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Abstract

This work compares two di�erent models for current density modeling
and EEG measurements in combined transcranial current stimulation
(tCS) and electroencephalography (EEG).
The �rst one, the point electrode model (PEM) for EEG in combina-
tion with a complex form of the gap model for the tCS, is the current
standard for forward simulations in EEG and tES. The other one,
the complete electrode model (CEM), describes a more detailed model
which incorporates shunting e�ects in the electrodes, i.e. a current
circulation between the electrode and the head. It was the question of
interest if the simulations using the CEM di�er signi�cantly from the
standard simulations. For the normal EEG this question was already
investigated before and answered negatively. However, stimulation cur-
rents are much higher than currents due to brain sources. Therefore,
if one wants to compute artifacts in the EEG due to the tES stimu-
lation, even little di�erences might matter if compared to the actual
brain activity.
In this work, those di�erences were explored numerically using the
�nite element method (FEM) in combination with a highly realistic
head model. The results revealed that the di�erences are very small
compared to the actual strength of the applied current. This holds
even more for the current distribution inside of the head, where di�er-
ences occur rather next to the electrodes than inside of the brain and
are small if they exist. However, results di�er signi�cantly if compared
to potentials evoked by brain activity. This shows that the more ac-
curate CEM will be relevant if tES forward simulations are combined
with real EEG measurements in the future.
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1. Introduction

Non-invasive brain stimulation (NIBS) has become an important instrument in both
medical therapy and neurological research [25]. It is known for quite a while that di�erent
brain activities are always accomponied by corresponding brain oscillations, at which
localization, strength and frequency di�er for di�erent activities. This can be recorded
via electroencephalography (EEG). However, normal measurements could never reveal if
those correlations are due to a causal link [13]. This is why causality has been classically
investigated using patients with speci�c neurological disorders.
Since brain stimulations aim to manipulate brain currents in a controlled way, they give
a new opportunity to investigate those causalities. With the help of stimulation one now
has the opportunity to show that generated brain activity can directly in�uence cognitive
processes [13, 25]. Moreover, systematic stimulation can also induce long-term e�ects
on brain activity [35], which holds for TMS as well as for tES. This is the foundation
of a lot of new therapies for neurological diseases, such like depression [29], Parkinson's
disease [9, 19], Alzheimer's disease [43, 2], stroke [7, 54] or memory loss [17]. It is also
shown that NIBS might help in the treatment of chronical pain [20].

A promising and - in its current form - relatively new method of brain stimulation is
transcranial electric stimulation (tES). In this technique, in use of two or more scalp
electrodes attached to the skin, a low current is applied to the head. It has been shown
that parts of this current pass the skull and are able to increase or decrease cerebral
excitability [25].
Early methods of tES were already used at the beginning of the 20th century, when elec-
tric pulses were applied to induce a sleep-like state in the subject, also called electrosleep
[11]. Since then a lot of di�erent forms of tES have been developed [11]. A basis for
the contemporary form of the tES was laid at the end of the last century, when it was
found that applied direct current can produce long-lasting e�ects on the brain. (Priori
et al. 1998 [37], Nitsche and Paulus 2000 [28]). Modern forms developed since then can
be di�ered by their wave forms, including at least direct, alternating and random noise
currents (tDCS, tACS and tRNS) [35, 11].
An obvious, yet important advantage of tES is its painless and non-invasive application
[28]. Moreover, because tACS can directly apply certain frequencies, it does not entrain
additional frequencies present in pulsed stimulation like repetitive transcranial stimu-
lation (rTMS) [13], [50]. It is also a quiet form of stimulation and does not generate
disturbing factors like noise [13].

To investigate the reaction of the brain to systematic changes in brain oscillations one
often combines tES and EEG measurements (see e.g. [12, 57]). However, a disturbing
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1. Introduction

factor is the occurence of strong artifacts in the EEG measurements due to the stimula-
tion itself.
This thesis aims to compare two di�erent numerical modeling approaches to simulate
those artifacts. One of these models is the point electrode model (PEM), which is the
current standard model in EEG: It simply assumes, that each electrode is a passive point
on the surface of the head .
The other model chooses a more complex approach: Since electrodes are in fact no
neutral elements, but have certain electric properties themselves, they can in�uence the
current distribution in the head. This in�uence occurs due to "`shunting e�ects"' in
the electrodes. The complete electrode model (CEM) takes those shunting e�ects into
account. It was originally developed for the electrical impedance tomography (EIT)
(see e.g. [51]) and has already been applied to the EEG forward simulation previously
[33, 39]. However, it was shown in [39], that di�erences between PEM and CEM are
very small in context of the normal EEG.
Given this result, the question arises if these e�ects might be relevant in combined EEG
and tES stimulation anyway. This idea is based on the fact that the applied currents
in the tES (e.g.1mA) are usually much stronger than those evoked by brain activity
(e.g.50nAm). Therefore small errors concerning the artifacts may already be signi�cant
when compared to the magnitude of brain currents.

The work is mainly based on a code which was originally developed for the comparison
of CEM and PEM concerning lead �eld matrices in EEG and was used in [39]. It was
modi�ed to simulate the potential distribution and the EEG measurements for combined
EEG and tES instead.
Simulations were done using a highly realistic six compartment head model. An elec-
trode con�guration of 77 electrodes was attached to the head. Two additional electrodes
were placed above the ears, serving as anode and cathode. Skin and electrode potentials
as well as currents in the head were then simulated for a total current of 1mA.
The results show that all models lead to similar distributions of currents and potentials.
Similarity holds especially for current distributions in the head, suggesting that the use
of CEM and PEM does not lead to signi�cant di�erences in the forward simulation of
normal tES. Distribution di�erences mainly occur next to the EEG electrodes. The
simulations of EEG measurements delivered only small di�erences as well, if the errors
were compared to the overall magnitude of the potentials. However, if the measurement
errors were compared to potentials evoked by brain activity they became highly signif-
icant. This suggests that for an accurate forward simulation of tES evoked artifacts in
the EEG the CEM should be incorporated in the future.

The thesis is organized as follows: Chapter 2 gives the most important background in-
formation, including a few neurological basics, a short introduction to electromagnetic
�elds, as well as further information about the function of tES and EEG. The latter
part includes information about the lead �eld matrix L, which plays an important role
in EEG forward modelling and a more vivid explanation of the shunting e�ects.
Chapter 3 gives a detailed mathematical description of the di�erent approaches, covering
the underlying equations as well as the weak forms of the di�erent models. Chapter 4
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1. Introduction

describes the numerical approach, i.e. the FEM discretization and a short description
of the original code and the modi�cations that were made.
The numerical experiments are explained in Chapter 5, followed by a detailed presenta-
tion of the results in Chapter 6. Finally the discussion is given in chapter 7.
The appendix includes additional information like important mathematical basics and a
proof that the described models have a unique solution. Moreover, the attached CD in-
cludes the basic code as well as all data and some additional programs as supplementary
material.
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2. Background information

2.1. Neurological Basics

The �rst section shall give a short overview about neurological basics. In preparation
for Chapter 5 and 6, Section 2.1.1 and Section 2.1.2 give a very rough description of
the most important tissues and structures of the brain. However, this part is primarily
supposed to give an idea of electrical activity in the brain and thereby of the functioning
of tES and EEG.

2.1.1. The brain and its cells

Figure 2.1.: sagittal cut through the brain,
showing main parts and structures of the brain,
picture source: wikimedia

The human brain is a highly complex
structure. It consists of a large number
of smaller and highly specialized parts,
which are able to control basic bodily
functions as well as higher cognitive pro-
cesses. Next to the spinal cord it forms a
main part of the central nervous system,
which is responsible for the management
of nearly all information gathered in the
human body [41].

The brain mainly consists of neuronal tis-
sue, which is basically characterized by a
complex network of neurons.
Neurons are highly specialized cells which
are responsible for all kinds of information
processing in the body. Their main func-
tion is the communication with other neu-
rons, which can be realized through a large number of connections between the cells.
Information is transferred via the axons, long extensions of the cells, which serve as a
conductor for short electric waves - the action potentials. Each axon is connected to an-
other nerve cell which receives the information. Information will either inhibit or excite
a new action potential in the target neuron [41]. This way neurons can form complex
information patterns. (Section 2.1.3 will give a more detailed overview about neuronal
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2. Background information

signals.)
However, neurons are not the only cells of neural tissue. There is also a number of
supporting cell, which can be found in the tissue, the glia cells. These are even more
numerous in neural tissue and have di�erent functions, as there are di�erent types of
these cells. One of the most prominent types is given by the Oligodendrocytes, which lay
a lipid-rich wrapping around some axons. This wrapping is called myelin and improve
the current �ow along an axon [41]. It is because of the myelin at important axons that
neuronal tissue is often subdivided into two di�erent main parts: white matter is tissue,
which is rich in axons (because - due to the lipid - it has a light appearance in examined
brains) and gray matter which refers to tissue rich in cell bodies.

Neuronal tissue in the brain is interspersed with other structures, like blood vessels and
the ventricle system. The latter one describes a system of spaces, which are �lled with
the so-called cerebrospinal�uid(CSF). This clear liquor circulates through the brain and
- besides having diverse regulating functions - serves as a bu�er between brain and skull
[49].

2.1.2. Functional structure of the brain

Figure 2.2.: Primary cortices in the brain, Red: Motor
cortices, Blue: Somato sensory centers, Green: Auditory
centers, Yellow: Visual centers (source: wikimedia)

As already indicated above, the
brain consists of many di�erent
parts which are locally special-
ized into di�erent brain func-
tions. The most obvious subdi-
vision is the seperation into the
three main parts, namely brain-
stem, cerebellum and forebrain
(cf. �g. 2.1). While the �rst two
are responsible for processes like
life-sustaining functions (brain-
stem) or coordination and learn-
ing (cerebellum), all higher and
conscious brain functions can be
localized in the forebrain [41]. It
is not the topic of this thesis to
explain the organization of the

brain in detail, but localization of brain functions is obviously of great relevance in
a targeted stimulation of the brain. Therefore, this part shall at least give a short
overview about the neocortex, which is the the youngest and most organized part of the
forebrain and represents the main part of the cerebral hemispheres [49]:
The neurocortex can be roughly divided into three di�erent parts: The primary cor-
tices, the secondary cortices and the association cortices [49]. The �rst term describes
those parts of the cortex which are directly linked to sensory information and motorical
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2. Background information

processes - including the visual system, the auditory system, the somato sensory system
and the motor system. Primary cortices are responsible for all processes which deal
with pure sensory information, i.e. all processes which do not include interpretation in
any way. In contrast, evaluative processes concerning sensory information are localized
in the correspondent secondary cortices of the brain, which are normally localized next
to the primary centers [49]. Finally, the association cortices describe all cortices which
cannot be linked to sensory informations but reorganize information from di�erent parts
in the neocortex.
In contemporary tES studies the investigation of primary cortices is very prominent.
This is due to the fact that stimulation of the corresponding centers can be directly
linked to behavior or sensory experience in those areas. For instance, the �rst studies
concerning tES concentrated on the excitability of the primary motor cortex, which is
important for the control of movement [37], [28].

2.1.3. How can electrical currents re�ect and in�uence brain
activity?

Figure 2.3.: Illustration of a typical
nerve cell (source:wikimedia)

The functioning of EEG and tES both relies on the
fact that brain activity can be re�ected by elec-
trical currents. This section shall give a deeper
insight into the mechanism of electrical currents in
the brain. Section 2.1.1 already stated that electric
activity in neuronal tissue is given by action poten-
tials travelling along the axons of the neurons, and
one could assume these to be the currents mea-
sured by an EEG. However, electrical activity in
the brain is more complex and therefore we need
to take a closer look at the mechanism of neuronal
activity:

Fig. 2.3 gives an exempli�ed impression of a typi-
cal structure of a neuron.1 Neurons gather informa-
tion at the dendritic branches arising from their cell
body, while information is forwarded by the axon,
a unique extension that is linked to the dendrite of
another cell. The link between dendrite and axon
is called the synapse (cf. �gure 2.4).
The transfer of information at synapses is given
by biochemical processes occuring at the pre- and
postsynaptic membran, i.e. the membrans of axon

1The cells in nervous tissue (neurons as well as the supporting glia cells) form the most variable cell
type in the human body, since they are highly specialized. For example, the numbers of dendrites
or length of the axon di�er strongly [41].
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2. Background information

Neurotransmitter

Ions (e.g. Na⁺⁺⁺⁺) Ion-channels

Dendrite

postsynaptic
 membran

Axonpresynaptic 
membran

-

+
synaptic cleft

Figure 2.4.: Formation of postynaptic potentials - (freely adapted from [16])

and dendrite. In the synaptic cleft (the space between the cells), as well as in the in-
volved cells, a number of di�erent ions (Na+, Ca2+, K+Cl−) can be found. However, in
the resting state of the synapse the distribution of those ions is in an unbalanced state.
While the inside of the target neuron is mainly dominated by potassium-ions (K+), the
synaptic cleft contains more sodium (Na+) and chlorid (Cl−). This does not only lead
to a concentration gradient, but also to a di�erence in electric potential. Therefore, in
its resting state there is a negative potential gradient between target neuron and the
outside of the cell [16].
If an action potential is triggered and reaches the end of the axon, several neurotrans-
mitters (e.g. glutamate) will be released, which open ion channels in the postsynaptic
membran (cf. �gure 2.4). Ion channels are selective openings specialized to one sort
of ions, which are allowed to pass the channel. Due to di�usion processes those ions
will travel along their concentration gradient as soon as the channel is open. This e�ect
changes the electric potential inside of the target neuron: If K+ is released into the
synaptic cleft or Cl− �ows into the cell, the potential inside of the neuron decreases
even more (hyperpolarization). However, if sodium �ows into the cell, the cell gets de-
polarized. The sum of postsynaptic potentials (PSPs) now decides wether an action
potential is triggered at the axon hillock (the part of the neuron which is located where
the axon emerges from the cell). If the depolarization is strong enough to reach a certain
threshold, a wave of depolarization - the action potential - will be triggered and move
down the axon. Therefore, the depolarizating potentials are also called excitatory PSPs
(EPSPs), while the hyperpolarizationg potentials are called inhibitory PSPs (IPSPs).

Re�ecting brain activity (EEG)

The processes described above deliver two di�erent forms of electric activity which can
be detected in the brain: action potentials and PSPs (cf. �gure 2.5).
The �rst one - the action potential - represents a very short current change in the in-
volved axons (∼ 1ms). It is followed by a wave of repolarization of longer spatial extent

8



2. Background information

[14, 22].
PSPs on the other hand are much weaker than the action potential, but have a much
larger latency [14]. They are supposed to cause a current dipole around the involved
neuron, because they change the extracellular charges at the synapses, while positive
charges �ow in direction of the cell body [22].

t

V

< 1ms

100 mV

t

V

10 ms

10 mV

PSP

Action 
potential

Figure 2.5.: Comparison of
action potentials and PSP

Although action potentials are much stronger than PSPs,
it is assumed that current activity measured by the EEG
arises mainly from the PSPs [14, 22]. This is mainly because
the former last not long enough to be identi�ed: Because
of their short appearance and the repolarization wave, it
is very unlikely that currents of adjacent axons summate,
since they would have to occur at exactly the same time2.
It is more likely that neurons �re slightly after each other,
which leads to the e�ect that they cancel each other [22].
Therefore, one assumes that EEG signals mainly occur due
to PSPs. [14, 22].

In�uencing brain activity (tES)

Similar to the EEG, tES has an e�ect on PSPs, but not
directly on action potentials. In contrast to TMS, which
can indeed induce currents high enough to trigger action
potentials of resting neurons, the applied currents due to
tES are too weak to do so. However, it was shown that
tDCS can increase or decrease the cortical excitability [28].
It is assumed that those in�uences are due to spontaneous and long-lasting e�ects on
the membran potentials described above [35, 21].

2.2. Maxwell equations and quasi-static approach

To �nd an appropriate model for the phenomena inside of the head we need a basic
idea of electromagnetism. Electromagnetism is a branch of physics which studies the
behavior of electric and magnetic �elds. Those �elds cannot be studied independently,
because they strongly in�uence each other, if they change their behavior over time. This
is why one the term electrodynamics is often used here.
However, for steady electric or magnetic �elds those phenomena can be studied sepa-
rately as it is done in electrostatics and magnetostatics.
Fortunately, one can assume a nearly static behavior of electromagnetic �elds as soon

2However, it is of course possible to measure action potentials with other methods, e.g. by microelec-
trodes inserted into the brain [22]
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2. Background information

as the frequencies are low enough, which is normally ful�lled in brain modelling. This
is called the quasi-static approach and highly simpli�es our work here.

The quasi-static approach is based on the Maxwell equations, which play a prominent
role in electromagnetism. Hence they are been described in the �rst paragraph. We
will also learn about certain properties a tissue should have in order to work with these
equations properly. We will then give a short introduction to the quasi-static approach.

2.2.1. Maxwell equations

In combination with the Lorentz equation3, the Maxwell equations form the fundament
of electromagnetism. While the Lorentz equation describes the magnetic and electrical
forces on a moving charge, the latter describe the relationship between electrical and
magnetic forces [31]. Those equation are as follows:

Microscopic Case Macroscopic Case

Gauss's Law ∇ · E = ρt
ε0

∇ ·D = ρ (2.1)

Maxwell-Faraday equation ∇× E = −∂B
∂t

∇× E = −∂B
∂t

(2.2)

Gauss's Law for magnetism ∇ ·B = 0 ∇ ·B = 0 (2.3)

Maxwell-Ampere equation ∇×B = Jt
ε0c2

+ 1
c2
∂E
∂t

∇×H = J +
∂D

∂t
(2.4)

We see that there are in fact two di�erent versions of the Maxwell equations. The
microscopic equations describe electromagnetical forces on electrical charges in every
detail on a very low level and una�ected of tissue e�ects, i.e. in vacuum. However, for a
proper model in tissues this would mean that we had to take every factor and every charge
of the tissue into account, even on a atomar level, which is clearly not possible under
most circumstances (and cannot be calculated without quantum mechanics). Hence
there is a simpli�cation at a macroscopic level. It is the idea here that - although there
are a lot of tiny forces in the �elds we do not know - there is a overall behavior of the
�elds if we look at the tissue in its entirety [31].

The equations mainly describe the interactions of the electrical �elds E and D and the
magnetic forces B and H with the current density J and the charge density ρ.
In short the electrical �eld E is a vector �eld describing the force due to charges (or
magnetic �elds) in the tissue. It mainly acts on other surrounding static charges. The
magnetic induction B on the other hand describes the magnetic force density due to a
current carrying conductor or another magnet. This �eld only acts on moving charges,

3described by Hendrik A. Lorentz. This should not be confused with the Lorenz gauge condition

(Ludvig Lorenz), which is also important in electromagnetism, especially in matters of the quasi-
static approach
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2. Background information

e.g. another current carrying medium [30].
Currents are represented in form of the current density J , i.e. a vector �eld describing
the current per area. The charge density ρ is a vector �eld as well, symbolizing the
charge per area.

In the macroscopic case the electric �eld E is partly displaced by the electric displacement
�eld D. Similarly the magnetic induction B is partly displaced by the magnetic �eld

intensity H. These are macroscopic measurements, helping to describe the macroscopic
�elds properly. The important thing about those new �elds is the fact that they take
material e�ects (dielectric e�ects and material magnetism) into account, which were not
relevant in the microscopic case [31]. Those �elds describe the electric and magnetic
forces in a slightly di�erent way, therefore they are measured in other units than the
�elds E and B. Hence, units of equations 2.1 and 2.4 change as well.

Some important tissue properties

If we look at the macroscopic equations we notice that with D and H we have two more
unknown vector �elds here. To work with the equations properly we need further infor-
mation about the connection between the relevant �elds. This is were it is advantageous
for the tissue to full�ll certain conditions, namely to be an linear dielectric, linear con-
ductive and linear magnetic medium [31]. Mathematically this means that the behavior
of the �elds D, H and J can be assumed to be proportional to the �elds E or B:

linear dielectric: D = εE (2.5)

linear conductive: J = σE (2.6)

linear magnetic: H = µB (2.7)

In each case the relationship is characterized by a certain material-dependent parameter.
These are: The permittivity ε, the conductivity σ and the magnetic permeability µ.
One can assume such a linear behavior for most living tissues [31]. Anyway, all these
parameters can be auxiliary parameters at most, as they give just an approximated
description of the macroscopic behavior of the tissues. They describe certain phenomena
concerning the distribution of charges in a macroscopic tissue. For example, the dielectric
constant (or permittivity) ε can give a rough description of polarities occuring in a tissue
if charges are bound to a certain place, like it is the case for electrons and protons of a
�xed atom. On the other hand, the conductivity σ of a material describes the behavior of
free charges, as they are given in any conductor. The conductivity explains how strongly
the current densitity in a tissue may be in�uenced by the strength of the electrical �eld
E, i.e. the higher the conductivity of a material the stronger the current. Therefore,
2.6 is also called "Ohms law for linear conductors". There are tissues which have only
dielectric or conductive properties. However, biological tissues have both free and �xed
charges and hence both parameters are of relevance here [31].
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2. Background information

It is important to know that the behavior of a linear material is not always isotropic,
i.e. parameters may di�er dependending on the direction of the current �ow. It has for
instance been shown that the conductivity of white matter in the brain is anisotropic
[53].

A closer look at the Maxwell equations

What do the Maxwell equations describe now? First of all they give a description of the
electrical and magnetic sources in the tissue, which are represented by the behavior of
the divergence of D and B:

Gauss's law (2.1) states that the sources of the electrical �elds can be described by the
electrical charges of the tissue:

∇ ·D = ρ

(For a proof see for example [30])

On the other hand, Gauss's law for magnetism states that magnetic �elds are always
solenoidal. This shows that there is no such thing like a single magnetic charge like in
electrostatics: For magnetic �elds we always need two di�erent poles. This law can
be followed easily from a variation of the law of Bio-Savart, which shows that B can
described as a curl �eld B = ∇× A, for a vector �eld A [30]. It follows:

∇ ·B = 0

as the divergence of a curl is always zero.

The two remaining equations describe the interactions between the electric and the
magnetic �eld:

TheMaxwell-Faraday equation is the di�erential form of Faraday's law of induction,
which states that when a magnet (or a current circuit) is moved relative to another
current circuit it induces a current in the latter. It was shown by Michael Faraday in
1931. The divergence form simply states that the temporal change of B dictates the
direction of E:

∇× E = −∂B
∂t

Finally, theMaxwell-Ampere equation deals with induction into the other direction:
It describes how a current carrying conductor induces a magnet �eld again (which is
the principle of electromagnets). This equation is a further development of Ampere's
circuital law, which states originally:

∇×H = J

Consequently, direction and magnitude of the magnetic �eld are usually equal to direc-
tion and magnitude of the current density.
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2. Background information

However, the Maxwell-Ampere equation includes a second term: the displacement cur-
rent ∂D

∂t
. The reason for this can be seen if we take the divergence of J :

∇ · J = ∇ · (∇×H) = 0

This holds only in magnetostatics, where J is solenoidal. In general ∇ · J has to be
described by the continuity equation:

∇ · J =
∂ρ

∂t

i.e. changes of electrical charges form the sources of the current density J . If we now
have a look at Gauss' law again we see that ∂ρ

∂t
= ∇ · ∂D

∂t
. Thus, ∂D

∂t
is the term added

by Maxwell, so the continuity equation holds again:

J = (∇×H) +
∂D

∂t

2.2.2. The quasi-static approach

One can already guess from the last paragraph that calculations with electromagnetic
�elds can become very complex. Hence, to develop a useful model it is neccessary to
investigate under which conditions we can assume a less complex behavior.
Obviously much less complex cases are those of static �elds, where we do not have
interaction e�ects and can rather deal with the equations independently:
In electrostatics where we don't have temporary changes of E and hence no induced
magnetic �eld we receive:

∇ ·D = ρ (2.1)

∇× E = 0 (2.2a)

For similar reasons there is no time-varying �eld D in the magnetostatic case and we
get:

∇ ·B = 0 (2.3)

∇×H = J (2.4a)

So we see that in these cases the "`interaction-equations"' Maxwell-Faraday and Maxwell-
Ampere are each reduced by one summand: The temporary change of B or D.

These equations yield two conclusions which do not hold in general electrodynamics:
First of all, the Helmholtz decomposition (cf. [30]) tells us that a curl-free vector �eld
is a gradient �eld. With 2.2a it follows:

E = −∇V (2.8)

with V being the well-known electric potential. Note that V can indeed be de�ned
with the help of the divergence free part of the electrical �eld E, which leads to the
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2. Background information

important fact that V is a quantity which is capable of describing di�erences rather
than absolute values, since those are not well-de�ned (cf. 2.3).
Secondly, with 2.4a it is

∇ · J = ∇ · (∇×H) = 0 (2.9)

like already mentioned in the last paragraph. (This means we again ignore the displac-
ment current ∂D

∂t
introduced by Maxwell.)

Equation 2.8 would highly simplify our work, since it is a scalar �eld. Furthermore, both
equations give a good basis for a PDE: If we assume that the current density J can be
devided into a primary current Jp (active current due to brain activity) and a volume
current Js which can be described through the conductive term Js = σE, we get:

0 = ∇ · J = ∇ · (Jp − σ∇V ) (2.10)

This is Poisson's equation and a good approach for a model.
In reality, however, we often do not have a static current. This also holds for brain
modelling since currents in the brain are not static (see Section 2.1.3), just as little as in
tACS. So we assume now that we have a time harmonic current of a frequency ω, which
induces the time harmonic �elds:

E = Ẽeiωt andB = B̃eiωt

Under which circumstances can we ignore the terms ∂D
∂t

and ∂B
∂t
?

In the �rst case this is easy to answer. Obviously, the �rst term can be neglected if:∣∣∣∣∂D∂t
∣∣∣∣� |J | = |σE|

and since it is D = εE it has to be:

εωE � σE ⇔ ωε

σ
� 1

Hence, e�ects of bound charges (capacitive e�ects) represented by ε should be small
compared to e�ects of free charges (conductive e�ects) which are represented by σ.

In the second case we have to investigate the contribution of the magnetic induction to
the electrical �eld E. In [31] it was shown that we can neglect ∂B

∂t
as soon as it holds:

ωµσR2

√
1 +

ω2ε2

σ2
� 1

Here R is a characteristic wavelength in the human body, which can be estimated con-
servatively by a length of about 1m [31].
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We now see that electromagnetic properties of living tissues play an important role in
the applicability of the quasi-static approach. However, it is normally assumed that
frequencies and properties in biomedical engineering legitimate its use. A dataset of
typical properties of living tissues can for example be found in Schwan et al. 1957 [44].
Next to the explanation in [31], another detailed description of the quasi-static approach
was for example given by Plonsey et al. in 1967 [36].

2.3. Additional information about tES and EEG

+
-

+

-

Figure 2.6.: General installation of
tES and EEG: Measured potentials
at applied electrodes (green) can ei-
ther re�ect induced currents (violet) or
brain activity (red)

As an introduction to chapter 3, a few additional
aspects of EEG and tES will be described now.
With the main topic of the thesis being the com-
parison of CEM and PEM, this also includes a more
vivid description of the CEM and the shunting ef-
fects, which are modelled in the CEM but not in the
PEM. A mathematical description of both models
will then be given in the main part. However, be-
fore we give an explanation of the shunting e�ects,
we will start with a short general description of tES
and EEG (2.3.1), followed by an overview about re-
sistivity matrices and lead �elds (2.3.2). This part
shall also give an idea of how those matrices can be
linked to each other (Principle of reciprocity ).

2.3.1. General
setting and zero potentials

We start this section with a general overview about
the installation of tES and EEG: In both cases a
�xed number of electrodes is attached to the head
(cf. �g. 2.6). Each electrode can act in two di�er-
ent ways: we either apply a current to it or use it to
measure potentials, which are evoked by currents
from the brain (cf. section 2.1.3) or stimulation,
respectively. The aim of this work is the simulation of EEG-measurements due to the
tES. However, we will see in this section that this aim is closely linked to the normal
EEG forward problem.
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2. Background information

Reference potentials in EEG

We have seen in the last section that an electrical potential as measured by the EEG
can only describe the di�erence between two points, and hence one will always need a
reference potential. Therefor one could e.g. create a virtual ground potential in the
ampli�er of the EEG and use this to create a ground electrode on the subjects body.
However, if one would use this electrode as a reference, measurements would be greatly
in�uenced by noise in the measurements device [22]. To solve this problem EEG systems
use di�erential ampli�ers: Measurements are done in comparison to a ground potential,
but in the following one or more EEG-electrodes are chosen as a virtual reference to get
rid of the ground potential again (i.e. the reference is used as the new ground potential)
[22]. There are a few di�erent prevalent choices for the ground potential: It is very
common to place a reference electrode on earlobe or mastoid and use this as a reference.
Normally one will use both sides as a reference here, since patterns would be unsym-
metrically otherwise. It is also common to use the average potential of all electrodes as
a reference, what will be our assumption in later chapters.
In practical EEG reference installations can in�uence the outcome of the experiment,
since di�erent installations lead to di�erent patterns of potential measurements. How-
ever, this is not relevant in this work, but rather for interpretation of real measurements,
when more complex potential patterns are investigated (for example the change of pat-
terns over time). Reference installations have of course no impact on the calculation of
currents on the other hand, since these do not depend on the choice of potential. For
further information on this topic see e.g. [22] (p.105 �.).

2.3.2. Lead �eld and resitivity matrices

It is the main focus of this work to investigate the relationship between a current pattern
Il applied to several of the electrodes on the head and the EEG potentials Ul measured
due to this applied current in use of di�erent models. Therefore, we search for a matrix
LtES, for which holds:

LtESI = U

at which I = (Il)l and U = (Ul)l. In EIT such a matrix is called a resistivity matrix
(cf. [46]) and we will later see that the connection between I and U is indeed linear. We
will furthermore have the opportunity to investigate the behavior of resulting currents
in the head. Hence, we will also search for a matrix LtES2 with

LtES2I = u

and u describing the potential in the head.

In contrast to the tES problem described above, in usual EEG forward modeling one
investigates EEG potentials induced by brain activity which is represented by the pri-
mary current density Jp. An equivalent matrix to the matrices described above is hence
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a matrix LEEG with:
LEEGJ

p = U

This matrix is called the lead �eld matrix and is of great relevance in EEG, since
once it is known, potential distributions of the EEG can be calculated for each possible
current density Jp in an e�ective way.
This work is essentially based on a computer code which was originally written for the
calculation of lead �eld matrices. Therefore, an insight into lead �eld matrices and the
connection between LEEG and the tES forward problem will also be given. However, we
will start with the concept of current dipoles, which delivers a proper way to describe
the current density in the head:

Current dipoles

In EEG forward modeling as well as in inverse modeling one normally treats current
sources in form of dipoles, instead of volume sources. It has been shown that dipoles
can represent volume sources su�ciently well, and they are much easier to construct and
dealt with than volume sources are [27].
One distinguishes between two di�erent kinds of dipoles. The �rst one can be imagined
as the description of a current sink and a current source, separated by a distance h.
Sink and source are both of the same strength I ,and the current source has a certain
direction, namely the orientation from source to sink. The dipole moment can then be
de�ned as hI. On the basis of this description, one can now de�ne the mathematical
dipole (or real dipole). Therefor we assume that h −→ 0. To keep the dipole moment
�nite, I is increased analogously to h, i.e.: I −→∞. We can then describe such a dipole
at a �xed position as the vector:

d = hIed = qed

where ed is a unit vector describing the direction of the dipole [27]. One can now describe
Jp as a vector of dipole moments, belonging to a �xed number of dipole direction vectors.
If we assume that the connection between U and d is linear (linearity asumption), LEEG
can be calculated for one constellation of dipoles moment vectors (normally unit vectors)
and applied to every other set of dipoles. This will be described in the following:

Linearity assumption

The descriptions in the next three paragraphs follow mainly [52]. We want to calculate
the potential Ul at an electrode el caused by a single dipole d. We can describe d as a
linear combination of unit vectors i1, i2, i3, localized at the same position as d:

d = q1i1 + q2i2 + q3i3

Normally i1, i2 and i3 are assumed to be those vectors which are orientated parallel
to the x-, y- and z-axis. However, they could of course also describe another set of
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linearly independent vectors (cf. 4.1.2). The linearity assumption [52] now states that
Ul depends on d in a linear way, e.g.:

Ul(d) = q1Ul(i1) + q2Ul(i2) + q3Ul(i3) = 〈q, Il〉

Thereby it holds Il = (Ul(ij))j and q = (qi)1≤i≤3. Hence, we can calculate Ul(d) for
every d if Il is known. This principle can be expanded to the whole current density �eld
Jp, described by a set of dipoles (dk)1≤k≤K . If we de�ne q̃ = (qki )k as the representation
vector of Jp, we can �nd an equivalent description as explained above for the whole
vector �eld:

Ul = 〈Ĩl, q̃〉

with Ĩl = (Ilk)k.

Description of LEEG

With the above representation we can �nd a closer description of the matrix LEEG. If
〈Ĩl, q̃〉 = Ul, we can replace the vector U = (Ul)l by: Ĩ1

T

...

ĨL
T

 q̃ =

 U1
...
UL


Then the matrix (Ĩl)

T
l is exactly the matrix LEEG.

Leads and lead �elds

We assume now that we have a single electrode er which serves as a reference electrode.
In this case, the vector (Ul)l can be described as a vector of length (L− 1) instead of L
and every entry can be represented by the term Ûl = Ul − Ur. Like indicated above, we
can �nd a vector Il,r with:

ITl,rq
k = Ĩl,r

T
q̃ = Ul − Ur

Thus, we can get a more vivid idea of Ĩl,r: It is a measurement for the voltage between
the two electrodes as it is caused by a set of dipoles qk. We call Il,r a lead vector as it
describes the voltage generated by a dipole at a �xed position for a given lead, which is
the denotation for a pair of electrodes in biomedical engineering. (Ĩl,r) is then referred
to as the lead �eld, because it describes a vector set of lead �eld vectors, all belonging
to (Ul, Ur). We can again generalize this concept for all Ûl and receive:

LEEGq̃ = (Ĩl,r)
T
l q̃ = (Ûl)l

Hence, LEEG = (Ĩl,r)
T
l is a matrix consisting of di�erent lead �elds if we choose the

embodiment Û for the potentials at the electrodes.
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It is common to describe LEEG in this way instead of the way described above. First
of all, this has the advantage that the reference potential is already well de�ned, which
leads to a well de�ned solution of the investigated equation system. We will see later
that solutions of such systems are indeed unique except for a constant. De�ning LEEG
as a RK×(L−1) matrix leads to a unique solution, i.e. the problem is elliptic now.
The other advantage of the lead �eld description is that it delivers a direct link between
the tES and the EEG forward problem:

Reciprocity approach

Indeed, the lead �eld approach in EEG leads to a similar situation as in the tES stim-
ulation. In both cases a given lead is investigated regarding its connection to electrical
�elds in the head. However, position of source and generated voltages is interchanged:
In tES we apply a current to the lead and ask for its in�uence on the brain, in the EEG
lead �eld approach we search for voltages at the lead, which are evoked by currents in
the head.
To understand the relationship of both situations one can now make use of the so-called
reciprocity principle, which is e.g. described in [27]: It traces back to Helmholtz in 1853
and describes essentially the fact that the voltage induced to a measurement device by a
volume source d in a conductor is exactly the same as the voltage induced to the volume
source would be, if the measurement device was a current source of the same strength.
In a more exact form it states the following: For a physical dipole located at the points
psink and psource and two sources pin and pout at the surface of the head (e.g. electrodes)
it holds:

IH(UO(psource)− UO(psink)) = IO(UH(pin)− UH(pout)) (2.11)

Here IH and IO are the current strengths of the volume source or at the surface sources,
respectively. Correspondingly, UH is the potential di�erence at the electrodes evoked by
IH , and UO describes the voltage at the source evoked by IO. The ratio of the voltage
di�erences is now equal to the ratio of current densities, i.e. if IO = IH voltage di�erences
are the same.
In order to show the practical consequences of these observations, let us �rst state that
the physical dipole can be described as a mathematical dipole again (h −→ 0, IH −→∞)
and it is:

IH(UO(psource)− UO(psink)) = IH((UO(psink) +∇UO(psource)h+O(∇2))− UO(psink))

≈ IHh∇UO(psource) −→ q∇UO(psource)

If we now assume a unit current �owing from pin to pout (IO = 1) at the surface of the
head, 2.11 delivers:

q∇UO(psource) = UH(pin)− UH(pout)

Since UH is evoked by the source, we can write the right hand side with a lead vector
again. It follows:

UH(pin)− UH(pout) = 〈Iin,out, q〉 = 〈∇UO(psource), q〉
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This means that the gradient of the potential evoked by the applied current to the
electrodes describes exactly the lead vector for each volume source.

In other words: Calculation of EEG and tES is closely tied to each other and LEEG
can even be followed from calculations of LtES2. However, this requires to write LEEG
in the proper form and to calculate the lead �elds for all involved EEG electrodes. In
this work the tES will only be calculated for one pair of electrodes. Moreover, we will
see that LEEG was not computed in a classical lead �eld form in the original code, hence
the reciprocity theorem was not used here. Therefore, the last two paragraphs shall only
give a short idea of this important approach. A much deeper insight into this topic can
be found in [27], [52] or [34].

2.3.3. Whats the idea of the complete electrode model
(Shunting e�ects)?

The complete electrode model is an alternative model to the current standard model
in EEG. Standard models normally assume that electrodes are neutral elements on the
surface on the head, i.e. are just identi�ed with a point on the head where the potential
is measured.

The idea of the CEM was originally described for the EIT. In EIT one aims to �nd out
resistivities of conductors. Therefore, a current is applied through a number of elec-
trodes placed around the conductor and the resulting voltage is measured at the applied
electrodes. One then aims to recalculate the resitivities based on those measurements
[4].
In 1989 Cheng et al. [4] measured the relative resistance of electrodes for di�erent spatial
frequencies of currents applied to a homogenous bath (�g. 2.7a). The relative resistance

(a) Installation of the
experiment

(b) Illustration of results and model approaches

Figure 2.7.: Experiment of Cheng et al. [4]
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at each electrode is here de�ned as the ratio between voltage and current, restricted to
the electrode, i.e: rl = Vl/JAl. If J is a spatial sine or cosine wave of a frequency k, i.e J
is continuous on the surface of the object in particular, J is supposed to be proportional
to k [4, 10] and hence it should be:

rl ∼
1

k

for every frequency k. However, the experiment showed that this is not the case. Fig 2.7b
presents the results of the experiment, at which the asterisks represent the characteristic
resistances calculated from the data multiplied with the frequency k. If the equation
described above would hold, the data should follow the horizontal line, but the data
shows that resistances do not develop as aspected. Cheng et al. argued that this is
because the current distribution is not continuous on the surface, as aspected in the
theoretical approach, but rather discretized by the applied electrodes4. Moreover, they
pointed out two e�ects at the electrodes, which in�uence the current �ow:

• since electrodes are highly conducting parts of the currents, parts of the current
will shunt through the electrode instead of the bath

• there is an e�ective contact impedance (ECI) between electrode and the ob-
ject, which is mainly in�uenced by the electrolyte applied to the electrode

The complete model is an approach to incorporate those e�ects. The lower line in �gure
2.7b shows the calculation of the complete electrode model, where the parameters are
calculated from the measurements [4, 46]. Obviously the model re�ects the experimental
results very well.

What is the e�ect of the model in context of EEG and tES calculations now? To
answer this question we start with the assumption, that the e�ective contact impedance
(ECI), described above is very low. Figure 2.8a shows the e�ect of such an installation.
A low ECI represents a very good contact between skin and electrode. If this is the
case, the shunting currents can �ow freely through the electrodes and into the skin.
Since electrodes are a much better conductor than the skin, currents will distribute
equally through and - due to the good contact - under the electrode: potentials will
become constant here. This can obviously in�uence current patterns on the skin. Due
to the e�ects underneath the electrode, it is also obvious that form and size of the
electrodes will have an in�uence on the computation results. This is not the case
in the PEM, which has two reasons: Firstly, the PEM assumes the electrode to be
pointwise. Secondly, even if this assumption was not made, in the standard model the
EEG electrodes do not have an in�uence on current distribution5. Hence, their size does
not matter.
Shunting e�ects will be in�uenced by the contact impedance in the opposite way: If the
ECI increases, shunting e�ects will decrease, because the exchange between electrode

4In the experiments the bath was surrounded by electrodes, which were assumed to lead a continuous
current trough the bath. However, small gaps prohibit such a continuous distribution, leading to
current e�ects at the edges of the electrodes -cf. [4]

5cf. section 3.1.2, where the in�nite case is described
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(a) CEM for low ECIs (Zl = 1 Ω·|el|) (b) Standard model

Figure 2.8.: Comparison of potential distributions in combined EEG and tES simulations,
using di�erent models

and skin will get worse. Therefore, the PEM can be seen as a limit case of the CEM,
with the ECI raised to in�nity (cf. 3.1.2).

22



3. Modelling PEM and CEM in tES

and EEG

3.1. Finding a model

We now want to �nd an appropriate model for tES and EEG. The �rst section aims to
elaberate the basic equations for both models. Thereby the next paragraphs are mainly
based on [39], [51], [46] and [33].

3.1.1. The model in general

To �nd an appropriate model let Ω be the head and (el)l L electrodes on its surface
∂Ω with size |el|, potential Ul and impedance Zl. The current applied to each of the
electrodes is described by Il. Normally it will be Il 6= 0 for only a few electrodes (or
none in EEG). Additionally, we assume:

L∑
i=1

Il = 0 (3.1)

From the described quasi-static approach in chapter 2.2.2 we have already received
equation 2.10 as a description of the potential u:

0 = ∇ · J = ∇ · (Jp − σ∇u) (2.10)

This holds because

0 = ∇ · (∇×H) ≈ ∇ · J and J − Jp = Js = σE ≈ σ∇u

Js represents the passive current in the head, whereas Jp is the primary current of the
head, i.e. the current sources inside of the head.
In tES the stimulating electrodes on the boundary ∂Ω are the only relevant current
sources. Hence it is Jp = 0 and we receive:

∇ · (σ∇u) = 0 (3.2)

for a pure tES simulation. However, EEG and tES can both be described with Poisson's
equation.
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We have to take into account that u will be rarely continuous, since Ω consists of di�erent
structures with di�erent behavior, i.e. di�erent conductivities. Therefore, we assume
J ∈ H1(Ω) and u ∈ H1(Ω) instead and search for the weak solution u which full�lls:∫

Ω

∇ · (∇u(x))ϕ(x)dx =

∫
Ω

Jp(x)ϕ(x)dx ∀ϕ ∈ H1(Ω)

(The right hand side becomes zero in tES, of course).

To �nd a unique solution for Poisson's equation, we need additional boundary conditions,
which are often given by a function g ∈ H1 (∂Ω) and functions α, β ∈ H1 (∂Ω) [8]:

α(x)u+ β(x)
∂u

∂n
(x) = g(x) ∀x ∈ ∂Ω (3.3)

Again, equation 3.3 only needs to be ful�lled in the weak sense. Hence it should be:(
αu+ β ∂u

∂n
− gD

)
∈ H1

0 (Ω) for a function gD ∈ H1(Ω) with gD|∂Ω = g
Furthermore, there are sometimes additional conditions for the function g, i.e. for Robin
boundary conditions (cf. 3.1.2). The boundary conditions are very important here, since
these are the equations which are actually di�erent for both models. Hence in the next
paragraph these boundary conditions will lay the basis for the comparison.

However, another problem persists in this situation. It was already described in section
2.3 that the potential u cannot be described in a �xed scala. u can only describe the
di�erence between two points. Hence we need a reference potential to prohibit in�nite
possible solutions. Here the zero reference potential is de�ned as:

u0 =
L∑
I=1

Ul := 0 (3.4)

So the zero potential here is the mean of the potentials of the electrodes, a common
installation in EEG.
We will look at the necessity of u0 for both electrode models (FEM and PEM) separately
in the next section and proof in 3.2 that the described conditions 2.10 (or 3.2), 3.3 and
3.4 guarantee a unique solution u ∈ H1 (Ω) in the weak sense.

3.1.2. Boundary conditions: Distinguishing CEM and PEM

Point electrode model (PEM)

We start with the standard point electrode model. In this case equation 3.3 is replaced
by:

σ
∂u

∂n
(x) = 0 ∀x ∈ ∂Ω\ ∪Ss=1 es (3.5)

σ
∂u

∂n
(x)|es = js =

Is
|es|

∀ 1 ≤ s ≤ S (3.6)
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I

I+

-

EEG

Figure 3.1.: In the PEM the current
density J is constant in normal direc-
tion. Since no current �ux is allowed
on normal EEG electrodes, those elec-
trodes do not in�uence the behavior of
J .

The electrodes e1 . . . eS represent the stimulating
electrodes on the head.
Since σ ∂u

∂n
(x) equals the current �owing over the

the surface of the head, the current �ux, equation
3.5 simply states that there's no current expected
to �ow out of the head, except for the current due
to the stimulating electrodes.
These have to be treated in a special way: Since
those electrodes are much bigger than the other
electrodes it makes no sence to ignore their form
and size. Hence another model is used for the stim-
ulating electrodes here: It simply assumes a con-
stant current density Js = Is

|es| over the whole elec-
trode. This is called the gap model [51]. It is sim-
ilar to the current standard model in tES forward
simulation. However, it is even a simpler version.
In fact current standard models for tES stimulation
are a combination of CEM and gap model: They assume a constant current density over
the whole electrode but combine this model with a "`sponge"' underneath the electrode.
This "`sponge"' symbolizes the saline gel underneath the electrode and is assumed to
have a conductivity which is much higher then the surrounding tissue. This way the
"`sponge model"' allows e�ects which are similar to the shunting currents in the CEM.
Therefore, it can be assumed that the standard model for the stimulating electrodes will
lead to results which lie between the results of CEM and the gap model. To reproduce
standard models as good as possible we will later use both options for the simulation
at the stimulating electrodes and combine them with the PEM at the normal EEG
electrodes.

Additionally, a description of the constant electrode potential Ul is needed. Since the
PEM does not take impedances of electrodes into account, Ul is simply assumed to be
the mean of the potential underneath the electrode:

Ul =

∫
el
u dS

|el|
(3.7)

Since |el| −→ 0 for the "`normal"' measurement electrodes, 3.7 becomes:

Ul = u (pl) (3.8)

in this case. Here pl is the position of the electrode.

Equations 3.5 and 3.6 represent a Neumann boundary condition (α = 0 in 3.3). One
can see easily why the zero reference potential is needed here:
We assume ũ is a solution of the boundary conditions and equation 2.10. Then all
equations hold as well for every solution ũ+ c, if c is constant. However, with equations
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3. Modelling PEM and CEM in tES and EEG

3.4 and 3.7 we receive:

0 =
∑
l

∫
el
ũ+ c dS

|el|
=
∑
l

∫
el
ũdS

|el|
+ Lc

Hence u = ũ+ c̃ with

c̃ = − 1

L

∑
l

∫
el
ũdS

|el|

is a more restricted solution of the model.
In section 3.2 it will be proofed that such a solution is existent and unique.

Complete electrode model (CEM)

In contrast to the point electrode model the boundary conditions for the CEM represent
a mixed type of boundary conditions:

σ
∂u

∂n
(x) = 0 ∀x ∈ ∂Ω\ ∪Ll=1 el (3.9)∫

el

σ
∂u

∂n
(x)dS = Il ∀ 1 ≤ l ≤ L (3.10)

u(x) + Zlσ
∂u

∂n
(x) = Ul ∀ 1 ≤ l ≤ L (3.11)

I

I+

-

EEG

Figure 3.2.: In the CEM the current
density J is allowed to change inten-
sity and direction over the surface of
the electrodes.

For the surface of the head which isn't covered by
electrodes, the model shows the same behavior like
the PEM, i.e. we receive a Neumann condition de-
scribing that no current may �ow out of or into the
head (3.9).
3.11 is a Robin boundary condition (α and β 6= 0
in 3.3). Equation 3.10 gives additional information
about the current �ux σ∇u ·n and especially about
the relationship between the induced current and
the behavior of u.

Equation 3.10 provides the most interesting infor-
mation here, since this is the equation allowing the
shunting currents to take place.
The PEM model doesn't allow currents to �ow
freely out of or into the head at the measurement
electrodes and even the gap model (i.e. the above
model for the stimulating electrodes) allows only a very restricted �ux, stating that this
�ux has to be constant over the whole electrode.
In the CEM, on the other hand, the current �ux is allowed to diversify over the electrode.
Particularly it is allowed to take place at the measurement electrodes at all. The only
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restriction here is that the current �ux over the whole electrode is equal to the applied
current Il (which is zero at most of the electrodes). Hence the current can leave the
head if it �ows back at another point underneath the electrode (see �gure 3.2).
Now equation 3.11 describes the connection between the electrode potential Ul and the
potential u underneath the electrode. Since the contact impedance is taken into account
here, there is a di�erence term Zlσ∇u ·n which is proportional to the current �ux. This
is not surprising, since the current �ux gets stronger if the potential di�erence increases.
On the other hand, the di�erence also increases if the e�ective contact impedance Zl
(ECI) does. This explains why the potential underneath the electrode gets almost con-
stant for a low ECI: If Zl vanishes, the di�erence term vanishes, too, and it is u ≈ Ul.
Because Ul is a constant u becomes constant as well.

It is important to point out that the ECI does not describe a normal impedance, but
illustrates the behavior of the actual impedance on the electrode as an abstract parameter
de�ned on every point of the electrode surface [4]. The actual impedance can be identi�ed
with the average contact impedance (ACI) over the whole electrode, stating [39]:

ACI = UI =

∫
el
|Ul − u| dS
|el|

∫
el

|σ∇u · n| dS =

∫
el
Zl|σ∇u · n| dS
|el|

∫
el

|σ∇u · n| dS

The ECI can vary over the surface of the whole electrode [4]. However, we will assume
that the ECI is constant over the whole surface. Under these circumstances it holds:

Zl = ACI · |el|

This approach was also used for the calculations, as the ACI over the whole electrode
can be measured easily, while we have no information about the actual ECI here.

Similarly to the PEM case, a possible solution ũ of the equations above would deliver an
in�nite number of possible solutions ũ+c, which would also ful�ll all necessary equations,
if Ul could be freely chosen. Hence equation 3.4 is necessary here, too, and we have to
prove the uniqueness and existance of a weak solution for all described conditions (3.2).

From CEM to PEM in EEG

Although the details of both models seem to be quite di�erent at the �rst view, it can be
pointed out that the PEM is in fact only a special case of the CEM, namely the limit case
of the CEM, with Zl −→ ∞ and |el| −→ 0. This holds at least for the non-stimulating
electrodes, whereas it can't be easily applied to an electrode with an injected current.

To point this out we have a look at a variation of 3.11 again:

σ∇u · n =
1

Zl
(Ul − u)

Therefore it holds:
lim

Zl−→∞
σ∇u · n = 0 (3.12)
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This is exactly the proposition of equation 3.5 for all pure EEG measurement electrodes,
which states that the current �ux is zero on all of these electrodes.
On the other hand equation 3.12 also shows why this approach is problematic for a
stimulating electrode: Obviously we want a current �ux to be allowed in case of a stim-
ulation, otherwise the stimulation can't take place. Hence this equivalence holds only
for the other electrodes.
In fact, taking the limit of Zl makes up the main part to get the PEM again: Since there
is no current �ux allowed through the electrodes anymore, the electrodes have a neutral
position in the behavior of the head potential, just as they have in the PEM and the
distribution of the head potential will be the same in both situations.
However, the electrodes aren't pointwise yet. Integrating over equation 3.11 and replac-
ing with 3.10 delivers:∫

el

Ul dS =

∫
el

u+ σ∇u · n dS =

∫
el

u dS + Il =

∫
el

u dS

This holds since Il = 0 for normal EEG electrodes. Hence it is:

Ul =

∫
el
u dS

|el|
which describes the Gap model! (3.6 holds anyway, since Il = 0.) Therefore, to get to
the PEM, the size of the electrodes has to be shrinked to zero again:

lim
|el|−→0

Ul = lim
|el|−→0

∫
el
u dS

|el|
= u (pl) (3.13)

3.2. Weak formulations

The following section will describe weak formulations of the model. It will lay the
foundation for the FEM approach in section 4.1. Moreover it will be proofed that there
is always a unique solution for every approach described above.

3.2.1. Weak form of the PEM

To get a weak solution of the PEM in H1(Ω) we multiply 2.10 with a test function
ϕ ∈ H1(Ω) and integrate over Ω:∫

Ω

(∇ · Jp)ϕ dV =

∫
Ω

∇ · (σ∇u)ϕ dV

=

∫
Ω

∇u · ∇ϕ dV +
L∑
i=1

∫
el

(σ∇u · n)ϕ dS

=

∫
Ω

∇u · ∇ϕ dV +
L∑
i=1

Il
|el|

∫
el

ϕ dS ∀ϕ ∈ H1 (Ω)
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where Gauss's divergence theorem and 3.5 is used in the �rst step and the boundary
condition 3.6 in the second. Note that 3.6 is assumed to hold for all electrodes here.
This is allowed since Il = 0, if el is a pure EEG electrode. Therefore both approaches
lead to the same equation.
The weak form of the PEM doesn't include information about Ul now and indeed we will
see that u is calculated independently from Ul (except for the zero potential correction).
Therefore, one has to add the additional information about u. With 3.7 the complete
equation system is:

∀ϕ ∈ H1(Ω) :

∫
ω

∇u · ∇ϕ dV +
L∑
i=1

Il
|el|

∫
el

ϕ dS =

∫
Ω

(∇ · Jp)ϕ dV

If IL 6= 0 :

∫
el

u dS − |el| · Ul = 0, u(pl) = Ul otherwise

(3.14)

(3.15)

If we have a closer look at equation 3.1, we will see that there is one necessary condition
for the existence of a solution. It has to be:

L∑
i=1

Il =

∫
Ω

(∇ · Jp) dV (3.16)

This follows for ϕ ≡ 1 and is the same condition every Neumann problem has to ful�ll
(cf. e.g.[3]).
Because of the assumption 3.1 both sides have to be zero. This implies that the sum of
the sources in Ω vanishes (right hand side), i.e. the head is no current source itself. It
also states all applied currents pass the head (left hand side). While making sense, this
conclusion is in fact a simpli�cation. For example, in a pure EEG a very small current will
pass the electrodes to reach the measurement device. Otherwise the potentials couldn't
be measured [33]. Hence assuming both sides as zero might be a little inaccurate, but is
a tolerable assumption, since the currents in the brain are much smaller than the applied
currents Il and this holds even more for those currents leaving the brain.
In the strict sense 3.16 only states that the sum of Il is equal to the current leaving the
head. (Note that Il as described in equation 3.5 in fact refers to the current in normal
direction, i.e. describes the current leaving the head, for example it is −1mA at the
anode and 1mA at the cathode)
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3.2.2. Weak form of the CEM

For the weak form of the CEM we start just as in the last paragraph and receive with
Gauss's divergence theorem, equation 3.9 and �nally 3.11:∫

Ω

(∇ · Jp)ϕ dV =

∫
Ω

(σ∇ · ∇u)ϕ dV

=
L∑
l=1

∫
el

(σ∇u · n)ϕ dS −
∫

Ω

∇u · ∇ϕ dV

=
L∑
l=1

∫
el

1

Zl
(Ul − u)ϕ dS −

∫
Ω

∇u · ∇ϕ dV

On the other hand rearranging 3.10 and 3.11 delivers:

ZlIl =

∫
el

Zlσ∇u · n dS =

∫
el

(Ul − u) dS

Hence we receive the equation system:

∀ϕ ∈ H1(Ω) :
L∑
l=1

∫
el

1

Zl
(Ul − u)ϕ dS −

∫
Ω

∇u · ∇ϕ dV =

∫
Ω

(∇ · Jp)ϕ dV

∀ 1 ≤ l ≤ L :
1

Zl

∫
el

(Ul − u) dS = Il

(3.17)

(3.18)

In this situation the equations in the system obviously aren't solvable independently,
like they were for the PEM: The relevant information about the stimulation (applied
current Il) is described in the additional equation 3.18, whereas the behavior of u in Ω is
described in 3.17. Furthermore, equation 3.17 contains information about the electrode
potential Ul.
Additionally, no bilinear form can be found in 3.17, like it was the case in the PEM.
Since such a form is needed to proof the existence of the solution here, an alternative
version of system (3.17, 3.18) will be introduced:

Let Φ = (Φl)l ∈ RL be arbitrary. Then it holds:

L∑
l=1

∫
el

1

Zl
(Ul − u) (Φl − ϕ) dS +

∫
Ω

∇u · ∇ϕ dV

=
L∑
l=1

∫
el

1

Zl
(Ul − u) Φl dS︸ ︷︷ ︸
Φl·(3.18)

−

(
L∑
l=1

∫
el

1

Zl
(Ul − u)ϕ dS −

∫
Ω

∇u · ∇ϕ dV

)
︸ ︷︷ ︸

(3.17)

=
L∑
l=1

IlΦl −
∫

Ω

(∇ · Jp)ϕ dV

(3.19)
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The left side now is a bilinear form on H1(Ω) × RL and equation 3.19 is equivalent to
the system above, if it is ful�lled for all (ϕ,Φ) ∈ H1(Ω)× RL.
Furthermore, setting ϕ ≡ 1 and Φl ≡ 1 in 3.19 leads to equation 3.16 again. Hence the
CEM has to ful�ll the same conditions as the PEM.

3.2.3. Existence and uniqueness of solutions

One can proof that there exists a unique solution for each of the described problems.
The next theorem summarizes the expectations so far. A proof is given in appendix A.
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Proposition 3.1 (Existence of solutions)

Let βP : H1(Ω) × H1(Ω) −→ R and βC : (H1
(
Ω)× RL

)
×
(
H1(Ω)× RL

)
−→ R be

de�ned as follows:

βP (u, ϕ) :=

∫
ω

∇u · ∇ϕ dV,

βC(u, U, ϕ,Φ) :=
L∑
l=1

∫
el

1

Zl
(Ul − u) (Φl − ϕ) dS +

∫
Ω

∇u · ∇ϕ dV

Thereby U = (Ul)l, Φ = (Φl)l ∈ RL and el ⊂ ∂Ω for all 0 ≤ l ≤ L.
Furthermore, the linear forms fP : H1(Ω) −→ R and fC : H1(Ω) × RL −→ R shall be
given by:

fP (ϕ) :=

∫
Ω

∇ · Jpϕ dV −
L∑
l=1

Il
|el|

∫
el

ϕ dS

fC(ϕ,Φ) :=
L∑
l=1

IlΦ−
∫

Ω

(∇ · Jp)ϕ dV

with JP ∈ H1(Ω), (Il)l ∈ RL.
Additionally it shall be: ∫

Ω

∇ · Jp dV =
L∑
l=1

Il

If then X ⊂ H1(Ω) is a closed �nite-dimensional subspace or X = H1(Ω), there exist
uP ∈ X, ûC = (uC , Uc) ∈ X × RL with

βP (uP , ϕ) = fP (ϕ) ∀ϕ ∈ X (3.20)

βC (uC , Uc, ϕ,Φ) = fC(ϕ,Φ) ∀(ϕ,Φ) ∈ X × RL (3.21)

and u′P ∈ X is an alternative solution of 3.21 if and only if:

u′P = uP + c

for any c ∈ R. Analogously ûC ′ = (u′C , U
′
C) ∈ X ×RL is a solution of 3.21 if and only if:

ûC
′ = ûC + cL

with cL = (c, c, . . . , c) ∈ RL, c ∈ R arbitrary.

Proposition 3.1 delivers a solution for the PEM and the CEM, regarding to the last two
paragraphs. Then with 3.4 we can �x the constant c and get a unique solution.
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4.1. Discretization

4.1.1. FEM: a short introduction

To facilitate the understanding of the following paragraphs this chapter will start with a
short overview of the basic principles of the �nite element method (FEM). For a detailed
introduction see e.g. [3].
(This section follows ([3],II.4-II.5) and [32])

Galerkin Method

We have seen in the last chapter that we can �nd a unique solution for each of the
described models. However, this solution is not easy to �nd. To solve the problem
numerically one searches for an approximation instead. Therefor instead of a solution
u ∈ H1(Ω) with

β(u, ϕ) = f(ϕ) ∀ϕ ∈ H1(Ω)

one can search for a solution uh ∈ Sh in a �nite-dimensional subspace Sh ⊂ H1(Ω) with:

β(uh, ϕh) = f(ϕh) ∀ϕh ∈ Sh (4.1)

Since Sh is �nite-dimensional there exists a basis (ψj)1≤j≤N , and hence the equation
above is already solved for all ϕh if

β(uh, ψi) = f(ψi) ∀ 1 ≤ i ≤ N (4.2)

Moreover, uh can be described with:

uh =
N∑
j=1

yjψj

for constants yj ∈ R and equation 4.2 becomes:

N∑
j=1

ujβ(ψj, ψi) = f(ψi) ∀1 ≤ i ≤ N (4.3)
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which can also be described in a matrix form:

By = β(ψj, ψi)i,j(yj)j = f(ψi)i (4.4)

This equation can be solved then with respect to y. This is called the Galerkin method,
or rather Ritz-Galerkin method if β is symmetric and positiv de�nite [3]. (The bilinear
forms described above are not positive de�nite in general, but they are if restricted to
the space V0 = {ϕ ∈ H1(Ω)|

∫
Ω
ϕ = 0}, like shown in section 3.2.3.)

Finite elements

Searching for a family of functions which make calculations as easy as possible one often
uses a �nite element method:
Here the area Ω is divided into simpler parts, mostly polyhedra, e.g. tetrahedra or
prisms. Every function ψi ∈ Sh has to ful�ll certain conditions on such a part. Mostly
it is: ψi|T ∈ Pk, where Pk is the polynomial space of degree k. However, in general ψi|T
has only to lie in C(T ) [3]. A �nite element then is the combination of the polyhedron,
the function ψi|T and a set of functionals, which can be used for a unique description of
the functions. A common �nite element, which is also the one used in this work is the
following:

De�nition 4.1 (Linear Lagrange elements)

A linear 3-dimensional Lagrange element is the triple (T,Ψ,N ) with the following
properties:
• T is a tetrahedron in R3, (also called a 3-dimensional simplex)
• NT = {a1, a2, a3, a4} ∈ R3 is the set of nodes de�ning the vertices of the simplex
• ΨT = {ψj|ψj(ai) = δi,j} ⊂ P1(T ) is the nodal basis of P1(T ). (The basis functions
of a �nite element are also called the shape functions)

At the �rst view the set NT does not de�ne a set of functionals here. However one can
identify each vertex ai with the functional Ni(ψ) = ψ(ai). These functionals uniquely
de�ne each polynom in P1(T ) since every linear polynom is already well-de�ned by given
values at the vertices of the tetrahedron (see [3] for a proof). This also shows that ΨT

is indeed a basis of P1(T ).

We can now subdivide Ω into a set of such tetrahedra Tn, i.e it has to hold

Ω =
N⋃
n=1

Tn (4.5)

and additionally:

Ti ∩ Tj = 0 or Ti ∩ Tj is a vertex, an edge or a side face of Ti and Tj (4.6)

If 4.5 and 4.6 hold, the set T = {Tn|1 ≤ n ≤ N} is called a feasible decomposition.
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If now T is a feasible decomposition we can combine �nite elements. We de�ne the
linear Lagrange space S1

h:

S1
h = {ψ ∈ C0(Ω)|ψ|T ∈ P1(T ), T ∈ T }

If then N = {ai|1 ≤ i ≤ N} is the union of
⋃
T∈T NT , one can prove again that the set

of functions
Ψ = {ψj|ψj(ai) = δi,j}

forms a basis of S1
h and hence all functions in S

1
h are uniquely de�ned by the speci�cation

of values on all given nodes in N .

The bene�t of the �nite element approach is that due to the unique structure of the
�nite elements one usually only has to make computations for one element, and map
the results to the other elements afterwards. Furthermore, each element supports only
a small number of basis functions. In case of the Lagrange elements, every function ψi
is supported only at the adjacent tetrahedra to the node ai.

We will therefore assume in the following that T is a feasible triangulation (i.e. a com-
position using tetrahedra) of Ω, at which N is the number of nodes (i.e the dimension
of S1

h), K is the number of tetrahedra and M the number of 2-dimensional faces. Fur-
thermore, S1

h shall be de�ned as above and Ψ = {ψi|1 ≤ i ≤ N} is the nodal basis of
S1
h.

4.1.2. Sti�ness matrices

With the descriptions from the last section we can discretize the unknown potential u
with:

uh =
N∑
i=1

yiψi

and �nd matrices describing the bilinear forms like explained in the last section.

Based on this approach one can now �nd the matrices LtES and LtES2 which describe
the relationship between I and the resulting potentials (cf. section 2.3.2):

LtES1I = U, LtES2I = y,

Although the main focus of this work is the implementation of the CEM and PEM in
tES, each section will also give a description of a lead �eld matrix LEEG.
This is because the original code is written for the implementation in EEG. Hence the
description is necessary to get a better idea of the changes that were done in the code.
Like already said in 2.3.2 the lead �eld matrix describes the connection between current
sources inside of the head which form the primary current Jp and the resulting electrode
potentials:

LEEGx = U
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The vector x represents the primary current JP , i.e. the existing dipoles in the head.
Normally x is referring to a number of unit dipoles which are oriented parallel to the x,
y- and z- axis and are localized at each possible dipole position of the mesh (cf. section
2.3.2). This means for M dipole positions x is of length 3M .

However, in the given case another representation of JP is used. It is discretized by a
family of lowest order Raviart-Thomas basis functions (ωk):

JP =
M∑
m=1

xmωm

As stated before, M is the number of 2-faces of the mesh. The number of R-T functions
is equal toM , because every function ωm is supported on two adjacent tetrahedra of the
mesh, i.e. refers to the face both tetrahedra share.
The original code uses R-T functions as a discretization of Jp because it aims to calculate
the matrix G directly 1, i.e. to compute

∫
Ω
∇·JP dV . This cannot be done using a dipole

vector �eld. Therefore one can use a number of basis functions again. R-T functions
are the most reasonable choice here, since they are the simplest functions to have square
integrable divergence [38].
Since the focus of this work is not the EEG but the tES, where the R-T functions are not
needed, they won't be described here in detail. For further information see for example:
[40], [38] or [3]. However, it is important that R-T functions can be represented as
dipoles again: One can �nd a dipole moment vector qmem and a position rm for every
ωm. Hence the vector x can again be seen as a dipole vector �eld. Furthermore, we
can convert this vector �eld to an euclidian �eld again: The euclidean dipole of every
element can be calculated with the help of the four R-T-functions, which are supported
on the element. This is also described in [40] and [38].

Now we have in fact three di�erent cases for both tES and EEG. All three of them were
investigated in [39] and hence in the original code: The CEM, the PEM and a model
`in-between', which is the CEM with Zl −→∞ (cf. 3.1.2).

CEM

We will start with the CEM here, since the other models are special cases of it (cf.
section 3.1.2).

1Calculating G directly is only one possible approach. It is for instance not necessary to compute the
matrix G if the reciprocity principle (cf. section 2.3.2) is being used.
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In section 3.2.2 we have received the equations:

∀ϕ ∈ H1(Ω) :
L∑
l=1

∫
el

1

Zl
(Ul − u)ϕ dS −

∫
Ω

∇u · ∇ϕ dV =

∫
Ω

(∇ · Jp)ϕ dV

∀ 1 ≤ l ≤ L :
1

Zl

∫
el

(Ul − u) dS = I

(3.9)

(3.10)

We can now de�ne the matrices A, B, C by:

ai,j =

∫
Ω

σ∇ϕi · ∇ϕj +
L∑
l=1

1

Zl

∫
el

ϕiϕj dS

bi,l = − 1

Zl

∫
el

ϕi dS

cl,l =
1

Zl

∫
el

dS, ci,l = 0 otherwise

(4.7)

Since JP = 0 in the tES, the equation system (3.9, 3.10) can be described by:(
A B
BT C

)(
y
U

)
=

(
0
I

)
(4.8)

This system delivers:

LtES1I = −
(
BTA−1B − C

)−1
I = U

LtES2I = −A−1BU = −A−1BLtES1I = y
(4.9)

In the EEG the current density JP has to be taken into account, and an additional
matrix G has to be de�ned:

gi,k =

∫
Ω

(∇ · ωk)ψi dV (4.10)

Equation 4.8 becomes: (
A B
BT C

)(
y
U

)
=

(
−Gx

0

)
(4.11)

In this case, it we search for a correlation with x:

LEEGx =
(
BTA−1B − C

)−1
BTA−1Gx = U
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PEM and in�nite impedances

For the PEM it holds (cf. section 3.2.1):

∀ϕ ∈ H1(Ω) :

∫
ω

∇u · ∇ϕ dV +
L∑
i=1

Il
|el|

∫
el

ϕ dS =

∫
Ω

(∇ · Jp)ϕ dV

If IL 6= 0 :

∫
el

u dS − |el| · Ul = 0, u(pl) = Ul sonst

(3.14)

(3.15)

In case of in�nite impedances, we will receive quite similiar equations: If we have a
look at equation 3.9 in the section above again, we will notice that the �rst summand
vanishes for all EEG electrodes if Zl converges to in�nity. However, in section 3.1.2 we
have seen that we have to exclude the electrodes where a stimulation takes place. These
have either to be modelled with the CEM or already with the Gap model. Here the Gap
model is chosen and therefore equation 3.9 holds for the in�nite impedance case as well.
This is no surprise, since it was already stated in section 3.1.2 that Zl −→ ∞ already
delivers the same behavior for u like the PEM does.
The only di�erence for the in�nite case is that the left hand side of 3.15 now hold for
all electrodes instead:

∀ 1 ≤ l ≤ L :

∫
el

u dS − |el| · Ul = 0 (3.15 a)

Thus, for the in�nite impedance model, we rearrange the matrices described for the
CEM above and get the alternative matrices A∞,B∞ and C∞ instead:

a∞i,j =

∫
Ω

σ∇ϕi · ∇ϕj

b∞i,l =

∫
el

ϕi dS

c∞l,l =

∫
el

dS, ci,l = 0 otherwise

(4.12)

which ful�ll: (
A 0
BT
∞ C∞

)(
y
U

)
=

(
Gx−B∞C−1

∞ I
0

)
(4.13)

We notice that limZl−→∞B 6= B∞ and limZl−→∞C 6= C∞. This is because these matrices
are only needed for equation 3.15 a) now, which doesn't include information about Zl.

For the tES that delivers (G = 0):

y = LtES2I = −A−1B∞C
−1
∞ I

U = LtES2I = C−1
∞ BT

∞y = C−1
∞ BT

∞LtES2I
(4.14)
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and for the EEG (I = 0) we receive:

C−1
∞ BTA−1Gx = U (4.15)

To get the PEM model again, the computation of the EEG voltages has to be changed.
Now equation 3.10 holds again. Instead of B∞, C∞ one could de�ne BP , CP :

bP i,l =

∫
el

ϕi dS if Il 6= 0 bP i,l = ψi(pl) otherwise

cP l,l =

∫
el

dS if Il 6= 0 cP i,l = δi,l, otherwise
(4.16)

Then for the PEM one can use the same equations systems as described in the in�nite
case. In a normal EEG CP is simply the unit matrix(cf. [39]). However, it is important
here that it makes no di�erence if equation 3.14 is described with:

Ay = Gx−B∞C−1
∞ I

or
Ay = Gx−BPC

−1
P I

because Il = 0 for all normal electrodes anyway. Like already said before, the only
di�erence in both systems is the computation of U .

4.2. Implementation

4.2.1. E�cient computation

Regarding the equations of the last chapter, the computation of the solutions might
become a complex task: In all cases one has to compute the inverse of the matrix
A−1 ∈ RN×N . Although A is a sparse matrix, i.e. most of the entries are zero, that
does not hold for the inverse matrix. Since every mesh which is �ne enough to allow
a realistic simulation of the electric currents contains a huge number of nodes N , this
would require a large amount of computer memory.
This is a well known problem concerning the EEG forward problem and possible solutions
are for example described in [56]: It makes sense here not to treat A−1 separately but
in combination with other matrices, which are multiplied by A−1. Luckily, the matrix A
is meant to be mapped to the electrode potentials anyway. This is done by the Matrix
BT ∈ RL×N . Hence, we examine the matrix T = BTA−1 instead, because A is always
involved in this form or as T T = A−1B, respectively.
Then T is a RL×N matrix which can be solved much easier:
One can now use an iterative method to solve the system: B = AT T , which means that
one has to solve L equations instead of N � L equations now. In the given case a
classical PCG-iteration was used.
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4.2.2. Description and comparison of code versions

This thesis is mainly based on the code used in [39], which was originally computed to
compare di�erent lead �eld matrices in the EEG. It was part of this work to modify
this code for combined tES and EEG. This section shall now give an overview about the
function of both versions. The complete code can be found on the attached CD.

Since the original code and the modi�ed version follow the same idea, we start with a
description of the general structure.

Original code (EEG) Modi�ed version (tES)

Data: nodes,elements,sigma
electrodes,varargin

Result: LEEG, locations and
directions of dipoles

read in data;
identify model ;
Calculate A,B,C,G;
solve AT T = B with a PCG iteration;
calculate LEEG;
if directionmode=cartesian then

transform LEEG;
end

Data: I,nodes,elements,sigma
electrodes,varargin

Result: U ,y
-
read in data;
identify model ;
Calculate A,B,C;
solve AT T = B with a PCG iteration;
calculate U ,y;
-
-
-

Input

The required input is very similar for both code versions. In both cases the mesh is given
by the three matrices "`nodes"', "`elements"' and "`sigma"'. Thereby "`nodes"' de�nes
the euclidian coordinates of the nodes, "`elements"' de�nes each element of the mesh as
it gives a set of nodes for each element and "`sigma"' describes the conductivities for
each of these elements. In the original code "`elements"' can include simplices, i.e. a
tetrahedrical mesh like it was described in section 4.1, as well as prisms. However, in
the concrete case a pure tetrahedrical mesh was used, and therefore the tES code was
only changed for the tetrahedrical version.
Next to the mesh the input also requires the matrix "`electrodes"', which gives either a
description of the electrode centers or those triangles on the border which are meant to
be covered by an electrode. Furthermore, the struct "`varargin"' can specify a number of
optional parameters. That information includes additional computation options like the
limit of tolerance for the PCG iteration. However, "`varargin"' may also give important
information like the ECI of each electrode.
In case of the tES, we need the additional vector I, which gives the applied current at
every electrode in mA.
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Output

The output of the code was di�erent for both versions:
The original code calculates the lead �eld matrix LEEG. Since LEEG was calculated
with help of the Raviart-Thomas basis functions it does not refer to euclidian dipoles
by default, like it would usually be the case for LEEG. Instead, it refers to those dipoles
which match the positions of the Raviart-Thomas basis functions. Hence, by default
we need additional information about dipole locations and directions, which is given
as a second output. However, it is also possible to give a description of the matrix
in the common form. This output form can be speci�ed by an optional parameter in
"`varargin"'(directionmode=cartesian). If this option is chosen the matrix LEEG will be
recalculated at the end of the code. The output will then be given referring to euclidian
dipoles and the output vector of dipole directions will be empty (since those are clear-cut
in this case).
The modi�ed version of the code does not yield the calculated matrices as a result, but
does rather directly calculate the vector U which speci�es the electrode potential for
each electrode and the general potential vector y, which describes the potential at each
node of the mesh. It would of course also be possible to calculate the matrices LtES
and LtES2 instead. This would be a more general result since it could be applied to
every input current distribution I. However, in most cases every distribution of applied
current will require its own mesh, since the stimulation electrodes are normally bigger
and maybe even of a di�erent shape than the other electrodes. Since saving the involved
matrices would also need much more memory than just saving the resulting potentials,
potentials are calculated directly here. Still, it would not require complex changes to
the code to give out the involved matrices instead.

General structure and choice of model

In both cases the form of the input (form of "`electrodes"', existence of certain values in
"`varargin"') de�nes which model (PEM or CEM or in�nite impedances) is used by the
code. There are some internal parameters, which change depending on the given input.
The code will then compute all necessary matrices A,B,C,G and the matrix T T (cf. last
section), which is used to produce the �nal output.

The next two sections will describe both versions of the code in detail.

Code in EEG

Algorithm 1 shall give an idea of the algorithm of the EEG code. Note that the algorithm
is simpli�ed, and that in the real code some computations are made in a di�erent order.

As already described in section 4.1, three di�erent models can be computed: CEM, PEM
and the CEM with in�nite impedances.
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The three di�erent cases are di�ered with help of two variables in the original code:
electrode_model which can be CEM or PEM and inf_impedance, which is boolean (i.e.
1 or 0 in matlab) and speci�es if the impedances for the CEM are supposed to be
in�nite or not. The values of these parameters are based on the input: If "`electrodes"'
is a matrix containing a sample of triangles for each electrode, electrode_model is set
to "`CEM"', otherwise it is assumed that "`electrodes"' does only contain the positions
of the electrodes and LEEG is computed for the "`PEM"' instead. Moreover, if varargin
contains a vector "`impedances"', inf_impedance is set to false (which is only relevant for
the CEM), otherwise the impedances are supposed to be in�nity. To simplify matters,
algorithm 1 assumes that those identi�cation parameters are already given.

The computation is straightforward: It starts with the calculation of the matrices A,B,C
and G, which are calculated corresponding to the chosen model .
However, in case of the PEM matrices A and G are computed only. The reason becomes
clear if we have a look at equation 4.16 again: In case of the PEM the matrix C becomes
the unit matrix. It has to be computed: LEEGx = BTA−1Gx = U . Furthermore, we
simplify the case of the PEM in the code and identify every electrode position with the
node elecind(i) next to it. Then B just becomes: Bi,l = δelecind(i),j and can be directly
used in the PCG-iteration loop as it does not need additional calculation.
In case of the CEM, the calculation of B and C has to be done for every element of
the mesh using some geometrical considerations which are described in the appendix in
more detail (ref). In case of the in�nite impedances only the �rst summand of A has to
be computed. Additionally, B and C have to be calculated without Zl, which is realized
here by setting Zl = 1. Hence for inf_impedance=false the code delivers the matrix
system described in 4.14. Similarly, inf_impedance=true and electrode_model=CEM

deliver the model of the normal CEM.
After the calculation of the matrices, the PCG-iteration is made separately for every
column of T T . Moreover, due to the form of the term which describes LEEG, most
calculations can already been done separately for those columns (i.e. the rows of the
matrix T ). As the �nal step the mean of LEEG is subtracted and LEEG is also divided
by the dipole strength. This is because the current dipoles belonging to the Raviart
Thomas functions are not of unit length originally, but are normalized later.

Code in tES

In the tES we have the same distiction between PEM, CEM and the CEM with in�nite
impedances as in the EEG. However, we have to be aware that we will never have a
"`pure"' PEM, since anode and cathode will always have to be calculated with respect
to their size. To make this di�erence clear, we de�ne the boolean speci�cation variable
gappem, instead of electrode_model=PEM. If gappem is set true, it is assumed that the
PEM shall be used for the EEG electrodes, while the gap model is used for anode and
cathode. By default we set gappem=false.
In contrast to the EEG, the variable "`electrodes"' will always include the exact form
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Algorithm 1: Matrix calculation for the EEG

if electrodemodel=PEM;

then
(eleindl)l=node next to electrode position l;

end
if electrodemodel=CEM AND in�mpedance=false then

(Zl)l=varargin.impedances;
else

(Zl)l=ones;
end
Ai,j =

∫
Ω
∇ψi∇ψjdV ;

if electrodemodel=CEM then
Bi,l = 1

Zl

∫
el
ψidS;

Ci,l = 1
Zl

∫
el

dS;

if in�mpedance=false then
Ai,j = Ai,j + 1

Zl

∫
el
ψiψjdS

end

end
G = (∇ · ωk)ψi dV ;
...
for i=1:L do

if electrodemodel=PEM then
bi = δeleind(i),j;

end
if electrodemodel=CEM then

b=B(:, i)
end
solve Ax = bi with a pcg iteration;
LEEG(i, :) = −xT ∗G;
if electrodemodel=CEM then

if impedanceinf=0 then
Auxmat(:,i)=BTx− C(:, i)

else
Auxmat(:,i)=-C(:,i)

end

end

end
if electrodemodel=CEM then

Auxmat=Auxmat−1;
LEEG =Auxmat*LEEG

end
LEEG = (LEEG−mean(LEEG))/dipole strength;
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of the electrodes in case of the tES, since the exact form is needed for the stimulating
electrodes. Therefore, we cannot use the form of "`electrodes"' here to specify gappem.
Instead "`gappem"' is assumed to be true as soon as varargin includes the additional
parameter centerpoints, which speci�es the positions of the electrode centers. The mod-
i�ed code keeps the treatment of inf_impedance: If varargin includes the parameter
impedance we set inf_impedance=false, otherwise impedances are assumed to be in�-
nite (inf_impedance=true).

Calculations of the matrices involved in the tCS forward calculation are the same as in
the in�nite and �nite case of the CEM for EEG, while the �nal calculation of the output
di�ers. This holds for the PEM/gap combination as well, since main calculations are
the same as for the full in�nite impedance model here. Hence, the main changes to the
code appear in the �nal part.
Algorithms 2 and 3 show a direct comparison between the �nal part of the EEG forward
simulation and the the modi�ed code. In fact, the tES code follows exactly the equations
described in Section 4.1.2.
Since the PEM is only a di�erent version of the gap model, one can use a similar code
for its calculation. Thereby, it is the simplest way to calculate the whole gap model and
de�ne the voltages of the point electrode based on the resulting skin potential in the gap
model which was done in this version of the code.
Although the described approach will lead to good results, it is surely an expensive one.
In fact, one could reduce the cost for the calculation of T T in case of the PEM and the
in�nite case: If we have a look at equation 4.14 again, we see that the expensive matrix
T T = A−1B∞ is only needed for the calculation of y. But y is linearly calculated from
I, which vanishes almost everywhere. Therefore, one can conclude that we only need
those columns of T TC−1

∞ which refer to a stimulation electrode. Since C∞ is diagonal,
this principle is passed to T T : For inf_impedance=1 or the PEM (combined with the
gap), T T has to be computed only for those columns belonging to stimulating electrodes.
This highly reduces the cost of the PCG-iteration.
In case of the PEM/gap model one can reduce the costs even more. Here it is not
necessary to calculate the matrices B and C completely, since these are only needed
to compute Ul. However, for all normal EEG electrodes it is just Ul = u(pl). Hence,
it would be su�cient to calculate Cl,l and Bi,l for all l which belong to a stimulation
electrode.
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Original code (EEG) Modi�ed version (tES)

Algorithm 2: Final calculation of EEG
...
for i=1:L do

if electrodemodel=PEM then
bi = δeleind(i),j;

end
if electrodemodel=CEM then

b=B(:, i)
end
solve Ax = bi with a pcg iteration;
LEEG(i, :) = −xT ∗G;
if electrodemodel=CEM then

if impedanceinf=0 then
Auxmat(:,i)=BTx− C(:, i)

else
Auxmat(:,i)=-C(:,i)

end

end

end
if electrodemodel=CEM then

Auxmat=Auxmat−1;
-
-
-
-
LEEG =Auxmat*LEEG

end
-
-
-
-
-
-
-
-
-
LEEG = (LEEG−mean(LEEG))/dipole
strength;

Algorithm 3: Final calculation of tES
...
for i=1:L do

b=B(:, i);
end
-
-
-
-
solve Ax = bi with a pcg iteration;
T T = x;
-
if impedanceinf=0 then

Auxmat(:,i)=BTx− C(:, i)
else

Auxmat(:, i) = −BTx
end
-
-
if impedanceinf=0 then

Auxmat=Auxmat−1;
else

C = C−1;
Auxmat = C ∗ Auxmat ∗ C;

end
U=-Auxmat*I;
if impedanceinf=1 then

y = −T T ∗ C ∗ I;
else

y = −T TU ;
end
if gappem=1 then

CPl=nodes next to electrode
position l;
U(EEG)=y(CP(EEG));

end
y=y-mean(U);
U =U-mean(U);
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5.1. Mesh

5.1.1. Head model

For the numerical experiments the same mesh as in [39] was used. The basis of the
mesh were the T1- and T2- weighted magnetic resonance images of a healthy 24-year
old subject. The combined data1 was segmented into the most important brain tissues
using di�erent techniques. After that a mesh was extracted from the data, using the
software CURRY. For a deeper insight into the construction methods used for this mesh
see [39].
The result was a tetrahedrical mesh, divided into six compartments, including two di�er-
ent structures of the skull and CSF (cf. 2.1.1), brain and skin. Furthermore, skull holes
like the foramen magnum2 and the optic canals were incorporated [39]. Table 5.1 shows
the exact number of nodes as well as the tissue segmentation, including the assumed
conductivities.
Segmentation of brain meshes can be done with more or less accuracy. In the last years
there were several studies concerning this topic. It has been shown for example, that a
di�erentiation of gray and white matter has a signi�cant e�ect on numerical results, as
well as the consideration of the anisotropic behavior of those tissues [53]. However, we
will see that the di�erence between CEM and PEM is not relevant enough in the brain,

1The T2 data was registered to the T1 data, i.e T2 images were mapped to T1 images
2This is were the spinal cord enters the brain. It is the biggest opening in the skull.

Number of...
Nodes 628 032
Tetrahedra 3 912 563

(a) Size of the mesh

Tissue Conductivity (σ)
Skin 0.43
Skull compacta 0.0064
Skull spongiosa 0.02865
Brain 0.33
CSF 1.79
Eyes 0.505

(b) Conductivities

Table 5.1.: Properties of the mesh
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EEG electrodes
Number 77
Radius ∼ 6mm

tES electrodes
Number 2
Radius ∼ 12.5mm

Table 5.2.: Size and number of electrodes

making it unnecessary to take such e�ects into account.

5.1.2. Electrodes

For the simulations a set of 79 electrodes was used, which were directly included in the
mesh. Therefor each electrode was identi�ed with a number of faces on the surface of
the head. Standard EEG electrodes were assumed to have an average radius of 6mm.
Furthermore, we assumed a stimulation of the auditory cortex. Because of that two
electrodes over the ears were slightly moved and increased in their size, to represent
anode and cathode.

5.2. Simulations

5.2.1. Used models and parameters

In all cases it was assumed that a current of 1 mA is applied to the head, at which the
anode was the enlarged electrode above the left ear, while the corresponding electrode
on the other side was assumed to be the cathode.

Potentials and currents where calculated using �ve di�erent versions of the models de-
scribed above:

• CEMreal: The CEM with an impedance of 5 kΩ on each point of the electrode,
i.e. an ECI Zl = 5 kΩ · |el|.

• PEM: The PEM in combination with the gap model for anode and cathode

• INF: In�nite impedances were assumed at the EEG electrodes, while the gap
model was used for the stimulation. As already described in the last chapters, this
model di�ers from the PEM only in the calculation of EEG potentials.

Additionally two combined models were used. Those used the realistic CEM at the stim-
ulating electrodes, while EEG measurements were calculated with in�nite impedances
or point electrodes. The reason for these combined models is the current standard
"`sponge"' model in tES simulation. Compared with the models used in this work, sim-
ulations of stimulations which use the "`sponge"' model can be assumed to lie between
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results for stimulations using the CEM and results for stimulations using the gap model.
Therefore, to get a realistic impression of model di�erences it makes sense to use both
CEM and gap model for the stimulating electrodes. Hence, PEM and in�nite case at the
EEG electrodes were both combined with the standard CEM model at the stimulating
electrodes:

• C/I: In�nite impedances at the EEG electrodes were combined with the CEM
with a realistic impedance (Zl = 5 kΩ · |el| ) at the anode and cathode.

• C/P: Point electrodes at the EEG electrodes were combined with the CEM with
a realistic impedance (Zl = 5 kΩ · |el| ) at the anode and cathode.

To compute these combinated results the CEM part of the code was used. Results
at the EEG electrodes were approximated, using a CEM with very high impedances
(Zl = 500 MΩ · |el|) at the EEG electrodes.

Finally, in addition to those �ve realistic models another CEM model was computed:

• CEMlow: A CEM with a very low contact impedance (Zl = 1 Ω · |el|). This
impedance is highly unrealistic and only chosen for the demonstration of shunting
e�ects.

5.2.2. Potentials

Potentials Ul at the electrodes and the potential distribution u were calculated for each
model using the code described in 4.2. The distribution of both U and u were plotted
for each model. Thereby u was plotted on both the scalp and the brain surface.

Electrode comparisons

The relative di�erence between the electrode potentials was computed for di�erent com-
binations of models. In each comparison the model which was closer to the PEM was
used as the reference, which was the INF model in most cases. For example the com-
parison between CEMreal and INF was calculated via:

EUl
(CEM, Inf) =

Ul,CEM − Ul,Inf
Ul,Inf

at each electrode, while for the comparison between CEMreal and C/I it was computed:

EUl
(CEM,C/I) =

Ul,CEM − Ul,C/I
Ul,C/I
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RDM and MAG

The potentials at skin and brain surface were compared using the RDM and MAG,
which gives a description of topographic error and magnitude rerror, respectively, and
are described as follows [34]:

RDM1,2(T ) =

∥∥∥∥∥ u1

‖u1‖L2(T )

− u2

‖u2‖L2(T )

∥∥∥∥∥
L2(T )

, MAG1,2(T ) =
‖u1‖L2(T )

‖u2‖L2(T )

Thereby 1 and 2 represent two di�erent model versions.

5.2.3. Source simulations

As already stated in the introduction, the idea of this work was examining the signi�cance
of the CEM in tES, if compared to current sources in the head. Therefore, in the last
experiment we assumed the existence of current sources d in the head, which were
represented by a set of dipoles (cf. 2.3.2). The lead �eld matrix LEEG was computed for
the CEM using the original code and the EEG measurements due to the sources were
simulated computing:

U(d) = LEEGd

We used this test voltages to evaluate the voltage di�erences at EEG electrodes due to
tES stimulation as they were described in section 5.2.2. For two di�erent models M1

and M2 it was calculated:

Ed
U(d)(M1,M2) =

Ul,M2 − Ul,M1

|U(d)|l

Again the model closer to the PEM was chosen as M1. Moreover, to make a more
conservative estimation of errors, Ed

Ul
(CEM, Inf) was just divided by the maximum

value instead:

Ẽd
Ul

(M1,M2) =
Ul,M2 − Ul,M1

maxk |U(d)|k

5.2.4. Currents and lead �elds

Current densities and leads in the brain were calculated from u on each tetrahedron,
using the formula:

∇u|T =
4∑
i=1

yiT∇ϕiT

with a1T · · · a4T being the four nodes of the tetrahedron. It was set:

Ls1,s2 = ∇u, J = σ∇u
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Here Ls1,s2 represents the lead �eld between anode(s1) and cathode(s2), while J is a
vector �eld representing the current density by a vector on each tetrahedron. For a
closer description of the calculation of ∇ϕi, see appendix. Section 2.3.2 �. gives a
description of the lead �elds.

Angle and magnitude di�erences

To illustrate the di�erences between the currents resulting from the di�erent models,
angles and magnitude di�erences were calculated on each tetrahedron:

^(j1, j2) =
〈j1, j2〉
‖j1‖ ‖j2‖

, Mag(j1, j2) =
‖j1‖
‖j2‖
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This chapter presents the results of the numerical experiments. We start with an
overview on the EEG and skin potentials in section 1. This also includes a �rst compar-
ison of all involved models. Section 2 will then give an impression of the current density
inside of the brain, to �nd out if one can expect signi�cant current di�erences due to the
use of CEM. Finally, section 3 shows some simulated source induced EEG measurements
and answers the question how strong the di�erences in section 1 are compared to those
voltages.

6.1. Potentials

6.1.1. EEG measurements

We will start with an overview of the EEG potentials induced by the tCS. Figure 6.1
gives an impression of these potentials. It can be seen that distributions look exactly
alike for all �ve models which re�ects the linearity of the forward problem. This holds
even for the low impedance model.
However, values are slightly di�erent for the models (Table 6.2).Thereby, stimulation
electrodes are presented separately. It can be seen that the CEM does not di�er very
much from the in�nite impedance (INF) and the combined model (C/I) if realistic
impedances are used. Di�erences appear at the stimulation electrodes only, which is
not surprising, since the gap model was used here in the in�nite case, while in case of
CEMreal and C/I the CEM was applied at the stimulation electrodes. Hence, due to the
involved impedances potentials at anode and cathode are much higher for CEMreal and
C/I.
PEM and C/P show bigger di�erences to the other models. However, it has to be pointed
out here again that the PEM is calculated in the same way as the INF (and the C/P
in the same way as the C/I), hence the stronger e�ects are only due to the calculation
of the �nal electrode potentials. Thereby, it is very important that points are only ap-
proximated here, since the nearest node of the mesh was used instead of the real center
points.
The di�erences to the CEMlow are more noticeable. This shows that higher di�er-
ences due to the CEM are imaginable and that the potential tends to decrease if the
impedance gets smaller, i.e. shunting e�ects seem to lower head potentials. Nevertheless,
the impedance values of CEMlow are highly unrealistic.
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CEMlow CEMreal C/I

Inf C/P PEM

Figure 6.1.: EEG measurements due to di�erent electrode models. To show the similarity of
patterns, the spectrum of all pictures is restricted to the weakest and strongest value of pure
measurement electrodes, i.e. potential at anode and cathode lie beyond the presented scale.

EEG Stimulation
Min Max Anode Cathode

CEMlow −52.22 38.61 94.15 −101.19
CEMreal −56.23 42.11 5108.1 −5118.5

C/I −56.25 42.13 5108.1 −5118.6
C/P −56.37 41.86 5108.1 −5118.6
Inf −56.25 42.14 108.14 −118.60

PEM −56.37 41.88 108.14 −118.60

Table 6.1.: Overview of the electrode potentials occuring for di�erent models (in mV)
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CEMreal vs. C/I CEMreal vs. Inf

CEMreal vs. C/P CEMreal vs. PEM

Figure 6.2.: EEG measurements of the CEM compared to those of other models (relative
di�erences)

Di�erences

To get a better impression of the di�erences, the results of the models were directly
compared to each other for eight di�erent cases. First of all CEMreal was compared
to all other realistic models (Figure 6.2). Furthermore, C/I was compared to the INF,
while C/P was compared to PEM to �nd out if di�erent stimulation models lead to a
signi�cantly di�erent behavior of potentials (Figure 6.3). Finally, the e�ect of the point
size was investigated doing a comparison of Inf and PEM or C/I and C/P, respectively
(Figure 6.4).
Table 6.2 presents an overview of common relative di�erences. In all cases there are
few electrodes which tend to show extreme values greatly di�ering from the others.
The majority of these outliers can be found on electrodes where the potential is almost
zero, i.e. at the center of the head. Those values are less reliable, since it is likely
that computation errors will occur if one divides by values near to zero. However, a few
outliers can also be found at other electrodes. These electrodes are typically located next
to the output electrode or at a few positions behind the ear. These values should not be
excluded from interpretation. Anyway, the most extreme values are shown separately in
Table 6.2, to give a better impression of more common values. Outliers at the center line
are only presented in brackets. A detailed description of outliers and the corresponding
electrodes is given in Appendix B.

53



6. Results

C/I vs. Inf C/P vs. PEM

Figure 6.3.: Comparisons of di�erent stimulation models (gap vs. CEM) for INF and PEM
(relative di�erences)

Inf vs. PEM C/I vs. C/P

Figure 6.4.: Comparisons of INF and PEM or C/I and C/P, respectively(relative di�erences)

General values Outliers
Min Max Min Max

CEMreal vs. C/I −0.09% 0.07% - (−1.76%) 0.11%
CEMreal vs. Inf −0.07% 0.04% - (−2.55%) 0.07%

CEMreal vs. PEM −1.69% 1.56% - (−42.72%) 3.1%
CEMreal vs. C/P −1.68% 1.57% - (−42.67%) 3.08%

C/I vs. Inf −0.06% 0.05% −0.15% (−0.8%) -
C/P vs. PEM −0.02% 0.05% - (−0.08%) - (0.08%)
Inf vs. PEM −1.68% 1.60% - (−41.22%) 3.10%
C/I vs. C/P −1.66% 1.60% - (−41.64%) 3.09%

Table 6.2.: Relative di�erences between EEG measurements in %. Outliers are presented on
the right hand side. Outliers at the center line are only given in brackets (cf. Appendix B).
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Table 6.2 shows that neither of the presented values is of a signi�cant magnitude. The
highest di�erences can be found in comparisons involving PEM or C/P in combination
with one of the other models. Comparisons between CEMreal and C/I or CEMreal and
Inf deliver much lower values. Again, this suggests that the �nal calculation of the PEM,
i.e. the choice of the electrode points, leads to much bigger di�erences than ignoring the
shunting e�ects. This can also be seen in the direct comparison of INF and PEM (or
C/I and C/P): Di�erences here are almost the same as di�erences between CEM and
PEM (cf. Table and Figure 6.2).
The inaccuracy occuring due to the choice of the electrode points can also be observed in
�gure 6.2: The comparisons between CEM and in�nite cases are comparatively smooth.
Relative di�erences tend to be bigger near to the stimulation sides where electrode
potentials are higher and tend to decrease with increasing distance to anode and cathode.
In comparison, di�erences between CEM and PEM are distributed in a more irregular
way: Adjacent electrodes tend to di�er in magnitudes and even in polarities. This is due
to the fact that inaccuracies in the choice of center points do not depend on the actual
potential distribution, but occur in a more randomized way.
The lowest di�erences can be found in the comparisons C/I vs. Inf and C/P vs. PEM.
Thereby, the values for the latter case seem to be even lower than those for the �rst one.
This is noteworthy, since one would assume greater inaccuracies for the PEM. However,
Figure 6.3 shows that both models show very similar magnitudes. The only di�erences
can be found at some isolated electrodes lying at typical outlier positions. Indeed, one
can see in appendix B that the highest values of the comparison of C/I and INF can be
found at typical outlier electrodes or electrodes next to them. Comparing �gure 6.3 and
�gure 6.2 indicates that the comparisons of di�erent stimulation models deliver lower
values than the other models.

6.1.2. Skin and brain potentials

Distribution

The next part shalldeals with the potential distribution on the skin. Just as in case
of the electrodes, di�erences in potential distribution are not visible to the naked eye.
Therefore, Figure 6.5 shows the potential distribution of the realistic CEM as an exam-
ple for all cases.
However, to get an impression of distribution di�erences, Figure 6.6 illustrates the po-
tential for the most important cases using another color scale. Even then, shunting
e�ects in the realistic CEM are not visible. However, one can recognize the constant
potentials underneath the electrodes in case of the low CEM.
Table 6.3 shows the maxima and minima on the surface of the head as well as the
L2-Norm over the surface. Note that INF and PEM as well as C/I and C/P describe the
same model when it comes to potentials and currents in the head. Hence, to simplify
explanations those models will often be referred to as PEM and C/P in the following
sections.
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Figure 6.5.: Example of potential y on the scalp. The spectrum was restricted to 20mV . For
a description of the magnitude of potentials see Table 6.3.

Min Max ‖y‖L2(∂Ω)

‖y‖L2(∂Ω)

‖1‖L2(∂Ω)

CEMlow −101.61 94.33 6.395 17.531
CEMreal −139.43 126.66 6.926 18.987

Inf & PEM −139.59 126.78 6.929 18.995
C/I & C/P −139.47 126.68 6.929 18.993

Table 6.3.: Numeric description of scalp potentials(in mV )

CEMlow CEMreal PEM& Inf

Figure 6.6.: Distribution of potentials (Visualization of shunting currents)
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Table 6.3 again re�ects the fact that potentials hardly di�er for realistic models. More-
over, one can see once more that the use of the CEM, i.e. the incorporation of the
shunting e�ects, tends to decrease the magnitude of the potentials. This can be ob-
served as values decrease if more electrodes are modeled with the CEM or the ECI is
decreased. Looking at the norms of y one can again see that the overall potential does
hardly di�er for PEM and C/P. However, this is di�erent for the extrema. Here, the
PEM shows the most deviating behavior compared to all realistic models. Since the
most extreme values occur underneath the stimulating electrodes, this is not surprising:
The PEM is the only model which does not use the CEM for stimulation. Anyway, these
higher extrema seem to have no strong in�uence on the overall distribution.

6.1.3. RDM and MAG

Values as they are described in Table 6.3 give no idea of topographic di�erences. How-
ever, those can investigated by means of RDM and MAG. Figure 6.8 visualizes MAG
and RDM for di�erent comparisons. The resulting patterns come up to our expecta-
tions in all described cases, since they re�ect di�erences in shunting currents quite well.
However, we can see that the measured values are very low. This holds especially for
pattern di�erences between PEM and C/P (note that di�erent scales were used here and
in the low impedance model), but also in other cases and corresponds to the observations
described in the last paragraph.
To get an idea if the CEM has an in�uence on brain currents �gure 6.7 shows MAG and
RDM on the brain surface for the comparison between CEM and PEM. However, it is
obvious that e�ects are very low here, again. Moreover, no remarkable change in the
pattern can be seen. The strong red line represents the zero potential line again, which
explains high values in this area (cf. section 6.1.1). We will investigate in�uences on the
brain currents much closer in the next section.

Figure 6.7.: RDM and MAG in the brain (CEMreal vs. PEM|INF )
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RDM

MAG
CEMlow vs. Inf/PEM CEMreal vs. Inf |PEM

RDM

MAG
C/I|C/P vs. Inf |PEM CEMreal vs. C/I|C/P

Figure 6.8.: MAG and RDM
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6.2. Currents

6.2.1. Current densities in head and brain

Before the current di�erences in brain and head are investigated we will have a general
look at the current density. Table 6.4 gives an idea of typical current strength in brain
and head. Again, we can see that all realistic models do not di�er strongly.
If we do not take CEMlow into account biggest di�erences of maximal current densities
in the head can be found between the INF (or PEM) and the other models. This is due
to the di�erent modeling of the stimulation electrodes where the highest currents occur.
Interestingly, the CEM increases maximal values here, while it was shown before that the
maximal skin potentials are decreased by the CEM. The reason for this phenomenon
can be seen in Figure 6.9. This �gure shows the current density on the anode for
CEMlow and PEM. It can be seen here that currents in the CEM tend to concentrate
on the edges of the electrodes. This occurs because the CEM allows for the current to
distribute freely over the whole electrode. Since currents tend to �ow through the skin
rather than through the skull (because the skin is a better conductor) they will take the
shortest way and leave the electrode at the edges. These strong currents are re�ected
by the maximum values in Table 6.4. In contrast the gap model (i.e. the PEM) forces
the current to distribute evenly, i.e. the current density has to be constant in normal
direction (cf. Section 3.1.2). However, the e�ects shown in Figure 6.9 are not as strong
for the realistic CEM, therefore di�erences due to this phenomenon are very small.
In contrast to the whole head, di�erences inside of the brain seem to occur mainly due
to the shunting e�ects at the EEG electrodes. This is indicated by the fact that in case
of the brain it is the CEM that di�ers the most from the other models. Figure 6.10
shows the currents in brain and head exemplary for CEMreal and PEM: It is visible here
again that currents tend to �ow through the skin instead of the brain. However, one can

CEMlow PEM|INF

Figure 6.9.: Visualization of shunting e�ects at the anode. For low impedances currents tend
to concentrate on the edges. The gap model (as it is used in PEM and INF) forces a more
regular behavior. In reality shunting e�ects will be much smaller than demonstrated on the left
hand side.
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B Ω
Min Max Min Max

CEMlow 2.8704 83.2630 0.0056 5 8121
CEMreal 3.0521 89.5206 0.0075 4 2166

INF & PEM 3.0530 89.5476 0.0075 4 2160
C/I & C/P 3.0531 89.5498 0.0075 4 2166

Table 6.4.: Current extrema on brain B and head Ω in mA
m2
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Figure 6.10.: Currents in brain and head (PEM and CEM)
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see that parts of the current pass the skull and stimulate certain brain regions like the
auditory cortex.
Again, we see that patterns look extremely similar. Hence, to get an idea of the actual
di�erences, angle and magnitude di�erences were calculated directly.

6.2.2. Angle and magnitude di�erences

B Ω
Min Max Min Max

CEMreal vs. PEM 3.72◦ · 10−6 0.040◦ 8.54◦ · 10−7 1.038◦

C/P vs. PEM 3.56◦ · 10−6 0.041◦ 0◦ 0.205◦

CEMreal|C/P 1.48◦ · 10−6 0.024◦ 0◦ 1.036◦

B Ω
Min Max Min Max

CEMreal vs. PEM −0.086% 0.010% −1.707% 1.313%
C/P vs. PEM −0.041% 0.036% −0.458% 0.353%
CEMreal|C/P −0.059% −0.003% −1.715% 1.300%

Table 6.5.: Maximal and minimal angle(top) magnitude(bottom) di�erences in brain and head

Maximal and minimal angle und magnitude di�erences are presented in Table 6.5. Un-
surprisingly, currents di�er the most when the CEMreal is compared to the PEM, but
even then di�erences lie below 2 % and 2◦, respectively. In case of the brain - which is
the more interesting part in case of brain stimulation - di�erences are even below 0.01 %
and 0.05◦, respectively. In contrast to the whole head, lowest di�erences are given for
the comparison between CEMreal and C/P here. Hence, it seems that in this case the
choice of the model of brain stimulation has a stronger in�uence than the choice of the
EEG measurement model. However, di�erences in the brain are small enough to be
ignored in all cases.
Figure 6.11 gives an impression of the distribution of angle and magnitude di�erences
in head and brain using the example of CEMreal vs. PEM. One can observe here, as
well, that di�erences occur mainly on the skin, but hardly in the brain. Furthermore,
di�erences on the skin are mainly visible next to electrodes, which corresponds to the
expectations, as di�erences will mainly re�ect shunting e�ects. However, this also means
that shunting e�ects will mainly have a local in�uence, and di�erences in other parts of
the head will be much lower.
Although di�erences in the brain are very low, patterns in the brain show that di�erences
occur mainly near to the stimulation sides. This veri�es the assumption that shunting
e�ects at the stimulating electrodes have a bigger in�uence on the brain than those at
the measurement electrodes.
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Angle di�erences Magnitude di�erences (in %)

Figure 6.11.: Currents in brain and head (PEM and CEM)

6.3. Source comparisons

Section 6.1.1 gives a �rst impression of the di�erences in the brain. However, it is the
focus of this thesis to work out the importance of di�erences for combined EEG and
tCS. EEG measurements during tCS aim to measure brain activity rather than currents
due to brain stimulation, but currents due to tCS interfere with brain activity. An ad-
equate model of tCS induced EEG measurements could e.g. serve as a �lter for such
an interference. In this scenario even di�erences of small magnitude might be relevant,
since brain activity is accompanied by currents which are much smaller than currents of
brain stimulation. Hence, in this �nal section model di�erences are compared to some
exemplary EEG measurements, induced by typical sources in the brain.
Therefore, three pairs of dipoles were localized in the primary cortices. Figure 6.12
shows these dipoles and the resulting EEG simulations. A dipole strength of 50 nV was
assumed for each of the dipoles. This is a comparatively strong dipole and hence already
a conservative choice.
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Auditory Somato sensory Visual

AUD SOM VIS
Min Max Min Max Min Max

4.27µV 3.61µV −8.81µV 8.13µV −2.04µV 1.92µV

Figure 6.12.: Primary sources (50 nV) and resulting EEG measurements for an assumed dipole
strength of 50nAm. Strongest values are presented in the attached table.

Figure 6.13 and 6.14 show the comparison of the CEM with INF, C/I, PEM and C/P in
relation to each of the three sources. To give a better impression of the caused patterns,
the presented spectrum was restricted to the most common values, i.e. there are few
values higher or lower than the used color scale. However, all of these values occured
only in an isolated way. The actual extrema are shown in Table 6.6. Additionally, the
right hand side of the table shows the most extreme values within the modi�ed spec-
trum as well as the number of electrodes excluded by this spectrum which should give
an impression of the uniqueness of the outlying data. Note that the excluded values
are not de�ned as classical outliers like they are described in Appendix B. The results
presented here show very disparate values in general. Hence, if classical outliers would
be calculated here, a much larger number of values had to be excluded.
One can see now that the di�erences happen to be very high in comparison to the

sources. Even the mean of the magnitudes (Table 6.6) is higher than 250% in all cases.
Moreover, table 6.7 shows that for each model and each source more than one third of
the electrodes show di�erences of more than 30%. This holds especially for PEM and
C/P . Here, nearly all di�erences are bigger than 100%.
However, �gures 6.13 and 6.14 show that the magnitudes vary strongly. Thereby, dif-
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Comparison Mean(| · |) Extrema Moderate Extrema
Min Max Min Max

CEM • AUD 296% −2 654% 4 826% −1 706% (2) 1 555% (1)
vs. • SOM 287% −6 737.6% 2 776% −935% (1) 1 595% (1)
Inf • VIS 503% −150 460% 23 767% −34 340% (2) 23 767% (0)
CEM • AUD 251% −3 179% 2 719% −1 513% (1) 1 328% (1)
vs. • SOM 277% −4 361% 2 528% −1 475% (1) 1 120% (1)
C/I • VIS 443% −133 500% 21 643% −37 550% (1) 21 643% (0)
CEM • AUD 8 355% 28 930% 396 490% 28 930% (0) 37 140% (1)
vs. • SOM 6 605% −59 509% 80 184% −36 117% (1) 34 354% (2)

PEM • VIS 109 340% −2 552 300% 1 329 200% 1 439% (1) 5 340% (2)
CEM • AUD 8 383% 28 890% 367 860% 28 890% (0) 37 390% (1)
vs. • SOM 6 634% −60 053% 79 834% −36 563% (1) 34 585% (2)
C/P • VIS 110 180% −2 549 000% 1 357 000% −1 473% (1) 6 948% (1)

Table 6.6.: Top: Highest and lowest results of source comparisons. The most extreme values
are presented in the middle. Alternative extrema can be seen on the right hand side. The
brackets behind the alternative values show the number of values higher or lower, respectively.
Furthermore the mean of absolute values is presented on the left hand side.

Comparison
AUD SOM VIS

>30% >100% >30% >100% >30% >100%
CEM vs. Inf 52 31 43 32 75 65
CEM vs. C/I 48 20 52 29 75 68
CEM vs. PEM 78 77 78 72 78 78
CEM vs. C/P 77 76 78 72 79 78

Table 6.7.: Number of electrodes showing a magnitude di�erence of more than 30 or 100
percent, respectively. Presented for each model comparison and source.
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Figure 6.13.: Comparison between CEM|INF and CEM|C/I di�erences and the primary
sources
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Figure 6.14.: Comparison between CEM|PEM and CEM|C/P di�erences and the primary
sources
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ferences are strongest on electrodes with a weak source induced potential. This makes
sense, since we divide by very low values again (cf. section 6.1.1). Additionally, the
magnitude of di�erence is in�uenced by the distance to the stimulating electrodes, since
the electrode potentials are generally higher here. Moreover, it can be seen here again,
that potential di�erences involving the PEM tend to di�er in polarities, while this not
the case for the in�nite models. This is due to the fact that di�erences occuring in con-
text of the PEM depend mainly on the choice of the point electrode, instead of shunting
e�ects.
The divison by values close to zero gives an explanation for the very high results, but
also leads to the thought that results are not very reliable if calculated this way. To get
more expressive results, it makes sense to divide each electrode di�erence by a constant
value instead. Therefor one can take a typical EEG value again. To make the estimation
as conservative as possible, the biggest magnitude of EEG source simulations was used
here. Here, this is the minimum of the potentials induced by the somato sensory source.
The results of the comparisons can be seen in Figure 6.15, while Table 6.8 presents the
biggest values. Due to the choice of the reference it is no surprise that the values are
much lower than before. Anyway, results are still big enough to be seen as signi�cant.
Table 6.9 displays the number of electrodes showing di�erences bigger than 30% or 100%:
Again the results are most obvious in case of comparisons with PEM and C/P. Still al-
most all electrodes show values above 30% and most are even beyond 100%. But even in
case of INF and C/I it holds that a relevant part of the electrodes shows a signi�cantly
di�erent behavior.

Comparison Mean(| · |) Extrema Moderate Extrema
Min Max Min Max

CEM vs. Inf 40% −255% 385% −255% (0) 385% (0)
CEM vs. C/I 35% −164% 236% −164% (0) 236% (0)
CEM vs. PEM 765% −5 747% 7 300% −3 369% (1) 2 621% (1)
CEM vs. C/P 771% 5 818% 7 350% −3 400% (1) 2 702% (1)

Table 6.8.: Highest and lowest results for model comparisons compared to the constant value
minU(SOM). Extrema on the right hand side exclude the strongest outliers. The mean of the
absolute values is presented on the left hand side.

CEMreal vs. Inf CEMreal vs. C/I CEMreal vs. PEM CEMreal vs. C/P
>30% >100% >30% >100% >30% >100% >30% >100%
24 10 22 11 77 68 76 68

Table 6.9.: Number of electrodes showing a magnitude di�erence of more than 30 or 100
percent if compared to minU(SOM).
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Figure 6.15.: Di�erences between the CEM and other models, each compared to a potential
induced by brain activity (minUSOM ).
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This work compared di�erent model approaches for forward simulation of combined tCS
and EEG. These models include the point electrode model (PEM), the so-called gap
model and the complete electrode model (CEM).
Model choice was done separately for stimulation and remaining EEG electrodes, using
all three models for the normal EEG, while stimulation electrodes were modeled with
CEM and gap model, respectively. Subsequently, EEG measurements, as well as current
densities and potentials in head and scalp were investigated for di�erent model combi-
nations.
It was shown that EEG measurements do not di�er signi�cantly for all applied models, if
they were described in relation to their actual magnitude (Section 6.1.1). This holds as
well for distribution and magnitude of potential and currents in the head (Section 6.1.2
and 6.2). However, EEG di�erences were also compared to the magnitude of typical
EEG measurements due to brain activity (Section 6.3). In this case, EEG di�erences
turned out to be highly signi�cant. This was true, even if very conservative values were
chosen, i.e. the di�erences were divided by comparatively high activity induced EEG
measurements (here a constant value of 8.81µV ).
In all investigated cases the di�erences between CEM and PEM turned out to be much
bigger than di�erences between CEM and gap model. Hence, biggest di�erences between
CEM and PEM seem to occur due to the comparable inaccurate choices of points repre-
senting the electrode potential of the PEM, rather than due to the ignorance of shunting
e�ects described by the CEM. This can be assumed because both PEM and gap model
lead to the same currents in the head, as they both do not incorporate shunting e�ects
(cf. Section 3.1.2).

The results above imply that the relevance of the CEM depends strongly on the applica-
tion of the model. For instance, usage of the CEM will not lead to signi�cant di�erences
in current orientation. It was shown in Section 6.2 that the orientation of currents in the
head does not di�er in a signi�cant way, especially for the brain, where di�erences are
shown to be below 0.05◦. This suggests that there are no relevant di�erences in current
distribution. Hence, for studies of stimulation focality it will not be relevant which of
the presented models is used.
However, it was shown in 6.2.2 that direction di�erences occur mainly due to stimulation
electrodes, which were only modeled by CEM and gap model here. Since the PEM also
leads to much more deviant results in other cases, it is very likely that usage of the
PEM will lead to higher orientation di�erences. This would come up to expectations,
as it is a well known fact that the size of stimulation electrodes has a strong impact

69



7. Discussion

on focality and current magnitudes [24]. One can therefore assume that the use of the
PEM does not make much sense here, especially if large stimulation electrodes are used,
which is why the PEM was not used in this work. Most actual studies incorporate size
of electrodes, as well [26] [42] [48] [6]. Anyway, some studies also used the PEM in the
past [15] [47].

The use of the CEM becomes more interesting when it is applied to EEG measurements
in combined tES and EEG. If the application of the model deals with brain currents,
the CEM will lead to signi�cant di�erences.
Hence, there are several possible applications, where the model should be taken into
account. For instance, in several practical studies a combination of EEG and tES is
used to investigate e�ects of tES on brain activity [12] [57]. Since tES currents inter-
fere with the much lower currents of brain activity, one has to �lter these artifacts out.
Momentarily this is done with practical methods. However, one could imagine to �lter
data with the help of a highly accurate model. As a matter of course, the acccuracy
of the used model should lie in the range of activity induced EEG measurements. Due
to the results presented in Section 6.3 it would therefore be advantageous to make use
of the CEM here. However, constructing a �lter this accurately would require a lot of
other detailed information, especially a highly accurate head model.
Another application where the CEM might be relevant is the usage of a combined tCS
and EEG model to predict conductivities, like it is done in EIT [4] [51]. Thereby, com-
parisons between real measurements and simulated data are used to adapt conductivities
in an existing head model. This approach was already suggested in [6] and leads to a
highly realistic and individual head model which can then be utilized for other appli-
cations like EEG source analysis. Obviously, such a model should be precise enough to
predict brain currents accurately, and hence one can assume that usage of the CEM will
lead much better results than PEM and gap model here, as well.
Despite the examples above, one cannot state that the CEM will be relevant in all cases
of combined tCS and EEG modeling, as one can also imagine applications, where mag-
nitudes of brain currents do not matter. For instance, it was also suggested in [6] to
combine tES stimulations with EEG measurements to ensure safety due to stimulation.
It is the idea here to predict voltage patterns on the electrodes by a highly detailed FEM
model. If a fault in stimulation occurs, the patterns will change and can hence serve as
an indicator that something went wrong. Di�erences will only matter in the range of
typical tDCS induced currents and therefore the CEM will not be relevant for such an
application.

It has to be pointed out here again that neither PEM nor CEM are standard models
for actual tES foward modeling, although the PEM was sometimes used for stimulation
in the past [15] [47]. Instead, it is very common to model electrodes as a sponge lying
on the surface of the head, which is assumed to have the conductivity of saline [42].
This is due to the fact that stimulation electrodes in tCS are indeed often given by large
saline soaked sponges [26]. Nevertheless, the sponge model has also been applied to
disc electrodes in combination with saline gel [6] [5].Current is assumed to be applied
to these sponges. Thereby, it is supposed that either the resulting potential [26] [42] or
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the current density is constant over the whole electrode [6] [48]. In terms of the models
described in this work, one can argue that the latter case, i.e. the assumption of constant
current densities over the whole electrode, describes the application of the gap model,
whereas the former case describes the CEM with a vanishing contact impedance, i.e. a
model with maximal shunting currents. However, it is more likely that both approaches
lead to results similar to a classical CEM, as the sponge can be seen as a respresentation
of the shunting electrode. It could be interesting to investigate actual di�erences between
the CEM and both versions of the sponge model in future work. The CEM could be an
interesting alternative to the sponge model. This is due to the fact that the actual shape
of the sponge is not well-known in all cases, especially for electrodes using pure saline gel
instead of a classical sponge [5]. On the other hand, contact impedances on the electrodes
can be measured exactly and could therefore deliver a more accurate result. However,
one has to be aware that the CEM uses a simpli�cation as well, namely the assumption
of a constant ECI over the electrode. This is necessary as one has to calculate the ECI
with respect to the actual contact impedance (cf. Section 3.1.2). Hence, it would be
an interesting goal for future investigations to compare the accuracy of both models
pertaining to real data.

The code used here calculates the resistivity matrices for every given case and directly
applies them to a given stimulation pattern, which leads to a speci�c output of re-
sulting potentials. However, under speci�c circumstances it could be advantegous to
concentrate on the resistivity matrices instead: For instance, former modeling studies
concerning combined EEG and tCS have suggested the use of small high-de�nition elec-
trodes for the stimulation instead of large sponge electrodes, to increase precision [6].
Such electrodes can be used as both stimulation electrodes and common EEG electrodes.
In this case several stimulating con�gurations can be investigated with the same instal-
lation of electrodes. Hence, if resistivity matrices would be calculated instead of speci�c
potential distributions, it would only be necessary to do calculations once. The resulting
matrix could then be applied to every desired con�guration of stimulating electrodes.
This way, e�ects of di�erent stimulation con�gurations could be studied easily. As a
matter of course, it would be necessary to apply the same model (i.e. CEM or gap
model) to all involved electrodes.

As a conclusion it can be said that the application of the CEM, PEM and gap model
seems to be an interesting alternative for combined EEG and tES studies. Thereby, it
depends strongly on the situation, if usage of CEM and PEM (or gap model) lead to
signi�cantly di�erent results: If EEG measurements take voltages into account induced
by brain activity, it is advantegous to use the CEM. Otherwise, the use of PEM or
gap might be su�cient. Future goals could incorporate real data or investigate other
stimulation con�gurations.
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A. Proof of Proposition 3.1

Since the PEM is a standard Neumann problem, the existence of a solution for 3.20 is
well known. Hence the proof of proposition 3.1 will mainly follow a standard proof for
the Neumann boundary conditions, like it is described in [45] or [18]. It will be shown
that the solvability of the CEM can be proofed in a very similar way. For an alternative
proof concerning 3.21 see [46].

The proof is based on the Fréchet-Riesz theorem (see e.g. [55] [3]):

Theorem A.1 (Fréchet-Riesz theorem)

Let H be a hilbert space and f : H −→ R be a linear and continuous functional. Then
a unique element u ∈ H exists with

f(ϕ) = 〈ϕ, u〉H ∀ϕ ∈ H

Moreover, the following theorem will be needed, which is e.g. proofed in [18]1:

Theorem A.2 (Variation of the Poincaré inequality)

Let Ω′ ⊆ Ω with |Ω′| > 0. Then for all u ∈ H1(Ω) it holds:

‖u‖2
H1(Ω) ≤ C

∣∣∣∣∫
Ω′
u dV

∣∣∣∣2 + |u|2H1(Ω)

Proof of proposition 3.1 : .

Step 1 (Restriction to a subspace): We will �rst show that it will su�ce to make
sure that there exist unique solutions uP0 and ˆuC0 = (uC0 , UC0) for both cases in the
linear subspaces WP ⊂ X and WC ⊂ X × RL, which are de�ned as follows:

WP := {ϕ0 = ϕ− cϕ|ϕ ∈ X}, WC :=WP × RL

at which cϕ = 1
|Ω|

∫
Ω
ϕ dV is constant.

To show this we assume:

βP (uP0 , ϕ0) = fP (ϕ0) ∀ϕ0 ∈ WP (A.1)

βC (uC0 , UC0 , ϕ0,Φ) = fC(ϕ0,Φ) ∀(ϕ0,Φ) ∈ WC (A.2)

1In fact it is stated there that the theorem holds for Ω′ ⊂ Ω. However, the proof shows that it is also
true for Ω′ = Ω
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A. Proof of Proposition 3.1

It follows directly that in both cases the equation will also hold for all ϕ ∈ X and
(ϕ,Φ) ∈ X × RL respectively:

Every function ϕ ∈ X can be written as

ϕ = ϕ0 + cϕ (A.3)

with ϕ0 ∈ WP . Then for abitrary (ϕ,Φ) ∈ X × RL we can write:

(ϕ,Φ) = (ϕ0,Φ− cLϕ) + (cϕ, cLϕ) (A.4)

with cLϕ
:= (cϕ, . . . , cϕ) ∈ RL.

Since
∫

Ω
∇ · Jp dV =

∑L
l=1 Il it holds:

fP (cϕ) = 0 = βP (u, cϕ) and fC(cϕ, cLϕ) = 0 = βC(u, U, cϕ, cLϕ)

Therefore:

βP (uP0 , ϕ) = βP (uP0 , ϕ0) + βP (uP0 , cϕ) = fP (ϕ0) + fC(cϕ) = fP (ϕ)

Analogously:

βC(uC , UC , ϕ,Φ) = βC(uC , UC , ϕ0,Φ− cLϕ) + βC(uC , UC , cϕ, cLϕ)

= fC(ϕ0,Φ− cLϕ) + fC(cϕ, cLϕ)

= fC(ϕ,Φ)

This shows both A.1 and A.2 hold for all ϕ ∈ X/ ϕ̂ ∈ X × R. If there is a uP =
(uP0 + c) ∈ WP or a ûC = (uC0 + cL+1) ∈ WC × R now, up, ûC are solutions of 3.20
or 3.21 respectively. This holds because βP (c, φ) = 0, βC(cL+1, φ) = 0, obviously. In
particular, such solutions exist because of the de�nition of WP .
The proof shows, additionally, that for any other solution φ or φ̂ of these equations which
can't be described by uP0 + c or ˆuC0 + cL, we could �nd another ũ inWP/WC , for which
φ = ũ + c holds and which is a solution of 3.20/3.21. This is a contradiction, since uP0

and ˆuC0 are meant to be unique.
Hence if equations A.1 and A.2 are true, proposition 3.1 follows.

Step 2 (WP is a closed subspace): If X contains the family of constant functions c
we can see, that WP is in fact the subspace:

WP = {ϕ0 ∈ X| ∫
Ω
ϕ0 = 0} ⊂ X

since X is closed under addition. Moreover, WP is closed, since every cauchy sequence
in WP converges to a x ∈ X for which holds:

∫
Ω
xdV = 0.
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If X does not contain the family of constant functions, the map2

PWP
(ϕ) = ϕ− cϕ

is bijective: If ϕ1, ϕ2 are two functions with PWP
(ϕ1) = PWP

(ϕ1), it is ϕ1−ϕ2 = cϕ1−cϕ2 ,
which is contradiction, hence PWP

is injective. The surjectivity is clear.
This implies that there is an inverse map P−1

WP
, which is linear as well, and since X and

therefore WP are �nite-dimensional, P−1
WP

is continuous. Because WP is the preimage of
the closed space X, WP is closed as well then.

Step 3 (Proof that βP , βC are scalar products):To proof A.1 and A.2 the precon-
ditions of theorem A.1 have to be shown:

It shall be proofed �rst that βp, βC are scalar products over WP/WC . It is obvious that
βP , βC de�ne bilinear forms on WP and WC . What remains to be shown is the positive
de�niteness of both forms:
It is also clear that βP (w,w) > 0 and βC(ŵ, ŵ) > 0 for all w ∈ WP , ŵ ∈ WC . We
assume now that for an w ∈ WP holds:

βP (w,w) = 0

With the Poincaré inequality (A.2) it is

‖w‖L2(Ω) ≤ C‖∇w‖L2(Ω) (A.5)

since
∫

Ω
w = 0. It follows:

‖w‖H1(Ω) ≤ (C + 1)‖∇w‖L2(Ω) = (C + 1)βP (w,w) = 0⇒ w = 0

because ‖ · ‖H1(Ω) is a norm. Hence βP is positive de�nite.
Analogously let ŵ = (w,W ) be in such a way that

βC(ŵ, ŵ) = ‖∇w‖L2(Ω) +
L∑
l=1

1

Zl

∫
el

(Wl − w)2 dS = 0

With Poincaré again:

‖w‖H1(Ω) +
L∑
l=1

1

Zl

∫
el

(Wl − w)2 dS ≤ (C + 1) βC(ŵ, ŵ) = 0

and it follows w = 0 because both summands are positive. Then we know:

βC(ŵ, ŵ) =
L∑
l=1

1

Zl

∫
el

(Wl − w)2 dS = 0⇒ Wl = w = 0

2This is in fact the orthogonal projection of WP .
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A. Proof of Proposition 3.1

Therefore, βP and βC are scalar products over WP and WC .

Step 4 (Proof that (WP , βP ), (WC , βC) are hilbert spaces): We notice at �rst that
WP and WC are hilbert spaces: This is because WP is a closed set of the hilbert space
H1(Ω) and WC is the direct sum of the hilbert spaces WP and RL, and therefore a
hilbert space concerning the natural scalar product:

〈ŵ, x̂〉WC
= 〈w, x〉WC

+ 〈W,X〉2

To proof now thatWP ,WC are hilbert spaces concerning βP and βC as well, it has to be
shown that both norms are equivalent to the natural norms ‖ · ‖WP

:=
(
‖ · ‖H1(Ω)

)
|WP

and ‖ · ‖WC
:=
(
‖ · ‖H1(Ω)×RL

)
|WC

on WP and WC :

To be proofed: ∃C1∗, C1∗ : C−1
1∗ ‖ · ‖β∗ ≤ ‖ · ‖W∗ ≤ C2∗‖ · ‖β∗

Proof for (WP , βP ):
For (WP , βP ) the equivalence is easy to see. It is clear that:

‖w‖2
βP

= |w|2H1(Ω) ≤ |w|2H1(Ω) + ‖w‖2
L2(Ω) = ‖w‖2

H1(Ω) = ‖w‖2
WP

∀w ∈ WP

Hence:
‖w‖βP ≤ ‖w‖H1(Ω) ∀w ∈ WP (A.6)

Moreover, we have already stated in equation A.5 that:

‖w‖WP
= ‖w‖H1(Ω) ≤ CP |w|H1(Ω) = CP‖w‖βP ∀w ∈ WP (A.7)

Therefore, we have proofed that ‖ · ‖βC is equivalent to ‖ · ‖WP
.

Proof for (WC , βC):
The estimations in this part are roughly based on [46]: To proof the analogical statement
inWC we notice �rst that there is a continuous embedding H1/2(∂Ω) ⊂ L2(∂Ω), because
of the Sobolev embedding theorem as well as a continuous mapping γ : H1(Ω) −→
H1/2(∂Ω) due to the trace theorem [46]. Hence it holds:

‖w‖L2(∂Ω) ≤ C ′‖w‖H1/2(∂Ω) ≤ C‖w‖H1(Ω) (A.8)

This way the �rst estimation can be proofed straightforward:

‖w,W‖2
βC

= |w|2H1(Ω) +
L∑
l=1

1

Zl

∫
el

(Wl − w)2

≤ ‖w‖2
H1(Ω) + max

k

1

Zk

L∑
l=1

‖w‖2
L2(el)

+ ‖Wl‖2
L2(el)

≤ ‖w‖2
H1(Ω) + C ′

(
‖w‖2

L2(∂Ω) +
L∑
l=1

|el|W 2
l

)
≤ ‖w‖2

H1(Ω) + C
(
‖w‖2

H1(Ω) + ‖Wl‖2
2

)
≤ CC1

(
‖w‖2

H1(Ω) + ‖Wl‖2
2

)
= CC1‖w,W‖2

WC

(A.9)
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A. Proof of Proposition 3.1

For the other direction we assume that ‖ · ‖2
WC
≤ C‖ · ‖2

WC
does not hold:

Assumption: ∀C > 0 : ∃(w̃, W̃ ) ∈ WC : ‖w̃, W̃‖WC
> C‖w̃, W̃‖βC (A.10)

Then it exists a sequence (w′n,W ′n) with:

‖w′n,W ′n‖βC
‖w′n,W ′n‖WC

<
1

n
∀n ∈ N>0

or - after normalization of (w′n,W ′n) with respect to ‖ · ‖WC
- a sequence (wn,W n):

‖wn,W n‖WC
= 1, ‖wn,W n‖βC <

1

n
(A.11)

It follows:

1

n
≥ ‖wn,W n‖βC ≥

∫
el

(wn −W n
l )2 dS

=

∫
el

(wn)2 dS − 2W n
l

∫
el

wn dS +

∫
el

(W n
l )2 dS

≥ −2W n

∫
el

wn dS +

∫
el

(W n
l )2 dS

which can also be written in the form:

|el| (W n
l )2 ≤ 2W n

l

∫
el

wn dS +
1

n

Now because of the left hand side of A.11 it is:

‖W n‖2
2 ≤ 1− ‖wn‖2

H1Ω ⇒ W n
l ≤

(
1− ‖wn‖2

H1Ω

) 1
2

and we receive with the Cauchy-Schwarz inequality and equation A.8:∫
el

wn dS = 〈1, wn〉L2(el)
≤ |el|

1
2‖wn‖L2(el) ≤ c‖wn‖H1(Ω)

Hence:

|el| (W n
l )2 ≤ C

(
1− ‖wn‖2

H1(Ω)

) 1
2 ‖wn‖H1(Ω) +

1

n
(A.12)

But since wn ∈ WP , one can use Poincaré again and we get:

‖wn‖H1(Ω) ≤ C|wn|H1(Ω) ≤ C‖wn,W n‖βC < C
1

n

⇒ lim
n→∞

‖wn‖H1(Ω) = 0

With equation A.12 we can now conclude limn→∞W
n
l = 0 as well and it follows:

0 =
(

lim
n→∞

‖wn‖H1(Ω) + ‖W n‖2
2

)
= lim

n→∞
‖wn,W n‖WC

= 1  
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A. Proof of Proposition 3.1

This shows that the assumption A.10 must be wrong and there exists a CC2 with:

‖w,W‖WC
≤ CC2‖w,W‖βC ∀(w,W ) ∈ WC (A.13)

and because of A.9 and A.13 ‖ · ‖WC
and ‖ · ‖βC must be equivalent.

Hence (WC , βC) is a hilbert space, as well as is (WP , βP ), at which the latter is clear
because of the equivalence proofed in (A.6, A.7).

Step 5 (Application of Fréchet-Riesz): To make use of Riesz's theorem it is left to
show that fP and fC are continuous in WP or WC , respectively. This follows, however,
with the inequality of Cauchy-Schwarz and the equivalences described above:

|fP (w)| ≤ 〈∇ · J, w〉H1(Ω) +
∑
l

|Il|
|el|
〈1, w〉L2(el)

≤ ‖∇ · J‖H1(Ω)‖w‖H1(Ω) +
∑
l

|Il|
|el|

1
2

‖w‖L2(el)

≤ C‖w‖H1(Ω) = C‖w‖WP
≤ CCP‖w‖βP

|fC(w,W )| ≤ 〈I,W 〉2 + 〈∇ · J, w〉H1(Ω) ≤ ‖I‖2‖W‖2 + ‖∇ · J‖H1(Ω)‖w‖H1(Ω)

≤ C
(
‖W‖2 + ‖w‖H1(Ω)

)
= C‖w,W‖WC

≤ CCC2‖w,W‖βC

In the �rst proof A.8 is used again. With Riesz' theorem A.1 follows Proposition 3.1.
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B. Outliers

Figure B.1.: Visualization of electrodes typically showing high relative di�erences. The pink
and blue pattern shows the polarities of the skin potential (blue: positive, pink: negative). Hence,
the potential is almost zero at the `center line'. Electrodes lying on the center line are marked
orange, other electrodes showing outliers are given in green.

When the relative di�erences between the involved models are calculated at each elec-
trode, a few electrodes show conspiciously extreme values. One can observe these values
in Table B.1 which presents the highest and lowest values for each model comparison
described in 6.1.1. Obviously extreme values usually occure at similar electrodes in all
cases. Figure B.1 shows the most noticeable ones.
A large number of high values appear at electrodes near to the `center line', i.e. the part
of the head where the potential is almost zero. Since relative di�erences are calculated
by dividing by the absolute values at the electrodes, it is most likely that extreme values
at the center line occur due to inaccuracies in computation (e.g. rounding errors). This
idea is most obvious for electrode 38, which lies exactly on the center line and even shows
di�erences of over 40 %, although no other relative di�erences are bigger than 3.3 %.
However, there are a few other electrodes showing a striking behavior. Some of these
electrodes (24,50,51) lie next to the cathode and it is therefore likely that these electrodes
show regular values as currents are very high here. Other electrodes can be found next
to the ears (here labeled 74, 69 and 79). It is possible that high results at these places
can be explained due to structural di�erences in the head model. While the �rst group
of outliers can in fact be excluded from interpretation, the last two groups shouldn't.
However, all values labeled as outliers were presented separately in Section 6.1.1 to give
a better impression of common values.
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B. Outliers

CEMreal vs. C/I CEMreal vs. Inf CEMreal vs. PEM
Min Max Min Max Min Max
38: -1.76 % 79: 0.11 % 38: -2.55 % 50: 0.07% 38: -42.72 % 74: 3.1 %
10: -0.14 % 78: 0.07 % 10: -0.17%% 24: 0.06% 20: - 3.15 % % 43: 1.56 %
31: −0.09% 69: 0.04% 47: -0.11% 51: 0.05% 19: -2.45 % 29: 1.1%
5: −0.09% 50: 0.04% 19: -0.11% 28: 0.04% 72: −1.69% 14: 0.9%
15: −0.06% 18: 0.04% 15: -0.10% 6: 0.03% 1: −1.51% 30: 0.85%
47: −0.06% 28: 0.04% 31: -0.07% 49: 0.03% 73: −1.33% 27: 0.82%

CEMreal vs. C/P C/I vs. Inf C/P vs. PEM
Min Max Min Max Min Max
38: -42.67 % 74: 3.08% 38: -0.8 % 5: 0.05% 38: -0.08% 20: 0.08 %
10: -3.23 % 43: 1.57% 79: -0.15 % 48: -0.03% 44: −0.02% 59: 0.05%
19: -2.43 % 29: 1.10% 19: −0.07% 67: 0.03% 42: −0.02% 5: 0.04%
72: −1.68% 14: 0.90% 69: −0.07% 60: 0.03% 19: −0.02% 47: 0.03%
1: −1.50% 30: 0.85% 78: −0.06% 50: 0.03% 68: −0.02% 24: 0.03%
73: −1.34% 27: 0.81% 47: −0.05% 24: 0.03% 65: −0.02% 50: 0.03%

Inf vs. PEM C/I vs. C/P
Min Max Min Max
38: -41.22 % 74: 3.10 % 38: -41.64 % 74: 3.09%
20: -3.10 % 43: 1.60 % 20: -3.18 % 43: 1.60%
19: -2.34 % 29: 1.11% 19: -2.4 % 29: 1.11%
72: -1.68 % 14: 0.91 % 72: -1.66 % 14: 0.90%
1: -1.51% 30: 0.85 % 1: -1.53 % 30: 0.88%
73: -1.31 % 27: 0.83 % 73: -1.31 % 27: 0.83%

Table B.1.: Highest and lowest relative di�erences for each model comparison described in
6.1.1. Numbers in the table refer to the labels of the electrodes. Bold values show peculiar
values near to the center line. Underlined values are noticeable di�erent to other values, but
not localized near the center line.

87



C. CD

The applied CD contains the following contents:

• A PDF �le of this work

• The folder "`main code"', which includes:

� The mesh struct "`ms.mat"', representing the head model and necessary ad-
ditional properties. The mesh was modi�ed by Sampsa Pursiainen, but based
on already existing data

� The original code, also written by Sampsa Pursianen

� The modi�ed version of the code

� A short documentation on the usage of the code

• The folder "`results"', containing the most interesting numerical results as well as
a short description of the contents.

• The folder "`additionalcode"', containing the most important code used for visu-
alization and investigation of the results

• The folder "`scirun"', containing several �les, which can be used in SCIRun for
visualization of results. The possible use of each �le is described in the text-�le in
the same folder.
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