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A DISCONTINUOUS GALERKIN METHOD FOR THE EEG
FORWARD PROBLEM

CHRISTIAN ENGWER *T§ JOHANNES VORWERK 9l JAKOB LUDEWIG 1Yl AND
CARSTEN H. WOLTERS Tl

Abstract. In order to perform accurate electroencephalography (EEG) source reconstruction,
i.e., to localize the sources underlying a measured EEG, the electric potential distribution at the
electrodes generated by a dipolar current source in the brain has to be simulated, the so-called EEG
forward problem. Therefore, it is necessary to apply numerical methods that are able to take the
individual geometry and conductivity distribution of the subject’s head into account. The finite
element method (FEM) has shown high numerical accuracy with the possibility to model complex
geometries and conductive features, e.g., white matter conductivity anisotropy. In this article we
introduce and analyze the application of a Discontinuous Galerkin (DG) method, a finite element
method that includes features of the finite volume framework, to the EEG forward problem. The
DG-FEM approach allows to fulfill the conservation property of electric charge also in the discrete
case, making it attractive for a variety of applications. Furthermore, as we show, it can alleviate
modeling inaccuracies that might occur in head geometries when using classical FE methods, e.g.,
so-called “skull leakage effects” for skull compartments with a thickness in the range of the mesh
resolution. Therefore, we derive a DG formulation of the FEM subtraction approach for the EEG
forward problem and present first numerical results which highlight the advantageous features and
the potential of the proposed approach.

Key words. discontinuous Galerkin, finite element method, conservation properties, EEG,
dipole, subtraction method, four layer sphere model
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1. Introduction. EEG source reconstruction is nowadays widely used in both
research and clinical routine to measure the electrical activity in the human brain,
as it is a non-invasive, easy to perform, and relatively cheap technique [29, 16]. To
reconstruct the active brain areas from the electric potentials measured at the head
surface, it is necessary to simulate the electric potential generated by a dipolar cur-
rent source in the grey matter compartment of the brain, the so-called EEG forward
problem. The achievable accuracy in solving the forward problem strongly depends
on a realistic modeling of shape and conductive features of the volume conductor,
i.e., the human head. Therefore, it is necessary to apply numerical methods to solve
the underlying partial differential equations in realistic geometries, since analytical
solutions only exist for few special cases, e.g., nested shells [20]. Different numerical
methods have been proposed to solve this problem, e.g., boundary element methods
(BEM) [33, 1, 27, 45], finite volume methods (FVM) [19], finite difference methods
(FDM) [54, 49, 32] or finite element methods (FEM) [12, 31, 41, 23, 36, 35]. Finite
element methods were shown to achieve high numerical accuracies [23, 51], while the
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computational burden could be clearly reduced by the introduction of transfer matri-
ces and fast solver methods [53, 25, 57]. They offer the important possibility to model
complex geometries and also anisotropic conductivities, with only weak influence on
the computational effort [50].

One of the main tasks in applying FEM to solve the EEG forward problem is to
deal with the strong singularity introduced by the source model of a current dipole.
Therefore, different approaches to solve the EEG forward problem using FEM have
been proposed, e.g., the Saint-Venant [47, 43, 17, 51], the partial integration [60,
53, 48, 51], the Whitney or Raviart-Thomas [46, 35] or the subtraction approach
[12, 31, 41, 59, 23, 51]. All of these approaches rely on a Continuous Galerkin FEM
(CG-FEM) formulation, also called Lagrange- or conforming FEM, i.e., the resulting
solution for the electric potential is continuous.

The use of tetrahedral [31, 23, 50] as well as that of hexahedral [41, 38, 6, 5] meshes
has been proposed for solving the EEG forward problem with the FEM. Tetrahedral
meshes can be generated by Constrained Delaunay tetrahedralizations (CDT) from
given tissue surface representations [23, 50]. This has the advantage that smooth
tissue surfaces are well represented in the model. On the other side, the generation
of such models is difficult in practice and might cause unrealistic model features, e.g.,
holes in tissue compartments such as the foramen magnum and the optic canals in the
skull are often artificially closed to allow CDT meshing. Furthermore, CDT modeling
necessitates nested surfaces, while in reality surfaces might touch like for example
the inner skull and outer brain surface. Hexahedral models do not suffer from such
limitations, can be easily generated from voxel-based magnetic resonance imaging
(MRI) data and are more and more frequently used in source analysis applications
[38, 6, 5]. This paper therefore focuses on hexahedral FEM approaches. However, the
application of the CG-FEM with hexahedral meshes has the disadvantage that the
representation of thin tissue structures in combination with insufficient mesh resolu-
tions might result in geometry approximation errors. It has, e.g., been shown in [44]
that the combination of thin skull structures and insufficient hexahedral mesh resolu-
tions might result in so-called skull-leakages in areas where scalp and CSF elements
are erroneously connected via single skull vertices or edges as illustrated in Figure 2.1.
This can lead to significantly inaccurate results when using vertex based methods like,
e.g., CG-FEM, and might be one of the main reasons why in a recent head modeling
comparison study for EEG source analysis in presurgical epilepsy diagnosis a 2 mm
hexahedral FEM approach did not perform better than simpler head models [13].

In this paper, we derive the mathematical equations underlying the forward prob-
lem of EEG and introduce its solution using the subtraction approach. After a short
explanation of strengths and weaknesses of this solution approach, we propose and
evaluate a new formulation of the subtraction approach on the basis of Discontinu-
ous Galerkin FEM (DG-FEM). We then show that, while CG- and DG-FEM achieve
similar numerical accuracies in multi-layer sphere validation studies with high mesh
resolutions, DG-FEM mitigates the problem of skull leakages in case of lower resolu-
tions.

2. Theory.

2.1. The forward problem. The partial differential equation underlying the
forward problem can be derived by introducing the quasi-static approximation of
Maxwell’s equations [29, 16]. When relating the electric field to a scalar potential,
E = —Vu, and splitting up the current density J into a term f, which describes the
current source and a return current, or flux, —oVu with o(z) being the conductivity
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distribution in the head domain, we get a Poisson equation

-V (cVu)=f in Q, (2.1a)
0O =0 on 002 =T, (2.1b)

where € denotes the head domain, which is assumed to be open and connected, and
I" its boundary. We have homogeneous Neumann boundary conditions here, since we
assume a conductivity o(z) = 0 for all = ¢ €.

2.2. The Subtraction approach. We briefly derive the classical subtraction
FE approach as presented in [59, 23]. We assume the commonly used point-like dipole
source at position y with moment p, f,(z) = V-(pd,(z)). This complicates the further
mathematical treatment, as the right-hand-side is not even square-integrable in this
case. However, when assuming that there exists a non-empty open neighborhood Q°°
of the source position y with constant isotropic conductivity c°°, we can split up the
potential u and the conductivity ¢ into two parts:

u=u> 4+ u", (2.2a)

o =0+ 0%, (2.2b)

4 is the potential in an unbounded, homogeneous conductor and can be calculated

analytically: u™(z) = == ﬂi’f;ﬂ). The more general case of anisotropic conductiv-

ities can be treated, too [59, 23|, but is not especially derived here.
Inserting the decomposition of u into (2.1) and subtracting the homogeneous

solution, again results in a Poisson equation for the searched correction potential
corr
ucorr:

=V (eVu®") =V - (¢"Vu™) in Q, (2.3a)

00U = —00pu™ onT. (2.3b)

To solve this problem numerically, [23] propose a conforming first-order finite element
method: Find u®™ € V;, € H! such that it fulfills the weak formulation

/JVUCOH -Vudz = —/JCOHVUC’O - Vudz — /0°° Wt - vds. (2.4)
Q Q o0

The weak form can be heuristically derived by multiplication with a test function v €
Vi, and subsequent partial integration. Reorganization of some terms and applying the
identity (2.2b) yields the proposed form in equation (2.4). The subtraction approach
is theoretically well understood, existence and uniqueness of a solution as well as
convergence of the numerical solution are examined in [59, 23].

2.3. Skull leakage effects. As discussed in the introduction, hexahedral meshes
are frequently used in practical applications of FEM-based EEG/MEG source anal-
ysis, due to the clearly simplified creation process in comparison to CDT meshes. A
pitfall that has to be taken into account in this scenario are leakage effects, especially
in the thin skull compartment. If the resolution is coarse compared to the thickness
of the skull, segmentation artifacts as illustrated in Figure 2.1 (yellow and red line)
occur. Although physically separated, elements belonging to the highly conductive
compartments interior to the skull, i.e., most often the CSF, and to the skin compart-
ment are now connected via a shared vertex or edge. When using, e.g., the CG-FEM
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Fic. 2.1. Sketch of segmentation that might lead to leakage effects (left). Yellow line shows
inner skull surface, red line original outer skull surface, blue line corrected outer skull surface.
Where red and blue line overlap, only blue line is visible. In the magnified detail scalp and CSF
show two erroneous connections via single vertices or edges (right subfigure, where red and yellow
lines touch each other). This can lead to significantly inaccurate results when using vertex based
methods like, e.g., CG-FEM.

CG-FEM DG-FEM

Fic. 2.2. CG-FEM simulations lead to an overestimated electric current at degenerated vertices
of the skull. This is due to the vertex based discretization, which only considers the potential, but
not the electric current. DG-FEM methods are based on a current reconstruction through cell faces.
Thereby, these methods do not overestimate the electric current, even in the presence of imaging
artifacts.

with Lagrange Ansatz functions, these artifacts lead to skull leakage, as sketched in
Figure 2.2. As a result of the vertex based Ansatz-functions, this leads to inadequately
high matrix entries for these vertices and finally to current leakage “through” these
vertices.

This problem might be circumvented by artificially increasing the thickness of the
modeled skull in these areas (blue line in Figure 2.1). However, this might, again,
lead to inaccuracies in the EEG forward computation due to the now too thick skull
compartment.

In the following, we derive a Discontinuous Galerkin (DG) formulation for the
Subtraction FE approach. This has the advantageous feature of being locally charge
preserving and controlling for the current flow through element faces, thereby pre-
venting possible leakage effects, see illustration in Figure 2.2.
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2.4. A Discontinuous Galerkin formulation. Preserving fundamental phys-
ical properties is very important in order to get a good interpretation of the simulation
results. As discussed in the previous section a correct approximation of the electric
current is crucial to gain reliable simulation results. Continuity of the current directly
implies conservation of charge.

The Discontinuous Galerkin method allows to construct formulations which pre-
serve such conservation properties also in the discretized space. We first discuss which
quantities to preserve when using the subtraction approach for the continuous problem
and then introduce a Discontinuous Galerkin formulation.

2.4.1. Conservation properties. A fundamental physical property is the con-
servation of charge. The conservation of charge is equivalent to the continuity of the

electric current:
/ oVu-ids= /fyd:v, (2.5)
K

for any control volume K C (). Following the subtraction approach we split the
current oVu = (6% + ™)V (u™ 4 u"). Rearrangement then yields

/Uvucorr = / oY u>® - i dr — / o®°Vu* - fids +/fyd:ﬂ .
oK K

oK 0K

=0

Applying Gauss’ theorem to the right hand side, we obtain a conservation property
for the correction potential

/ oVur -iids = /—V c TV U™ dx (2.6)
N——— —_———
K ;‘corr K feorr

which basically states that ©“°™ is a conserved property with flux j’corr = oVu" and

a source term [ =V . g Vu>

For FEM this property carries over to the discrete solution, if the test space
contains the characteristic function, which is one on K and zero everywhere else. In
general, a conforming discretization does not guarantee this property, as it is not
possible to construct the appropriate test function for a single cell , for K = Q it is
only possible for pure Neumann boundary conditions.

Conservation of charge also holds for 4> in the case of a homogeneous volume
conductor (with conductivity 0 in our case). Thus both the electrical flux ¢Vu and
o®°Vu> are continuous. Rewriting 5 in terms of ¢, ¢°°, 4" and u*° we can show
that also oVu™ 4+ ¢ Vu™> is continuous.

DEFINITION 2.1. We consider an arbitrary interface v, which separates the con-
trol volume K into two patches K; and K, (see Figure 2.3). The jump of a function
u along 7y is given as

[u](z) = lim wu(z’)— lim  wu(z)) (2.7)

' —zx in K x'—=x in K,

LEMMA 2.2. Given a potential u with a continuous flur cVu, also oVu™ +
oV u>® is continuous for the subtraction approach.
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T

Fic. 2.3. Interface v splits K into two parts.

Proof. We consider an arbitrary interface . At each point x along - the fluxes
oVu and 0>°Vu*> are continuous. Thus the jump vanishes for them and we obtain
[oVu] =0 = [0 Vu™]. (2.8)

o0 corr

Rewriting [¢Vu] in terms of ¢ o
ﬁ[ngucorr] + [Ucorrvucorr] + [Ucorrvuoo] — 0
@ [O_vucorr] — _[O,COTTVUOO]
= [o VU™ + o Vu™] = 0. (2.9)

,u°™ and u®° we obtain

As this property holds for any control volume and for any interface v the combined
flux oVurr 4 ¢ Vu™> is also continuous. 0
Note that this also implies the identity

[eVu®] = =[o°"Vu™], (2.10)
which is later needed to derive the weak form (2.21) out of equations (2.19) and (2.20).

2.4.2. A weak formulation. An alternative to the conforming discretization
sketched in Section 2.2 is to use more general trial and test spaces. In the following
section we derive a discontinuous Galerkin discretization for the subtraction approach
to solve the EEG forward problem. We assume knowledge about the basic FE theory,
see e.g. [15, 28]. For DG methods we furthermore refer to [3] or the book of Pietro
and Ern [21]. After the definition of broken polynomial spaces, we derive a locally
conservative weak formulation of the subtraction approach and introduce stabilisation
terms to guarantee existence and uniqueness of the solution.

DEFINITION 2.3 (Triangulation 75, (€2)). Let Tn(2) be a finite collection of disjoint
and open subsets forming a partition of Q. The subscript h corresponds to the mesh-
width h := max {diam(E) | E € T,}.  Furthermore the triangulation induces the
internal skeleton

Ding = {7@,f = aEe maEjf | EeaEf € 7717 E. 7é Efa |7@,f| > 0} (211)

and the skeleton I' = I'jy U 0N
DEFINITION 2.4 (Broken polynomial spaces). Broken polynomial spaces are de-
fined as piece-wise polynomial spaces on the partition T, () as
Vi ={veL*Q) : v|g e P"E)} (2.12)
6



where P* denotes the space of polynomial functions of degree k. They describe func-
tions which exhibit element-wise polynomial behaviour but may be discontinuous across
element interfaces.

Using a Galerkin approach, we seek for a solution uf*™ € V}f , which fulfils (2.3)
in a weak sense. We start the derivation by testing with a test function vy, € V¥

- / V - oVui v, do = /V -0V u oy, da (2.13)
Q Q

On each E € T,(€)) we apply integration by parts. For the left hand side we obtain

lhs = — /V -oVui™ vy, dx
Q
=— Z V - oVui’™ vy dx

oVui™ - Vup, dx — Z oVui™ - ity ds
Ec€Thyp, (2.14)

Q
= / oVui™ - Vuy, do — /O’V’U,EOH -flop ds
—_——
Q

0Q =_5Vu>.ii (2.3b)

— Z / oVup"™ - e s ds + / oVup™ g evpds |

Ye,f Elint Je.fNOE, Ve, ;NOE;

where 7.,y denotes the outwards pointing normal unit vector on the boundary of E.,
pointing from E. to Ejy.

The sum over all element boundaries is split up into the domain boundary and
all internal edges, each being visited twice, once from left and once from right. The
electrical current oVu§*™ - @ through the boundary is given by the inhomogeneous
Neumann boundary conditions (2.3b).

Following the notation of [3] we introduce the jump operator

[2les = zlop.fies + @lop, Ty (2.15)

and the average operator

(T)e,f 1= we,rzloE, +wy.eTlok; (2.16)

of a piecewise continuous function = on the interface v ; between two adjacent ele-
ments E, and E¢. The weights we, ¢ and w¢ . can be chosen to be the arithmetic mean,
but for the case of heterogeneous conductivities [24] has shown that a conductivity-
dependent choice is optimal:

91 and wr, = Te 2.17
fs

We. f 1= ———— _
ef of+0e Oet+ oy

Jump and average fulfill the following multiplicative property

[zyle.r = []es(W)e.s + (X)e.slWle.s - (2.18)
7



We now rewrite (2.14) and obtain
lhs = /UVu‘flo” - Vo, dx + / oVu™ - du, ds — / [eVui o] ds
Q o0 Cint
and with the multiplicative property (2.18) follows

lhs = /UVu‘;LO” - Vo, dx + / oVu™ - fivy, ds
—_———
Q o0 term {

- / [V (o) + (V™) [on] ds .
——

DCint term I

(2.19)

Applying the same relations for the right hand side we obtain

rhs = —/UC"”VuOO - Vo dz + /UC‘)”VuOO -y, ds
—_——
Q o0 term T

+ / [0V u] (o) + (0% VU [un] ds
——

Tint term I

(2.20)

Summing up the boundary integrals (2.19)" and (2.20)" yields a remaining term
—0*°Vu® - rivy on the rhs. As discussed in Section 2.4.1 the conservation properties
also imply that o Vu™ + g Vu™> is continuous, see (2.9). For the discrete solution
we require the same conservation property, thus the jump term (2.19)% equals to
—[e°*Vu™] and cancels out with term (2.20)%.

We obtain the following weak formulation:

Find '™ € ViF(Q) such that

a(us®™ vp) = I(vp) for all v, € Vi¥(Q) (2.21)
with

a(ui’™ up) = /UVuZO" -Vup dz — / (eVup™)vn] ds,

Q Tint
l(vp) = —/OcorrVuDO -V, dz
Q
— / o0 uvy, ds + / (" Vu)vr] ds .
o0 Fint

While the formulation derived in this fashion is by construction consistent with
the strong formulation (2.3), the method does not show adjoint consistency and is not
stable since it lacks coercivity. As discussed in [3], consistency of the adjoint problem
is important to ensure conservation properties, in our case Equation (2.6), coercivity
is necessary to ensure existence and uniqueness of the solution.

To gain adjoint consistency we symmetrize the operator and add the additional
term

a™ (up’™ vp) = — /(UVU@[[u%OH]] ds. (2.22)
Fint
8



To obtain coercivity the left hand side is supplemented with the penalty term

0
s o) =n [ 2l ol ds, (2.23)
Y
Dint

where h, and 6., denote local definitions of the mesh width and the electric conduc-
tivity on an edge 7, respectively. In our particular case we choose h. according to [26]
and ¢, as the harmonic average of the conductivities of the adjacent elements [24]:

— min(|E€|7 |Ef|) a.nd 6_ —
|’Ye,f| e

2005

fre.s octoyp
The penalty parameter 1 has to be chosen large enough to ensure coercivity.

This yields the Symmetric Interior Penalty Galerkin (SIPG) formulation [55, 37]
or for weighted averages the Symmetric Weighted Interior Penalty Galerkin (SWIPG
or SWIP) method [24]. The formulation is coercive, consistent, and adjoint consistent.
The first two are shown in the next section. The latter is important in the context of
inverse problems, like source analysis [39].

The SIPG formulation for the subtraction approach now reads:

Find u§®™ € V3, such that

a(ug™,vp) + J(up™, vp) = U(vy)  for all vy € V. (2.24a)
with
a(u;YLOrr, Uh) = &(uzorr’ Uh) + g™ (u;?lorr7 vh)

= / oVus*™ - Vop, dz — / (eVu?™)on] + (oVup) [ui®™*] ds, (2.24b)

Q Tint
0
T o) = 1 / 2 [user ] fon] ds (2.24¢)
Fiut 7
l(v) =— /ocorrVuoo - Vo, dz
Q
+ /(UCOHVU“’)[[vh]] ds — /g“’anuoouh ds. (2.24d)
Ting o0

Given the correction potential u;°", the full potential u; can be reconstructed as

up, = ug™ - ue.
2.5. Discrete properties. LEMMA 2.5 (Existence and uniqueness). For a
sufficiently large constant np > 0 the SIPG discretization (2.24) has a unique solution.

Proof. As a(u®™,vp,) and J(u§®™, vy) are the same operators as in [24] the oper-
ator a(uf®™, vs) + J(up’™, vp) is coercive for sufficiently large n > 0, i.e.,

a(vp,vp) + J(vn,vn) > o3 for all v, € V}¥.

From coercivity follows existence and as (2.24) is a linear problem existence is equiv-
alent to uniqueness. 0

LEMMA 2.6 (Counsistency). The SIPG discretization (2.24) for the subtraction
approach is consistent with the strong problem (2.3).
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Proof. For a solution u of (2.3) u® is continuous, i.e., u®™ € C9, and the jump
[uc"] vanishes, so that a®¥™(u®"™, v;) = 0 in (2.22) and J(u®"™,vy) = 0 in (2.23).
Using (2.3b), partial integration and (2.3a), Equation (2.24) reduces to

a(u®™ vp) — U(vp)

= /UVucorr -Vop dr — / (eVu® ™) on] ds

Q Cine

+ /Ucorrvuoo -V, do — / <o_corrvu0°>[[vhﬂ ds
Q Ding

+/0°°6nuc>°vh ds

oN

30 /UVU -Vop dr — /(aVu Mon] ds
Q r

+ /UcorrVuoo - Vuy, dx — /(UcorrVUC’o)[[vh]] ds

Q T

We use (2.9), add 0= — [[oVu"[(vp) ds — [[0°" Vu>](vy) ds and get

= /UVUC‘)” - Voup, dz — /(aVucorrﬂ[vﬂ + [oVu ] {vy) ds

Q I
+ /Jcorrvuoc . V'Uh dx — /<Ucorrvuoo>ﬂv]] + Ho_corrvuooﬂ <vh> ds
Q I

/ oVu" - Vo, dx — /[[JVuco”vh]] ds
(2.18)

+/ gV u> - Vuy, clx—/[[ac‘mVu vp] ds
Q

/V (oVu oy, da:—/V (o VU™ vy, dx
Q

(2.3a)

Thus u is also a solution of the weak formulation (2.24). O

LEMMA 2.7 (Discrete conservation property). The SIPG discretization (2.24)
fulﬁlls the discrete conservation property fach"" nds = fK feor dx which converges

to (2.6).
Proof. Testing with v;, = 1 on a control volume K € T,(Q2) and 0 everywhere

else, we observe that inside K, Vv = 0 and [v] = 7 on K. The boundary 0K is
partitioned into boundary facets 0K N 0N and internal facets 0K \ 9Q. With this

10



(2.24) simplifies to

a(up”™, vn) + J (W™, vn) = 1(vn)
& - /(UVUZOH> -iids + /77;?Y [up™] ds =
OK\OQ oK

—|—/<UC°”Vu°°> -iids — [ o°Vu™ -fids

DK\ OKNOQ

We exploit faK\aQ cds = [0 ds — [orcn0 - ds and (as 0 Vu™ is continuous)
(6°Vu>®) + 0 Vu>® = (0 Vu™), rearrange terms and get

=3 - /(aVu,Cf”> -ids + /(0Vu°°) -fids
OK\OQ OKNAQ
+/n2—7[[uzorr]] ds = /(UcorrVuoo> -nds.
ok ! oK

As o' is continuous on K and using the boundary condition (2.3b), we obtain the
discrete conservation property

o _
& / (oVuio™) — 77;; [up’™] i ds = /—VO’CO”VUOO ds
—_———
oK i K feorr
jﬁ,orr

The discrete problem (2.24) fulfills the discrete conservation property with a discrete
flux j¢or = (aVuso™) — nZ2[us*™]. For h — 0 the jump [u$"] vanishes and the

- v -
yCOI'T FCOI'T

discrete flux j;°** converges to the flux j as defined in (2.6). O
3. Methods.

3.1. Implementation and parameter settings. We implemented the DG-
FEM subtraction approach in the DUNE framework [8, 7] using the DUNE PDELab
toolbox [11]. For reasons of comparison, we also implemented the CG-FEM subtrac-
tion approach in the same framework. We use linear ansatz functions for both DG
(i.e., k = 1 in (2.12)) and CG approach throughout this study. On a given trian-
gulation 7; we choose basis functions {¢Z}, i € [0,Np) with local support, where
Nj, denotes the number of unknowns. For the CG simulations a Lagrange basis
with the usual hat functions is employed, whereas for the DG case element-wise L2-
orthonormal functions are chosen. In this setup (k = 1, hexahedral mesh), we have
eight unknowns per mesh cell for the DG approach, i.e., N = 8 x #cells, and we
have one unknown per vertex for the CG appraoch, i.e., N, = #vertices. Evaluating
the bilinear forms a(-,-), J(-,-) and the right hand side I(-) leads to a linear system
A-x = b, where z € RV denotes the coefficient vector and the approximated solution
of (2.24) is u§°" = >, x;¢}. Furthermore A € RN»*Nn is the matrix representation
of the bi-linear operator a + .J and b € RV the right hand side vector:

Aij = a(¢},, 1) + (0}, 81 i,5 €0, Nn)
bi = 1(¢}) i€[0,Np).
11



TABLE 3.1
Conductive compartments (from in- to outside)

Compartment Outer Radius  Conductivity

Brain 78 mm 0.33 S/m
CSF 80 mm 1.79 S/m
Skull 86 mm 0.01 S/m
Skin 92 mm 0.43 S/m
seqg 1 res. 1 seq.2 res 2 seq.4-res.4

Fic. 3.1. Visualization of models seg 1_res.1, seqg.2_res.2 and seg.4_res s (from left to right), cut
in z-plane at the origin; coloring is brain - red, CSF - yellow, skull - green, skin - blue.

The resulting matrix A has sparse block structure with small dense blocks, in our case
8 x 8 matrices. The outer structure is similar to that of a finite volume discretization,
i.e., rows corresponding to each grid cell and one off-diagonal entry for each cell
neighbour. By now, a range of efficient solvers for DG discretizations is available,
using techniques like Multigrid methods [9] or Domain Decomposition methods [2].

3.2. Volume conductor models. To validate and compare the accuracy of
these numerical schemes, we used four layer sphere volume conductor models, where
an analytical solution exists and can be used as reference [20]. For the four spherical
compartments representing brain, cerebrospinal fluid (CSF), skull and skin we chose
radii and conductivities as shown in Table 3.1. As motivated in the introduction and
in 2.3, we used hexahedral meshes in our study. To be able to distinguish between
numerical and geometrical errors, we constructed a variety of head models with dif-
ferent geometry/segmentation accuracies (1 mm, 2 mm and 4 mm) and for each of
these we again used different mesh resolutions (1 mm, 2 mm and 4 mm). The details
of these head models are listed in Table 3.2 and Figure 3.1 visualizes a subset of the
used models.

To further evaluate the sensitivity of the different numerical methods to leakage
effects, we intentionally generated spherical models with skull leakages. Therefore,
we chose the model seg 2 res 2 and reduced the radius of the outer skull boundary to
82 mm, 83 mm and 84 mm, resulting in skull thicknesses of 2 mm, 3 mm and 4 mm,
respectively. Thereby we were able to generate a leakage scenario similar to the one
presented in Figure 2.1, while preserving the advantage of a spherical solution that
can be used for error evaluations. Table 3.3 indicates the number of leaks for each
model, i.e., the number of vertices belonging to both an element labeled as skin and
an element labeled as CSF or brain.
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TABLE 3.2
Model parameters

Seg. Res. #nodes #elements

seg.lres.] 1 mm 1 mm 3,342,701 3,262,312
seg2resl] 2mm 1 mm 3,343,801 3,263,232
seg2res?2 2 mm 2 mm 428,185 407,907
seg4-res] 4mm 1mm 3,351,081 3,270,656
seg4-res2 4 mm 2 mm 429,077 408,832
seg4-res4 4 mm 4 mm 56,235 51,104

TABLE 3.3
Model parameters

out. Skull Rad. #leaks

seqg.2-res.2_r82 82 mm 10,080
seq 2. res 2. r83 83 mm 1,344
seq 2. res 2. r84 84 mm 0

3.3. Sources. We used 10 different source eccentricities and, for each eccentric-
ity, randomly distributed 10 sources to gain an overview of the range of the numerical
accuracy, since it might depend on the local mesh structure. We evaluated the ac-
curacy for both radial and tangential dipole directions, however, we only present the
results for radial directions here. The results for dipoles with tangential direction are
very similar with slightly higher overall errors for the radial dipoles.

To make the effect of skull leakage better accessible, we furthermore generated
visualizations of the current for one dipole fixed at position (1,47,47), which corre-
sponds to an element center, and fixed direction (0,1,1) for both CG- and DG-FEM
and for all three models with reduced skull thickness as shown in Table 3.3. We vi-
sualized a cut through the x-plane at the dipole position and chose to visualize both
the direction and strength of the electric flux for each numerical method and model
(Fig. 4.4) and the relative change in strength and the flux difference between the
numerical methods, described by the metrics inM AG;,J oo and tot DI'F F> o a8 defined
in the next section, in each model (Fig. 4.5).

3.4. Error metrics. To achieve a result that purely represents the numerical
and geometrical accuracy and is independent of the chosen sensor configuration, we
evaluated the solutions on the whole outer layer. We use two different error mea-
sures to distinguish between topography and magnitude errors, the relative difference
measure (RDM)

Up u

RDM (up,u) = ‘ - (3.1)
lunllz Nlull2 1l
and the logarithmic magnitude error (InMAG)
InMAG(up,u) =In (”|uh””2) . (3.2)
ull2
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Besides presenting the mean RDM and InMAG errors over all sources at a certain
eccentricity (see, e.g., left subfigures in Fig. 4.1), we also present results in separate
boxplots (see, e.g., right subfigures in Fig. 4.1). The boxplots show maximum and
minimum, indicated by upper and lower error bars, and thereby the total error range.
Furthermore, it includes the interval between upper and lower quartile, i.e., the in-
terquartile range, also knows as the spread, which is marked by a box with a black
dash showing the median. Note the different presentation of source eccentricity on
the x-axes in the left and right subfigures.

To evaluate the local changes of the current, we furthermore visualize for each
mesh element F the logarithm of the local change in current magnitude

InMAG;,, (B) = n [ 12ncclrn)l2) (3.3)
[9h0c(TE) 2
and the total local current difference
totDIFF; . (E) = Jhce(@B) = Jnoc(@n), (3.4)

where zp denotes the centroid of mesh element E (see Fig. 4.5).

For both the classical InMAG and the InM AG 1oc» We can exploit that due to
the relation In(1+ ) = z for small ||z||, we have lnMAG llunll2/lJu|lz — 1 for small
deviations and 100 - InM AG is about the change of the magnitude in percent and

accordingly for the InM AGJ loc -

4. Results. Figure 4.1 shows the convergence of RDM and InMAG errors for
the DG method when increasing the geometrical accuracy. Comparing the results for
meshes seg.1_res 1, seq.2-res.2 and seg.4_res4 shows the clear reduction of both RDM
and InMAG when increasing the mesh resolution and improving the representation of
the geometry at the same time. The finest mesh seq 1_res 1 achieves accuracies below
0.05 with regard to the RDM for eccentricities up to 0.979, i.e., a distance of 1.6 mm to
the brain/CSF boundary. For an eccentricity of 0.987, i.e., a distance of about 1 mm
to the brain/CSF boundary, this error increases up to maximally 0.1. For even higher
eccentricities the errors clearly increase up to values of 0.5 maximally. However, the
median error stays clearly below 0.2 here and minimal errors are still at about 0.05.
The behaviour with regard to the InNMAG is very similar, being nearly constant up to
an eccentricity of 0.979, slightly increasing for an eccentricity of 0.987 and strongly
increasing with a high error range for higher eccentricities. The errors for meshes
seg 2 res 2 and seq 4 res are clearly higher than for mesh seg I res 1. However, ad-
ditionally displaying the results for the refined meshes seg 2 res 1, seq/ res1 and
seg 4 res 2, where the geometry error is kept constant, allows us to estimate whether
the increased errors are due to insufficient numerical accuracy or the inaccurate res-
olution of the geometry. We find that for both a geometry resolution of 2 mm and 4
mm the errors are dominated by the geometry error. Comparing the models with a
geometry resolution of 2 mm, we find nearly identical errors with regard to the RDM
up to an eccentricity of 0.964 (see right subfigure in Fig. 4.1). Here, the median of
the error stays below 0.1. For higher eccentricities, where sources are already placed
in the outermost layer of elements that still belong to the brain compartment, the
errors for the lower resolved mesh increase clearly faster; especially for the two high-
est eccentricities the differences are large. With regard to the InMAG, even for the
outermost sources the effect of the higher mesh resolution is clearly weaker, notable
differences can only be seen due to some outliers, while the median errors stay in a
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Fic. 4.1. Convergence for DG-FEM with increasing mesh and/or geometrical resolution. Re-
sults of radial dipole computations. Visualized are the mean error (left column) and boxplots (right
column) of RDM (top row) and InMAG (bottom row). Dipole positions that are outside the brain
compartment in the discretized models are marked as dots. Note the different scaling of the z-azes.

similar range for both resolutions. For the meshes with a geometry resolution of 4
mm, only negligible differences can be seen at all eccentricities; the medians of the
errors are very similar, differences can only be found in the maximal values but do not
show a systematic behaviour. However, the errors are clearly increased compared to
the models with a better approximation of the geometry: Already at an eccentricity
of about 0.5 the median RDM is at about 0.1, increasing to values above 0.4 for the
highest four eccentricities. The same behaviour is observed for the InMAG, again
finding significantly increased errors compared to the models with a more accurate
representation of the geometry.

In Figure 4.2 the results for the newly proposed DG-FEM are presented side by
side to the CG-FEM for the meshes seg 1 res 1, seq2 res 2 and seq 4 res4. For the
model seg 1 res 1 the only notable difference with regard to the RDM can be observed
for the highest eccentricity, where the DG-FEM achieves slightly higher accuracies;
the evaluation of the InMAG shows even less differences. Also for model seg 2 res 2 the
two approaches achieve a very similar numerical accuracy for the lower eccentricities
with RDM errors clearly below 0.1; for eccentricities between 0.964 and 0.991 the
CG-FEM performs slightly better, while for the highest eccentricity the DG-FEM
achieves a higher accuracy, again. However, as analyzed before, also here the main
error source is the inaccurate representation of the geometry. The InMAG shows
no systematic difference in accuracy between the two methods in this model. In
the coarsest model, seg 4 res 4, the DG-FEM performs clearly better than CG-FEM
already for low eccentricities. Regardless of the high geometry errors, as also already
observed in Figure 4.1, larger differences in numerical accuracy between DG- and
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Fic. 4.2. Convergence for both CG-FEM and DG-FEM with increasing mesh and geometrical
resolution. Results of radial dipole computations. Visualized are the mean error (left column) and
boxplots (right column) of RDM (top row) and InMAG (bottom row). Dipole positions that are
outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the z-azxes.

CG-FEM can be observed for both RDM and InMAG up to an eccentricity of 0.964.
For higher eccentricities, possible differences can be less clearly distinguished due to
the dominance of the geometry error and the resulting generally increased error level.

The most significant accuracy differences between DG- and CG-FEM can be seen
in Figure 4.3 where we study the increase of errors for decreasing skull thickness and
resulting increase in the number of skull leakages (see Table 3.3). While we still find
a very similar numerical accuracy for DG- and CG-FEM in the leakage-free model
seg 2 res 2 184 (4 mm skull thickness), as one would expect given the previous results,
the DG-FEM performs clearly better in the leaky models seg 2 res 2 r82 (2 mm skull
thickness) and seg 2 res 2 183 (3 mm skull thickness). Already for low eccentricities
the sensitivity of the CG-FEM to leakages is distinct. The DG-FEM achieves an only
slightly decreased accuracy in the model seg 2 res 2 r83 compared to seq 2 res 2 r84,
which already shows that this approach is clearly less sensitive to leakages. In contrast,
the errors of the CG-FEM for model seg 2 res.2_.r83 are much higher than for model
seg.2.res.2.r84 (compare seg.2 res.2.r83 CG-FEM with seq 2 res 2 r84 CG-FEM) and
already in the range of those of the DG-FEM in the very leaky model seg 2 res 2 r82
(compare seg2 res2.r83 CG-FEM with seg 2 res2 r82 DG-FEM). Overall, we find
that the DG-FEM achieves a significantly higher numerical accuracy than the CG-
FEM already for low eccentricities in the leaky models, both with regard to RDM
and InMAG.

To illustrate the effect of skull leakage, we generated the visualizations shown in
Figures 4.4 and 4.5. In Figure 4.4, the electric current direction and strength for a
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Fic. 4.3. Comparison of increase of errors for decreasing skull thickness between CG-FEM
and DG-FEM. Results of radial dipole computations. Visualized are the mean error (left column)
and bozplots (right column) of RDM (top row) and InMAG (bottom row). Dipole positions that
are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the z-azxes.

radial dipole with fixed position and orientation (turquoise cone in the middle and
right columns) in the models seg. 2 res.2.r82 (top row), seg2 res 2 r83 (middle row),
and seg 2 res 2 r84 (bottom row) and with the two numerical approaches CG-FEM
(middle column) and DG-FEM (right column) is visualized. When using CG-FEM
in the model with the thinnest (2 mm) skull compartment, seg 2 res 2 r82, we find
extremly strong currents in the innermost layer of skin elements, i.e., at the interface
to the skull. This is especially distinct for those elements the dipole is nearly directly
pointing to. In comparison, the current strengths found in the skull compartment
are negligible, which is a clear sign for a current leakage through the vertices shared
between CSF and skin compartment, bypassing the thin and leaky skull compartment.
For the DG approach, these extreme peaks are not found and the maximal current
strength amounts to only about 30% of that of the CG approach. In the other two
models (note the much lower scaling in the middle and lower rows in Figure 4.4) we
find a clear decrease of the current strength in the skin compartment compared to
the seg 2 res 2 r82 model. In these two models and with the given source scenario,
none of the approaches seems to be obviously affected by skull leakage. While in
model seg 2 res 2 r83 (middle row) the DG approach shows about 20% higher peak
currents in the innermost layer of skin elements compared to CG-FEM, the maximal
current strength for the CG-FEM is about 7% higher than for the DG-FEM and found
in the skull compartment in model seg 2 res2 r84 (bottom row). These deviations
seem reasonable considering the relatively coarse representation of the geometry. The
visualizations show that the interplay between source position and direction and the
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Geometry CG-FEM DG-FEM

seg 2 _res.2_r83 seg 2 res.2_r82

seg 2 res 2. r84

Fic. 4.4. Visualization of model geometry (left column), current direction and strength for
CG-FEM (middle column) and DG-FEM (right column) for models seg2 res2 r82 (top row),
seg.2_res.2.r83 (middle row), and seg.2.res.2.r84 (bottom row). The left column shows the model
geometry, interior to exterior from bottom left to top right, brain in white, CSF, skull and skin in
increasingly dark grey, and air in white. Dark grey lines mark compartment boundaries. In the
middle and right columns, the large turquoise cone presents the dipole source. The small and nor-
malized grey cones show the directions of the current flow and, for elements belonging to skull and
skin compartments, the coloring indicates the current strength. For each model the color scale is
kept constant for both approaches.

local geometry strongly influences the local current flow in these models, leading
to current peaks in some elements while neighbouring elements show relatively low
currents, as it is clearly visible in model seg 2 res 2 r84. In this model we find strong
currents in the two skull elements the dipole is pointing to and that are providing a
“shortcut” between CSF and skin compartment and thereby the lowest resistance.
In Figure 4.5 the two measures InM AG;JOC and totDIF Fj‘,loc are visualized to
show the differences between the two methods even more clearly. As Figure 4.4 already
suggests, we find for model seg 2 res 2 r82 that for the CG-FEM the current strength
is clearly higher than for the DG-FEM in those elements of the innermost layer of the
skin compartment that share a vertex with the CSF compartment, indicated by the
high InMAG5 . (red coloring). The visualization of the totDIFF;, . (grey arrows)
clearly shows that the leakage generates a strong current from the CSF compartment
directly into the skin compartment that is not existing for the DG-FEM. At the same
time the current in the skull compartment is decreased in the CG-FEM; the visual-
ization (see Fig. 4.4 and zoom into Figure 4.5) of the totDIFF; ,, shows that there
is actually a stronger current through the skull elements in the DG-FEM simulation

(inwards pointing arrows). We also find high values for the totDIF F; in the CSF
18
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seqg2 res.2r82 seqg.2-res.2_r83 seqg.2-res.2.r84

7 7 7

Fic. 4.5. Visualization of current flow differences between CG- and DG-FEM in mod-
els seq.2 res 2 r82 (left), seq.2 res2 r83 (middle), and seq2_res2.r84 (right). The turquoise cone
presents the dipole source. The coloring shows the lnMAG;. loc (increase/decrease of the current

strength simulated with the CG- compared to the DG-FEM solution). For all models the mazimum
of the color scale is chosen as the mazimal value in the skin and skull compartment. Grey cones,
having the same linear scaling for all models, show the totDIFF]ﬂ.’loc (difference in current flow).
In models seq.2_res.2.r83 and seq.2_res.2_r8/ the arrows in skin and skull are not visible due to the
relatively small values. Dark grey lines mark compartment boundaries.

compartment, which are most probably caused by effects similar to the “leakage”
effects, i.e., a mixing of conductivities in boundary elements/vertices. However, in
model seg. 2 res 2.r82, the color-coding for the InM AG~ loc shows that this is not re-
lated to significant relative differences in current strength Here, the strongest values
for the InM AG .are found in the skin and skull compartment. In turn, for the
other two models We find the largest deviations in the CSF compartment, both with
regard to totDIF Fs .and InM AG e+ For model seg2 res 2 r83 we furthermore
find minor effects i 1n lnM AG Jocr 1 relative differences of current strength, in the
innermost layer of skin elements, Which are also the elements with the highest ab-
solute current strength among skin and skull compartment (see also Fig. 4.4). We
also find slightly increased values for the InMAG>,  in the outermost layer of skin
elements. These might be artifacts due to the * stalrcase -like geometry of the outer
surface in the regular hexahedral model. However, the totDI FF; 1o 111 skin and skull
is negligible compared to the CSF compartment. The same holds true for model
seg 2 res 2 184, where InM AGE’, 1oc 18 slightly increased in skull and skin compartment
mainly in elements with a small absolute current strength, as a comparison to Figure
4.4 shows. Still, relatively high differences in InM AG .and totDIF F . are visi-
ble in the CSF compartment. These results indicate that model seg 2 res 2 r83 and
seqg 2 res 2184 are less affected by skull-leakage, the differences are rather due to the
different computational approaches and do not show obvious errors due to the model
geometry.

5. Discussion. In this paper we presented the theoretical derivation of the sub-
traction FE approach for EEG forward simulations in the framework of Discontinuous
Galerkin methods. The scheme is consistent and fulfils a discrete conservation prop-
erty. Existence and uniqueness follow from the coercivity of the bilinear form.

The numerical experiments showed the convergence of the DG solution towards
the analytical solution with increasing mesh resolution and better approximation of
the spherical geometry. We could furthermore show that the numerical accuracy of the
DG-FEM is dominated by the geometry error, while the actual mesh resolution in a
model with bad geometry approximation only had a minor influence on the numerical
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results (Fig. 4.1). The inaccurate representation of the geometry, especially in the
coarser meshes, is visible by the “staircase-like” boundaries in Figure 3.1.

In the comparisons of DG- and the commonly used CG-FEM, we did not find
remarkable differences for meshes with higher resolutions (1 mm, 2 mm), as the results
in Figure 4.2 are in the same range for both approaches in the models seg.1_res.1 and
seg 2 res 2. In this set of experiments, three main error sources can be identified,
namely geometry errors, numerical inaccuracies, and leakage effects:

First, there is the error in the representation of the geometry, which is especially
strong in the models with low resolution, see also Figure 4.1. We thus strongly recom-
mend to use geometry resolutions, and thereby necessarily MRI resolutions, as high
as practically feasible, possibly even locally-refined when zoomed MRI technology is
available. In fact, since recently a newly developed zoom technique for MRI is avail-
able for practical use, based on a combination of parallel transmission of excitation
pulses and localized excitation [14]. A first usage of this zoom technique can be found
in [4, Chapter 5]. Moreover, in future work, based on [10], we plan to further develop
a cut-cell approach that allows for an accurate representation of the geometry while
only introducing a negligible amount of additional degrees of freedom. Thus, the
achieved accuracy can be increased while the computational effort is hardly affected
(see first results in [34]).

Second, we have the numerical inaccuracy due to the discretization of Equation
(2.1) in combination with the strong singularity introduced by the assumption of a
point dipole. This is the main cause for the numerical inaccuracies of the subtraction
approach for highest eccentricities, where the source positions are very close to the
next conductivity jump (cf. Fig.4.2). A rational for this effect has been given in
[59, 23]. In future work, we are therefore planning to adapt other source modeling
approaches like the Venant [47, 43, 17, 58, 51], the partial integration [60, 53, 58, 48, 51]
or the Whitney approach [46, 35] to the DG-FEM framework, that have until now only
been formulated and evaluated for CG-FEM. Compared to the subtraction approach,
these approaches have the further advantage of a strongly decreased computational
effort for the setup of the right-hand-side vector [58, 51].

The third source of error, the “leakage effects”, explain the large differences in nu-
merical accuracy between CG- and DG-FEM that can be observed in model seg 4 res 4.
Due to the coarse resolution in comparison to the thickness of the skull compartment
(4 mm resolution, 6 mm thickness), this model can already be considered as (at least
partly) leaky.

This observation motivated the evaluation of the two methods in a scenario where
the ex ante assumed advantages of the DG-FEM would have a bigger effect. There-
fore, we constructed spherical models with a thinner skull layer, finally ending up
with the model seg 2 res 2 r82 that has a skull layer as thin as the edge length of
the hexahedrons (see Figs. 4.3, 4.4, 4.5). Even if 1 mm FEM resolution is strongly
recommended for practical application of source analysis [38, 6, 5], 2 mm FEM res-
olution is still used even in clinical evaluations [13], and there are areas such as the
temporal bone, where skull thickness is 2 mm or even less [30, Table 2], so that this
is not an artificial scenario. As expected, the DG-FEM achieved a clearly higher
numerical accuracy in the two models with the thinnest skull layers, seqg 2 res 2 r82
and seg 2 res 2_r83, while the results for model seg 2 res 2 r84 are comparable for DG-
and CG-FEM (see Fig. 4.3). In the latter model, the ratio of resolution (2 mm) and
skull thickness (4 mm) guarantees sufficient resolution and by this already prohibits
leakages.
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To make the difference between CG- and DG-FEM in the presence of skull leakage
better accessible, we generated Figures 4.4 and 4.5. The skull leakage is clearly visible
in both figures for model seg 2 res 2. r82 and the CG-FEM as described in the results
section.  There is also a slight difference visible in the CSF in all three models,
which might be explained by the relatively thin CSF layer. In this resolution (2 mm
thickness, 2 mm segmentation/mesh resolution) the elements of the CSF compartment
are no longer completely connected via faces, but often only via shared vertices (as
visible in Fig. 4.4 (left column)). This means that for such a coarse model, the current
is blocked in some regions, although in the real geometry it isn’t. In this case the CG-
FEM shows slightly better results, as it allows the current to also flow through a single
vertex, which is physically counterintuitive. In contrast the DG-FEM does exactly,
what one would intuitively expect from this particular geometry, it channels the main
current through the CSF, but due to the wrong representation of the CSF it yields
slightly wrong currents. It thereby reduces the usually very strong current in the
highly-conductive CSF compartment. This might explain the slight advantages of the
CG-FEM with regard to numerical accuracy for model seq 2 res 2 184 (see especially
InMAG in Fig. 4.3, which is in agreement with the strong InNMAG effect of CSF as
shown in [50, Fig.4]). Still one has to point out that these geometric errors in the
CSF only have a very minor effect, as they don’t block the current completely, but
only divert it slighty.

Overall, these results show benefits of the newly derived DG-FEM approach and
motivate the introduction of this new numerical approach for solving the EEG forward
problem. Furthermore, the DG-FEM approach allows for an intuitive interpretation
of the results, in the presence of geometric artifacts. This helps in the interpretation
of simulation results in particular for clinical experts.

As we have shown in this study, errors in the approximation of the geometry and
resulting current leakages might become significant sources of error when using regular
hexahedral meshes with coarse resolutions. However, there are possibilities to avoid
such errors. In [48], a trilinear immersed finite element method to solve the EEG
forward problem was introduced, which allows to use structured hexahedral meshes,
i.e., the mesh structure is independent of the physical boundaries. The interfaces
are then represented by level-sets and finally considered using special basis functions.
However, this method is still based on the CG-FEM formulation, so that the be-
haviour when the thickness of single compartments lies in the range of the resolution
of the underlying mesh is unclear, especially when both the compartment boundaries
between CSF and skull (inner skull surface) and skull and skin (outer skull surface)
are contained in one element; it is probable that it suffers from the same problems as
the common CG-FEM in such cases. Unfortunately, no further in-depth analysis for
this approach was performed until now. Therefore, we claim to have for the first time
presented and evaluated a FEM approach preventing current leakage through single
nodes. In future investigations, we intend to further develop the already discussed
cut-cell DG approach for source analysis [34], which has the same advantageous fea-
tures with regard to the representation of the geometry as the approach presented
in [48], but additionally the charge preserving property of the DG-FEM as presented
here.

The charge preserving property could also be achieved by certain implementa-
tions of finite volume methods. In [19], a vertex-centered finite volume approach was
presented, which shares the advantage with the here presented DG-FEM approaches
that anisotropic conductivities can be treated quite naturally. However, due to its
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construction, the vertex-centered approach can also be affected by unphysical cur-
rent flow between high-conducting compartments that touch in single nodes as seen
for the CG-FEM. This problem could be avoided using a cell-centered finite volume
approach.

Computational costs were not explicitly evaluated in this paper. Obviously, due
to the more complex structure (see equation (2.24)), the setup of the stiffness matrix
and the iterative solving is more time-consuming for DG- than for CG-FEM. More-
over, as for all FEM-based approaches in source analysis, the number of equation
systems that have to be solved can be limited to the number of sensors by the imple-
mentation of transfer matrices so that this computationally more expensive part has
to be performed only once per head model and sensor arrangement [53, 25, 57, 35].

Finally, since the DG approach allows to fulfill the conservation property of elec-
tric charge also in the discrete case, it is not only attractive for source analysis, but
also for the optimization of brain stimulation methods like transcranial direct or al-
ternating current stimulation (tCS, tDCS, tACS) [22, 40, 56, 34, 52] or deep brain
stimulation [18, 42].

6. Conclusion. We presented theory and numerical evaluation of the subtrac-
tion finite element method (FEM) approach for EEG forward simulations in the Dis-
continuous Galerkin framework (DG-FEM). We evaluated the accuracy and conver-
gence of the newly presented approach in spherical models for different mesh reso-
lutions and compared it to the frequently used Lagrange- or Continuous Galerkin-
(CG-) FEM. Here, we found similar accuracies of the two approaches for high mesh
resolutions, while the DG- outperformed the CG-FEM for low mesh resolutions. We
further compared the approaches in the special scenario of a very thin skull layer,
where “leakages” might occur. We found that the DG approach clearly outperforms
CG-FEM in these scenarios. We underlined these results using visualizations of the
electric current flow. The DG-FEM approach might therefore complement CG-FEM
for improving source analysis approaches.
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