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Abstract. In order to perform electroencephalography (EEG) source reconstruction, i.e., to
localize the sources underlying a measured EEG, the electric potential distribution at the electrodes
generated by a dipolar current source in the brain has to be simulated, which is the so-called EEG
forward problem. To solve it accurately, it is necessary to apply numerical methods that are able
to take the individual geometry and conductivity distribution of the subject’s head into account.
In this context, the finite element method (FEM) has shown high numerical accuracy with the
possibility to model complex geometries and conductive features, e.g., white matter conductivity
anisotropy. In this article, we introduce and analyze the application of a discontinuous Galerkin
(DG) method, a finite element method that includes features of the finite volume framework, to the
EEG forward problem. The DG-FEM approach fulfills the conservation property of electric charge
also in the discrete case, making it attractive for a variety of applications. Furthermore, as we show,
this approach can alleviate modeling inaccuracies that might occur in head geometries when using
classical FE methods, e.g., so-called “skull leakage effects”, which may occur in areas where the
thickness of the skull is in the range of the mesh resolution. Therefore, we derive a DG formulation
of the FEM subtraction approach for the EEG forward problem and present numerical results that
highlight the advantageous features and the potential benefits of the proposed approach.
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1. Introduction. EEG source reconstruction is nowadays widely used in both
research and clinical routine to investigate the activity of the human brain, as it is a
non-invasive, easy to perform, and relatively cheap technique [29, 17]. To reconstruct
the active brain areas from the electric potentials measured at the head surface, it is
necessary to simulate the electric potential generated by a dipolar current source in
the gray matter compartment of the brain, the so-called EEG forward problem. The
achievable accuracy in solving the forward problem strongly depends on a realistic
modeling of shape and conductive features of the volume conductor, i.e., the human
head. Therefore, it is necessary to apply numerical methods to solve the underlying
partial differential equations in realistic geometries, since analytical solutions exist for
only few special cases, e.g., nested shells [21]. Different numerical methods have been
proposed to solve this problem, e.g., boundary element methods (BEM) [33, 1, 28, 45],
finite volume methods (FVM) [20], finite difference methods (FDM) [55, 49, 32],
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or finite element methods (FEM) [13, 31, 41, 25, 37, 35]. Finite element methods
were shown to achieve high numerical accuracies [25, 52] and offer the important
possibility to model complex geometries and also anisotropic conductivities, with only
a weak influence on the computational effort [51]. The computational burden of
using FE methods to solve the EEG forward problem could be clearly reduced by the
introduction of transfer matrices and fast solver methods [54, 26, 58].

One of the main tasks in applying FE methods to solve the EEG forward problem
is to deal with the strong singularity introduced by the source model of a current
dipole. Therefore, different approaches to solve the EEG forward problem using the
FEM have been proposed, e.g., the Saint-Venant [47, 43, 18, 52], the partial integration
[61, 54, 48, 52], the Whitney or Raviart-Thomas [46, 35], or the subtraction approach
[13, 31, 41, 60, 25, 52]. All these approaches rely on a continuous Galerkin FEM
(CG-FEM) formulation, also called Lagrange or conforming FEM, i.e., the resulting
solution for the electric potential is continuous.

The use of tetrahedral [31, 25, 51] as well as that of hexahedral [41, 39, 7, 6] meshes
has been proposed for solving the EEG forward problem with the FEM. Tetrahedral
meshes can be generated by constrained Delaunay tetrahedralizations (CDT) from
given tissue surface representations [25, 51]. This approach has the advantage that
smooth tissue surfaces are well represented in the model. On the other side, the
generation of such models is difficult in practice and might cause unrealistic model
features, e.g., holes in tissue compartments such as the foramen magnum and the
optic canals in the skull are often artificially closed to allow CDT meshing. Fur-
thermore, CDT modeling necessitates the generation of nested, non-intersecting, and
-touching surfaces. However, in reality, surfaces might touch, for example, the inner
skull and outer brain surface. Hexahedral models do not suffer from such limitations,
can be easily generated from voxel-based magnetic resonance imaging (MRI) data,
and are more and more frequently used in source analysis applications [39, 7, 6]. This
paper therefore focuses on the application of FE methods with hexahedral meshes.
However, the application of the CG-FEM with hexahedral meshes has the disadvan-
tage that the representation of thin tissue structures in combination with insufficient
mesh resolutions might result in geometry approximation errors. It has been shown,
e.g., in [44], that the combination of thin skull structures and insufficient hexahedral
mesh resolutions might result in so-called skull leakages in areas where scalp and CSF
elements are erroneously connected via single skull vertices or edges, as illustrated
in Figure 2.1. Such leakages can lead to significantly inaccurate results when using
vertex-based methods like, e.g., the CG-FEM, and might be one of the main reasons
why in a recent head modeling comparison study for EEG source analysis in presur-
gical epilepsy diagnosis, the use of the CG-FEM with a four-layer hexahedral head
model with a resolution of 2 mm did not lead to better results than those for simpler
head models, i.e., a three-layer local sphere and a three-layer boundary element head
model [14].

In this paper, we derive the mathematical equations underlying the forward prob-
lem of EEG and introduce its solution using the subtraction approach. After a short
explanation of the strengths and weaknesses of this approach, we propose and evalu-
ate a new formulation of the subtraction approach on the basis of the discontinuous
Galerkin FEM (DG-FEM). We then show that, although the CG- and DG-FEM
achieve similar numerical accuracies in multi-layer sphere validation studies with high
mesh resolutions, the DG-FEM mitigates the problem of skull leakages in case of lower
mesh resolutions. The results of the sphere studies are complemented and underlined
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by the results obtained in a realistic six-compartment head model.

2. Theory.

2.1. The forward problem. The partial differential equation underlying the
EEG forward problem can be derived by introducing the quasi-static approximation
of Maxwell’s equations [29, 17]. When relating the electric field to a scalar potential,
E = −∇u, and splitting up the current density J into a term f , which describes the
current source, and a return current, or flux, −σ∇u with σ(x) being the conductivity
distribution in the head domain, we obtain a Poisson equation

−∇ · (σ∇u) = f in Ω, (2.1a)

σ∂nu = 0 on ∂Ω, (2.1b)

where Ω denotes the head domain, which is assumed to be open and connected, and
∂Ω its boundary. We have homogeneous Neumann boundary conditions here, since
we assume a conductivity σ(x) = 0 for all x /∈ Ω̄.

2.2. The subtraction approach. We briefly derive the classical subtraction FE
approach as presented in [60, 25]. We assume the commonly used point-like dipole
source at position y with moment p, fy(x) = ∇ · (pδy(x)). This choice complicates
the further mathematical treatment, as the right-hand side is not square-integrable in
this case. However, when assuming that there exists a non-empty open neighborhood
Ω∞ of the source position y with constant isotropic conductivity σ∞, we can split the
potential u and the conductivity σ into two parts:

u = u∞ + ucorr, (2.2a)

σ = σ∞ + σcorr. (2.2b)

u∞ is the potential in an unbounded, homogeneous conductor and can be calculated

analytically: u∞(x) = 1
4πσ∞

〈p,x−y〉
|x−y|3 . The more general case of anisotropic conductiv-

ities can be treated, too [60, 25], but is not especially derived here.

Inserting the decomposition of u into (2.1) and subtracting the homogeneous
solution, again results in a Poisson equation for the searched correction potential
ucorr:

−∇ · (σ∇ucorr) = ∇ · (σcorr∇u∞) in Ω, (2.3a)

σ∂nu
corr = −σ∂nu∞ on ∂Ω. (2.3b)

To solve this problem numerically, [25] propose a conforming first-order finite element
method: Find ucorr ∈ Vh ⊂ H1 such that it fulfills the weak formulation∫

Ω

σ∇ucorr · ∇vdx = −
∫
Ω

σcorr∇u∞ · ∇vdx−
∫
∂Ω

σ∞∂nu
∞vds. (2.4)

The weak form can be heuristically derived by multiplication with a test function v ∈
Vh and subsequent partial integration. Reorganization of some terms and applying the
identity (2.2b) yields the proposed form in equation (2.4). The subtraction approach
is theoretically well understood. The existence of a solution as well as the uniqueness
and convergence of this solution are examined in [60, 25].
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Fig. 2.1. Sketch of segmentation that might lead to leakage effects (left). The yellow line shows
the inner skull surface, the red line the original outer skull surface, the blue line the corrected outer
skull surface. Where the red and the blue line overlap, only the blue line is visible. In the magnified
detail, the scalp and CSF show two erroneous connections via single vertices or edges (right subfigure,
where the red and the yellow line touch each other). Such a segmentation can lead to significantly
inaccurate results when using vertex-based methods such as, for example, the CG-FEM.

2.3. Skull leakage effects. As discussed in the introduction, hexahedral meshes
are frequently used in practical applications of FEM-based EEG/MEG source anal-
ysis, due to the clearly simplified creation process in comparison to CDT meshes. A
pitfall that has to be taken into account in this scenario is leakage effects, especially
in the thin skull compartment. If the segmentation resolution, i.e., the resolution of
the discrete approximation of the geometry, is coarse compared to the thickness of
the skull, segmentation artifacts as illustrated in Figure 2.1 (yellow and red lines)
occur. When directly generating a hexahedral mesh from this segmentation, elements
belonging to the highly conductive compartments interior to the skull, i.e., most often
the CSF, and to the skin compartment are now connected via a shared vertex or edge,
although they are physically separated in reality. When using such a mesh for, e.g.,
the CG-FEM with Lagrange Ansatz-functions, these artifacts lead to skull leakage, as
sketched in Figure 2.2. As a consequence of the vertex-based Ansatz-functions, the
shared vertices have inadequately high entries in the stiffness matrix, which result in
current leakage “through” these vertices.

This effect remains unchanged even when (globally or locally) refining the reso-
lution of the mesh. An increase of the image – and thereby also the segmentation
– resolution might eliminate this effect, but is usually not possible. Instead, this
problem might be circumvented by artificially increasing the thickness of the skull
segmentation in these areas (blue line in Figure 2.1). However, this workaround
might, again, lead to inaccuracies in the EEG forward computation due to the now
too thick representation of the skull compartment.

In the following section, we derive a discontinuous Galerkin (DG) formulation
for the subtraction FE approach. This formulation has the advantage that it is lo-
cally charge preserving and controls the current flow through element faces, thereby
preventing possible leakage effects; see illustration in Figure 2.2.

2.4. A discontinuous Galerkin formulation. Preserving fundamental phys-
ical properties is very important in order to obtain reliable simulation results. As
discussed in the previous section, a correct approximation of the electric current is
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CG-FEM DG-FEM

Fig. 2.2. CG-FEM simulations lead to an overestimated electric current at degenerated vertices
of the skull. This effect is due to the vertex-based discretization, which considers only the poten-
tial, but not the electric current. The DG-FEM is based on a current reconstruction through cell
faces. Therefore, these methods do not overestimate the electric current, even in the presence of
segmentation artifacts.

crucial for reliable simulation results. Continuity of the normal component of the
current directly implies conservation of charge.

The discontinuous Galerkin method allows to construct formulations that preserve
such conservation properties also in the discretized space. We first discuss which
quantities to preserve when using the subtraction approach for the continuous problem
and then introduce a discontinuous Galerkin formulation.

2.4.1. Conservation properties. A fundamental physical property is the con-
servation of charge: ∫

∂K

σ∇u · ~n ds =

∫
K

fydx, (2.5)

for any control volume K ⊆ Ω. Following the subtraction approach, we split the
current σ∇u = (σ∞ + σcorr)∇(u∞ + ucorr). Rearrangement then yields∫

∂K

σ∇ucorr · ~n ds = −
∫
∂K

σcorr∇u∞ · ~n dx−
∫
∂K

σ∞∇u∞ · ~n ds+

∫
K

fydx

︸ ︷︷ ︸
≡0

.

Applying Gauss’s theorem to the right-hand side, we obtain a conservation property
for the correction potential∫

∂K

σ∇ucorr︸ ︷︷ ︸
~jcorr

·~n ds =

∫
K

−∇ · σcorr∇u∞︸ ︷︷ ︸
fcorr

dx , (2.6)

which basically states that the correction potential ucorr causes a flux ~jcorr; the
charge corresponding to this flux is a conserved property with source term f corr =
∇ · σcorr∇u∞.

For FE methods this property carries over to the discrete solution, if the test
space contains the characteristic function, which is one on K and zero everywhere
else. In general, a conforming discretization does not guarantee this property.

Conservation of charge also holds for u∞ in the case of a homogeneous volume
conductor (with conductivity σ∞ in our case). Thus, the normal components of both
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Fig. 2.3. Interface γ splits K into two parts.

the electrical flux σ∇u and σ∞∇u∞ are continuous. Rewriting ~j in terms of σcorr,
σ∞, ucorr and u∞ we can show that the normal component of σ∇ucorr + σcorr∇u∞ is
also continuous.

Definition 2.1. We consider an arbitrary interface γ, which separates the con-
trol volume K into two patches Kl and Kr (see Figure 2.3). Following [3], we introduce
jump of a function u along γ as

JuKγ := u · |∂Kl
~nKl

+ u|∂Kr
· ~nKr

(2.7)

Note that this is consistent with the following definition

JuKγ(x) =

(
lim

x′→x in Kl

u(x′)− lim
x′→x in Kr

u(x′)

)
· ~nγ

Note further that the jump of a scalar function is vector valued, while the jump of a
vector valued function is scalar.

Lemma 2.2. Given a potential u with a flux σ∇u with continuous normal com-
ponent along any surface, also the normal component of σ∇ucorr + σcorr∇u∞ is con-
tinuous for the subtraction approach.

Proof. We consider an arbitrary interface γ. At each point x along γ the normal
components of the fluxes, σ∇u ·~nγ and σ∞∇u∞ ·~nγ , are continuous. Thus, the jump
vanishes for them and we obtain

Jσ∇uKγ = 0 = Jσ∞∇u∞Kγ . (2.8)

Rewriting Jσ∇uKγ in terms of σcorr, σ∞, ucorr, and u∞, we obtain

Jσ∞∇ucorrKγ + Jσcorr∇ucorrKγ + Jσcorr∇u∞Kγ = 0

⇔ Jσ∇ucorrKγ = −Jσcorr∇u∞Kγ
⇔ Jσ∇ucorr + σcorr∇u∞Kγ = 0. (2.9)

As this property holds for any control volume, the normal component of the combined
flux σ∇ucorr + σcorr∇u∞ is also continuous for any interface γ.

Note that this also implies the identity

Jσ∇ucorrKγ = −Jσcorr∇u∞Kγ , (2.10)

for any interface γ, which is later needed to derive the weak form (2.24a) from equa-
tions (2.20) and (2.21).
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2.4.2. A weak formulation. An alternative to the conforming discretization
sketched in Section 2.2 is to use more general trial and test spaces. We suggest em-
ploying a symmetric discontinuous Galerkin discretization. The standard derivation
of the DG formulation does not apply immediately, as the intrinsic conservation prop-
erty for ucorr differs from the conservation property of the classical Poisson problem.
In the following section, we will briefly describe the most important steps in the con-
struction of a Symmetric Interior Penalty Galerkin (SIPG) DG formulation for the
subtraction approach. For further details on DG methods, we refer to [3] or the book
of Pietro and Ern [22]. We start with the usual definitions:

Definition 2.3 (Triangulation Th(Ω)). Let Th(Ω) be a finite collection of dis-
joint and open subsets forming a partition of Ω. The subscript h corresponds to the
mesh-width h := max {diam(E) | E ∈ Th}. Furthermore, the triangulation induces the
internal skeleton

Γint := {γe,f = ∂Ee ∩ ∂Ef | Ee, Ef ∈ Th , Ee 6= Ef , |γe,f | > 0} (2.11)

and the skeleton Γ := Γint ∪ ∂Ω.
Definition 2.4 (Broken polynomial spaces). Broken polynomial spaces are de-

fined as piecewise polynomial spaces on the partition Th(Ω) as

V kh :=
{
v ∈ L2(Ω) : v|E ∈ P k(E)

}
, (2.12)

where P k denotes the space of polynomial functions of degree k. They describe func-
tions that exhibit elementwise polynomial behavior but may be discontinuous across
element interfaces.

Since the elements of V kh may admit discontinuities across element boundaries,
the gradient of a function v ∈ V kh is not defined everywhere on Ω. To account for this,
we introduce the broken gradient operator.

Definition 2.5 (Broken gradient operator). The broken gradient ∇h : V kh →
[Lk(Ω)]d is defined such that, for all v ∈ V kh

(∇hv) |E = ∇(v|E) for all E ∈ Th(Ω). (2.13)

Definition and Notation 2.6 (Jump and Average). Using the Definition 2.1
introduce the abbreviated notation of the jump

JxKe,f := JxKγe,f

of a piecewise continuous function x on the interface γe,f between two adjacent ele-
ments Ee, Ef ∈ Th. We further define the average operator

{x}e,f := ωe,fx|∂Ee + ωf,ex|∂Ef
. (2.14)

The weights ωe,f and ωf,e can be chosen to be the arithmetic mean, but for the case
of heterogeneous conductivities, [23] has shown that a conductivity-dependent choice
is optimal:

ωe,f :=
σf

σf + σe
and ωf,e :=

σe
σe + σf

. (2.15)

We further introduce the average operator with switched weights

{x}∗e,f := ωf,ex|∂Ee
+ ωe,fx|∂Ef

, (2.16)

7



and obtain the following multiplicative property:

JxyKe,f = JxKe,f{y}∗e,f + {x}e,f JyKe,f . (2.17)

Using a Galerkin approach, we seek for a solution ucorr
h ∈ V kh , which fulfills (2.3)

in a weak sense. We start the derivation by testing with a test function vh ∈ V kh :

−
∫
Ω

∇ · σ∇ucorr
h vh dx =

∫
Ω

∇ · σcorr∇u∞vh dx (2.18)

On each E ∈ Th(Ω), we apply integration by parts. Element boundaries are split
into the domain boundary and all internal edges. The electrical current σ∇ucorr

h · ~n
through the boundary is given by the inhomogeneous Neumann boundary conditions
(2.3b). For the left-hand side, we obtain

lhs =−
∫
Ω

∇ · σ∇ucorr
h vh dx

=

∫
Ω

σ∇ucorr
h · ∇hvh dx+

∫
∂Ω

σ∇u∞ · ~n vh ds−
∫

Γint

Jσ∇ucorr
h vhK ds,

(2.19)

and with the multiplicative property (2.17) follows

lhs =

∫
Ω

σ∇ucorr
h · ∇hvh dx+

∫
∂Ω

σ∇u∞ · ~n vh︸ ︷︷ ︸
term †

ds

−
∫

Γint

Jσ∇ucorr
h K︸ ︷︷ ︸

term ‡

{vh}∗ + {σ∇ucorr
h }JvhK ds .

(2.20)

Applying the same relations for the right-hand side, we obtain

rhs = −
∫
Ω

σcorr∇u∞ · ∇hvh dx+

∫
∂Ω

σcorr∇u∞ · ~n vh︸ ︷︷ ︸
term †

ds

+

∫
Γint

Jσcorr∇u∞K︸ ︷︷ ︸
term ‡

{vh}∗ + {σcorr∇u∞}JvhK ds .

(2.21)

Summing up the boundary integrals (2.20)† and (2.21)† yields a remaining term
−σ∞∇u∞ ·~n vh on the right-hand side. As discussed in Section 2.4.1, the conservation
properties also imply that the normal component of σ∇ucorr+σcorr∇u∞ is continuous,
see (2.9). For the discrete solution, we require the same conservation property; thus
the jump term (2.20)‡ equals to −Jσcorr∇u∞K and cancels out with term (2.21)‡.

To gain adjoint consistency, we symmetrize the operator and add the additional
term

ãsym(ucorr
h , vh) := −

∫
Γint

{σ∇hvh}Jucorr
h K ds . (2.22)
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To guarantee coercivity, the left-hand side is supplemented with the penalty term

J(ucorr
h , vh) = η

∫
Γint

σ̂γ
hγ

Jucorr
h KJvhK ds , (2.23)

where hγ and σ̂γ denote local definitions of the mesh width and the electric conduc-
tivity on an edge γ, respectively. In our particular case, we choose hγ according to
[27] and σ̂γ as the harmonic average of the conductivities of the adjacent elements
[23]:

hγe,f =
min(|Ee|, |Ef |)

|γe,f |
and σ̂γe,f :=

2σeσf
σe + σf

.

The penalty parameter η has to be chosen large enough to ensure coercivity.
This derivation yields the SIPG formulation [56, 38] or for weighted averages the

Symmetric Weighted Interior Penalty Galerkin (SWIPG or SWIP) method[23]:

Find ucorr
h ∈ Vh such that

a(ucorr
h , vh) + J(ucorr

h , vh) = l(vh) for all vh ∈ Vh, (2.24a)

with

a(ucorr
h , vh) = ã(ucorr

h , vh) + ãsym(ucorr
h , vh)

=

∫
Ω

σ∇ucorr
h · ∇hvh dx−

∫
Γint

{σ∇ucorr
h }JvhK + {σ∇hvh}Jucorr

h K ds ,

(2.24b)

J(ucorr
h , vh) = η

∫
Γint

σ̂γ
hγ

Jucorr
h KJvhK ds , (2.24c)

l(vh) =−
∫
Ω

σcorr∇u∞ · ∇hvh dx

+

∫
Γint

{σcorr∇u∞}JvhK ds−
∫
∂Ω

σ∞∂nu
∞vh ds . (2.24d)

Given the correction potential ucorr
h , the full potential uh can be reconstructed as

uh = ucorr
h + u∞.

Remark 1 (Discrete Properties). As a(ucorrh , vh) and J(ucorrh , vh) are the same
operators as in [23], the following properties follow immediately: The proposed SIPG
discretization (2.24) is consistent and adjoint-consistent with the strong problem (2.3),
and for a sufficiently large constant η > 0 it has a unique solution.

Remark 2 (Conservation Property). Furthermore, for K ⊆ Th(Ω), (2.24) fulfills
a discrete conservation property∫

∂K

{σ∇ucorrh } − η σ̂γ
ĥγ

Jucorrh K︸ ︷︷ ︸
~jcorrh

ds =

∫
K

−∇σcorr∇u∞︸ ︷︷ ︸
fcorr

ds

with the discrete flux ~jcorrh . For h→ 0, the jump Jucorrh K vanishes and the discrete flux
~jcorrh converges to the flux ~jcorr as defined in (2.6).
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Table 3.1
Conductive compartments (from in- to outside)

Compartment Outer Radius Conductivity

Brain 78 mm 0.33 S/m

CSF 80 mm 1.79 S/m

Skull 86 mm 0.01 S/m

Skin 92 mm 0.43 S/m

3. Methods.

3.1. Implementation and parameter settings. We implemented the DG-
FEM subtraction approach in the DUNE framework [9, 8] using the DUNE PDELab
toolbox [12]. For reasons of comparison, we also implemented the CG-FEM subtrac-
tion approach in the same framework. We use linear Ansatz-functions for both the
DG (i.e., k = 1 in (2.12)) and CG approaches throughout this study. On a given trian-
gulation Th, we choose basis functions {φih}, i ∈ [0, Nh), with local support, where Nh
denotes the number of unknowns. The penalty parameter η was chosen to η = 0.39.
For the CG simulations, a Lagrange basis with the usual hat functions is employed,
whereas for the DG case, elementwise L2-orthonormal functions are chosen. In this
setup (k = 1, hexahedral mesh), we have eight unknowns per mesh cell for the DG
approach, i.e., Nh = 8 × #cells, and one unknown per vertex for the CG approach,
i.e., Nh = #vertices. Evaluating the bilinear forms a(·, ·), J(·, ·), and the right-hand
side l(·) leads to a linear system A · x = b, where x ∈ RNh denotes the coefficient
vector, and the approximated solution of (2.24) is ucorrh =

∑
i xiφ

i
h. Furthermore,

A ∈ RNh×Nh is the matrix representation of the bilinear operator a+ J and b ∈ RNh

the right-hand-side vector:

Aij = a(φjh, φ
i
h) + J(φjh, φ

i
h) i, j ∈ [0, Nh),

bi = l(φih) i ∈ [0, Nh) .

The resulting matrix A has a sparse block structure with small dense blocks, in our
case of dimension 8 × 8. The outer structure is similar to that of a finite volume
discretization, i.e., rows corresponding to each grid cell and one off-diagonal entry
for each cell neighbor. By now, a range of efficient solvers for DG discretizations is
available, using multigrid [10] or domain decomposition methods [2]. The computa-
tion/solving times for the CG- and DG-FEM for realistic six-layer head models and
a realistic EEG sensor configuration are compared in the results section.

3.2. Volume conductor models. To validate and compare the accuracy of
these numerical schemes, we used four-layer sphere volume conductor models, where
an analytical solution exists and can be used as a reference [21]. For the four spherical
compartments, representing brain, cerebrospinal fluid (CSF), skull, and skin, we chose
radii and conductivities as shown in Table 3.1. As discussed in the introduction and
in 2.3, we used hexahedral meshes in our study. To be able to distinguish between
numerical and geometry errors, i.e., errors due to the discrete approximation of the
continuous PDE and errors due to an inaccurate representation of the geometry,
respectively, we constructed a variety of head models with different segmentation
resolutions (1 mm, 2 mm, and 4 mm) and for each of these we again used different
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seg 1 res 1 seg 2 res 2 seg 4 res 4

Fig. 3.1. Visualization of models seg 1 res 1, seg 2 res 2 and seg 4 res 4 (from left to right), cut
in x-plane at the origin; coloring is brain - red, CSF - yellow, skull - green, skin - blue.

Table 3.2
Model properties (from left to right): segmentation resolution (Seg.), mesh resolution (h), num-

ber of nodes, number of elements

Seg. h #nodes #elements

seg 1 res 1 1 mm 1 mm 3,342,701 3,262,312

seg 2 res 1 2 mm 1 mm 3,343,801 3,263,232

seg 2 res 2 2 mm 2 mm 428,185 407,907

seg 4 res 1 4 mm 1 mm 3,351,081 3,270,656

seg 4 res 2 4 mm 2 mm 429,077 408,832

seg 4 res 4 4 mm 4 mm 56,235 51,104

6CI hex 1mm 1 mm 1 mm 3,965,968 3,871,029

6CI hex 2mm 2 mm 2 mm 508,412 484,532

6CI tet hr - - 2,242,186 14,223,508

Table 3.3
Model parameters

out. Skull Rad. #leaks

seg 2 res 2 r82 82 mm 10,080

seg 2 res 2 r83 83 mm 1,344

seg 2 res 2 r84 84 mm 0

mesh resolutions (1 mm, 2 mm, and 4 mm). The details of these head models are
listed in Table 3.2, and Figure 3.1 visualizes a subset of the used models.

To further evaluate the sensitivity of the different numerical methods to leakage
effects, we intentionally generated spherical models with skull leakages. Therefore, we
chose the model seg 2 res 2 and reduced the radius of the outer skull boundary to 82
mm, 83 mm, and 84 mm, resulting in skull thicknesses of 2 mm, 3 mm, and 4 mm,
respectively. This way, we were able to generate a leakage scenario similar to the one
presented in Figure 2.1, while preserving the advantage of a spherical solution that
can be used for error evaluations. Table 3.3 indicates the number of leaks for each
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model, i.e., the number of vertices belonging to both an element labeled as skin and
an element labeled as CSF or brain.

3.3. Sources. Since the numerical accuracy depends on the local mesh structure
and the source eccentricity, we used 10 source eccentricities and, for each eccentricity,
randomly distributed 10 sources. Thereby, the variability of the numerical accuracy
can be captured for each eccentricity. We evaluated the accuracy for both radial and
tangential dipole directions; however, we present the results only for radial directions
here. The results for dipoles with tangential direction are very similar to these with
slightly lower errors than for radial dipoles.

To make the effect of skull leakage more accessible, we additionally generated visu-
alizations of the current for one dipole fixed at position (1, 47, 47), which corresponds
to an element center, and fixed direction (0, 1, 1) for both the CG- and DG-FEM and
for all three models with reduced skull thickness as shown in Table 3.3. We visualized
a cut through the x-plane at the dipole position and chose to visualize both the direc-
tion and strength of the electric flux for each numerical method and model (Figure
4.4). Furthermore, the relative change in strength and the flux difference between the
numerical methods, described by the metrics lnMAG~j,loc and totDIFF~j,loc as defined

in the next section, were visualized for each model (Figure 4.5).

3.4. Error metrics. To achieve a result that purely represents the numerical
and segmentation accuracy and is independent of the chosen sensor configuration,
we evaluated the solutions on the whole outer layer. We use two error measures to
distinguish between topography and magnitude errors, the relative difference measure
(RDM),

RDM(uh, u) =

∥∥∥∥ uh
‖uh‖2

− u

‖u‖2

∥∥∥∥
2

, (3.1)

and the logarithmic magnitude error (lnMAG),

lnMAG(uh, u) = ln

(
‖uh‖2
‖u‖2

)
. (3.2)

Besides presenting the mean RDM and lnMAG errors over all sources at a certain
eccentricity (see, e.g., left subfigures in Figure 4.1), we also present results in separate
boxplots (see, e.g., right subfigures in Figure 4.1). The boxplots show maximum and
minimum error over all source positions at a certain eccentricity, indicated by upper
and lower error bars. This allows to display the overall variability of the error. Fur-
thermore, the boxplots show the upper and lower quartiles. The interquartile range is
marked by a box; a black dash shows the median. Henceforth, the interquartile range
will also be denoted as spread. Note the different presentation of source eccentricity
on the x-axes in the left and right subfigures.

To evaluate the local changes of the current, we furthermore visualize for each
mesh element E the logarithm of the local change in current magnitude

lnMAG~j,loc (E) = ln

(
‖~jh,CG(xE)‖2
‖~jh,DG(xE)‖2

)
, (3.3)

and the total local current difference

totDIFF~j,loc (E) = ~jh,CG(xE)−~jh,DG(xE), (3.4)
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Fig. 3.2. Visualization of realistic six-compartment hexahedral 6CI hex 2mm, h = 2mm, (left)
and high-resolution reference head model 6CI tet hr (right).

where xE denotes the centroid of mesh element E (see Figure 4.5).
We can exploit that, due to the relation ln(1 + x) ≈ x for small ‖x‖, we have

lnMAG ≈ ‖uh‖2/‖u‖2−1 for small deviations. In consequence, 100 ·lnMAG is about
the change of the magnitude in percent. The same approximations are valid for the
lnMAG~j,loc .

3.5. Realistic head model. To complete the numerical evaluations, the dif-
ferences between the CG- and DG-FEM were evaluated in a more realistic scenario.
Based on MRI recordings, a segmentation considering six tissue compartments (white
matter, gray matter, cerebrospinal fluid, skull compacta, skull spongiosa, and skin)
that includes realistic skull openings such as the foramen magnum and the optic nerve
canal was generated. Based on this segmentation, three realistic head models were
generated. Two hexahedral head models with mesh resolutions of 1 mm and 2 mm,
6CI hex 1mm and 6CI hex 2mm, were generated, resulting in 3,965,968 vertices and
3,871,029 elements, and 508,412 vertices and 484,532 elements, respectively (Figure
3.2). For both models, the segmentation resolution is identical to the mesh resolution.
As the model with a mesh width of 2 mm was not corrected for leakages, 1,164 vertices
belonging to both CSF and skin elements were found. These leakages were mainly
located at the temporal bone. To calculate reference solutions, a high-resolution tetra-
hedral head model with 2,242,186 vertices and 14,223,508 elements, 6CI tet hr, was
generated. For further details of this model and of the used segmentation, please refer
to [51, 50]. The conductivities were chosen according to [51]. 4,724 source positions
were placed in the gray matter with a normal constraint, and those that were not
fully contained in the gray matter compartment, i.e., where the source was placed in
an element at a compartment boundary, were excluded. As a result, 4,482 source po-
sitions remained for the 1 mm model and 4,430 source positions for the 2 mm model.
An 80 channel realistic EEG cap was chosen as the sensor configuration. For both
the CG- and DG-FEM, solutions in the 1 mm and 2 mm hexahedral head model were
computed and the RDM and lnMAG are evaluated in comparison to the solution of
the CG-FEM calculated using the tetrahedral head model.

The computations were performed on a Linux-PC with an Intel Xeon E5-2698 v3
CPU (2.30 GHz). The computation times for the CG- and DG-FEM in the models
6CI hex 1mm and 6CI hex 2mm were evaluated in the results section. Though an
optimal speedup through parallelization can be achieved for both the transfer matrix
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Fig. 4.1. Convergence for the DG-FEM with increasing mesh and/or segmentation resolution.
Results of radial dipole computations. Visualized are the mean error (left column) and boxplots
(right column) of the RDM (top row) and lnMAG (bottom row). Dipole positions that are outside
the brain compartment in the discretized models are marked as dots. Note the different scaling of the
x-axes. Note that the error curve for model seg 4 res 1 is partly covered by that of model seg 4 res 2
in the top left figure.

computation and the right-hand-side setup, all computations were carried out without
parallelization on a single core to allow for a reliable comparison.

4. Results. Figure 4.1 shows the convergence of the RDM and lnMAG errors for
the DG method when increasing the segmentation resolution, i.e., improving the rep-
resentation of the geometry. Comparing the results for meshes seg 1 res 1, seg 2 res 2,
and seg 4 res 4 shows the clear reduction of both the RDM and lnMAG when increas-
ing mesh and segmentation resolution at the same time. The most accurate model
seg 1 res 1 achieves errors below 0.05 with regard to the RDM for eccentricities up to
0.979, i.e., a distance of 1.6 mm to the brain/CSF boundary. For an eccentricity of
0.987, i.e., a distance of about 1 mm to the brain/CSF boundary, this error increases
up to maximally 0.1. For even higher eccentricities, the errors clearly increase up to
maximal values of 0.5. However, the median error clearly stays below 0.2 here and
minimal errors are still at about 0.05. The behavior with regard to the lnMAG is very
similar, being nearly constant up to an eccentricity of 0.979, slightly increasing for an
eccentricity of 0.987, and strongly increasing with a high error variability for higher
eccentricities. The errors for models seg 2 res 2 and seg 4 res 4 are clearly higher than
for model seg 1 res 1. However, additionally displaying the results for the models with
refined mesh resolution seg 2 res 1, seg 4 res 1, and seg 4 res 2, where the geometry er-
ror, i.e., the error due to the inaccurate representation of the geometry through the
segmentation, is kept constant, allows us to estimate whether the increased errors are
due to insufficient numerical accuracy or the coarse segmentation. We find that both
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Fig. 4.2. Convergence for both the CG-FEM and DG-FEM with increasing mesh and segmen-
tation resolution. Results of radial dipole computations. Visualized are the mean error (left column)
and boxplots (right column) of the RDM (top row) and lnMAG (bottom row). Dipole positions that
are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

for a segmentation resolution of 2 mm and 4 mm, the errors are dominated by the
geometry error. Comparing the models with a segmentation resolution of 2 mm, we
find nearly identical errors with regard to the RDM up to an eccentricity of 0.964
(see right subfigure in Figure 4.1). Here, the median of the errors remains below 0.1.
For higher eccentricities, where sources are already placed in the outermost layer of
elements that still belong to the brain compartment, the errors for the lower resolved
mesh clearly increase faster; the differences are especially large for the two highest
eccentricities. With regard to the lnMAG, the effects of the higher mesh resolution
are clearly weaker. Even for the outermost sources, notable differences can be seen
only due to some outliers, whereas the medians of the errors stay in a similar range
for both mesh resolutions. For the meshes with a segmentation resolution of 4 mm,
only negligible differences can be seen at all eccentricities; the medians of the errors
are very similar. Differences can be found only in the maximal values but do not
show a systematic behavior. However, the errors are clearly increased compared to
the models with a higher segmentation resolution, i.e., a better approximation of the
geometry. Already at an eccentricity of about 0.5 the median of the RDM is at about
0.1, increasing to values above 0.4 for the highest four eccentricities. The same behav-
ior is observed for the lnMAG, again finding significantly increased errors compared
to the models with a higher segmentation resolution.

In Figure 4.2, the results for the newly proposed DG-FEM are presented side by
side to the CG-FEM for the models seg 1 res 1, seg 2 res 2, and seg 4 res 4. For the
model seg 1 res 1, the only notable difference with regard to the RDM can be observed
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Fig. 4.3. Comparison of increase of errors for decreasing skull thickness between the CG-FEM
and DG-FEM. Results of radial dipole computations. Visualized are the mean error (left column)
and boxplots (right column) of the RDM (top row) and lnMAG (bottom row). Dipole positions that
are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

for the highest eccentricity, where the DG-FEM achieves slightly higher accuracies;
the evaluation of the lnMAG shows even less differences. Also for model seg 2 res 2,
the two approaches achieve a very similar numerical accuracy for the lower eccentric-
ities, with RDM errors clearly below 0.1; for eccentricities between 0.964 and 0.991,
the CG-FEM performs slightly better, whereas for the highest eccentricity the DG-
FEM achieves a higher accuracy, again. However, as analyzed before, the main error
source is the inaccurate representation of the geometry through the segmentation.
The lnMAG shows no systematic difference in accuracy between the two methods in
this model. In the coarsest model, seg 4 res 4, the DG-FEM performs clearly better
than the CG-FEM even for low eccentricities. Regardless of the high geometry errors,
as seen in Figure 4.1, larger differences in numerical accuracy between the DG- and
CG-FEM can be observed for both the RDM and lnMAG up to an eccentricity of
0.964. For higher eccentricities, possible differences can be less clearly distinguished
due to the dominance of the geometry error and the resulting generally increased error
level.

The most significant accuracy differences between the DG- and CG-FEM can be
seen in Figure 4.3, where we study the increase of errors for decreasing skull thickness
and the resulting increase in the number of skull leakages (see Table 3.3). We still find
a very similar numerical accuracy for the DG- and CG-FEM in the leakage-free model
seg 2 res 2 r84 (4 mm skull thickness), as one would expect given the previous results,
but the DG-FEM performs clearly better in the leaky models seg 2 res 2 r82 (2 mm
skull thickness) and seg 2 res 2 r83 (3 mm skull thickness). Even for low eccentricities,
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Fig. 4.4. Visualization of model geometry (left column), current direction and strength for
the CG-FEM (middle column) and DG-FEM (right column) for models seg 2 res 2 r82 (top row),
seg 2 res 2 r83 (middle row), and seg 2 res 2 r84 (bottom row). The left column shows the model
geometry, interior to exterior from bottom left to top right, brain in white, CSF, skull and skin
in increasingly dark gray, and air in white. Dark gray lines mark compartment boundaries. In
the middle and right columns, the large turquoise cone presents the dipole source. The small and
normalized gray cones show the directions of the current flow and, for elements belonging to skull
and skin compartments, the coloring indicates the current strength. For each model, the color scale
is kept constant for both approaches.

the sensitivity of the CG-FEM to leakages is distinct. The DG-FEM achieves an only
slightly decreased accuracy in the model seg 2 res 2 r83 compared to seg 2 res 2 r84,
which is a first sign that this approach is clearly less sensitive to leakages. In contrast,
the errors of the CG-FEM for model seg 2 res 2 r83 are much higher than for model
seg 2 res 2 r84 (compare seg 2 res 2 r83 CG-FEM with seg 2 res 2 r84 CG-FEM ) and
already in the range of those of the DG-FEM in the very leaky model seg 2 res 2 r82
(compare seg 2 res 2 r83 CG-FEM with seg 2 res 2 r82 DG-FEM ). Overall, we find
that the DG-FEM achieves a significantly higher numerical accuracy than the CG-
FEM already for low eccentricities in the leaky models, both with regard to the RDM
and lnMAG.

To illustrate the effect of skull leakages, we generated the visualizations shown
in Figures 4.4 and 4.5. In Figure 4.4, the electric current direction and strength for
a radial dipole with fixed position and orientation (turquoise cone in the middle and
right columns) in the models seg 2 res 2 r82 (top row), seg 2 res 2 r83 (middle row),
and seg 2 res 2 r84 (bottom row) and with the two numerical approaches CG-FEM
(middle column) and DG-FEM (right column) are visualized. When using the CG-
FEM in the model with the thinnest (2 mm) skull compartment, seg 2 res 2 r82, we
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Fig. 4.5. Visualization of current flow differences between the CG- and DG-FEM in mod-
els seg 2 res 2 r82 (left), seg 2 res 2 r83 (middle), and seg 2 res 2 r84 (right). The turquoise cone
presents the dipole source. The coloring shows the lnMAG~j,loc (increase/decrease of the current

strength simulated with the CG- compared to the DG-FEM solution). For all models the maximum
of the color scale is chosen as the maximal value in the skin and skull compartment. Gray cones,
having the same linear scaling for all models, show the totDIFF~j,loc (difference in current flow).

In models seg 2 res 2 r83 and seg 2 res 2 r84, the arrows in skin and skull are not visible due to the
relatively small values. Dark gray lines mark compartment boundaries. In the top right corner of
each subfigure, a detail of the skull elements to which the dipole is pointing is shown. The size of
the cones is magnified by a factor of 20 compared to the full image, and only the cones for the skull
compartment are visualized.

find extremely strong currents in the innermost layer of skin elements, i.e., at the
interface to the skull. This effect is especially distinct for the elements to which the
dipole is nearly directly pointing. In comparison, the current strengths found in the
skull compartment are negligible, which is a clear sign for a current leakage through
the vertices shared between the CSF and skin compartment, bypassing the thin and
leaky skull compartment. For the DG approach, these extreme peaks are not found,
and the maximal current strength amounts to only about 30% of that of the CG
approach. In the other two models (note the much lower scaling in the middle and
lower rows in Figure 4.4), we find a clear decrease of the current strength in the skin
compartment compared to the seg 2 res 2 r82 model. In these two models and with
the given source scenario, none of the approaches seems to be obviously affected by
skull leakage. However, in model seg 2 res 2 r83 (middle row), the DG approach shows
about 20% higher peak currents in the innermost layer of skin elements compared to
the CG-FEM. In model seg 2 res 2 r84 (bottom row), the maximal current strength
for the CG-FEM is only about 7% higher than for the DG-FEM. The maximal current
strength is found in the skull compartment in this model, indicating that no leakage
effects occur. If leakage effects would occur, the maximal current strength would be
expected to be found in the skin compartment as in the other models. These devia-
tions seem reasonable considering the relatively coarse resolution of the segmentation,
and especially considering the low skull thickness. The visualizations show that the
interplay between source position and direction and the local mesh geometry strongly
influences the local current flow in these models, leading to current peaks in some
elements while neighboring elements show relatively low currents, as is clearly visible
in model seg 2 res 2 r84. In this model, we find strong currents in the two skull ele-
ments connecting the CSF and skin to which the dipole is pointing (see also outward
pointing arrows in these elements in the detail in Figure 4.5, right). Locally, these
constitute the “path of least resistance” between the CSF and skin compartment.

In Figure 4.5, the two measures lnMAG~j,loc and totDIFF~j,loc are visualized to
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Fig. 4.6. Cumulative relative errors of the RDM (left) and lnMAG (right) in realistic six-layer
hexahedral head models with 1 and 2 mm mesh resolution in reference to high-resolution tetrahedral
model..

show the differences between the two methods even more clearly. As Figure 4.4 sug-
gests, we find for model seg 2 res 2 r82 that for the CG-FEM, the current strength is
clearly higher than for the DG-FEM in those elements of the innermost layer of the
skin compartment that share a vertex with the CSF compartment, indicated by the
high lnMAG~j,loc (red coloring). The visualization of the totDIFF~j,loc (gray arrows)
clearly shows that the leakage generates a strong current from the CSF compartment
directly into the skin compartment that does not exist for the DG-FEM. At the same
time, the lnMAG~j,loc indicates that the current strength in the skull compartment is

decreased in the CG-FEM (blue coloring); the detail of the skull elements for model
seg 2 res 2 r82 in Figure 4.4, left, actually shows that there is a stronger current
through the skull elements in the DG-FEM than in the CG-FEM simulation (inwards
pointing arrows). We also find high values for the totDIFF~j,loc in the CSF com-
partment that are most probably caused by effects similar to the “leakage” effects,
i.e., a mixing of conductivities in boundary elements/vertices. However, in model
seg 2 res 2 r82, the color-coding for the lnMAG~j,loc shows that this is not related to
significant relative differences in current strength. Here, the strongest values for the
lnMAG~j,loc are found in the skin and skull compartment. In turn, for the other two
models we find the largest deviations in the CSF compartment, both with regard to
the totDIFF~j,loc and lnMAG~j,loc . For model seg 2 res 2 r83, we furthermore find mi-
nor effects with regard to the lnMAG~j,loc , i.e., relative differences of current strength,
in the innermost layer of skin elements, which are also the elements with the highest
absolute current strength among the skin and skull compartment (see also Figure
4.4). We also find slightly increased values for the lnMAG~j,loc in the outermost layer
of the skin elements. These might be artifacts due to the “staircase”-like geometry
of the outer surface in the regular hexahedral model. However, the totDIFF~j,loc in
the skin and skull is negligible compared to the CSF compartment, and also clearly
lower than in model seg 2 res 2 r82. The same holds true for model seg 2 res 2 r84,
where the lnMAG~j,loc is slightly increased in the skull and skin compartment, mainly
in elements with a small absolute current strength, as a comparison to Figure 4.4
shows. Still, relatively high differences in the lnMAG~j,loc and totDIFF~j,loc are visi-
ble in the CSF compartment. These results indicate that the models seg 2 res 2 r83
and seg 2 res 2 r84 are less affected by skull leakage; the differences are due rather
to the different computational approaches and do not show obvious errors due to the
underlying segmentation.
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Table 4.1
Computational effort (from left to right): number of unknowns (DOFs), solving of a single

equation system (tsolve), overall computation time of transfer matrix (ttansfer), setup time of a
single right-hand side (trhs), overall computation time of leadfield matrix (tlf, 4,724 sources) and
the total computation time (ttotal).

DOFs tsolve ttransfer trhs tlf ttotal

6CI hex 1mm, DG 30,968,232 1,468 s 115,994 s 71 s 336,118 s 452,112 s

6CI hex 2mm, DG 3,876,256 136 s 10,750 s 8.8 s 41,939 s 52,689 s

6CI hex 1mm, CG 3,965,968 185 s 14,634 s 68 s 321,705 s 336,339 s

6CI hex 2mm, CG 508,412 20 s 1,588 s 8.7 s 41,222 s 42,810 s

For the realistic head models, 6CI hex 1mm and 6CI hex 2mm, the RDM and
lnMAG in reference to model 6CI tet hr were computed. The cumulative relative
frequencies of the RDM and lnMAG are shown in Figure 4.6. At each position on
the x-axis, the corresponding y-value indicates the fraction of sources that have an
RDM/lnMAG lower than this value. Accordingly, the rise of the curve should be as
steep as possible for both the RDM and lnMAG and furthermore as close as possible
to the x=0 line for the lnMAG.

Overall, the results for both the RDM and lnMAG show relatively high errors.
This is a consequence of the rather bad approximation of the geometry that is achieved
when using regular hexahedra compared to the accuracy that can be achieved using
a surface-based tetrahedral model. While the differences between DG- and CG-FEM
observed for model 6CI hex 1mm are rather subtle, the differences are clear for model
6CI hex 2mm. These results mainly underline the observations in the sphere studies.

In model 6CI hex 1mm, for both approaches about 50% of the sources show RDM
errors below 0.1 and 95% of the errors lie below 0.35. The rise of the curve for the
DG-FEM is slightly steeper than for the CG-FEM, indicating a higher numerical
accuracy, but from an RDM of about 0.3 onwards both curves are nearly overlapping.
The RDM errors for the DG- and CG-FEM are clearly increased for the lower mesh
resolution. In this model, the difference between the DG- and CG-FEM is also more
distinct, e.g., for the DG-FEM more than 60% of the sources have an RDM below
0.2, but this is only the case for about 56% of the sources when using the CG-FEM.

The results for the lnMAG are in accordance with those obtained for the RDM.
Again, the DG-FEM performs only slightly better than the CG-FEM in model
6CI hex 1mm, whereas the differences in model 6CI hex 2mm are more distinct.

Compared to the results in the sphere models, the differences even in model
6CI hex 2mm seem to be rather small. However, it has to be taken into account that
the leakages in this model are nearly all located in temporal regions, so that only a
fraction of the sources is affected.

The computation times for the DG- and CG-FEM in models 6CI hex 1mm and
6CI hex 2mm are shown in Table 4.1. All computation times are single CPU wall-
clock times without exploitation of parallelization or vectoring. The solving time for
a single equation system tsolve grows approximately linear with the number of degrees
of freedom. This result corresponds to the theoretically predicted optimal scaling [16].
Accordingly, the setup times for the transfer matrices, ttransfer, are clearly higher for
the DG-FEM than for the CG-FEM.

In contrast to the solving times, the setup times for a single right-hand side,
trhs, differ only slightly between the CG- and DG-FEM, being below 10 s for model
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6CI hex 2mm and around 70 s for model 6CI hex 1mm. For the here used source
model and the given number of sources, the overall computation time is clearly domi-
nated by the computation of the right-hand sides. This part of the computation takes
twice as long as the setup of the transfer matrix even for the DG-FEM and model
6CI hex 1mm.

5. Discussion. In this paper we presented the theoretical derivation of the sub-
traction FE approach for EEG forward simulations in the framework of discontinuous
Galerkin methods. The scheme is consistent and fulfills a discrete conservation prop-
erty. Existence and uniqueness follow from the coercivity of the bilinear form.

Numerical experiments in sphere models showed the convergence of the DG so-
lution toward the analytical solution with increasing mesh resolution and better ap-
proximation of the spherical geometry with increasing segmentation resolution. We
also showed that the numerical accuracy of the DG-FEM is dominated by the ge-
ometry error, whereas the actual mesh resolution in a model with a bad geometry
approximation due to coarse segmentation resolution had only a minor influence on
the numerical results (Figure 4.1). The inaccurate representation of the geometry,
especially for coarse mesh resolutions, is visible by the “staircase-like” boundaries in
Figure 3.1.

In the comparisons of DG- and the commonly used CG-FEM, we did not find
remarkable differences for models with higher mesh resolutions (1 mm, 2 mm), as
the results in Figure 4.2 are in the same range for both approaches in the models
seg 1 res 1 and seg 2 res 2. In this set of experiments, three main error sources can be
identified: geometry errors, numerical inaccuracies, and leakage effects.

First, there is the error in the representation of the geometry as a consequence of
approximating the spherical models by voxel segmentations of different resolutions,
which is increasing with coarser segmentation resolutions; see also Figure 4.1. We thus
strongly recommend the use of segmentation resolutions, and thereby necessarily MRI
resolutions, as high as practically feasible, possibly even locally refined when zoomed
MRI technology is available. In fact, a newly developed zoom technique for MRI has
become available for practical use, based on a combination of parallel transmission of
excitation pulses and localized excitation [15]. A first usage of this zoom technique
can be found in [5, 4, Chapter 5]. Moreover, in future work, based on [11], we plan to
further develop a cut-cell approach that allows for an accurate representation of the
geometry while introducing only a negligible amount of additional degrees of freedom.
Thus, the achieved accuracy can be increased while the computational effort is hardly
affected (see first results in[34]).

Second, we have the numerical inaccuracy due to the discretization of Equation
(2.1) in combination with the strong singularity introduced by the assumption of a
point dipole, which is the main cause for the numerical inaccuracies of the subtraction
approach for highest eccentricities, where the source positions are very close to the
next conductivity jump (cf. Figure 4.2). A rationale for this effect has been given in
[60, 25]. In future work, we are therefore planning to adapt other source modeling
approaches such as the Venant [47, 43, 18, 59, 52], the partial integration [61, 54,
59, 48, 52], or the Whitney approach[46, 35, 36] to the DG-FEM framework. Until
now, these have been formulated and evaluated only for the CG-FEM. Compared to
the subtraction approach, these approaches have the further advantage of a strongly
decreased computational effort for the setup of the right-hand-side vector [59, 52].

The third source of error, the “leakage effects”, explains the large differences in
numerical accuracy between the CG- and DG-FEM that can be observed in model
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seg 4 res 4. Due to the coarse resolution of the segmentation in comparison to the
thickness of the skull compartment (4 mm segmentation resolution, 6 mm skull thick-
ness), this model can already be considered as (at least partly) leaky.

This observation motivated the further evaluation of the two methods in sphere
models with a thin skull compartment, where the assumed advantages of the DG-
FEM should have a bigger effect. Therefore, we constructed spherical models with
a thinner skull layer, assuming a skull thickness of 2 - 4 mm. The model with the
minimal skull thickness of 2 mm, seg 2 res 2 r82, has a skull layer as thin as the edge
length of the hexahedrons (see Figs. 4.3, 4.4, 4.5). Even though a mesh resolution of 1
mm is strongly recommended for practical application of the FEM in source analysis
[39, 7, 6], mesh resolutions of 2 mm are still used even in clinical evaluations [14], and
there are areas such as the temporal bone where the skull thickness is actually only 2
mm or even less [30, Table 2], so that this is not an artificial scenario. As expected,
the DG-FEM achieved a clearly higher numerical accuracy in the two models with the
thinnest skull layers, seg 2 res 2 r82 and seg 2 res 2 r83, whereas the results for model
seg 2 res 2 r84 are comparable for the DG- and CG-FEM (see Figure 4.3). In the
latter model, the ratio of resolution (2 mm) and skull thickness (4 mm) guarantees a
sufficient resolution and by this already prohibits leakages.

To make the difference between the CG- and DG-FEM in the presence of skull
leakage better accessible, we generated Figures 4.4 and 4.5. The skull leakage is clearly
visible in both figures for model seg 2 res 2 r82 and the CG-FEM as described in the
results section. There is also a slight difference visible in the CSF in all three models,
which might be explained by the relatively thin CSF layer. At this resolution (2 mm
CSF thickness, 2 mm segmentation resolution), the elements of the CSF compartment
are no longer completely connected via faces, but often only via shared vertices (as
visible in Figure 4.4, left column), which means that for such a coarse model, the
current is blocked in some regions although in the real geometry it is not. In this case,
the CG-FEM shows slightly better results, as it allows the current to also flow through
a single vertex, which is physically counterintuitive. In contrast, the DG-FEM does
exactly what one would intuitively expect from a mesh based on this segmentation: it
channels the main current through the CSF, but due to the wrong representation of
the CSF in the segmentation it yields slightly wrong currents. It thereby reduces the
usually very strong current in the highly conductive CSF compartment, which might
explain the slight advantages of the CG-FEM with regard to numerical accuracy for
model seg 2 res 2 r84 (see especially the lnMAG in Figure 4.3), which is in agreement
with the strong lnMAG effect of modeling the CSF as shown in [51, Figure 4]. Still,
one has to point out that the wrong representation of the CSF geometry has only a
very minor effect, as the current is not completely blocked but only slightly diverted.

The findings for the sphere models were underlined by the results obtained using
realistic six-compartment head models with mesh resolutions of 1 and 2 mm (Figure
4.6). Also in this realistic scenario, the DG-FEM showed higher numerical accuracies
than the CG-FEM, especially for the lower mesh resolution of 2 mm. The leakages
in model 6CI hex 2mm are nearly exclusively found in temporal areas, whereas the
source positions are regularly distributed over the whole brain. Thus, only a fraction of
the sources is strongly affected by leakage effects, and the observed differences between
the DG- and CG-FEM in the realistic head model are not as large as one might assume
from the results in model seg 2 res 2 r82, where the leakages are regularly distributed
over the whole model.

Overall, these results show the benefits of the newly derived DG-FEM approach

22



and motivate the introduction of this new numerical approach for solving the EEG
forward problem. Furthermore, the DG-FEM approach allows for an intuitive inter-
pretation of the results in the presence of segmentation artifacts, which helps in the
interpretation of simulation results, in particular for clinical experts.

As we have shown in this study, errors in the approximation of the geometry as a
result of insufficient image or segmentation resolution and resulting current leakages
might become significant when using hexahedral meshes. However, there are possi-
bilities to avoid such errors. In [48], a trilinear immersed finite element method to
solve the EEG forward problem was introduced, which allows the use of structured
hexahedral meshes, i.e., the mesh structure is independent of the physical boundaries.
The interfaces are then represented by level-sets and finally considered using special
basis functions. However, this method is still based on the CG-FEM formulation,
so that the behavior when the thickness of single compartments lies in the range
of the resolution of the underlying mesh is unclear, especially when both the com-
partment boundaries between the CSF and skull (inner skull surface) and skull and
skin (outer skull surface) are contained in one element; it is probable that it suffers
from the same problems as the common CG-FEM in such cases. Unfortunately, no
further in-depth analysis for this approach was performed until now. Therefore, we
claim to have for the first time presented and evaluated an FEM approach preventing
current leakage through single nodes. In future investigations, we intend to further
develop the already discussed cut-cell DG approach for source analysis[34], which has
the same advantageous features with regard to the representation of the geometry as
the approach presented in [48], but additionally the charge preserving property of the
DG-FEM as presented here.

The charge preserving property could also be achieved by certain implementa-
tions of finite volume methods. In [20], a vertex-centered finite volume approach was
presented that shares the advantage that anisotropic conductivities can be treated
quite naturally with the here-presented DG-FEM approaches. However, due to its
construction, the vertex-centered approach can also be affected by unphysical cur-
rent flow between high-conducting compartments that touch in single nodes as seen
for the CG-FEM. This problem could be avoided using a cell-centered finite volume
approach.

The evaluation of the computational costs of the DG- and CG-FEM showed a
higher computational effort for the DG-FEM for the solving of a single equation
system and in consequence for the setup of the transfer matrices (Table 4.1). The
solving times scaled linearly with the number of degrees of freedom, which corresponds
to the theoretically predicted scaling [16]. The computation times for the setup of the
right-hand side did not differ significantly between the CG- and DG-FEM.

The computation of both the transfer matrix and the right-hand sides can be
easily parallelized by simultaneously solving multiple equation systems and setting up
multiple right-hand sides, respectively. This simple parallelization approach achieves
an optimal scaling with the number of processors, cores and SIMD-lanes. Already a
parallel computation of the transfer matrix on four cores, which can be considered as
standard equipment nowadays, would reduce ttransfer to about 8 h for the DG-FEM
and model 6CI hex 1mm. This reduction of the computation time makes a practical
application feasible, since a computation could be carried out overnight. The use of
more powerful equipment, as is available in many facilities, would allow for a further
speedup. However, in our experiments the overall computation times were dominated
by the setup of the right-hand side, which took twice as long as the transfer matrix
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setup even for the more costly DG-FEM and model 6CI hex 1mm. This is a drawback
inherent to the subtraction approach. Its nice theoretical properties, which make it
preferrable for a first application with new discretization methodology, come at the
cost of a dense and expensive-to-compute right-hand side. For the CG-FEM, it was
shown that the setup time for the right-hand side vector can be drastically reduced
by the adaptation of the direct source modeling approaches, such as Venant, partial
integration, or Whitney, that lead to a sparse instead of a dense right-hand-side vector,
as previously discussed. For these approaches, the setup time for a single right-hand-
side vector is reduced by up to two magnitudes [50]; a similar speedup can be expected
for the DG-FEM. Furthermore, just as for the transfer matrix computation, for the
computation of the right-hand sides an optimal speedup by parallelization can be
easily achieved.

Finally, since the DG approach allows fulfilling the conservation property of elec-
tric charge also in the discrete case, it is not only attractive for source analysis, but also
for the simulation and optimization of brain stimulation methods such as transcra-
nial direct or alternating current stimulation (tCS, tDCS, tACS)[24, 40, 57, 34, 53] or
deep brain stimulation [19, 42].

6. Conclusion. We presented theory and numerical evaluation of the subtrac-
tion finite element method (FEM) approach for EEG forward simulations in the
discontinuous Galerkin framework (DG-FEM). We evaluated the accuracy and con-
vergence of the newly presented approach in spherical and realistic six-compartment
models for different mesh resolutions and compared it to the frequently used Lagrange
or continuous Galerkin (CG-)FEM. In common sphere models, we found similar ac-
curacies of the two approaches for the higher mesh resolutions, whereas the DG-
outperformed the CG-FEM for lower mesh resolutions. We further compared the
approaches in the special scenario of a very thin skull layer where “leakages” might
occur. We found that the DG approach clearly outperforms the CG-FEM in these
scenarios. We underlined these results using visualizations of the electric current flow.
The results for the sphere models were confirmed by those obtained in the realistic
six-compartment scenario. The computation times presented in this study can easily
be reduced through parallelization. Furthermore, different approaches for the setup
of the right-hand side are expected to enable a major speedup without loss of accu-
racy to make a practical application of DG methods in EEG source analysis feasible.
The DG-FEM approach might therefore complement the CG-FEM to improve source
analysis approaches.
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