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Introduction

Patient specific simulation is a useful tool in different areas of brain research. A main method in use for such sim-
ulations is the finite element method (FEM) [1]. It uses a volume tessellation and can treat models with anisotropic
conductivities or complex domains with fine structures or holes. While hexahedral meshes reduce the complex-
ity of a simulation pipeline, tetrahedral meshes offer a better geometric approximation. However, the automatic
construction of a high quality triangulation from quasi-non-invasive magnetic resonance imaging (MRI) is a difficult
task.
The unfitted discontinuous Galerkin method (UDG) [2] avoids these problems by using a structured mesh that does
not resolve the geometry. It works directly on a level set segmentation and includes the geometry in its mathematical
formulation. In addition it maintains conservation laws on a discrete level.
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Figure 1: General pipeline of a patient specific simulation
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Unfitted Discontinuous Galerkin

The UDG method is a method for discretizing partial differential equations, in
this case the Poisson equation∇ · σ∇U = f

Unfitted

The computational mesh does not
resolve the geometry. The latter is
given as level sets. The elements of
the mesh are restricted to the differ-
ent domains.

Discontinuous Galerkin

Galerkin method similar to the finite
element method. Allow discontinu-
ities of the potential between ele-
ments. Consider continuity in the
weak formulation.

a(u, v) =

∫
Ω

∇u∇vdx −
∫

Γ

(JuK · {∇v}+ {∇u} · JvK)dx +
η

h

∫
Γ

JuK · JvKdx
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Figure 2: Construction of the unfitted mesh for a level set on a 2D grid
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Figure 3: The modular structure of the DUNE library

DUNE = Distributed and Unified Nu-
merics Environment
http://www.dune-project.org

• C++ open source library for the
discretization and solution of
partial differential equations

• modular structure, general in-
terfaces

EEG Forward Problem

We evaluate the UDG method using a partial integration (PI) approach for the
EEG forward problem on a multilayer sphere model. We use 4 layers with con-
ductivities from outer to inner compartment: 0.33, 0.0042, 1.79 and 0.33 S/m.
We generate 500 random dipoles on each of 15 eccentricities in the inner com-
partment and measure the potential at 200 surface electrodes. The potential
is compared to the analytic solution and the error is measured as:

RDM%(Unum,Uana) = 50 ·
∥∥∥ Unum

‖Unum‖ −
Uana

‖Uana‖

∥∥∥ ∈ [0, 100] MAG%(Unum,Uana) = 100 · (‖Unum‖
‖Uana‖ − 1) ∈ [−100,∞)

Both measures have an optimal value of 0. The method is evaluated on grids
with different element diameter and compared to the DG method on a con-
forming mesh of similar size.

Figure 4: Multilayer sphere model used for DG (left) and UDG (right) simulation
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Evaluation of UDG for different grid sizes
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Figure 5: RDM% (left) and MAG% (right) errors for the UDG method with different grid sizes
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Comparison with the DG method on a conforming grid
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Figure 6: RDM% (left) and MAG% (right) errors for the DG and UDG method

Brain Stimulation

We test the UDG method for a tDCS simulation [3] on a 4 compartment
isotropic head model. We use the same conductivities as for the EEG forward
problem. The level sets are generated artificially from a voxel segmentation.

Figure 7: The potential u at the scalp and brain surface and the current density |σ∇u|

Conclusion and Outlook

We presented first promising results of the application of the UDG method in
EEG and tES modeling. It shows proper convergence behavior when reduc-
ing the element size. We can observe higher (RDM) or at least comparable
(MAG) accuracy to a DG method on a conforming mesh with a similar number
of unknowns.
Besides the PI approach, we are deriving more accurate source models for the
UDG method. For the application to realistic head models, we are currently
investigating a smoothing procedure based on constrained mean curvature
flow. In addition, we are evaluating the effect of the method on leakage be-
havior and are considering its application in a tDCS optimization scheme.


