Hence, as the strongest errors were located in these regions, we expect that vessel-

related errors will be present at similar levels and locations in other subjects as well. 

Second, the accuracy of the presented model could still be improved. As mentioned before, few 

superficial cortical and dura vessels and no draining sinuses 76 were included in the model 

because of their lower CNR. Incorporating these vessels is expected to even further increase the 

proportion of the potentially-affected brain regions, particularly in the cortex, which would be highly 

relevant for source reconstruction. We expect that, due to blood-volume conservation, including 

missing veins into our model would substantially increase the volume occupied by blood vessels. 

Such extended models could use susceptibility weighted imaging data at 7T, for segmenting veins. 

Also co-registration of a 7T blood vessel atlas 76 with our model could possibly enable us to better 
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evaluate the true extent of blood vessels to be included in an enhanced model. Likewise, not all 

blood vessel foramina and intraosseous veins could be segmented in our current model, resulting 

in a likely underestimation of the resulting modeling errors. We segmented 4 out of 9 and 3 out of 

4 previously described foramina containing blood vessels 109,112 and intraosseous veins 74,75, 

respectively. The foramina mastoide, condyloide, vesalius, caecum and squamosale as well as the 

venae diploicae temporalis anterior could not be segmented. This might be due to the 

interindividual variability of diploe veins 74 and foramina size and location 109. 

Moreover, there are several areas where the current segmentation could still be improved. For 

example, hyperintensities in the temporal lobe and local susceptibility artifacts above the lamina 

cribosa of the ethmoid sinuses created small segmentation errors. The spongy bone, here 

modeled as intraosseous and emissary veins, could be further improved. The choroid plexus was 

modeled with gray matter conductivity for lack of tissue specific values, but due to the deep 

location of the plexus we expect small model errors. Other areas with possible segmentation 

improvements are due to the lower CNR in the ventral part of the imaging volumes (below cortex 

levels) and affected facial bones, buccal air, muscle and the spinal cord (the last two were 

completely left out of the model). Manual segmentation by neuroradiologists (current gold 

standard) could probably have recovered most of the missing tissues, but is impractical for whole 

head segmentation with a submillimeter resolution. Advances in high-field imaging, MR sequence 

development and creating automated segmentation software optimized for 7T MRI data should 

level these limitations in the near future. 

Finally, the use of homogeneous, standard conductivity values also represents a limitation, since 

the values can be expected to be inhomogeneous in the living brain and will vary from standard 

values acquired ex-vivo. Including anisotropic conductivities in the model would be a first step to 

address this issue. The increase in computational load induced by anisotropic conductivities might 

be a limiting factor for 7T-based head modeling. Because only a minority of the blood vessels 

included in our model was within the white matter compartment, we expect no major insights for 
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the questions addressed in the present study from modeling white matter anisotropy. Recent 

advances in electrical impedance tomography (EIT) and more specifically in magnetic resonance 

EIT 113–117 suggest that using individualized anisotropic and inhomogeneous conductivities for 

head modeling may be possible in the future, opening up exciting new possibilities in volume 

conductor head modeling. 

 

5. Conclusions & Outlook 

For applications directed at regions with little vasculature we would suggest that, if the skull is 

modeled correctly and CSF, dura and anisotropy are present in a VCHM, the modeling of blood 

vessels is a possible next step towards an even lower model error that may or may not be 

necessary, depending on the accuracy requirements of a study. For applications where high 

forward and/or inverse solution accuracies are necessary and which address areas close to the 

interhemispheric fissure, the temporal pole and the insula, the inclusion of blood vessels may be 

highly relevant and as important as considering the CSF, dura, and white matter anisotropy. 

Finding the most suitable modeling techniques for blood vessels requires further attention. 

Depending on which conductivities are assumed for vessels, we found different mechanism of 

error generation. As researchers 118,119 have measured the electrical resistance of the brain 

endothelium (although in rat and frog), two paths towards a solution are currently investigated: (i) 

implementing separate compartments for blood vessel endothelium and lumen, requiring a volume 

mesh with local resolution approaching the single µm, making the development of new FEM 

technologies necessary; (ii) modeling the resistive properties of the endothelium as electrical 

boundary conditions. Developing algorithms required for both approaches and making resistances 

compatible with software is the subject of our ongoing research. Once established, these methods 

will permit to investigate the effect of the blood-CSF (choroid plexus) and arachnoid barriers, 

which are also a combination of highly isolating tight junctions and conductive fluids. Further 

investigations will also be needed to clarify the role of the apparent dependence of blood 
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conductivity and anisotropy relative to flow velocity and vessel diameter observed in impedance- 

plethysmography and cardiology 120,121. In this context, direct measurements in animal models 

would also be highly useful to resolve the current lack of data on the exact conductivity of cerebral 

vessels, which led us to model a wide range of conductivity values in the present study. 

Beyond EEG, we can envision multiple applications which could benefit from modeling blood 

vessels, also at submillimeter resolution. For example, submillimeter head modeling could be 

especially well suited for modeling of transcranial magnetic/direct current/alternating current 

stimulation to optimize the current flow in targeted brain areas 122. Other applications like 

traumatology and fNIRS could profit even more from the precise modeling of blood vessels. 

Furthermore, fMRI acquired at 7T could make use of the high blood vessel contrast in anatomical 

data to mask BOLD effects arising from superficial cortical vessels which are often misinterpreted 

as cortical activity. 
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