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Abstract 

The results of brain connectivity analysis using reconstructed source time courses derived 

from EEG and MEG data depend on a number of algorithmic choices. While previous studies 

have investigated the influence of the choice of source estimation method or connectivity 

measure, the effects of the head modeling errors or simplifications have not been studied 

sufficiently. 

In the present simulation study, we investigated the influence of particular properties of the 

head model on the reconstructed source time courses as well as on source connectivity 

analysis in EEG and MEG. Therefore, we constructed a realistic head model and applied the 

finite element method to solve the EEG and MEG forward problem. We considered the 

distinction between white and gray matter, the distinction between compact and spongy bone, 

the inclusion of a cerebrospinal fluid (CSF) compartment, and the reduction to a simple 3-

layer model comprising only skin, skull, and brain. Source time courses were reconstructed 

using a beamforming approach and the source connectivity was estimated by the imaginary 

coherence (ICoh) and the generalized partial directed coherence (GPDC). 

Our results show that in both EEG and MEG, neglecting the white and gray matter distinction 

or the CSF causes considerable errors in reconstructed source time courses and connectivity 

analysis, while the distinction between spongy and compact bone is just of minor relevance, 

provided that an adequate skull conductivity value is used. Large inverse and connectivity 

errors are found in the same regions that show large topography errors in the forward solution. 
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Moreover, we demonstrate that the very conservative ICoh is relatively safe from the 

crosstalk effects caused by imperfect head models, as opposed to the GPDC. 
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EEG; MEG; head modeling; forward problem; finite element model; source reconstruction; 
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1 Introduction 

While in the past the localization of brain activity was the main focus of neuroimaging, 

connectivity analysis is nowadays considered crucial for understanding brain function in 

neuroscience as well as in clinical research (Bassett and Gazzaniga, 2011; Castellanos et al., 

2011; He et al., 2011; Palva and Palva, 2012; Schnitzler and Gross, 2005; Schoffelen and 

Gross, 2009). The notion of brain connectivity encompasses at least three major concepts: 

effective, functional, and structural connectivity (Friston, 1994; Horwitz, 2003). Functional 

and effective connectivity patterns in the human brain have been estimated from functional 

magnetic resonance imaging (fMRI) or from electroencephalography (EEG) and 

magnetoencephalography (MEG). Although the spatial resolution of EEG and MEG is lower 

than that of fMRI, they have high temporal resolution in the millisecond range and directly 

reflect neuronal activity caused by synchronous changes of membrane potentials in large 

numbers of neurons. For these reasons, EEG and MEG have been widely used to detect 

networks of neuronal activities and to estimate causality within these networks (David et al., 

2006; Kamiński and Blinowska, 1991; Kiebel et al., 2006; Kus et al., 2004; Lachaux et al., 

1999; Nolte et al., 2004; Rappelsberger and Petsche, 1988; Varela et al., 2001). 

Functional connectivity between time courses recorded at multiple EEG and MEG sensors 

has been estimated using various methods, for example linear correlation in time or frequency 

domain (Nolte et al., 2004; Rappelsberger and Petsche, 1988) or analysis of phase synchrony 

(Lachaux et al., 1999; Varela et al., 2001). Likewise, directional information flow (effective 

connectivity) between signals has also been estimated using various methods (Baccalá and 

Sameshima, 2001; David et al., 2006; Granger, 1969; Kamiński and Blinowska, 1991; Kiebel 

et al., 2006). However, the interpretation of connectivity in sensor space is difficult because 

of signal mixing caused by volume conduction. Moreover, it is difficult to associate an 

anatomical meaning with the connections, as the measured signals do not generally locate in 

direct spatial proximity to the underlying sources (Castellanos et al., 2011; Palva and Palva, 

2012; Schoffelen and Gross, 2009). 

To overcome these drawbacks, connectivity analysis can be performed in the source space. 

The time courses that represent the activity of brain areas can be reconstructed by source 

reconstruction methods. This way, it is possible to reduce the linear mixing effect and to 

directly reveal the anatomical locations of interacting brain regions. Therefore, in recent years, 
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connectivity analysis in the source space has been utilized in basic neuroscience and clinical 

studies (Hillebrand et al., 2012; Lu et al., 2012; Palva et al., 2010; Shim et al., 2014). 

However, the effect of signal mixing is not completely abolished by source reconstruction 

(Haufe et al., 2013; Schoffelen and Gross, 2009). Due to the non-uniqueness and ill-

posedness of the neuroelectromagnetic inverse problem, spurious connections might remain, 

which calls for caution in the interpretation of the results. In order to ameliorate this, source 

reconstruction methods that suppress signal mixing (Dalal et al., 2006; Hui et al., 2010) as 

well as connectivity measures that attenuate the effect of signal mixing (Nolte et al., 2004) 

have been proposed. 

To date, the accuracy of source connectivity analysis has been evaluated with respect to the 

employed connectivity measures and source localization methods. Astolfi and colleagues 

(2007) compared various multivariate connectivity measures derived from Granger causality, 

a measure for the directional information flow between time courses (Granger, 1969). They 

demonstrated that all the investigated methods estimated similar connectivity patterns and 

found that the result was mainly affected by the signal-to-noise ratio (SNR) and the signal 

length. To extend this study, Fasoula et al. (2013) demonstrated the different frequency 

resolution properties of the measures and the effect of noise variance on connectivity 

estimation. Sekihara et al. (2011) showed that imaginary coherence (ICoh) is far less affected 

by the crosstalk (or leakage) effects of the source localization method than classical 

coherence. In studies comparing the different source localization methods, Schoffelen and 

Gross (2009) pointed out that spurious correlation could occur in source connectivity analysis 

using the minimum-norm estimation (MNE) (  m l in n and  lmoni mi, 19  ;   m l in n 

and Ilmoniemi, 1994) and the linearly constrained minimum variance (LCMV) beamformer 

(Van Veen et al., 1997), even though only uncorrelated sources were assigned. Hui et al. 

(2010) introduced the nulling beamformer to reduce and eliminate the crosstalk effect caused 

by source localization. They reported that the nulling beamformer successfully estimated the 

original connectivity pattern, while MNE and LCMV beamformer results contained spurious 

connections. Recently, Haufe and colleagues (2013) demonstrated that the effect of volume 

conduction on Granger causality based connectivity measures can be reduced using time 

inversion testing and that source localization methods with high spatial resolution are needed 

for accurate connectivity analysis in source space. 
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However, to the best of our knowledge, none of these studies systematically considered the 

influence of the head model on source connectivity analysis, in spite of the fact that forward 

modeling errors are known to have a significant effect on the accuracy of source analysis 

(Acar and Makeig, 2013; Aydin et al., 2014; Dannhauer et al., 2011; Fuchs et al., 2007; 

Hallez et al., 2008; Haueisen et al., 1997; Haueisen et al., 2002; Lanfer et al., 2012a; Lanfer 

et al., 2012b; Montes-Restrepo et al., 2014; Stenroos et al., 2014; Wolters et al., 2006). 

Spherical head models (de Munck and Peters, 1993) or the boundary element method (BEM) 

using 3 layers for skin, skull, and brain (Fuchs et al., 2007; Kybic et al., 2005) were used in 

most previous studies on source connectivity as a compromise between computational cost 

and accuracy. 

For more accurate source analysis, it is advantageous to use a realistically shaped, sufficiently 

detailed and accurate head model that considers all relevant tissues. Recently, several such 

techniques have been proposed, including BEM with 4 or 5 tissue layers (Acar and Makeig, 

2013), the finite difference method (Hallez et al., 2005; Vanrumste et al., 2000), and the finite 

element method (FEM) (Buchner et al., 1997; Haueisen et al., 1997; Marin et al., 1998; 

Schimpf et al., 2002; van den Broek et al., 1998; Wolters et al., 2004). Among these, the 

FEM is the most versatile, as it allows the modeling of arbitrary anisotropic conductivity 

profiles using any type of discretization. Although the FEM was not widely used in the past 

because of its large computational costs, the development of FE transfer matrix approaches 

(Wolters et al., 2004) has enabled high resolution FEM head modeling within acceptable 

computational times (Lew et al., 2009b). 

With these forward solutions, previous studies showed the effect of various head model 

features on the accuracy of EEG/MEG forward and inverse solutions. The distinction 

between white and gray matter, which is usually not accounted for by conventional spherical 

and BEM head models, has been demonstrated to be relevant to topographic and magnitude 

errors in the forward solution (Haueisen et al., 1997; Ramon et al., 2004; Vorwerk et al., 2014) 

and to source localization errors (Acar and Makeig, 2013; Van Uitert et al., 2003). Modeling 

of the skull has been shown to play an important role in EEG source localization because of 

its low conductivity. In particular, the distinction between compact and spongy bone tissues 

(Dannhauer et al., 2011; Montes-Restrepo et al., 2014), the effect of skull holes and modeling 

simplifications (Lanfer et al., 2012b), and the role of sutures and fontanels in infants (Lew et 
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al., 2013) have been studied. The cerebrospinal fluid (CSF) is also often neglected in 

conventional head modeling in spite of its high conductivity value. Wolters et al. (2006) 

showed that CSF highly affects the return currents of the source in the brain, and 

complementing studies also demonstrated strong CSF effects on both forward and inverse 

modeling (Acar and Makeig, 2013; Hyde et al., 2012; Lanfer et al., 2012a; Rullmann et al., 

2009). 

It seems likely that these effects of head model inaccuracies on source localization would also 

apply to source connectivity analysis from EEG and MEG data, because the source time 

courses are derived from the results of source localization. It is, however, not directly clear 

how sensitive source connectivity measures will be towards such factors. Therefore, similar 

studies to the ones described above should be conducted for connectivity analysis. 

In the present simulation study, we jointly examined the effects of FEM head modeling on 

forward computation, source estimation, and, most importantly, connectivity analysis. For the 

simulation, a detailed and anatomically realistic head model, constructed from individual MR 

images and comprising distinct tissue types for white and grey matter, compact and spongy 

bone, as well as CSF and skin, was used as a reference model. Although this head model is 

also just an approximation to a real human head and there is no ultimate proof for its absolute 

accuracy, it represents the current state of the art of advanced head modeling. Three test head 

models were derived from the reference model by selectively neglecting particular features: 

the distinction between white and gray matter, the distinction between compact and spongy 

bone tissue, and the inclusion of the CSF compartment. In a fourth test model, all three 

simplifications were applied simultaneously, resulting in the conventional 3-layer model 

comprising only skin, skull, and brain. 

To investigate the differences between head models, we examined the errors in each step of 

the source analysis process. First, to investigate the differences between forward results, we 

compared the lead field matrices, which represent the interaction between sensors and source 

points. Second, signals of source networks were generated using neural mass modeling 

(Jansen and Rit, 1995), and then the LCMV beamformer was employed for source 

reconstruction. The LCMV beamformer has been used to reconstruct source time courses in 

many previous studies (Brookes et al., 2011; Hillebrand et al., 2012; Hipp et al., 2011; Hipp 

et al., 2012; Kujala et al., 2007; Martino et al., 2011; Wibral et al., 2011), because its spatial 
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resolution is higher than that of linear inverse methods if the signals are not fully correlated in 

time (Darvas et al., 2004; Sekihara et al., 2005). The reconstructed source time courses were 

assessed with regard to the ratio between reconstructed source and projected noise and to the 

crosstalk effects. Finally, for the source connectivity analysis, we used the ICoh (Nolte et al., 

2004) and the generalized partial directed coherence (GPDC) (Baccalá and de Medicina, 

2007) as connectivity measures. 

The primary objective of the present study was to examine how different aspects of head 

modeling affect source space connectivity analysis in EEG and MEG, and how this interacts 

with the location and orientation of the interacting sources. As we used very conservative 

connectivity measures (ICoh and GPDC), our results are expected to give insight into 

whether and in which regions of the brain connectivity can be reliably estimated from EEG 

and MEG. They will also provide answers to the question, which features of the head should 

be modeled in detail? We believe that this is the first systematic study on the influence of 

head models to the source connectivity performance using FEM as a forward procedure of the 

source analysis. 

2 Methods 

2.1 Head modeling 

T1- and T2-weighted MR images of a healthy 25-year-old male subject were acquired on a 

3T MR scanner (Magnetom Trio, Siemens, Munich, Germany) using a 32-channel head coil. 

For the T1-weighted MRI an MP-RAGE pulse sequence (TR/TE/TI/FA = 2300 ms/3.03 

ms/1100 ms/8°, FOV = 256 × 256 ×192 mm, voxel size = 1 × 1 × 1 mm) with fat suppression 

and GRAPPA parallel imaging (acceleration factor = 2) was used. For the T2-weighted image 

an SPC pulse sequence (TR/TE = 2000 ms/307 ms, FOV = 255 × 255 × 176 mm, voxel size 

= 0.99 × 1.0 × 1.0 mm interpolated to 0.498 × 0.498 × 1.00 mm) was used. MR images were 

resampled to 1 mm isotropic resolution. The T2-weighted image was registered onto the T1-

weighted images using a rigid registration approach and a cost function based on mutual 

information implemented in the FSL-toolbox (Smith et al., 2004). 

For the construction of FEM models, different types of grids can be used. The commonly 

used regular hexahedral meshes allow for a fairly easy and fast model construction process 
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and can achieve good accuracies (Rullmann et al., 2009). Tetrahedral models enable the 

representation of smoother and thereby more realistic tissue boundaries (Lanfer et al., 2013). 

This leads to a more suitable representation of the conductive head tissue compartments, 

which should result in an even better accuracy, however, on the cost of a more elaborate and 

time-consuming model generation process. Since the goal of our study is not to propose a fast 

model creation pipeline, but to show the effects of the modeling of the different 

compartments, we use the more sophisticated non-intersecting surface based constrained 

Delaunay tetrahedral approach, in order to rule out as much as possible effects due to 

insufficient model detail and numerical inaccuracies. 

For the construction of the reference head model, a segmentation distinguishing skin, 

compact and spongy bone, CSF, and gray and white matter was generated from the MR 

images. Skin and compact/spongy bone were segmented using a gray-value based active 

contour approach (Vese and Chan, 2002). The segmentation of the skull was then manually 

corrected in order to reduce skull modeling errors (Lanfer et al., 2012b; Oostenveld and 

Oostendorp, 2002; van den Broek et al., 1998). The foramen magnum and the two optic 

canals were correctly modeled as skull openings, and the segmentation was extended 

downwards at the neck, as recommended by Lanfer et al. (2012b). For the CSF compartment, 

only the superficial (subarachnoidal) CSF was modeled, while the CSF in the ventricles was 

ignored. This was done in order to avoid the problems of complex source space geometries 

under the constraint of closed and non-intersecting compartment interfaces, which are 

necessary for the chosen tetrahedral modeling approach (see below). Although this modeling 

somewhat deviates from reality, it was shown in a recent study about the influence of interior 

CSF by Lanfer et al. (2012a) that ignoring the interior CSF caused quite small errors to the 

forward and inverse solutions, except for a few very deep source positions, while ignoring the 

superficial CSF caused large errors. Therefore, we modeled only the superficial CSF and 

considered the inferior CSF as white matter in the head model. High resolution surfaces of 

skin and compact and spongy bone were extracted using the software package CURRY 

(Compumedics Neuroscan), and a Taubin smoothing was applied to remove staircase-like 

effects (Taubin, 1995). The cortex surface and the surface of the white and gray matter 

interface were then segmented and extracted using the FreeSurfer-toolbox (Dale et al., 1999). 
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In order to use a constrained Delaunay tetrahedralization (CDT), all obtained surfaces were 

checked for intersections and those found were corrected by flattening the inner surface, 

guaranteeing a minimal distance between all surfaces. The CDT was executed using the 

software TetGen (Tetgen, 2014), and the resulting mesh consisted of 984,569 nodes and 

6,107,561 elements, respectively. Figure 1 shows an example view of the segmented head 

model. 

Table 1 lists the conductivity values of head compartments for each head model (Akhtari et 

al., 2002; Baumann et al., 1997; Dannhauer et al., 2011; Fuchs et al., 2007). Four simplified 

test head models were derived from the reference head model (Table 1) by eliminating the 

distinction between gray and white matter (5C-w/g), by neglecting the distinction between 

compact and spongy bone (5C-c/s) and using a value of 0.01 S/m, as proposed by Dannhauer 

et al. (2011), by neglecting the distinction between gray matter and CSF (5C-CSF), and by 

applying all three simplifications at once, leading to a conventional 3-layer model (3C). 

2.2 EEG and MEG sensors 

We used realistic sensor configurations for EEG and MEG. The positions of 80 electrodes 

(10-10 system) were digitized using a Polhemus (Polhemus Inc.) device and projected onto 

the skin surface. For MEG, a 273-channel whole head gradiometer sensor configuration (CTF 

Omega 2005 MEG by MISL) was constructed. 

2.3 FEM forward approach 

We used the Venant direct approach to model the dipole source in the brain (Buchner et al., 

1997), because of its good accuracy for sufficiently regular meshes (Lew et al., 2009b; 

Vorwerk et al., 2012). The FEM approach has a high computational efficiency when used in 

combination with the FE transfer matrix approach and with an algebraic multi grid 

preconditioned conjugate gradient solver (Lew et al., 2009b; Wolters et al., 2004). All 

forward solutions were computed using the SimBio-toolbox (SimBio, 2014). 

The time for computing the EEG and MEG transfer matrices for 80 electrodes and 273 

sensors, which has to be performed only once per geometry (Wolters et al., 2004), was 

666.34 s and 2,294.19, respectively. The forward solution for each dipole then only took 0.5 

ms for the EEG and 1.37 ms for the MEG. The maximum memory usage was 5.1 Gb and 8.5 
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Gb for EEG and MEG, respectively. These times were measured on a desktop computer 

(Intel Core i7-2600 @ 3.40 GHz CPU and 16 Gb RAM) running Ubuntu 11.04. The 

computations were performed on a single core of the CPU. 

2.4 Source space 

The Venant direct approach requires that the vertex closest to the source position in the head 

model is exclusively part of elements belonging to gray matter, the so-called Venant 

condition. Otherwise, modeling inaccuracies may occur, and the strength of the effects of 

conductivity changes in the neighboring white matter and CSF compartments might be 

strongly misestimated (Vorwerk, 2011). We first generated 129,640 regularly distributed 

source positions on the surface of the white/gray matter interface with outward surface 

normal directions. The source positions were then downsampled to 16,000 nodes. All vertices 

in the gray matter compartment fulfilling the Venant condition were computed and the source 

positions were moved into the direction of the next valid node, until this node became the 

node closest to the source position. 

2.5 Forward error measures 

In order to compare the forward solutions between reference and test head models, we used 

the relative difference measure (RDM) and the magnification factor (MAG) (Meijs et al., 

1989) as 

 
ˆ( ) ( )

RDM( )
ˆ( ) ( )

i i
i

i i

q q
q

q q
 

l l

l l
, (1) 

 
ˆ( )

MAG( )
( )

i

i

i

q
q

q


l

l
, (2) 

wh r  ||∙|| r pr s nts th  L2 norm, and ( )iql  and ˆ( )iql  are lead field vectors of the reference 

head model and the test head models at location qi, respectively (the subscript i indicates a 

location in source space). The RDM measures topographic difference and is bounded 

between 0 and 2. The MAG measures the magnitude error: 1 means no error, while deviating 

values indicate overestimated or underestimated magnitudes. 

2.6 Source depth and orientation  
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In order to investigate the relationship between forward error and source position, we defined 

source depth and orientation. The source depth was defined as the minimal distance of the 

source position qi to the inner skull surface. Figure 2b depicts the spatial distribution of the 

source depth. 

The source orientation was defined with respect to the radial orientation, which plays a 

crucial role in spherical volume conductor models for EEG, and an even greater role in MEG. 

In a realistic head model, spherical symmetry still plays a role, but a radial direction cannot 

be defined in a straightforward way anymore. Here we used the property of the vanishing 

magnetic field in a spherical volume conductor for a new definition. For each point in the 

source space the source orientation for which the MEG was minimal was defined as radial. 

Singular value decomposition was performed for the lead field of three orthogonal dipoles at 

each source position (Ahlfors et al., 2010; Huang et al., 2007; Lew et al., 2013): 

T[ ( ), ( ), ( )]x i y i z iq q q l l l USV , where U and V are the left and right singular vectors, 

respectively, and S is the diagonal matrix with singular values. The radial orientation was 

defined as the last column of V, corresponding to the smallest singular value in S. To 

quantify th  “radiality” of th  ori ntation of a sourc  at a c rtain position on th  cort x 

(defined by the normal direction on the cortex), the absolute cosine of the angle between 

normal direction and radial direction was calculated, and this value was called radiality index. 

Figure 2c depicts the spatial distribution of the radiality index over the cortex. The normal 

orientation is similar to the radial orientation when the radiality index is close to 1 and it is 

similar to tangential orientation when the radiality index is close to 0. 

2.7 LCMV Beamformer 

In the present study, the LCMV beamformer method (Van Veen et al., 1997) was used to 

reconstruct source time courses. The LCMV beamformer is an adaptive spatial filtering 

technique which has been widely used for source analysis because of its high spatial 

resolution (Sekihara et al., 2005). It is based on the assumption that the measured signals m at 

the sensors are generated by a small number N of focal neural sources ( )rqx  at source 

locations qr (r = 1…N) (the subscript r indicates source location r of the source space): 
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1

( ) ( )
N

r r

r

q q


m l x . (3) 

The LCMV beamformer constrains a spatial filter whose output )(ˆ iqx  at a particular 

location in the source space, called the pointing location qi, is: 

 ˆ( ) ( )T

i iq qx w m . (4) 

The weights of the spatial filter w(qi) are selected to minimize the variance of the filter output 

under the constraint that signals from the pointing location are passed with a unit gain: 

 
1

( )
min [ ( ) ( )] with ( ) ( )

i

T T

i m i i i
q

tr q q q q 
w

w C w w l I , (5) 

where Cm denotes the spatial covariance matrix of the measurement data. This optimization 

problem can be solved using Lagrange multipliers (Van Veen et al., 1997): 

 
1 1 1( ) ( )[ ( ) ( )]T

i m i i m iq q q q  w C l l C l . (6) 

2.8 Connectivity measures 

2.8.1 Multivariate autoregressive (MVAR) model 

N source time courses can be represented as a vector x: 

  1 2( , ) ( , ), ( , ),..., ( , )
T

r Nq t x q t x q t x q tx , (7) 

where t refers to time. Then the multivariate autoregressive (MVAR) model can be expressed 

as: 

 
1

( ) ( ) ( ) ( )
p

k

t k t k t


  x A x E , (8) 

where we omit the notation of qr for simplicity. E(t) is the N-dimensional vector of zero-

mean uncorrelated white noise, A(k) are the N × N matrices of model coefficients, and p is the 

model order. The model coefficients A(k) can be derived by model fitting algorithms, such as 

the Yule-Walker, Burg, and stepwise least squares algorithms (Kamiński and Liang, 2005; 

Schlögl, 2006). The model order p can be chosen by means of the logarithm of Akaike's Final 

Prediction Error (Akaike, 1971). 

Assuming A(0)=I and ( ) ( )k k A A  for k>0, Eq. (8) can be rewritten: 
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0

( ) ( ) ( )
p

k

t k t k


 E A x . (9) 

Equation (9) can be transformed to the frequency domain by applying the Z-transform: 

 ( ) ( ) ( )f f fE A X , (10) 

where 

 
0

( ) ( )exp( 2 )
p

k

f k ikf t


  A A  (11) 

with 2 1i    and t  is the data sampling interval. 

2.8.2 Imaginary coherence (ICoh) 

From the estimated model coefficients, the estimated spectral density matrix S(f) of the 

dataset is given by 

  1 1( ) ( ) ( ) ( ) ( ) ( ) ( )f f f f f f f


   S X X A E A E , (12) 

where * represents the matrix transpose and complex conjugate operation. The ICoh (Nolte et 

al., 2004) can be derived as 

 
Im( ( ))

ICoh ( )
( ) ( )

ij

ij

ii jj

S f
f

S f S f
 , (13) 

where Im(·) indicates the imaginary part and Sij(f) is an element of S(f). The ICoh excludes 

coherent sources with zero time lag and therefore reduces the effect of field spread and 

crosstalk. The ICoh ranges between -1 and 1. If the value of ICoh is positive, then source 

time courses i and j are interacting and source time course j is earlier than i, indicating that 

information is flowing from j to i. 

2.8.3 Generalized partial directed coherence (GPDC) 

The partial directed coherence (PDC) (Baccalá and Sameshima, 2001) is defined using the 

MVAR model coefficient as 

 
2

1

( )
PDC ( )

| ( ) |

ij

ij
N

kjk

A f
f

A f





, (14) 
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where ( )ijA f  is an element of ( )fA . The PDC denotes the ratio between flow from signal j 

to signal i and sum of flows from signal j to all other signals. N is the number of signals. The 

magnitude-squared PDC is generally used and it ranges between 0 and 1. A PDC value close 

to 1 indicates that signal i is caused by signal j, and a PDC value close to 0 means a lack of 

such a relation. 

The results of the PDC could be distorted by very different noise variances in the source time 

courses (Baccalá and de Medicina, 2007; Fasoula et al., 2013). In order to reduce this effect, 

the generalized PDC (GPDC) was introduced (Baccalá and de Medicina, 2007). It is defined 

as 

 
2

21

1
( )

GPDC ( )
1

( )

ij

ii
ij

N

kjk
kk

A f
C

f

A f
C




, (15) 

where Cii is the i-th diagonal element of the noise covariance matrix 
*)()( ff EEC  . The 

magnitude-squared GPDC is typically used and it ranges between 0 and 1. 

2.9 Simulation signal 

In order to investigate the effect of the head model on source connectivity analysis, we 

assume a two-source scenario with a simple source connectivity model generating two source 

time courses. The location of one source is kept fixed (blue circle in Fig. 2a), while the other 

source is positioned at all remaining locations of the source space. We selected the location of 

source 1 such that it has small RDM and radiality index in order to reduce the effect of the 

head modeling errors caused by source 1 (source depth about 9.67 mm, radiality index about 

0.02, RDM values for EEG: 5C-w/g≈0.066, 5C-c/s≈0.023, 5C-CSF≈0.073, and 5C≈0.067, 

and RDM values for MEG: 5C-w/g≈0.075, 5C-c/s≈0.007, 5C-CSF≈0.081, and 5C≈0.089). 

A neural mass model (David et al., 2005; Jansen and Rit, 1995) was used to generate source 

time courses for two unidirectional coupled sources. In this model, oscillations emerge from 

the interaction between pyramidal neurons with excitatory and inhibitory interneurons 

(Spiegler et al., 2010). To generate two source time courses with information flow from 

source 1 to 2, two local circuits, each comprising three masses of interneurons and pyramidal 

neurons, were connected such that the output of the pyramidal neurons in source 1 was 
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connected to the input of the excitatory interneurons in source 2. The parameters of the 

populations were set according to the study of David et al. (2005). The simulated signals 

were sampled at 200 Hz, resulting in 4,000 sample points. The EEG and MEG signals were 

then generated by multiplying the simulated source time courses with the lead field matrix of 

the reference head model and adding white Gaussian noise. 

For the two-source scenario, the covariance matrix is expressed as 

 
2 2 2

0 1 1 1 2 2 2( ) ( ) ( ) ( )T T

m r r r r r rq q q q    C I l l l l , (16) 

where 
2

0  is the noise variance, and 
2

1r  and 
2

2r  are the powers of the sources r1 and r2, 

respectively. qr1 and qr2 are the source locations. The measure of the strength of the r-th 

source can be defined as 

 

2 2

2

0

( )r rq



l
. (17) 

This is often called input SNR (Sekihara and Nagarajan, 2008; Sekihara et al., 2005). In the 

two-source scenario, the total input SNR was used to represent the ratio between the total 

strength of the two sources and the noise variance: 

 

2 2 2 2

1 1 2 2

2

0

( ) ( )r r r rq q 



l l
. (18) 

The input SNR is the number of sensors times larger than the conventionally used SNR. For 

example, the input SNR is equal to 300 when the SNR for the 80-channel EEG is about 3.75 

and the SNR for the 273-channel MEG is about 1.1. 

2.10 Evaluation of source reconstruction 

The quality of the source connectivity analysis relies on the performance of the source 

reconstruction method. Increasing projected noise in the source space and crosstalk effects of 

other sources are likely to affect the source connectivity estimation. Therefore, we first 

calculated the ratio between reconstructed source power and projected noise power. Second, 

we estimated in a two-source scenario how much the reconstruction of one of the sources is 

contaminated by the crosstalk from the other source. Then, in order to assess the amount of 

spurious connectivity caused by the crosstalk, we measured the correlation between the 

beamformer weights (vector w from Eq. (6)) of the two sources. 
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2.10.1 Output SNR of the LCMV beamformer 

In source space we calculated a ratio between reconstructed source power and projected noise 

power to compare the properties of the spatial filters obtained from the reference head model 

and test head models. This ratio is customarily called the output SNR (or Z
2
) and it can be 

expressed as (Sekihara et al., 2004) 

 
2

2

0

( ) ( )
( )

( ) ( )

T

i m i
i T

i i

q q
Z q

q q


w C w

w Iw
. (19) 

As the reconstructed source power includes the projected noise power, the Z
2
 value can be 

interpreted as 1 plus original source power divided by projected noise ratio. In other studies, 

this value was also called the pseudo-Z (Vrba and Robinson, 2001) or the neural activity 

index (Van Veen et al., 1997). 

2.10.2 Crosstalk to signal ratio 

In order to evaluate the crosstalk to signal ratio of the spatial filters for the head models, we 

used the beam response analysis, which expresses the sensitivity of a point source in one 

location to a source at another location (Sekihara and Nagarajan, 2008). The beam response, 

( , )i rR q q , is defined as 

 
1 1

ˆ( ) ( ) ( ) ( ) ( ) ( , ) ( )
N N

T T

i i i r r i r r

r r

q q q q q R q q q
 

   x w m w l x x  (20) 

(as mentioned above, the subscript i indicates a pointing location of the beamformer and the 

subscript r indicates the actual location of a focal source). In the present simulation, we 

assumed a two-source scenario in which the source locations were already known as qr1 and 

qr2. The beam response at the two locations can then be expressed as 

 
1 1 1 1 2 1

2 2 1 2 2 2
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r r r r r r
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     
     

     
. (21) 

The main diagonal elements 1 1( , )r rR q q  and 2 2( , )r rR q q are magnitude factors, while the off-

diagonal elements define the crosstalk. The crosstalk to signal ratio (CSR) can be expressed 

as 

 
1 2 2 1

1 2

1 1 2 2

( , ) ( , )
CSR( )    and   CSR( )

( , ) ( , )
r r r r

r r

r r r r

R q q R q q
q q

R q q R q q
  . (22) 
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2.10.3 Weight correlation 

While CSR represents the crosstalk effect in each source time course, the crosstalk effect 

caused by both of the two source time courses could be assessed by examining the correlation 

between weights calculated by the LCMV beamformer (vector w from Eq. (6)), the so-called 

weight correlation (Brookes et al., 2011). The weight correlation was computed using the 

correlation coefficient between weights of the LCMV beamformer at source 1 and source 2. 

If the weights are highly correlated, the reconstructed signals can also be correlated and this 

may appear as crosstalk effect in the LCMV beamformer based source connectivity analysis. 

2.11 Evaluation of the measured source connectivity 

The autoregressive model underlying the computation of the connectivity measures was 

estimated using the ARFIT-toolbox (Schneider and Neumaier, 2001), and the SIFT-toolbox 

(Delorme et al., 2011) was used to compute ICoh and GPDC. These computations were 

performed using the software MATLAB (MathWorks). 

Furthermore, a relative error (Astolfi et al., 2007) was computed to compare the connectivity 

results between reconstructed source time courses and original source time courses obtained 

by ICoh and GPDC. The relative error REij of the connectivity from signal j to signal i is 

defined as 

 
 

 
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1 2 , 1 2

2

21, 1 2

( , ) ( , )
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ij ij ori

ij
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f f f f
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f f

 




 , (23) 

where 1 2( , )ij f f  is the mean value of the causality measure (ICoh or GPDC) from signal j 

to signal i over the frequency range from f1 to f2 for reconstructed source time courses, and 

, 1 2( , )ij ori f f  is the mean value of the causality measure for the original source time courses 

in the same frequency range. The absolute error (the numerator in the equation of the relative 

error) was normalized to 21, 1 2( , )ori f f  in order to assess the relative change between the 

absolute error and the connectivity result of the original signals for the direction of the causal 

interaction. 

For the ICoh, we only considered the direction from source 1 to 2 since the results for the 

opposite direction are just the reverse. In contrast, for the GPDC we considered both 

directions because the GPDC can measure bidirectional relationships. Note that the direction 
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from source 2 to 1 refers to a spurious connection since we only modeled causal flow from 

source 1 to 2 in the simulation setting. The main frequency band of the source time courses 

generated by the neural mass model was from 3 to 7 Hz, so this frequency band was used to 

calculate the relative error. 

2.12 Visualization 

For visual inspection, the results in source space were mapped onto the inflated surface of the 

interface between white and gray matter, which comprised 129,707 nodes and 259,482 

elements. Figure 2a depicts the inflated surface, where light gray marks gyri and dark gray 

sulci. The underlying curvature is visualized through the semi-transparent color map (see, e.g., 

Fig. 2b). All visualizations were carried out using the software SCIRun (SCIRun, 2014). 

3 Results 

3.1 Forward simulations 

The spatial distributions for RDM and MAG were mapped onto the inflated surface of the 

white and gray matter interface (Fig. 3). The dependence of the forward error on radiality 

index and source depth is shown in heat maps (Fig. 4). While the spatial distribution maps in 

Figure 3 show only the more superficial parts (source depth < 30 mm) of the right 

hemisphere, the heat maps represent the entire source space. Contour lines on the heat map 

represent the number of samples per bin, thus indicating the reliability of the map (see Fig. 5 

for quantitative values). The two local peaks in the contour lines indicate roughly the crests of 

gyri (radiality index > 0.75 and source depth < 5 mm) and the sulcal walls (radiality index < 

0.4 and 5 mm < source depth < 15 mm), respectively. 

5C-w/g model: For EEG, large RDM errors (>0.2) are mainly found along the crests of gyri 

(source depths < 5 mm and radiality index > 0.6) as well as for very deep sources. The 

magnitude is slightly overestimated in some superficial areas (crests of gyri; source depth < 5 

mm and radiality index > 0.95) and in the insula, and slightly underestimated in some sulcal 

regions. For MEG, large RDM errors (>0.2) are observed mainly in areas with high radiality 

(> 0.95) (i.e., the crests of gyri and the troughs of sulci), irrespective of the source depth, as 

well as in very deep areas. The magnitude is overestimated in sulcal walls and slightly 



Accepted in NeuroImage, 23 January 2015 

 

19 

 

overestimated at gyral crests. The patchiness of the RDM maps (Fig. 3), especially in the 

MEG case, is due to undersampling of the cortical curvature by the source space—only some 

dipoles exactly hit the gyral/sulcal line and already a small deviance causes a large difference 

in radiality. The same patchiness can be observed in the spatial distribution of the radiality 

index in Figure 2d. 

5C-c/s model: In the EEG case, RDM and MAG spatial and heat maps show that the 

negligence of the compact/spongy bone distinction clearly has a relatively small impact on 

the forward solution compared to the other investigated simplifications, provided that an 

optimized skull conductivity value is used. In temporal areas, RDM and MAG are somewhat 

increased, although the errors are smaller than for the other test models. This can be 

explained by the fact that the skull in the temporal areas is almost entirely composed of 

compact bone, and the optimized skull conductivity value, 0.01 S/m, is slightly larger than 

the conductivity value for the compact bone, 0.0064 S/m. The spatial distribution of the RDM 

error mapped onto the non-inflated white matter surface with spongy bone boundaries is 

shown in Figure 6. The areas underneath the spongy bone show small RDM, while the RDM 

error is larger in temporal areas and at the top of the parietal lobe (note that Figure 3 and 

Figure 6 use different color bar ranges). The RDM error at the top of the parietal lobe is not 

clearly visible in Figure 3 because of the view angle. As expected, not modeling the compact 

and spongy bone distinction had nearly no effect on both RDM and MAG for MEG. Only a 

weak influence at the insula and temporal pole was found. 

5C-CSF: Neglecting the CSF causes RDM errors in approximately the same areas as for 

neglecting the white/gray matter distinction (for EEG they are slightly stronger and less 

dependent upon the radiality index). In contrast, the MAG errors are, while also following the 

same spatial patterns, much stronger. In particular, neglecting the CSF leads to a magnitude 

overestimation for EEG and an underestimation for MEG. 

3C model: The errors for the simple 3C model are largely a superposition of the errors 

occurring with the other test model, in particular 5C-w/g and 5C-CSF. In some cases the 

errors even compensate each other, e.g., the MAG error in superficial regions for MEG.  

3.2 Source reconstruction 
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As explained in the Method section, we investigated the properties of the spatial filters of the 

LCMV beamformer with respect to head model simplifications on the example of the source 

reconstruction in a two-source scenario using three different measures: output SNR, CSR, 

and weight correlation. 

3.2.1 Output SNR (Z
2
) 

The ratio between reconstructed source power and projected noise power was assessed using 

the output SNR (Z
2
) in the two-source scenario. A small Z

2
 value means that the 

reconstructed source contains a large amount of noise. We computed ln(Z
2
) for each head 

model and different input SNR (1 and from 20 to 500 in increments of 20). Here, ln denotes 

the natural logarithm. As the Z
2
 value is always greater than one, ln(Z

2
) is larger than zero. 

The computed ln(Z
2
) values were then sorted in ascending order of the associated RDM. We 

plotted the heat maps for the reference head model using the mean output SNR value at each 

input SNR, because naturally there was no RDM value for the reference head model. The 

results for source 1 and source 2 are plotted as heat maps in Figure 7. To investigate the 

spatial distribution of ln(Z
2
), we plotted maps for each head model for an input SNR of 300 

(Fig. 8) as an example. In the spatial distribution maps for source 1, the output SNR value for 

source 1 is mapped to the corresponding location of source 2 (while source 1 is fixed in one 

location). 

In general, at extremely small input, SNR (input SNR=1) ln(Z
2
) is small, and then rises 

sharply if the input SNR is increased only slightly (Fig. 7). Further increase of the input SNR 

often causes ln(Z
2
) to decay again. For source 1, the slope of this decay does not depend on 

the RDM (accuracy of the forward solution) for EEG, and only slightly so for MEG (it 

becomes steeper for larger RDM). For the reference and the 5C-c/s models, ln(Z
2
) does not 

decrease at all with increasing input SNR. This relative insensitivity to the RDM (i.e., the 

forward error) is easily explained by the fact that the position of source 1 (fixed source) was 

chosen such that the RDM is small for all test models. The spatial maps (Fig. 8) reveal that 

for source 1 deeper areas show smaller ln(Z
2
) in EEG, while the crests of gyri and troughs of 

sulci show smaller ln(Z
2
) in MEG. The ln(Z

2
) values are large (>2) near the fixed point (i.e., 

when both sources are very close to each other), but these patterns are different between EEG 

and MEG. This could be due to the different crosstalk effects of the test head models. 
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In contrast, for source 2 the maximum ln(Z
2
) decreases and the slope of its decay with 

increasing input SNR increases if the RDM is increased (except for the reference model of 

course). Hence, for any given input SNR, ln(Z
2
) decreases with increasing RDM, which is 

also reflected by the observation that the spatial maps (Fig. 8) very much resemble the spatial 

maps of the RDM (Fig.3). The effect is least pronounced for the 5C-c/s model (for MEG even 

absent). In general, the ln(Z
2
) values were smallest for the 3C model, followed by the 5C-

CSF, 5C-w/g, and 5C-c/s models. 

3.2.2 Crosstalk to signal ratio (CSR) 

We quantify the extra crosstalk between two sources introduced by the particular head model 

simplifications embodied in the test models. In Figure 9, the CSR was plotted on the inflated 

surface for an input SNR of 300. Note that CSR values close to +1 or -1 indicate large 

crosstalk and values close to 0 low crosstalk. 

In the reference model the CSR maps for both source 1 and source 2 show similar patterns. 

Noticeable CSR values are found near the location of source 1, i.e., for cases where both 

sources are located very close to each other. Due to source orientation similarity between 

source 1 (fixed on sulcal wall) and source 2, large CSR values are generally found in the 

sulcal walls (with different signs depending on their mutual parallel or antiparallel 

orientation). Furthermore, large CSR values are found more widely spread over the entire 

cortex in EEG as compared to MEG, where they are more concentrated to some vicinity of 

source 1. This difference could be caused by the different number of sensors (MEG has 273 

coils, while EEG has 80 electrodes). 

The CSR maps for the 5C-c/s model are quite similar to those of the reference model except 

for source 2 with EEG. In that case, somewhat larger CSR values are found near the position 

of source 1 and in temporal areas, similar to the RDM error for the 5C-c/s case (Fig. 3). 

For the other test head models, large CSR values can be found in widespread areas and near 

the position of source 1 (fixed source). For source 1, while the patterns of the CSR maps for 

EEG and MEG are different in detail, large CSR values are found mainly in sulcal walls. For 

source 2, the pattern of the CSR map is different to that of source 1, and larger CSR values 

are found in a wider area for EEG than for MEG, especially in the temporal and insular 

cortex, although the distribution patterns are slightly different. 
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The box plots in Figure 10 show the dependence of the CSR value on the input SNR. In the 

reference model, the CSR slightly decreases with increasing input SNR, since spatial 

resolution of the LCMV beamformer increases with SNR (Brookes et al., 2008; Sekihara et 

al., 2005). However, in most test head models (except 5C-c/s), the CSR does not depend on 

the input SNR. This finding indicates that most large CSR values in the test head models are 

not caused by the decreased spatial resolution of the LCMV beamformer, but by the head 

modeling errors. 

3.2.3 Weight correlation 

To investigate crosstalk effects caused by both of the two sources, the weight correlation 

between source 1 and source 2 was calculated and mapped onto the location of source 2 on 

the inflated surface (Fig. 11). While the CSR represents crosstalk effects in each source, the 

weight correlation represents crosstalk effects in each pair of two sources. 

In the reference model, large weight correlation values were found in almost all places, 

mainly in sulcal walls (Fig. 11), while large CSR values were mainly found near the position 

of fixed source 1 (i.e., when the distance between source 1 and source 2 is small) (Fig. 9). 

The large weight correlation values for MEG are found more in the vicinity of the position of 

source 1 than for EEG in the reference model case, which could be due to the different 

numbers of sensors, similar to the CSR results (Fig. 9). 

In the other test head models, large weight correlation values were found in widespread areas 

with different patterns for both EEG and MEG (Fig. 11). These patterns were not similar to 

the CSR maps (Fig. 9). In 5C-c/s model and 3C model for EEG, although widespread areas 

exhibited large weight correlations, the values were smaller than for other head models. 

In order to investigate the effect of different input SNR, the weight correlations were 

computed using different input SNR (100, 200, 300, 400, and 500). See box plots in Figure 

12. It turned out that the input SNR does not strongly influence the weight correlation. 

However, unlike in the CSR case (Fig. 10), the weight correlation values of the reference 

model are quite large and similar to those of the test head models. Moreover, the weight 

correlation value of the 3C model for EEG is smaller than those of the other head models. 

3.3 Source connectivity analysis 
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To investigate the effects of the simplified head models on the source connectivity analysis, 

we calculated the relative error of ICoh and GPDC between the original and reconstructed 

source time courses in the frequency range from 3 to 7 Hz. We considered the connectivity 

flow from source 1 to 2 (1→2) for both measures. However, the connectivity flow from 

source 2 to 1 (2→1) was only considered for GPDC, because the ICoh is a unidirectional 

measure (the result for the opposite direction is just the reverse). The spatial distribution 

maps of the relative errors for an input SNR of 300 are shown in Figure 13. As obtained by 

the logarithm of Akaike’s Finite Prediction Error, the MVAR model order was 10 for the 

original source time courses and 9.21±2.01 (mean±standard deviation) for the reconstructed 

source time courses. 

Reference model: When using the same model for simulation and reconstruction, the relative 

errors in both ICoh and GPDC were very low everywhere (even lower for ICoh). So, in 

principle, it is possible to reconstruct the connectivity from EEG and MEG data. However, 

some spurious connections are found near the position of source 1 (i.e., if variable source 2 is 

located near fixed source 1) in GPDC for source 21. Since we only modeled causal flow 

for source 1→2 in the simulation setting, GPDC value for source 2→1 indicates spurious 

connectivity. Although the weight correlation map in Figure 11 revealed large correlation 

values in widespread areas, the spatial distribution patterns of the relative error in 

connectivity are very similar to the CSR maps for the reference model (Fig. 9).  

5C-w/g model: Relative error maps of ICoh and GPDC for source 12 show a very similar 

distribution pattern for RDM (Fig. 3) and output SNR for source 2 (Fig. 8). For ICoh the 

relative errors are quite small in most positions (even lower for MEG) and larger errors occur 

only at very few locations. In contrast, the relative errors for the GPDC are somewhat larger 

and more widespread. This could be due to the crosstalk effect. In the GPDC source 21 

case, large relative errors are found in wide areas in both EEG and MEG, and the distribution 

pattern is similar to the one for weight correlations (Fig. 11). 

5C-c/s model: Although weight correlation values in some areas were large (Fig. 11), results 

for both ICoh and GPDC show low relative connectivity errors, similar to the reference 

model. Only the spurious connectivity for source 21 estimated with GPDC from EEG is 

more widespread.  
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5C-CSF model: Leaving out the CSF compartment from the head model produces, for both 

EEG and MEG, strong relative errors mostly in both superficial and deep positions, but not so 

much in intermediate positions (where the source orientations are more tangential). Again, 

the spatial pattern is similar to the RDM (Fig. 3) and the output SNR (Fig. 8) maps and the 

relative errors for GPDC are much stronger and widespread than the ones for ICoh. In GPDC 

for the source 21 case, large relative errors are found with a similar spatial pattern in the 

weight correlation (Fig. 11). 

3C model: In this model, which constitutes a combination of the simplifications of the other 

three test models, the error in the estimation of the true connectivity from source 12 is a 

combination of the errors in the other models, with a slight superadditivity in the EEG case. 

In contrast, for the spurious connectivity 21, the errors seem to reduce with respect to the 

single violations in 5C-w/g and 5C-CSF, indicating that the effects of both simplifications 

partly cancel each other. 

Box plots in Figure 14 show the relative error for ICoh and GPDC as a function of the input 

SNR (100, 200, 300, 400, and 500). In the ICoh and GPDC source 12 case, the relative 

errors increase for both EEG and MEG with increasing input SNR, except for the reference 

and 5C-c/s models. This finding might be related to the output SNR value because the output 

SNR of the LCMV beamformer is decreased in certain regions in which head modeling errors 

(RDM) are large. On the other hand, the relative errors in GPDC for source 21 are not 

noticeably changed in spite of the increased input SNR, except for the reference and 5C-c/s 

models. Since source 1 was fixed in a location with low RDM, the relative errors for source 

21 are mainly affected by the crosstalk effect caused by the imperfect head modeling rather 

than the change of the input SNR. 

4 Discussion 

One key question in head modeling is which types of tissue to consider. Here we investigated 

three additions to the classical 3-layer head model that have been currently discussed: the 

distinction between white and gray matter in the brain (Acar and Makeig, 2013; Güllmar et 

al., 2010; Ramon et al., 2004; Vorwerk et al., 2014), the distinction between compact and 

spongy bone in the skull (Dannhauer et al., 2011; Montes-Restrepo et al., 2014; Ramon et al., 
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2004; Sadleir and Argibay, 2007; Vorwerk et al., 2014), and the inclusion of a CSF 

compartment (Acar and Makeig, 2013; Lanfer et al., 2012a; Ramon et al., 2004; Vorwerk et 

al., 2014; Wolters et al., 2006). Besides the effect of these features in forward and inverse 

analysis of EEG and MEG, we also investigated how important they are for source 

connectivity analysis. As inverse procedure, we employed an LCMV beamformer, which has 

the reputation of high spatial resolution in certain scenarios (Sekihara et al., 2005) and is 

especially suited for the reconstruction of uncorrelated focal (dipolar) sources. To assess the 

connectivity, we used ICoh and GPDC; especially the first of which has a reputation for 

largely suppressing spurious connectivity arising from volume conduction effects (Nolte et al., 

2004). 

4.1 Effects of the head compartments 

4.1.1 The CSF compartment 

The CSF compartment is disregarded in the conventionally used 3-layer head model. 

However, our results show that the exclusion of the CSF compartment has considerable 

influence, not only on forward modeling and source reconstruction (as shown before by, e.g., 

Vorwerk et al., 2014, Acar and Makeig, 2013; Hyde et al., 2012; Lanfer et al., 2012a; 

Rullmann et al., 2009), but also on the source connectivity analysis for both EEG and MEG. 

Large errors in connectivity estimates were found in the same areas where large topographic 

errors in the forward solution occurred. These errors were considerably larger than for the 

other investigated head model simplifications and therefore dominated the error pattern of the 

3C model. Moreover, the error in the GPDC estimate was directly affected by the crosstalk 

effect caused by not considering the high conductivity value of the CSF compartment. This 

finding is in line with previous studies on the effect of the CSF compartment in source 

analysis. They demonstrated that ignoring the CSF causes distortions in estimated current 

flow (Wolters et al., 2006), EEG potentials (Ramon et al., 2004), and dipole source 

localization (Acar and Makeig, 2013; Lanfer et al., 2012a; Wolters et al., 2006). In EEG 

experiments, Rice et al. (2013) showed that changing the subject's position from prone to 

supine had a significant effect on the EEG signal magnitudes, because of changes in the CSF 

layer thickness. Furthermore, a forward simulation study on head modeling by Vorwerk et al. 

(2014) showed that ignoring CSF has a large influence on the signal topography in both EEG 

and MEG, especially for superficial areas. Hence, the CSF compartment seems to be the most 
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important addition to the classical 3-shell head model from both the source localization and 

connectivity analysis points of view. 

4.1.2 Distinction between white and gray matter 

The distinction between white and gray matter also has not been considered in most of the 

previous studies on source analysis. Here, we found that neglecting this distinction causes a 

decrease in output SNR in such regions that also showed large topographic errors in the 

forward solution. This in turn affected the results of the source connectivity analysis. 

Moreover, crosstalk effects caused by the head modeling error also affected the results 

obtained by GPDC. These findings are in accord with previous source analysis studies. They 

showed that removing the white/gray matter distinction caused topography and magnitude 

error for both EEG and MEG (Vorwerk et al., 2014), decreased scalp potential for EEG 

(Ramon et al., 2004), and forward and inverse error for MEG (Van Uitert et al., 2003). 

4.1.3 Distinction between compact and spongy bone 

Ignoring the compact/spongy bone distinction showed, as expected, almost no effect on MEG 

and a relatively weak effect on EEG. Although some small errors in the EEG forward 

solution occurred near the temporal lobe and near the top of the head (see Fig. 3 and Fig. 6) 

as shown by Vorwerk et al. (2014), these errors did not have a large influence on the results 

of the inverse and connectivity analysis. The small errors in the forward solution might 

reflect some mismatch between the optimal skull conductivity and the local skull structure, 

which in the temporal regions contains very little spongy bone. In summary, our results 

together with previous findings confirm that it is sufficient in most cases to model the skull as 

a homog n ous compartm nt with an appropriat  (“optimal”) conductivity. This value has 

been shown to be critical by Dannhauer et al. (2011) and was estimated in that paper to be 

about 0.01 S/m. In order to further increase accuracy, one could use calibrating methods to 

determine the effective skull conductivity (Aydin et al., 2014; Huang et al., 2007; Lew et al., 

2009a). Besides the skull conductivity, also the geometry of the skull is important. For 

example, Lanfer et al. (2012b) showed that various errors and simplifications, in particular 

the common practice of simplifying the complicated skull base and to cut off models directly 

underneath the brain, can cause intolerable errors in forward computation and source 

localization. 
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For the MEG case, we found only very small effects of the way the skull is modeled onto 

forward, inverse, and connectivity analysis. This is in agreement with common belief and 

most previous studies (Hämäläinen et al., 1993). On the other hand, a recent study by 

Stenroos et al. (2014) came to the conclusion that skull modeling can also be important for 

MEG.  

4.2 Effects of source orientation 

In our simulations, we assumed that the sources were represented by point dipoles with 

surface normal orientation. Most of the larger errors for EEG were found in superficial areas, 

while source orientation had no influence. In contrast, large errors for MEG were found in 

regions where the radiality index was over 0.95. By definition these were the source 

orientations with the smallest MEG signal (i.e., the lowest SNR). Hence, MEG-based 

connectivity analysis should be complemented by a computation of the radiality indices of 

the involved sources, and discarded if these values are too high. It is relatively simple to 

compute a radiality map for any individual brain (see, e.g., Fig. 2d). 

4.3 Effects of head modeling errors on LCMV beamformer 

We found that source analysis using the LCMV beamformer on EEG or MEG was affected 

by the head modeling errors, leading to decreased output SNR and increased crosstalk. The 

output SNR inversely correlated with the topographic errors in the forward solution (RDM) 

as well as with the input SNR. These findings are in agreement with the results of Steinsträter 

et al. (2010), who studied anisotropy of the skull conductivity in EEG source analysis. 

In the reference head model, although large weight correlation values were found in 

widespread areas (Fig.11), noticeable CSR and relative errors for GPDC were only found 

when sources 1 and 2 were quite near to each other. However, large CSR values in the test 

head models were found in widespread areas and did not noticeably change even though the 

input SNR was increased. The crosstalk effect caused by head modeling errors was paralleled 

by the similarly distributed relative GPDC error and large weight correlation. This implies 

that crosstalk caused by head model errors can affect the source connectivity analysis even 

though the source positions are quite distant from each other. 

4.4 Effects of head modeling errors on connectivity measures 
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The ICoh method was designed to be less affected by volume conduction (Nolte et al., 2004). 

In a source connectivity study by Sekihara et al. (2011), the ICoh performed better than 

classical coherence in source space connectivity analysis, because it was less affected by the 

crosstalk effect of the inverse algorithm, provided that its spatial resolution was high enough. 

Likewise, our results showed that ICoh was less influenced by the crosstalk effect caused by 

head modeling errors, as compared to the GPDC method. However, large relative errors for 

ICoh were found in some regions and the relative error maps were very similar to the RDM 

and output SNR (inversely) maps. It could be inferred, therefore, that the results obtained by 

ICoh are also affected by imperfect head modeling, albeit less severely. 

The results of GPDC from source 1 to 2 were affected by decreased output SNR as well as by 

the crosstalk effect. On the other hand, in GPDC from source 2 to 1 (representing spurious 

connectivity, as there was no causal interaction in the original signals), mainly the crosstalk 

affected the results of GPDC and the error patterns were very similar to the large weight 

correlation. This finding implies that the errors in GPDC could occur due to the highly 

correlated weights of the LCMV beamformer caused by head modeling errors, and that 

weight correlation between source locations should be checked before source connectivity 

analysis. 

The crosstalk effect caused by the LCMV beamformer in the results of partial directed 

coherence (PDC), the method upon which GPDC is based, has been studied by Hui et al. 

(2010). To reduce this effect, they applied a nulling beamformer (or suppression beamformer 

(Dalal et al., 2006)), which is a modified version of the LCMV beamformer, where a spatial 

filter is obtained by nulling other source signals from specific locations in source space. They 

demonstrated that the nulling beamformer could reduce the crosstalk effect caused by the 

inverse algorithm in the results of PDC. However, they did not consider the influence of the 

head modeling error on the source connectivity analysis. The effects of the head modeling 

errors are likely to remain even if the nulling beamformer method is applied. This is 

demonstrated by the ICoh results (Fig. 13), where, despite of the removal of almost all the 

crosstalk, the error in connectivity largely remains. 

While the results of ICoh were generally better than those of GPDC in the two-source 

scenario with a simple connectivity pattern (ICoh has the advantage of being less affected by 

crosstalk), one should be aware that ICoh could cause additional errors in multivariate cases. 
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The ICoh is able to measure bivariate unidirectional causal flow, while the GPDC is able to 

measure multivariate uni- and bidirectional causal flow. Bivariate methods can evaluate the 

interactions by considering pairs of signals, but this could cause some spurious connections 

since it does not distinguish between direct and indirect connections (Blinowska, 2011; Kus 

et al., 2004). 

4.5 Limitations and future study 

Although the reference head model is anatomically more plausible than the conventionally 

used 3-layer or spherical head models, it is also a simplification of the reality. Therefore, it is 

important to note that the results of the present simulation study are subject to the assumption 

that the reference head model is an appropriate approximation to the read human head. 

In our simulation, the white matter was simplified using an isotropic conductivity value in the 

reference head model. However, the white matter has anisotropic conductivity with higher 

conductivity along fibers and lower conductivity perpendicular to fibers. Previous studies 

reported that the white matter anisotropy caused return currents along the white matter fibers 

(Wolters et al., 2006) and affected the localization of sources near the white matter (Güllmar 

et al., 2010; Hallez et al., 2008; Haueisen et al., 2002). The head modeling study by Vorwerk 

et al. (2014) also demonstrated that topography errors were found in some regions in the 

crests of gyri and the troughs of sulci when the white matter anisotropy was not considered, 

although the errors were much smaller than the effect of ignoring the white and gray matter 

distinction or the CSF. Based on the present simulation results, we would expect that some 

errors in source connectivity analysis might occur in these regions. Future work should 

therefore include the white matter anisotropy to investigate its effect on source connectivity 

analysis. 

In order to assume a practical relevance, we used realistic sensor configurations for the EEG 

and MEG. Although the results in CSR and weight correlation maps appear to show effects of 

the different sensor numbers (MEG being more focal than EEG, especially in the reference 

head model), our results about the effect of head modeling errors are not likely to be highly 

influenced by the different sensor numbers. 

Note that, unlike for the test head model cases, we used the same lead field matrix in both 

forward and inverse procedures for the reference head model case. This is actually an 
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unrealistic case, and thus the simulation results for the reference head model were almost 

perfect (this is the so-called inverse crime (Kaipio and Somersalo, 2007)). Although the 

reference head model case is impractical, it helps us to separate errors coming from the head 

modeling error from those coming from the inverse procedure (e.g., the results about 

crosstalk effect in our simulation). 

Our study is, of course, limited by the fact that we did not exhaustively study all possible 

inverse algorithms and connectivity measures. Instead, we used a source localization method 

that was designed for high spatial selectivity and two connectivity measures that are known 

for suppressing spurious connectivity. Here, the main focus was the head model. A 

systematic comparison of inverse algorithms and connectivity measures will have to be done 

in a future study. 

5 Conclusions 

To investigate the influence of the head model, we compared the reference head model and 

the test head models, thereby assuming that the reference model is an appropriate 

approximation to the real human head. Our results show that the head modeling errors caused 

by neglecting particular head compartments affect source reconstruction as well as 

connectivity analysis in both EEG and MEG. The distinction between white and gray matter 

and the inclusion of the CSF compartment have not usually been considered in head 

modeling for source analysis, but are shown to be important for source connectivity analysis 

in both EEG and MEG. The distinction between compact and spongy skull proved to be less 

critical to the source connectivity analysis in EEG, when an optimal skull conductivity value 

was used, and virtually unimportant for MEG. When using MEG to estimate sources and 

source connectivity, a radiality check should be performed and areas with large radiality 

indices should not be considered. Furthermore, it was found that source reconstruction and 

source connectivity errors spatially coincided with topographical forward errors (RDM), 

which strengthens the relevance of forward simulation studies (e.g., Vorwerk et al., 2014). 

Finally, the very conservative ICoh proved to be much safer to use with imperfect head 

models than the GPDC. As in our results the crosstalk errors of the GPDC looked similar to 

the spatial distribution pattern of the large weight correlation, the weight correlation should 

be carefully checked when using the LCMV beamformer for connectivity analysis. 
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Table 

Table 1: Conductivity values (unit: S/m) of the head models (w is white matter, g is gray 

matter, c is compact bone, and s is spongy bone) 

Compartment Reference 5C-w/g 5C-c/s 5C-CSF 3C 

Brain 
w: 0.14 

0.33 
w: 0.14 w: 0.14 

0.33 
g: 0.33 g: 0.33 g: 0.33 

CSF 1.79 1.79 1.79 0.33 0.33 

Skull 
c: 0.0064 c: 0.0064 

0.01 
c: 0.0064 

0.01 
s: 0.02864 s: 0.02864 s: 0.02864 

Skin 0.43 0.43 0.43 0.43 0.43 
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Figures 

 

 

Fig. 1. Sagittal cut through the segmented reference head model comprising six tissue 

compartments. 

 

Fig. 2. (a) The inflated surface of the white/gray matter interface. The curvature of the cortex 

is indicated by light gray for gyri and dark gray for sulci. The blue circle represents the fixed 

location for source 1. (b) Distance of the sources to the inner skull surface (source depth), (c) 

radiality index, and (d) radiality index thresholded at 0.85, visualized on the inflated surface.  
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Fig. 3. RDM and MAG for the test head models in EEG and MEG plotted on the inflated 

surface of the white/gray matter interface. 

 

Fig. 4. Heat maps for RDM and MAG against source depth and radiality index in EEG and 

MEG. The plotted values are the medians per bin (bin width 5% of maximum, i.e., 0.05 for 

radiality index and 2.6 mm for source depth). The contour lines indicate the sample count per 

bin (see Fig. 5 for interpretation). White colored bins contain no samples. 
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Fig. 5. Heat map and corresponding contour lines for the sample count per bin as a function 

of source depth and radiality index. 

 

Fig. 6. RDM for the 3C-c/s head model visualized on the non-inflated surface of the white 

and gray matter interface with the spongy bone boundary overlaid (transparent gray color). 

Obviously, the RDM error is larger in parts of the brain not covered by spongy bone. 

However, this error is still smaller than those of the other test head models (see Fig. 3). Note 

that, although in principle spongy bone also exists in temporal areas, its layer is very thin 

there and could therefore not be captured by the resolution of our FEM model. 
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Fig. 7. Heat map of ln(Z
2
) of sources 1 and 2, as function of input SNR and RDM in EEG and 

MEG. Note the different RDM ranges of the y-axis. The output SNR was calculated with 

different input SNR. Then, the output SNR was ordered in ascending order of the RDM value 

for each head model. The heat maps for the reference head model represent mean output SNR 

value at each input SNR. 

 

Fig. 8. ln(Z
2
) for sources 1 and 2 in EEG and MEG with input SNR of 300, plotted on the 

inflated white/gray matter interface. Note that in the maps for source 1, the ln(Z
2
) value for 

source 1 is mapped onto the corresponding location of source 2 for visualization purposes 

because the location of source 1 is fixed in one location and only the location of source 2 

varies. 
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Fig. 9. Crosstalk to signal ratio (CSR) for sources 1 and 2 in EEG and MEG with an input 

SNR of 300. CSR values close to 0 indicate small crosstalk. Note that in the maps for source 

1, the CSR for source 1 is mapped onto the corresponding location of source 2 for 

visualization purpose because the location of source 1 is fixed in one location and only the 

location of source 2 varies. 

 

Fig. 10. Box plots for crosstalk to signal ratio (CSR) in EEG and MEG computed with 

different input SNR. The middle, bottom, and top of each rectangular box represent median, 

25th percentile, and 75th percentile, respectively. The whiskers denote 1.5 times the 

interquartile range from the 25th and 75th percentiles. The black dots represent outliers. 
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Fig. 11. Weight correlation of the LCMV beamformer at sources 1 and 2 with input SNR 300. 

 

Fig. 12. Box plots for weight correlation of the LCMV beamformer at sources 1 and 2 in 

EEG and MEG, computed with different input SNR. For further information about the box 

plot, see the caption of Fig. 10. 
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Fig. 13. The relative error between the ICoh and GPDC results (3-7 Hz) of the original 

simulation time courses and those of reconstructed time courses in EEG and MEG when the 

input SNR is 300. 1→2 indicates information flow from source 1 to 2, and 2→1 indicates 

information flow from source 2 to 1. 
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Fig. 14. Box plots for relative error between the ICoh and GPDC results (3–7 Hz) of the 

original simulation time courses and those of reconstructed time courses computed with 

different input SNR. For further information of the box plot, see the caption of Fig. 10.  
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