
Sparse Recovery Conditions and Realistic Forward 
Modeling in EEG/MEG Source Reconstruction 

Felix Lucka
(1,2,3)

, Sina Tellen
(1)

, Carsten H. Wolters
(2,3)

, Martin Burger
(1,3)

  

Restriction to 3 head models, max n = 8000, EEG, scalar reconstruction. 
 

v Table 1 shows the coherence of A which also upper-bounds δ2. Table 2 shows lower bounds 
for δ2 from extensive Monte Carlo simulations. For practical n (≥ 1000) both are extremely 
close to 1 and, thus, don’t provide any recovery guarantees. 

v Table 3 shows the empirical probabilities of the nonuniform conditions being true for k = 2 and 
N = 2000 samples. As expected, the likelihood rises from (Tr04) to (Fu04b)/(SSC).  

v The gap between (Fu04a) and (Fu04b)/(SSC) is dramatic. Trends in (Fu04a) are not 
predictive of trends in (Fu04b)/(SSC). 

v Results for MEG, other head models and/or for k = 3  confirm the results presented here. 

v As expected, all guarantees degrade as the source density n increases.  
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Figure 3: Procedure to build an individual, realistic, anisotropic 
finite element (FE) head model. Compartments: Skin, eyes, 
skull compacta, skull spongiosa, csf, gray and white matter of 
both cerebrum and cerebellum and brain stem. For gray and 
white matter, anisotropic conductivities are used, which have 
been computed from diffusion weighted MRI (DW-MRI) scans. 
A detailed description is given in Tellen, 2013 and the 
refereces therein. 

Background: EEG/MEG Source Reconstruction 
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Measuring the induced electromagnetic fields at the head surface to estimate the instantaneous, underlying, activity-
related ion currents in the brain (instantaneous/static EEG/MEG source reconstruction) is a challenging, high-
dimensional, severely ill-posed inverse problem:  
 
 
where b represents the measured data at 74 EEG or 273 MEG sensors (Figure 1), x represents the amplitudes of the 
discretized current field at n source locations distributed in the gray matter (Figure 4) oriented in normal direction of the 
cortical surface (normal constraint). A common source density is n ≈ 8000. Computing the system matrix A requires 
constructing a model of the head’s tissues (head model, see Figure 2,3) and solving the underlying PDEs on it (forward 
computation).  

Uniform and Nonuniform Recovery Conditions 
  

 
 

Extensions and Outlook 
  

Preliminary Results 
  

v Going from normal constraint to vector reconstruction leads to block 
sparsity (see Haufe et al., 2008, Tellen, 2013). 

v Neurophysiologically plausible source orientation constraints. 
v Column-normalization is ambivalent in l2-norm approaches, situation 

for sparse inversion is not examined up to now. 
v Computation of (Fu04b)/(SSC) needs to be improved. 
v Methodology needs to target clinically relevant questions to be 

meaningful in practice. 
v Practical definition of the spatial resolution of sparse EEG/MEG 

inversion? 
v Examine EEG-MEG combination from a sparse inversion perspective. 
v  Incorporate noise, artifacts and non-sparse background activity 

n HM1 HM2 HM3 
62 0,9569689 0,9637311 0,9468869 

125 0,9889984 0,9699115 0,9774069 
250 0,9960846 0,9912376 0,9941620 
500 0,9946813 0,9954526 0,9964294 

1000 0,9995217 0,9989610 0,9982496 
2000 0,9997652 0,9989881 0,9990561 
4000 0,9999959 0,9999998 0,9999992 
8000 0,9998974 0,9999712 0,9999455 
Table 1: Coherence of the EEG system matrix A. 

We want to recover the k-sparse solution x0 (support set I) of  

 
from the solution x1 of  

 
Uniform recovery conditions guarantee the recovery of all k-sparse x0. The strongest relies on the coherence of A: 

 
Weaker conditions rely on the restricted isometry constant of A, i.e., the smallest number δk s.t.: 

 
Nonuniform recovery conditions guarantee the recovery a particular x0. Tropp, 2004 introduced  
 
while Fuchs, 2004 introduced the stronger conditions 

 
 
(Fu04b) is also known as a dual certificate or strong source condition (Möller, 2012): 

 
Apart from its exact recovery guarantee, it also yields convergence rates and error estimates (e.g., Benning 2011).  
 

The order between the conditions is given as 
 

Figure 1: EEG (left) and MEG (right) sensors.  
Figure 2 (from left to right): FEM head models HM1, HM2 and HM3 reflecting various degrees of 
realism used to model the geometry and tissue conductivity of the head of a patient. See Tellen, 
2013 for a detailed description of the model generation. 

Figure 4: n = 8000  discrete sources (black 
cones) visualized on a corresponding partition 
of the gray-white-matter interface. See Tellen, 
2013 for a detailed description of the source 
space generation. 
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Using spatial sparsity to solve (IP) has become popular in EEG/MEG (e.g., Lucka et al, 2012, Gramfort et al., 2013). 
 

We are especially interested in the interplay of realistic forward and sparse inverse modeling 
 

v Focus on how the intrinsic recovery properties of A evolve with modeling complexity (not on modeling errors!) 

v Examined for l2-norm but not for l1-, l21-norm or hierarchical Bayesian modeling approaches (Lucka et al, 2012). 

v Dependence on source density n: Spatial resolution of sparse EEG/MEG? 

v Main problems: Source separation and localization. 

v Suitable framework/tools for our examinations? Concepts from compressed sensing?  

Motivation 
  

n HM1 HM2 HM3 
62 0,9569689 0,9637311 0,9468869 

125 0,9889984 0,9699115 0,9774069 
250 0,9960846 0,9912376 0,9941620 
500 0,9946813 0,9954526 0,9964294 

1000 0,9995217 0,9989610 0,9982494 
2000 0,9997649 0,9988619 0,9990548 
4000 0,9999068 0,9999705 0,9999447 
8000 0,9996511 0,9999274 0,9999016 
Table 2: Lower bound to δ2 by Monte Carlo simulation. 

n HM1 HM2 HM3 
62 0,059 0,195 0,098 

125 0,029 0,090 0,035 
250 0,005 0,017 0,002 
500 0 0,004 0 

1000 0 0,001 0 
2000 0 0 0 
4000 0 0 0 
8000 0 0 0 

n HM1 HM2 HM3 
62 0,181 0,359 0,225 

125 0,105 0,224 0,143 
250 0,053 0,104 0,061 
500 0,023 0,050 0,034 

1000 0,013 0,022 0,014 
2000 0,010 0,012 0,006 
4000 0,003 0,006 0,002 
8000 0,001 0,003 0,003 

Table 3: Empirical probability of (Tr04) (left), (Fu04a) (middle) and (Fu04b)/(SSC) (right) being true for k = 2 and 
N = 2000 samples. 

n HM1 HM2 HM3 
62 1 1 1 

125 1 1 1 
250 0,975 0,978 0,972 
500 0,929 0,948 0,931 

1000 0,879 0,905 0,882 
2000 0,795 0,821 0,787 
4000 0,712 0,762 0,712 
8000 0,660 0,677 0,629 

(SSC) 9 p 2 @kxk1 s.t. p 2 range(AT ), kpIck1 < 1

v For system matrices A from severely ill-posed inverse problems 
like EEG/MEG, conditions (Cho), (RIP), (Fu04a) might be too 
strong, especially for a dense discretization. 

v (Fu04b)/(SSC) are more difficult to compute, but may provide 
promising tools to analyze sparse recovery properties. In 
addition, they provide convergence rates and error estimates and 
extend to more general regularization like (generalized) total 
variation (Benning, 2011, Möller, 2012) which have also been 
considered for EEG/MEG (Haufe et al., 2008, Gramfort et al., 
2013). 

v Note that we addressed spatial inversion only. Our results do not 
extend to temporal decoding in EEG/MEG! 

Conclusions 
  


