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Abstract
This thesis is dedicated to the study and application of adaptive finite element meth-
ods (AFEM) to solve the EEG forward problem with the help of the subtraction
approach. We recall well-known theory about finite element methods (FEM) and
derive required conditions to maintain a certain regularity to an approximated so-
lution for local refinement strategies. Since hexahedral meshes are used, we face the
problem of occuring hanging nodes and derive an appropriate solution approach.
A convergence analysis in regard to a maximum marking strategy shows the re-
quirement of undesired conditions and motivates the prospective use of other strate-
gies. Several tests in various settings then show the potential of the implementated
AFEM-algorithm in the "Distributed and Unified Numerics Environment" (DUNE).
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Introduction

The human brain is a highly complex organ and has been an object to various
scientific studies for decades. Especially the analysis of the electrical activity in the
brain is of great value for medical applications in order to diagnose deseases like
epilepsy and depression. One common method in neurology and clinical diagnosis is
the so called Electroencephalography, short EEG. It is a non-invasive tool measuring
the electrical activity in the brain by means of potential differences at the head
surface. By the help of the EEG sources of electrical activity in the human brain can
be reconstructed and located (see EEG source analysis, introduced by Brazier [16]
in 1949). Since the localization of brain activity requires to solve a forward problem
and an inverse problem, different methods from the field of applied mathematics
have to be used. The forward problem is to solve an appropriate mathematical
problem (i.e. a partial differential equation) to obtain values of the potential at
the EEG scalp electrodes located at the head surface. The inverse problem is to
find corresponding sources of electrical activity in the human brain by given EEG
signals.

In this thesis the solution of the EEG forward problem is based on a second-order
elliptic PDE with jumping coefficients and Dirac right-hand side. The mathematical
well-understood subtraction approach introduced by Wolters et al. [8] and Drech-
sler et al. [10] will be applied as a solution approach in this context. Using this
approach the existence and uniqueness as well as the convergence of a solution can
be shown, which makes this method well suitable for proper mathematical investi-
gations. There are other numerical approaches like the partial integration or Venant
approach, which provide a lower computational effort solving the forward problem
but require certain simplifications and can not be derived in a strict mathematical
sense. See Vorwerk [30] and Lew et. al [26] for a detailed comparison of these
approaches in theory and application.

Solving the EEG forward problem with the help of the subtraction approach re-
quires the application of numerical methods to gain an approximated solution, since
analytical solutions are only given in simplified sphere models, see De Munck [12]
for details. In this thesis a finite element method (FEM) will be used to solve the
forward problem since it is more flexible and more generally usable in comparison
to other numerical solution approaches like the boundary element method (BEM),
finite difference method or finite volume method. See [30] for a detailed comparison
of FEM and BEM in this context.

The human head has to be approximated by discrete models to be suitable for the
application of numerical methods. As a consequence discretization errors occur in
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2 Contents

the used FEM-approach weakening the accuracy of the approximated EEG forward
solution. One way to keep these errors below a certain error bound is the uniform
refinement of the discretization (or mesh), providing the advantage of a simple global
refinement strategy. As a disadvantage the computational effort can be undesirably
high and certain regions of the discretization are refined although the local errors
are already sufficiently small in these regions. To avoid these problems an adaptive
finite element method (AFEM) will be introduced, which helps to gain solutions on
locally refined meshes to minimize the discretization error in respect to the numerical
solution. The main idea is to refine the regions contributing high errors to the overall
error in the mesh locally. This will be done by different strategies which determine
the locations of refinement due to the values of a residual-based error estimator. In
the local refinement process hexahedral meshes with so called hanging nodes will be
generated. These nodes have to be treated in order to maintain an adequately regular
solution. The main ideas to do so are given in [36] and [28]. Nochetto [24] clarifies
the advantages of the AFEM in contrast to FEM by providing recent theories and
developments. AFEM gives optimal convergence rates and therefore outperforms
classical FEM-approaches. The implementation of the AFEM-algorithm was done
using theDistributed and Unified Numerics Environment (DUNE, [6]), for which
a short introduction in reference to the requirements of the derived AFEM-approach
will be given.

This thesis is structured as follows: First we introduce basics of the EEG signal gen-
eration and derive the EEG forward problem briefly as well as provide a simplified
common source model. Next the subtraction approach is presented and motivated,
followed by the proof of existence and uniqueness of a solution before a FEM is
defined in respect to a hexahedral mesh and linear finite elements, which will be
used throughout the thesis. Subsequently the introduction of AFEM follows with
focus on occurence and treatment of hanging nodes in the local refinement process
to assure continuity of an approximated solution. A residual based error estimator
will be derived directly from the weak formulation of the problem and then will be
used to motivate different marking strategies which affect the refinement process.
Afterwards a convergence analysis in respect to the energy norm error of the ex-
act and numerical solution and the value of the error estimator in respect to the
so called maximum strategy will be given. Afterwards several numerical tests in a
simplified domain and in a 4-layer sphere model in respect to conductivity jumps
between different shells are presented to motivate further investigations on the mat-
ter. Conclusively the obtained results are discussed to give various ideas for the
future in the outlook.



1. The EEG Forward Problem

In this chapter we first give some basic information about the creation of electrical
fields in the human brain. Therefore the so called pyramidal cells are introduced and
it is briefly explained how they generate fields measurable by the EEG. Secondly
we derive the partial differential equation for the EEG forward problem by using
the quasi-static approximation of Maxwell’s equation. This is a Poisson equation
for the electric potential with Neumann boundary conditions. Finally a reasonable
source model approximating the human head by conforming shells with piecewise
homogeneous conductivity tensors is introduced.

1.1. Physiological generation of EEG signals

The EEG measures electrical potential differences at the surface of the human head
with the help of several electrodes, resulting from electromagnetic fields inside the
brain. In the following lines the physiological background of this process is summa-
rized in reference to [11].

The human brain is composed of approximately 1010 nerve cells, the so called neu-
rons, of different size and shape but same anatomical structure. A neuron consists
of three main parts: the cell body or soma containing the nucleus of the cell, the
dendrites emanating from the soma and the axon, which allows the neuron to sent
signals to other neurons. The end of the axon divides into branches forming synapses
with other neurons. Now the signal transmission works as follows: signals from other
neurons get picked up from the dendrites and then are forwarded to the soma, where
they are evaluated. Then the soma possibly generates a new signal, which will be
transported to other nerve or muscle cells by the axon.
If a neuron is active, it will generate a small electrical activity due to an unequal
ion distribution on and in the nerve cell membrane and the resulting potential dif-
ference. This single activity cannot be measured by surface electrodes, because it is
outweighted by electrical fields created by neighbouring neuron groups. But when a
large group of neurons is active at the same time in a certain fashion, the electrical
activity becomes strong enough to be detected by the surface electrodes, so that a
EEG signal is generated.

In detail the forwarding of electrical signals from one nerve cell to another is related
to the generation of a so called action potential as a result of strong enough depolar-
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4 1. The EEG Forward Problem

ization in the intracellular compartment (i.e. the compartment between nerve cells).
Depolarization describes the process of decreasing potential differences across a cell
membrane. In fact this action potential has an amplitude of 70-110mV in a rather
small time course of 0.3ms, so that a synchronous activation of action potentials of
neighboring neurons can not be expected. Therefore these potentials can not gener-
ate a signal strong enough to be measured by the EEG. The potential fields recorded
by the EEG electrodes are actually caused by potentials located in the postsynaptic
parts of the neurons. Their time course has an amount of 10 to 20ms at an ampli-
tude of 0.1 to 10mV. As a consequence the summed activity of neighboring neurons
is able to change the potential field strong enough, so this change can be measured
on the head-surface.

Figure 1.1.: "SMI32-immunoreactive pyramidal neuron in medial prefrontal cortex
of macaque.", source: BrainMaps.org

It is possible that these potential fields cancel each other out, so that the question
remains if there exists a class of neurons, which most likely cause EEG signals.
Indeed the so called pyramidal cells (e.g. for a macaque in figure 1.1) represent such
a class due to the fact that their dendrites are parallel to each other and orthogonal
to the brain surface. Therefore it is commonly assumed that the pyramidal cells
generate the EEG signals.

1.2. Maxwell’s equations

In this section we derive a quasi-static approximation of the Maxwell equations to
build the mathematical model for the simulation of electric fields in the human
head according to [18]. First we start with the Maxwell’s equations describing how
magnetic and electric fields are produced and interfere with charges, currents and
each other.

Definition 1.2.1 (Maxwell’s equations) Let E denote the electric field, B the mag-
netic field, ε0 the electrical permittivity, µ the magnetic permeability, % the charge



1.3. Potential equation for the EEG forward problem 5

density and J the current density. Then Maxwell’s equations are given as follows:

∇ ·E = %

ε0
(1.2.1)

∇×E =− ∂B
∂t

(1.2.2)

∇ ·B =0 (1.2.3)

∇×B =µ
(
J + ε0

∂E
∂t

)
. (1.2.4)

The current density J can be devided into the primary current Jp as an effect of
neural activity, bounded in a small volume, and the return current Jv = σE, which
flows in the whole medium:

J = Jp + Jv = Jp + σE, (1.2.5)

where σ denotes the conductivity. In the isotropic case σ : Ω→ R is a non-negative
scalar, whereas in the anisotropic case σ : Ω→ R3×3 is a symmetric positive definite
tensor, where Ω denotes the treated domain. Ω and σ will be specified in the next
sections. Considering all the above stated equations we then derive the potential
equation in the following section.

1.3. Potential equation for the EEG forward problem

In bioelectromagnetism we deal with frequencies below 100Hz, so the quasi-static
approximation of Maxwell’s equations can be applied, this is to neglect the temporal
derivatives ofB and E in Maxwell’s equations, which were introduced in the previous
section. Therefore we obtain

∇× E = 0 (1.3.1)

from (1.2.2). So there exists a scalar potential φ such that

E = −∇φ. (1.3.2)

Taking equation (1.2.5) into account, we obtain the following equation:

J = Jp + σE = Jp − σ∇φ. (1.3.3)

Applying divergence to (1.2.4) and using div(∇×B) = 0 leads to

0 = div(∇×B) = µdiv
(
J + ε

∂E
∂t︸︷︷︸
=0

)
(1.3.4)

⇔ 0 = divJ = divJp − divσ∇φ. (1.3.5)

As a consequence we now can state the following definition:
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Definition 1.3.1 The potential equation for the EEG forward problem is given by

div(σ∇φ) = div Jp. (1.3.6)

This equation now describes the distribution of the electric potential φ in the human
head domain Ω in respect to the primary current Jp, which is caused by the brain
activity. Going back to the description of the conductivity tensor σ in subsection
1.2 in the anisotropic case, we now specify additional properties due to the electro-
chemical reactions in the human head. Considering an arbitrary point within Ω the
conductivity at this point is the same for currents flowing to or away from it. Thus
σ is a symmetric and in consequence of the positive conductivity into one direc-
tion positive definite tensor. Therefore the potential equation is an elliptic partial
differential equation requiring boundary conditions on the boundary ∂Ω, see [7] for
further information and details. Using the reasonable assumption of a continous cur-
rent across interfaces (specified in section 1.5) we arrive at a homogeneus Neumann
boundary condition on ∂Ω:

< σ∇φ,n >= 0 on ∂Ω, (1.3.7)

where n denotes the surface outer normal, see [35] for details.

We then take a closer look on the right hand side of the potential equation. Therefore
we first have to discuss the source configuration in bioelectromagnetism. A common
model to treat the current density vector Jp is the usage of so called dipoles, which
can be distinguished into current and mathematical dipoles.
Let there be a current source and a corresponding current sink with the same magni-
tude seperated by a finite distance h. Then the current dipole is the dipole directed
from the current sink to the current source.
When h decreases from above to zero we arrive at the mathematical dipole or real
dipole, which also can be approximated by a current dipole, see [33] for details.
Following De Munck et al. [13], who stated that this mathematical dipole model
is granted in the area of bioelectromagnetism, we use the mathematical dipole to
model the primary current on the right hand side of the potential equation.

So let x0 ∈ R3 denote the source position and M ∈ R3 the dipole moment. Then
we gain

div Jp(x) := div (Mδ(x− x0)) , (1.3.8)

where δ denotes theDirac delta distribution, which is a continuous, linear functional
on the space of all smooth testfunctions on Ω with compact support.

1.4. Source model and EEG forward equation

In this section the general setting in which the potential equation will be solved is
specified and the EEG forward equation is derived. Therefore we will discuss the
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problem of jumping coefficients and its impact on the formulation of the forward
equation in a well-posed mathematical manner.

First we present one common model, which represents a domain Ω ⊂ R3, which will
be defined for radii ri ∈ R+ with ri−1 ≤ ri for 0 ≤ i ≤ n, n ∈ N as follows:

Ω =
n⋃
i=0

Ωi with (1.4.1)

Ωi = {x ∈ R3| ri−1 < ‖x‖2 < ri} for i > 0 and Ω0 = {x ∈ R3| ‖x‖2 < r0}. (1.4.2)

Figure 1.2 illustrates Ω for n = 3 in 2 dimensions.

Figure 1.2.: 4 layer sphere model

This domain is a simple representation of the human head as a sphere model. One
could think of the different Ωi as the following head tissues for n = 3 (from inside
to outside): brain, CSF (Cerebrospinal fluid), skull and skin. Referring to these
different compartments and tissues, which provide different conductivities for the
electric flux, a constant conductivity tensor σi ∈ R in the isotropic or σi ∈ R3×3 in
the anisotropic case is assigned to each Ωi. Note that this notation is equivalent
to the previous definition of a conductivity tensor in section 1.2 when determining
σi : Ωi 7→ R with σi(x) ≡ c ∈ R or σi : Ωi 7→ R3×3 with σi(x) ≡ c ∈ R3×3 for all
x ∈ Ωi respectively. For simplicity we will use the first representation from now on.

In conclusion a pair (Ωi, σi) for every compartment of Ωi is obtained, which will
help to state the forward equation. The main reason for using such a multi sphere
model is the existence of analytical solutions of the EEG forward equation due to the
work of De Munck and Peters [12]. As a consequence we later on can compare the
numerical to the analytic solution and evaluate the accuracy of the later introduced
FEM-algorithm.
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Remembering the potential equation of section 1.3.:

div(σ∇φ) = div Jp, (1.4.3)

which provides an elliptic PDE with certain Neumann-boundary conditions, we now
face the problem of the jumping conductivity coefficient σ across interfaces Ωi∩Ωi+1
0 ≤ i ≤ n and their impact on boundary conditions between the different shells Ωi

of the sphere model. In conformity to the last paragraph we define σ : Ω 7→ R3×3 in
the anisotropic case (isotropic analogous) domain-wise as

σ|Ωi
:= σi for i ∈ {1, 2, . . . , n}. (1.4.4)

Using the physical assumption of a continous potential φ in the whole volume con-
ductor Ω yields

lim
xi→x

φ(xi) = lim
xi+1→x

φ(xi+1) (1.4.5)

for xi ∈ Ωi, xi+1 ∈ Ωi+1 and 0 ≤ i ≤ n − 1, where x ∈ Ωi ∩ Ωi+1 is a point on the
interface. I.e. φ attains the same values at an arbitrary interface from both sides.
Additionally it is physically reasonable, that σ∇φ is also continous in the volume,
so that

lim
xi→x

< σ(xi)∇φ(xi),n >= lim
xi+1→x

< σ(xi+1)∇φ(xi+1),n > (1.4.6)

holds, where n denotes the outer normal of the corresponding compartment Ωi or
Ωi+1 respectively. This equation directly leads to the condition

lim
xn→x

< σ(xn)∇φ(xn),n >= 0, (1.4.7)

because the conductivity-value outside the head domain vanishes due to the non-
conducting surrounding air, such that the right-hand side of equation 1.4.6 is zero.
Equation 1.4.7 provides homogenous Neumann-boundary conditions to the EEG
forward problem, so that we can state the EEG forward equation:

Definition 1.4.1 (EEG forward equation) The EEG forward problem is character-
ized by the following elliptic partial differential equation with homogenous Neumann-
boundary conditions:

div(σ∇φ) = div Jp in Ω, (1.4.8)
< σ∇φ,n > = 0 on ∂Ω, (1.4.9)

where n denotes the surface outer normal.

Note that the PDE in this definition is mathematically not well-posed due to the
fact that a classical solution φ has to live in the space C2(Ω) ∩ C0(Ω) - which is
not possible here. As explained before the conductivity coefficient σ has possible
jumps across interfaces, so that together with the assumption of a continuous flux
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of currents σ∇φ we arrive at the property, that also ∇φ has jumps at the interfaces,
which exactly cancel out with the jumps of σ. Therefore the gradient of φ is not
defined in the classical sense along interfaces.

Under the condition of a domain Ω with Lipschitz continous boundary (which is
given here) we would have to assure div Jp ∈ L2(Ω) (i.e. Jp ∈ H1(div,Ω) ) to gain
a solution φ ∈ H1(Ω) of the weak formulation of the forward problem. Following
section 1.3 this property does not hold for the used dipolar source approach due
to the Dirac right-hand side. Thus standard finite element techniques can not be
applied without any restriction or modifications of the solution spaces. In order to
avoid this problem we will state the weak formulation of the EEG forward problem
directly as a definition without Dirac right-hand side in chapter 2 and then introduce
the subtraction approach to solve the problem. In other words this problem will be
eliminated in this thesis by definition, for further information on solving elliptic
PDE with Dirac right-hand side see [21] or [27].

Generally speaking we could prevent the problem of the jumping conductivity σ by
defining the EEG forward equation locally on every compartment Ωi with appro-
priate Neummann-boundary conditions under the assumption of a right-hand side
in L2(Ω). Then a global solution can be obtained as the continous extension of the
single solutions φi on Ωi, which is possible due to the condition (1.4.5) to (1.4.7).
Another way of dealing with such problems can be found in Warnke [34], where
another solution space regarding the demanded behaviour of the solution on the
interfaces is introduced, so that it solves the (strong) formulation of such an elliptic
problem with additional conditions on the interfaces.

1.5. Analytical solution

As mentioned before the great advantage of using a sphere model as introduced
in the previous chapter is the existence of analytical solutions. We will follow the
explanations of Drechsler et al. [10].

De Munck et al. [12] derived series expansion formulas for the above described
mathematical dipole, which compute these analytical solutions at fixed electrode
positions. Let x0 be the source position with radial coordinate r0 ∈ R and assume
that x0 is a point in a more interior compartment than the measurement electrode
xe ∈ R3 with radial coordinate re ∈ R. Then

uana(x0, xe) = 1
4π

〈
M, S0

xe
re

+ (S1 − cos(ω0e)S0)x0

r0

〉
(1.5.1)
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is the solution of the EEG forward equation at electrode position xe with

S0 = F0

r0

Λ
(1− 2Λ cosω0e + Λ2)3/2

+ 1
r0

∞∑
n=1
{(2n+ 1)Rn(r0, re)− F0Λn}P ′n(cos(ω0e)) (1.5.2)

and similar S1 for the coefficients Rn, R
′
n as well as the Legendre polynomials Pn.

For all other unknowns we refer to [12]. Thereby the later terms in the sum ∑∞
n=1 . . .

are independent of n, so that the compution of the series S0 and S1 are stopped after
the kth term if the criterion

tk
t0
≤ ε, tk := (2k + 1)R′k − F1kΛk (1.5.3)

is fulfilled for a scalar ε, which is likely chosen as 10−6.

In the implementation chapter we will use such solutions in a 4-layer sphere model for
134 electrodes at the surface. Hence the approximated and the analytical solutions
will be compared for a few points, which rather gives an indicator for the global error,
but is reasonable for the real application due to the fact that EEG measurement is
mostly done on the head surface.



2. The subtraction approach

To treat the EEG forward equation presented in chapter 1 we consider the sub-
traction method to gain a solving approach for the forward equation, which is well
suitable for applying standard finite element methods. In the first section the sub-
traction approach is derived in conformity to the weak formulation of the EEG
forward equation and the main ideas and motivations are presented. Subsequently
existence und uniqueness of a solution are briefly shown and stated with the help of
appropriate literature.

2.1. Derivation

As we already discussed in section 4 of chapter 1 the main problem solving the EEG
forward problem is the non-regular right-hand side div Jp, which is not in L2(Ω)
due to occuring singularities at source positions x0 ∈ Ω for the head domain Ω.
Therefore we will state the weak formulation of (1.4.8) without Dirac right-hand
side as a definition and then derive the subtraction method, which was introduced
by Drechsler et al. [10]. Simply spoken the solution φ of the EEG forward equation
will be divided, such that the singularity of the right-hand side is eliminated in the
weak formulation. As a consequence we then can apply a standard finite element
method to solve the problem numerically.

First consider an arbitrary head domain Ω ⊂ R3 with compartments (Ωi, σi) and
assume that a neighborhood Ω∞ ⊂ Ω of the source position x0 ∈ Ω\∂Ω with ho-
mogenous, constant conductivity σ∞ exists. Typically x0 ∈ Ω0 holds, because in
application the sources of brain acitivity lay in the grey matter, which is the outer
compartment of the human brain. Thus Ω∞ ⊂ Ω0 always exists in our source model
as long as x0 ∈ Ω0\∂Ω0, which we reasonably assume from now on.

Then the conductivity coefficient σ is decomposed as follows:

σ = σ∞ + σcorr, (2.1.1)

where σ∞ is constant over the whole volume conductor Ω and

σcorr(x) = 0 (2.1.2)

holds for all x ∈ Ω∞. Analogously the potential φ is split:

φ = φ∞ + φcorr, (2.1.3)

11



12 2. The subtraction approach

where φ∞ is the solution of the following EEG forward problem for a dipole laying
in an unbounded homogenous volume conductor with for now isotropic constant
conductivity σ∞ ∈ R:

div σ∞∇φ∞ = div Jp (2.1.4)

According to [35] φ∞ is then given by

φ∞(x) = − 1
4πσ∞

∫
G

∇yJp(y)
‖x− y‖2

dy (2.1.5)

= 1
4πσ∞

〈M, x− x0〉
‖x− x0‖3

2
, (2.1.6)

where G is a domain containing the source x0 ∈ R3 and M denotes the dipole
moment as in (1.3.8) . In the case of an anisotropic conductivity σ∞ : Ω∞ 7→ R3×3

the solution φ∞ is defined by

φ∞(x) = 1
4π
√

detσ∞
〈M, (σ∞)−1(x− x0)〉

〈(σ∞)−1(x− x0), (x− x0)〉 3
2
. (2.1.7)

The analytical solution for the gradient of φ∞ in the isotropic and the anisotropic
case can be determined analogously. As we see directly φ∞ is a smooth function
on Ω\U for a neighborhood U of x0, but has a singularity of second order in x0 so
that φ∞ /∈ H1(Ω). Consequently φ∞ /∈ L2(Ω), but φ∞ ∈ L1(Ω) holds, i.e. φ∞ is
integrable.

The next goal is to derive the weak formulation for the subtraction approach starting
with the weak formulation of the original EEG forward equation.

Definition 2.1.1 (Weak formulation of EEG forward equation) Following equation
(1.4.1) the weak formulation of the EEG forward equation yields: Find φ ∈ H1(Ω)
such that

−
∫

Ω
〈σ(x)∇φ(x),∇v(x)〉dx =−

∫
Ω
〈σ∞∇φ∞(x),∇v(x)〉dx

+
∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx (2.1.8)

for all v ∈ H1(Ω) and ∫
Ω
φ(x)dx = 0 (2.1.9)

holds.

Note that this weak formulation is not directly derived from the EEG forward equa-
tion in definition 1.4.1 due to the missing mathematical properties of φ and the
right-hand side, that make the use of Gauss’s theorem impossible. As it is usual
in common literature we use this weak formulation directly as our initial problem,
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which is simply motivated by the (strong) formulation and the definition of φ∞ as
the solution of (2.1.4).

Now we apply the introduced equations (2.1.1) and (2.1.3) for the subtraction ap-
proach to arrive at the subtraction forward problem:

Lemma 2.1.2 (Subtraction forward problem) Using equations (2.1.1), (2.1.3) and
the definition 2.1.1 of the weak formulation for the EEG forward problem we arrive
at the so called subtraction forward problem, that is to find φcorr ∈ H1(Ω) such
that ∫

Ω
〈σ(x)∇φcorr,∇v(x)〉dx =

∫
Ω
〈(σ∞ − σ(x))∇φ∞(x),∇v(x)〉dx

−
∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx, (2.1.10)∫

Ω
φcorr(x)dx = −

∫
Ω
φ∞(x)dx (2.1.11)

hold for all v ∈ H1(Ω), where n denotes the surface unit-outer normal.

Proof. First equation 2.1.10 is derived from the weak formulation of the EEG for-
ward equation 2.1.8:

−
∫

Ω
〈σ(x)∇φ(x),∇v(x)〉dx =−

∫
Ω
〈σ∞∇φ∞(x),∇v(x)〉dx

+
∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx

(2.1.3)⇔ −
∫

Ω
〈σ(x)∇(φcorr(x) + φ∞(x)),∇v(x)〉dx =−

∫
Ω
〈σ∞∇φ∞(x),∇v(x)〉dx

+
∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx

Thus we arrive at

−
∫

Ω
〈σ(x)∇φcorr(x),∇v(x)〉dx =−

∫
Ω
〈σ∞∇φ∞(x),∇v(x)〉dx

+
∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx

+
∫

Ω
〈σ(x)∇φ∞(x),∇v(x)〉dx.

Then the right-hand side is rearranged as follows:

−
∫

Ω
〈σ∞∇φ∞(x),∇v(x)〉dx+

∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx

+
∫

Ω
〈σ(x)∇φ∞(x),∇v(x)〉dx

(2.1.1)= −
∫

Ω
〈σ∞∇φ∞(x),∇v(x)〉dx+

∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx

+
∫

Ω
〈(σ∞ + σcorr(x))∇φ∞(x),∇v(x)〉dx

=
∫

Ω
〈σcorr(x)∇φ∞(x),∇v(x)〉dx+

∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx
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Finally the following equation holds:

−
∫

Ω
〈σ(x)∇φcorr,∇v(x)〉dx =−

∫
Ω
〈(σ∞ − σ(x))∇φ∞(x),∇v(x)〉dx

+
∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx. (2.1.12)

Equation (2.1.10) is then determined by multiplying (2.1.12) with (−1) on both
sides. (2.1.11) follows directly from (2.1.3) due to condition (2.1.9) of the weak
formulation for the EEG forward equation.

As one can see the advantage of this approach is, that we eliminated the singularity
on the right-hand side due to the occurence of the factor σ∞ − σ = −σcorr. By
construction (2.1.2) this factor vanishes in Ω∞ so that the involved integral is zero
near the source x0. This fact will be specified in the next section, when existence
and uniqueness of the solution φcorr will be shown.

2.2. Existence and uniqueness

In this section we show the existence und uniqueness of a solution φcorr ∈ H1(Ω)
for the subtraction forward problem, defined in lemma 2.1.2 . The goal is to use the
theorem of Lax-Milgram, which can be found in Appendix A.2.. Therefore we will
define a bilinear form and a right-hand side functional according to equation 2.2.10
and state needed properties for Lax-Milgram following Wolters [35].

Let B : H1(Ω)×H1(Ω)→ R be a bilinearform determined by

B(φcorr, v) :=
∫

Ω
〈σ∇φcorr,∇v〉dΩ (2.2.1)

and f : H1(Ω)→ R defined by

f(v) =
∫

Ω
〈(σ∞ − σ(x))∇φ∞(x),∇v(x)〉dx−

∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx. (2.2.2)

Moreover let

H1
∗ (Ω) :=

{
v ∈ H1(Ω)

∣∣∣ ∫
Ω
v(x)dx = 0

}
(2.2.3)

denote a subspace of H1(Ω), which will be used to show uniqueness of a solution.
The following Lemma summarizes the properties of the bilinearform B:

Lemma 2.2.1 B defined as in (2.2.1) is continuous on H1(Ω)×H1(Ω) and H1
∗ (Ω)-

elliptic.

Proof. We refer to Wolters [35] page 153.
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To show that f ∈ (H1
∗ (Ω))′ we first need the trace-theorem:

Theorem 2.2.2 Let Ω be a bounded domain with piecewise smooth boundary, which
fulfills a cone-condition (see Appendix A.2.). Then there exists a bounded, linear
mapping γ : H1(Ω)→ L2(∂Ω), such that

‖γ(v)‖0,∂Ω ≤ c · ‖v‖1,Ω (2.2.4)

holds for a positive constant c ∈ R+.

As we suggested at the end of section 2.1 f has no singularity at the source position
x0 due to the properties of the subtraction approach. This fact will be concretised
and proven in the next lemma:

Lemma 2.2.3 f from 2.2.14 is well defined and bounded on H1(Ω), which implies
f ∈ (H1

∗ (Ω))′.

Proof. We summarize the proof by Wolters [35] pages 154 to 155, assuming the
existence of a domain Ω∞ with a constant conductivity σ∞, such that σcorr is equal
to zero on Ω∞. Then the original singularity in the source position x0 in reference
to the integral ∫

Ω
〈(σ∞ − σ(x))∇φ∞(x),∇v(x)〉dx (2.2.5)

is erased. Using a continuous extension of φ∞|Ω\Ω∞ on Ω we arrive at a smooth
function φ∞. Therefore

σcorr∇φ∞ ∈ L2(Ω) (2.2.6)

holds and together with an arbitrary v ∈ H1(Ω) the volume integral is bounded.
Using the trace theorem 2.2.4 we also obtain the boundedness of the integral on
∂Ω.

In conclusion we arrive at the main theorem in this section assuring the existence
and uniqueness of the solution φcorr:

Theorem 2.2.4 Let Ω be defined as before, such that Ω is compact and fulfills a
cone-condition. Then the variations-problem, that is to find v ∈ H1

∗ (Ω) such that

J(v) := 1
2B(v, v)− f(v)→ min! (2.2.7)

with B from 2.2.1 and f from 2.2.2 has exactly one solution φcorr ∈ H1
∗ (Ω), which

is characterized by

B(φcorr, v) = f(v) for all v ∈ H1(Ω). (2.2.8)

Proof. Again consider the proof of Wolters [35] page 155, where mainly the before
shown lemmas and the theorem of Lax-Milgram are used.



3. Finite Element Method

This chapter is divided into two sections providing basic knowledge about the theory
and algorithmics of a standard finite element method. This FEM can be used to
compute an approximated solution of the subtraction forward problem and motivates
the definition of the adaptive finite element method in chapter 4.

3.1. Basics

In this section we want to give a basic introduction into the theory of finite element
methods, which will be applied to solve the EEG forward problem with the help of
the subtraction approach. The general purpose of such a numerical method is to
find an approximated solution to boundary value problems like the EEG forward
problem. To achieve this goal the treated, bounded domain Ω ⊂ Rd for d ∈ N is
decomposed into small, connected subdomains on which simple equations are solved
to approximate the solution of the PDE on whole Ω. In the given problem we will
decompose Ω into a mesh T of elements K ∈ T , which are assumed to be open
convex hexahedrons in the case d = 3 such that Ω = ⋃

K∈T K. Therefore this mesh
is specified first, the reference mapping F is introduced, linear Lagrange elements
and finally the linear finite element method is stated. For simplicity we assume
d = 3 from now on, which is reasonable because we want to solve the potential
equation in 3D following the realistic application.

Definition 3.1.1 In R3 we consider open convex hexahedrons K ⊆ Ω such that each
face of K is in a plane. Let a0, ..., a7 denote the corners of K. Let hK be defined as
the diameter of K, i.e.

hK := diam(K) = 7max
i,j=1
|ai − aj|, (3.1.1)

and %K as the diameter of the largest ball, that can be inscribed into K, i.e.

%K := 2 · sup
x∈K
{r ∈ R|Br(x) ⊂ K}. (3.1.2)

Then a regular mesh Th is defined as the decomposition of Ω into hexahedrons of a
certain property:

16
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Definition 3.1.2 Ω ⊂ R3 be a bounded domain, then

Th := {Kj|j = 1, . . . , n;Kj ⊂ R3 as defined in 3.1.1 } (3.1.3)

is called regular mesh, if the following conditions hold:

• h := maxj=1,...,n hKj

• Ω = ⋃n
j=1Kj , ∂Ω = ⋃n

j=1 K̃j, where K̃j denotes the faces of Kj, which are
not faces of other hexahedrons

• For each K1, K2 ∈ Th holds: K1 ∩K2 = ∅ or K1 ∩K2 is a common (codim 1
or codim 2) face or vertex of K1 and K2 (conformity)

• maxK∈Th

hK
%K
≤ C for a constant C > 1 (shape regularity)

Furthermore we describe the concept of the reference mapping in the following
Lemma, which also holds for higher dimensions (see [20]):

Lemma 3.1.3 (reference mapping) Let K0 denote the unit cube in R3. Then every
hexahedron K as defined in 3.1.1 is affine equivalent to K0. The unique affine
mapping

F : K0 → K, x 7→ A · x+ b for A ∈ R3×3, det(A) 6= 0, and b ∈ R3, (3.1.4)

with F (ej) = aj, j = 0, ..., 7, is called reference mapping, where ej and aj denote the
vertices of K0 and K in the same order. F is invertible and the following estimations
hold:

‖∇F‖ = ‖A‖ ≤ hK
%K0

(3.1.5)

‖(∇F )−1‖ = ‖A−1‖ ≤ hK0

%K
(3.1.6)

c%3
K ≤ ‖ det(∇F )‖ ≤ Ch3

K (3.1.7)

for positive constants c, C ∈ R and where ‖ . . . ‖ indicates the norm corresponding
to the L2 norm.

Proof. The proof is simple and technical, so it is omitted here.

As next we introduce the linear hexahedral Lagrange element, which then helps to
define the linear finite element space Q1

h for the mesh-size h ∈ Q+. Later on a finite
element method is used to obtain a solution for the subtraction problem in such
a space. For simplicity we from now on use the term hexahedron in the sense of
definition 3.1.1. .
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Lemma 3.1.4 (linear hexahedral Lagrange element) Let K ⊂ R3 be a hexahedron
and

N := {ai|i = 0, . . . , 7} (3.1.8)

the set of all vertices of K. Then there exists a unique linear function p ∈ Q1(K)
due to specification of values at the corners ai ∈ N for all i = 0, . . . , 7. Furthermore

BK := {ϕi ∈ Q1(K)|ϕi(aj) = δij; i, j = 0, ...7; aj ∈ N} (3.1.9)

defines a nodal basis of Q1(K). Q1(K) denotes the space of all polynomials on K of
degree no more then 1 in each variable . Then we call (K,BK , N) linear, hexahedral
Lagrange element, where ϕi ∈ BK is named shape function and N the set of nodal
variables.

Proof. First we show that BK exists and is uniquelly defined by the condition
ϕi(aj) = δij for all i, j = 0, . . . , 7 with aj ∈ N . For fixed i

[ϕi(aj) = δij]j=0,...,7 (3.1.10)

forms a linear equation system with 8 equations and 8 unknowns. So the uniqueness
of ϕi follows from existence. Let K := K0 be the unit cube, then we can write
ϕ0
i ∈ Q1(K0) with ϕ0

i (a0
j) = δij for vertices a0

j of K0 as the product of the Lagrange-
interpolation polynoms

Lk(t) =
1∏

j=0,j 6=k

t− sj
sk − sj

for k = 0, 1, (3.1.11)

where sk = k as follows:

ϕ0
i (x) = Lj(x1)Lk(x2)Lh(x3) (3.1.12)

for ai = (j, k, h) with j, k, h ∈ {0, 1}. For an arbitrary hexahedron K we then use
the reference mapping F from Lemma 3.1.1 to arrive at ϕi ∈ BK by

ϕi(x) = (ϕ0
i ◦ F−1)(x) for x ∈ K, (3.1.13)

so that ϕi(aj) = ϕ0
i (F−1(aj)) = ϕ0

i (a0
j) = δij.

In conclusion BK exists and is uniquely determined by the above condition. It is
also clearly a basis of Q1(K), so that the existence of a unique p ∈ Q(K) due to
specifications of p in the vertices ai for all i = 0, . . . , 7 follows. As a consequence
the linear, hexahedral Lagrange element (K,BK , N) is well defined.

As we see in the proof of Lemma 3.1.2 the Lagrange element just needs to be defined
on the unitcube K0, because the reference mapping is used to determine the linear
hexahedral Lagrange elements for arbitrary hexahedrons K. This advantage will
also be used in the following definition of the linear finite element space Q1

h:
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Definition 3.1.5 (linear finite element space Q1
h in R3) Be Ω ⊂ R3 and Th a regular

mesh on Ω. Then we define the space of linear finite elements on hexahedral meshes
for the mesh-size h as

Q1
h := {vh ∈ C0(Ω)| vh|K ∈ Q1(K), K ∈ T}. (3.1.14)

Let n ∈ N denote the number of vertices in the mesh Th and let aj be such a vertex
for j = 1, ..., n. Following Lemma 3.1.2 a function vh ∈ Q1

h is uniquelly defined by
specification of values of vh in all aj, so that dim(Q1

h) = n. A nodal basis of Q1
h is

then given by

{ϕi ∈ Q1
h|ϕi(aj) = δij for i, j = 1, ..., n}. (3.1.15)

Let (K0, BK0 , N0) be the linear Lagrange element on K0 and vh ∈ Q1
h such that

vh(x) =
n∑
i=1

vh(ai)ϕi(x). (3.1.16)

Then the following equation holds for an arbitrary K ∈ Th with vertices a′1, ..., a′8:

vh|K (x) =
8∑
i=1

vh(a′i)ϕ′i(F−1(x)), (3.1.17)

where F : K0 → K is the reference mapping and ϕ′i ∈ BK0 a shape function on K0
for all i = 0, . . . , 7.

Note that for vh ∈ Q1
h the property vh|K ∈ Q1(K) for a hexahedron K ∈ Th

is clear and well defined due to Lemma 3.1.2, but we have to assure the global
continuity of vh as stated in the definition above. Therefore we recapitulate the
definition of the regular mesh T and proceed analogously to Lemma 3.1.2: For 2
neighboring hexahedrons K1 and K2 in Th with a common face S = K1 ∩ K2 the
condition vh|S ∈ Q1(S) holds. Moreover vh|S is again uniquelly determined by the
specification of values at the vertices of S and that implies vh ∈ C0(Ω).

Finally the linear finite element method (FEM) is defined to end this section.

Definition 3.1.6 (linear finite element method) Be Ω ⊂ R3, Th a regular mesh
on Ω and Q1

h the linear finite element space. Let B : H1(Ω) × H1(Ω) → R be a
continuous and H1(Ω)-elliptic bilinear form and f ∈ H−1(Ω).
Then Q1

h ⊂ H1(Ω) and uh ∈ Q1
h is called solution of the linear finite element method

if

B(uh, vh) = f(vh) (3.1.18)

holds ∀vh ∈ Q1
h.

Note that the bilinear form B defined in section 1 of chapter 2 as needed in the
subtraction approach nearly fulfills the demanded properties of definition 3.1.6 due
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to lemma 2.2.1, see the Appendix for details. In the same manner the right-hand
side functional f as defined in (2.2.2) is appropriately chosen, i.e. f ∈ (Q1

h)′. In
consequence there exists a unique solution in the sense of definition 3.1.6 according
to theorem 2.2.4 .

Following definition 3.1.5 and using a nodal basis BQ1
h

= {ϕi|i = 1, . . . , n} of Q1
h

with dim(BX) = n we can write an arbitrary uh ∈ Q1
h from defnition 3.1.6 as

uh(x) =
n∑
i=1

uiϕi(x) for all x ∈ Ω, (3.1.19)

where we call {ui|i = 1, ...n} ⊂ R the degrees of freedom (DOF) of uh. We search
for such a solution for the subtraction forward problem using the FEM method,
therefore we will specify the algorithm and solving method in the next section.

3.2. Algorithmics

In this section the shape of the bilinearform B and right-hand side function f from
definition 3.1.6 are given in conformity to chapter 2, where these objects were already
given for the subtraction forward problem. Hence we will apply the finite element
space Q1

h as defined in the previous section and finally arrive at a system of linear
equations. Moreover the FEM algorithm will be presented, which is then used
to solve the subtraction forward equation in the standard case without adaptive
refinement.

We consider the bilinearform B : H1(Ω)×H1(Ω) given as

B(u, v) :=
∫

Ω
〈σ∇u,∇v〉dΩ (3.2.1)

and the right-hand side functional

f(v) =
∫

Ω
〈l,∇v(x)〉dΩ−

∫
∂Ω
gvd∂Ω (3.2.2)

for the conductivity tensor σ as defined in the previous chapters and l ∈ (L2(Ω))3

as well as g ∈ L2(∂Ω) with u, v ∈ H1(Ω). We now search for a solution uh ∈ Q1
h for

all v ∈ Q1
h. As pointed out before equation 3.1.19 also holds with uh := ∑n

i=1 uiϕi,
so that the original problem can be reformulated in the following way:

B(uh, ϕj) = f(ϕj)

⇔ B

(
n∑
i=1

iiϕi, ϕj

)
= f(ϕj)

⇔
n∑
i=1

iiB(ϕi, ϕj) = f(ϕj) (3.2.3)
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for all j ∈ {1, ..., n}, where it is sufficient to use the nodal functions ϕj ∈ BQ1
h
as

test-functions due to the fact that BQ1
h
is a nodal basis of Q1

h. Equation 3.2.3 forms
a system of linear equations for all i, j ∈ {1, . . . , n}, which we will state as

Ax = b (3.2.4)

with the stiffness matrix

A = (aij)1≤i,j≤n, aij :=
∫

Ω
〈σ(x)∇ϕj(x),∇ϕi(x)〉dx, (3.2.5)

the right-hand side

b = (bi)1≤i≤n,

bi =
∫

Ω
〈l(x),∇ϕi(x)〉dx−

∫
∂Ω
g(x)ϕi(x)dx. (3.2.6)

and the DOF-vector

x ∈ RN , x := (u1, u2, . . . , un)T . (3.2.7)

The above stated integrals have to be approximated by numerical quadrature for-
mulas. We will specify the used quadrature rules in the application chapter of this
thesis.

For more information and details concerning the assembling of the stiffness matrix
and right-hand side as well as estimation of the computational effort of these pro-
cesses we refer to Ohlberger [19]. The main idea is to determine the local stiffness
matrices and right-hand sides on each hexahedron (or simplex) to arrive at the global
object as the sum over all hexahedrons. Thus the effort to compute the stiffness ma-
trix A and the right-hand side b is O(|Th|), where Th is the regular mesh defined in
(3.1.3).

Furthermore the stiffness matrix A is symmetric for the isotropic and anisotropic
conductivity tensor σ. In the isotropic case this is clear due to the definition of
σ as a scalar in R. In the anisotropic case we take advantage of the symmetry of
σ(x) ∈ R3 for all x ∈ Ω:

aij =
∫

Ω
〈σ(x)∇ϕj(x),∇ϕi(x)〉dx =

∫
Ω
〈∇ϕj(x), (σ(x))T︸ ︷︷ ︸

=σ(x)

∇ϕi(x)〉dx

=
∫

Ω
〈σ(x)∇ϕi(x),∇ϕj(x)〉dx = aji (3.2.8)

for all i, j ∈ {1, . . . , n}. Thus solvers like the conjugate gradient method for symmet-
ric matrices can be applied. Besides most entries of A are zero due to the support
of each nodal function ϕi, which commonly intersects with just a few supports of
neighboring basefunctions, which make the use of direct solvers unreasonable. When
dealing with adaptive refinement and occuring hanging nodes the stiffness matrix is
not symmetric, so that we have to use different solvers later on.

This chapter concludes with the presentation of the FEM-algorithm.
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FEM-algorithm
1: Decomposition of Ω into a regular mesh Th of mesh-size h consisting of hexahe-

drons
2: Selection of the finite-dimensional space Q1

h with basis {ϕ1, ..., ϕn}
3: Setup of solution uh = ∑n

i=1 uiϕi
4: Setup of system of linear equations Ax = b for

A := (B(ϕj, ϕi))1≤i,j≤n

x := (u1, u2, . . . , un)T

b := (l(ϕi))1≤i≤n

5: Solving of system 4 (e.g. using the CG method) and obtaining approximated
DOF-vector x

The mesh-size h should be chosen such that the error ‖u − uh‖E,Ω for the exact
solution u is sufficiently small. We will expand this idea to the concept of appropriate
error estimators to measure this error and to motivate the use of adaptive refinement
strategies in the next chapters.



4. Adaptive Finite Element Method

In this chapter we will motivate and introduce the adaptive finite element method
(AFEM) in context of solving the subtraction forward problem with hexahedral
finite elements. Therefore basic definitions are introduced, the local refinement
process and the occuring problems with hanging nodes are specified. The main
problem caused by hanging nodes is the discontinuity of an approximated solution
uh generated by the FEM-algorithm from section 3. To solve this difficulty the
terms of continuity are explained in detail and appropriate conditions are derived
assuring the continuity of a FEM-solution. Next a residual error estimator will be
motivated and established to conclude with the AFEM-algorithm in reference to
a certain marking strategy. The chapter ends with a convergence analysis of the
AFEM.

An AFEM-algorithm in general consists of four steps: Solving, estimation, marking
and refinement. In detail this means: solving the weak formulation of the problem
first, then estimation of the (local and global) errors and marking of those elements
K in the mesh, which fulfill a certain condition given by a chosen strategy in respect
to the error. Finally the marked elements are refined by a simple bisection algorithm
and the procedure starts all over again until a specified abort condition is satisfied.

The first attempts to develop a convergence analysis were made by Dörfler [31], who
introduced the Dörfler marking strategy, which assures a strict energy reduction for
the laplacian under a certain fineness assumption of the initial mesh T0. Morin et
al. [23], [22] proved the convergence of the AFEM-algorithm without any restriction
on the initial mesh T0 with the help of the concept of data oscillation and interior
node property. In the following we mostly consider the ideas of Zhao et al. [36], who
proved convergence of the AFEM on hexahedral meshes with hanging nodes.

4.1. Irregular meshes

Using local refinement strategies, that is to mark certain entites of a mesh and refine
them e.g. with a simple bisection refinement, leads to irregular meshes, which will
be defined in the following section. Due to the use of hexahedral finite elements the
so called hanging nodes occur, which create problems when applying the classical
finite element approach from chapter 3.

23
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First of all let Ω ⊂ R3 be a bounded domain decomposed by a regular mesh T0
consisting of hexahedrons K ∈ T0. For adaptive calculations a multilevel adaptive
mesh is needed, which can be obtained by refining T0 in the way described below.
We start with T0 as a mesh of level 0 simply indicating that no entity in the mesh
has been refined yet. Let K ∈ T0 denote a hexahedron, then K can be split into 8
new elements, called son-elements of K, by bisection. Then Si(K) shall denote the
i-th son-element of K for i = 1, 2, . . . , 8.

The bisection algorithm works as follows: first the center points of opposite 2-
dimensional faces of K, then the midpoints of opposite edges of the 2-dimensional
faces of K are connected. Furthermore the resulting opposite edges in K are con-
nected by a 2-dimensional plane through the resulting inner edge of K. This process
is illustrated for an arbitrary quadrilateral in 2D in the following figure 4.1.

Figure 4.1.: (left) quadraliteralK; (right) Bisection onK and resulting son-elements
Si(K) of K, i = 1, . . . , 4.

Let Pi denote a vertex of K for i = 1, . . . , 8 in a common order, then the son-
elements Si(K) of K are numbered by the index of the vertex Pi as a corner of
Si(K). Furthermore we call K the father of Si(K) denoted by F (Si(K)). We arrive
at a refined mesh T by replacing the marked entity K by the set of its son-elements
Si(K) for all i ∈ {1, . . . , 8}. Then the formed mesh Tl is not regular in the sense of
definition 3.1.2, because for a son-element Si(K), which is a neighbor of a not-refined
element K ′, the intersection Si(K) ∩K ′ is not necessarily a common face or vertex
of these two elements. Despite that T maintains the shape regularity as stated in
definition 3.1.2. Hence the criterion

max
K∈T

hK
%K
≤ C for a constant C > 1, (4.1.1)

where hK denotes the diameter of K and %K the diameter of the largest ball, that
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can be inscribed into K, is fulfilled. This follows from the conditions

hSi(K) ≤
1
2hK and %Si(K) ≥ c0%K (4.1.2)

for a constant c0 > 0 due to the bisection procedure. Thus the shape regularity still
holds for the refined mesh Tl.

Henceforth we state a lemma concerning the ratio of K and its arbitrary son-element
Si(K):

Lemma 4.1.1 Let T denote a shape regular mesh as described above, then there
exists a constant C̃ ∈ (0, 1) such that

|Si(K)|
|K|

≤ C̃ for all K ∈ T, i = 1, . . . , 8. (4.1.3)

Proof. The proof follows easily from geometric properties and the shape regularity
of T , see Zhao et al. [36] for details.

As next the definitions of the refinement level and k-irregularity are given:

Definition 4.1.2 The refinement level L(K) for an arbitrary element K ∈ T for
the shape-regular mesh T generated by refinement of the initial mesh T0 is defined
as L(K) := 0 if K ∈ T0 and L(K) := m for m ≥ 1, if there exist m elements Ki,
i = 1, . . . ,m with K0 := K such that

Ki := F(Ki−1) for i = 1, . . . ,m and Km ∈ T0. (4.1.4)

Definition 4.1.3 A mesh T generated by the above described refinement of an initial
regular mesh T0 is called k-irregular for k ∈ N0 if

|L(K)− L(K ′)| ≤ k (4.1.5)

holds for any pair of neighboring elements K,K ′ ∈ T , i.e. ∂K ∩ ∂K ′ is a one- or
two-dimensional edge or face.

Considering the above stated definitions we see that L(K) also represents the number
of refinement steps needed to generate the elementK from the initial mesh T0, which
is trivially a 0-irregular mesh and therefore regular. For simplicity we will from now
on consider 1-irregular meshes, which is not a severe limitation, because k-irregular
meshes can be refined until 1-irregularity is reached, although the computational
effort would be much higher.

In conclusion we call T as obtained by the local bisection refinement described
above a 1-irregular multilevel adaptive, shape regular mesh or simply a 1-irregular
mesh. As mentioned before all the above stated results and constructions can be
generalized to arbitrary dimensions d ∈ N, see [36] for details. This section ends by
stating the following algorithm:
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Local bisection refinement
1: Given is a 1-irregular mesh Tl and a set of marked elements Ml

2: Bisection of all elements K ∈Ml

3: if ∃K,K ′ ∈ Tl neighbored, which do not satisfy condition (4.1.5) with k=1 then
4: if L(K) < L(K ′) then
5: Mark element K for refinement
6: else
7: Mark element K ′ for refinement
8: end if
9: end if

10: Repetition of step 3 until (4.1.5) holds with k=1 for all involved element
11: Obtaining refined 1-irregular mesh Tl+1

4.2. Hanging nodes

Refining a regular or shape regular mesh T ⊂ Ω consisting of hexahedrons as ex-
plained in section 4.1 causes certain problems in the standard finite-element ap-
proach. Especially the continuity of a solution uh ∈ Q1

h for the solution space Q1
h

from chapter 3 can not be assured across intersections of neighboring hexahedrons
with different refinement levels due to the occurence of hanging nodes. This problem
will be explained extensively later on.

First we define hanging nodes properly, therefore different notations have to be
stated in what follows. Let a shape regular mesh T and an arbitrary element K ∈ T
be given. Then, following notations of Zhao et al. [36], E(K) shall denote the set of
all 2-dimensional faces of K. Thus E := ⋃

K∈T E(K) is the set of all element faces
of the whole mesh. Defining E0 as the set of all inner faces of E and E∂Ω as the set
of all faces placed at the boundary ∂Ω, we can split E into

E = E∂Ω ∪ E0. (4.2.1)

Additionally let T (E) := {K ∈ T |E ∈ E(K)} denote the set of all elements K
having an arbitrary E as a face. Let

Er := {E ∈ E|#(T (E)) = 2} (4.2.2)

be the set of all regular inner faces, i.e. common faces of two neighboring elements
in T denoted by K(E) and K ′(E). Respectively all faces E ∈ E∂Ω at the boundary
of Ω belong to one element K(E) ∈ T .

A face E ∈ E has a son-face E ′ ∈ E if E ′ ⊂ E and |E ′| < |E| holds. Let S(K)
denote the set of all son-faces of E. Then

Ei := {E ∈ E0|S(E) 6= ∅} (4.2.3)

is called the set of all irregular inner faces, i.e. all the faces which have been subde-
vided during a refinement process of associated elements. In the same manner as in
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section 4.1 we denote the father-face of E ′ by F(E ′), i.e. E ′ ∈ S (F(E ′)). The set
of all son-faces is then denoted by

Es :=
⋃
E∈Ei

S(E). (4.2.4)

Consequently

E0 = Er ∪ Ei ∪ Es (4.2.5)

holds. Finally the set of all vertices of any element K ∈ T shall be denoted by
N (K) and the set af all nodes in T by N . Together with the above stated notations
the definition of a hanging node reads as follows.

Definition 4.2.1 Let P ∈ N be a node. If there exists a son-face E ∈ Es such that

L(K(E)) > L(K ′(E)), P ∈ E and P ∈ N (K(E)) \N (K ′(E)) , (4.2.6)

P is called hanging node, where K(E) and K ′(E) denote the associated elements
to the face E. Let Nh ⊂ N denote the set of all hanging nodes of the mesh T .
A node Q ∈ N\Nh is called regular node and the set of all regular nodes is denoted
by Nr such that Nr = N\Nh.

In other words a node P of a face E is a hanging node, if it is a vertex of the element
K(E) of refinement levelm associated to E, but not in the neigboring elementK ′(E)
of level m− 1. The following figure 4.2 illustrates this situation in 2D.

Figure 4.2.: (left) elements K(E) and K ′(E) associated to an inner regular face E;
(right) After the refinement of element K(E) the irregular inner face E
occurs with hanging node P .

Recapitulating the notations above, it is clear that the son faces E1, E2 in figure
4.2 are uniquely associated to the elements K(E1) and K ′(E) as well as K(E2) and
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K ′(E) respectively. We analogously call the regular nodes P1 and P2 associated to
the hanging node P . Henceforth let

Λ(P ) := {Q ∈ N|∃E ∈ E : Q,P ∈ N (E)} (4.2.7)

be the set of all neighboring (or associated) nodes of an arbitrary node P ∈ N , where
N (E) denotes the set of vertices of the edge E. With the help of this definition a
hanging node P can be expressed as the linear combination of neighboring regular
nodes, which will be necessary in the adaptive finite element approach on hexahedral
meshes with hanging nodes later on.

Lemma 4.2.2 Let T be a 1-irregular mesh and P ∈ Nh be a hanging node. Then
P can be expressed uniquely as a linear combination of neighboring regular nodes as
follows:

P =
∑

Qi∈Λ(P )
c(P )Qi with Λ(P ) ⊂ Nr. (4.2.8)

In the case that P is a midpoint of an element edge e with vertices Q1 and Q2

Λ(P ) := {Q1, Q2}, c(P ) = 1
2 (4.2.9)

holds. Is P the barycenter of a two-dimensional face E ∈ E with vertices Q1, Q2,
Q3, Q4

Λ(P ) := {Q1, Q2, Q3, Q4}, c(P ) = 1
4 (4.2.10)

is valid.

Proof. The stated linear combinitions follow easily from the geometric properties on
edges and 2 dimensional faces due to the generated position of the hanging node P by
the bisection procedure. Of course one has to assure that the condition Λ(P ) ⊂ Nr
holds, see [28] for details.

Next the problem of occuring hanging nodes will be explained in the context of a
well-posed finite element approach. Reconsidering the FEM-solution uh ∈ Q1

h of
definition 3.1.6 the condition

uh ∈ C0(Ω) (4.2.11)

is implied. In general this property does not hold on an irregular, hexahedral mesh
T of Ω with hanging nodes. The following example in 2D illustrates this problem:

Example 4.2.3 Consider the domain Ω := (0, 2) × (0, 1) ⊂ R2 and the following
PDE with Dirichlet-boundary conditions

4u = 0 (4.2.12)
u(0, x2) = 0 and u(2, x2) = x2 for all x2 ∈ [0, 1] (4.2.13)
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with the solution

u ∈ C2(Ω) ∩ C0(Ω), u(x1, x2) = 1
2x1x2 for all x1, x2 ∈ Ω. (4.2.14)

Let the 1-irregular mesh T be given as shown in the figure 4.3 below.

Figure 4.3.: Decomposition of Ω into hexahedrons resulting in the 1-irregular mesh
T . ϕi ∈ Q1

h denotes a nodal basis function as defined in definition 3.1.5,
i.e. ϕi(aj) = δij for appropriate nodes aj of T .

We use the notations from this figure, thus {ϕi|i = 1, . . . , 11} is a nodal basis and
K1, K2, K3 are the shown hexahedrons. Using the standard finite element approach
without claim of a regular mesh, that is to find uh ∈ Q1

h such that

uh(x) =
11∑
i=1

uiϕi(x) for x ∈ Ω (4.2.15)

and uh solves the weak formulation of the PDE according to definition 3.1.6. As-
suming such a solution uh exists we arrive at the following contradiction:

Hence uh ∈ C0(Ω) the equations below hold for the hanging node a5 =
(
1, 1

2

)
:

lim
x→a5
x∈K1

uh(x) = lim
x→x5
x∈K2

uh(x)

⇔ lim
x→a5
x∈K1

(uh(x)) = lim
x→a5
x∈K2

(uh(x))

⇔ lim
x→a5
x∈K1

4∑
i=1

uiϕi(x) = lim
x→a5
x∈K2

∑
i=3,5,6,7

uiϕi(x)

⇔
4∑
i=1

ui lim
x→a5
x∈K1

ϕi(x)
︸ ︷︷ ︸

=0

= u5 lim
x→a5
x∈K1

ϕ5(x)
︸ ︷︷ ︸

=1

⇔ 0 = u5 = uh(a5),
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where we used the properties of the nodal functions ϕi. Obviously the last equation
is false, because uh(a5) 6= 0 holds, which can easily be calculated. As a consequence
the assumption is false and therefore uh /∈ C0(Ω) and uh /∈ Q1

h are implied, thus
uh is not suitable as an approximated solution to the original problem or the weak
formulation respectively.

As suggested in the example above using a standard FEM approach on irregular
meshes with hanging nodes is unreasonable, that leads us to the problem of hanging
node treatment, e.g. the recovery of continuity for functions in a modified solution
space and nodal basis. To do so we start defining appropriate spaces and give an
abstract definition of continuity across element boundaries in the following.

Referring to Heuveline et al. [28] define

Dh :=
{
u ∈ L2(Ω)| u|K ∈ Q1(K), K ∈ Th

}
(4.2.16)

for an arbitrary 1-irregular mesh Th of Ω as the space of L2-functions, that are
possibly discontinuous across element boundaries. Additionally we determine

Rh := Dh ∩ C0(Ω) ⊂ H1(Ω) (4.2.17)

and specify the set of nodes N = {a1, . . . , an} of Th. The next objective will be
to state conditions for uh ∈ Dh as a linear combination of appropriate nodal base
functions such that uh ∈ Rh.

Let J(K) denote the set of indices of all vertices of K ∈ Th. Defining uh : Ω 7→
R locally on every K with the set of nodal functions {ϕKi ∈ Q1(K)|ϕKi (aj) =
δij for all ∈ J(K)} by

uh|K (x) =
∑

i∈J(K)
uiϕ

K
i (x) (4.2.18)

clearly yields uh ∈ Dh by definition, where ui denotes the corresponding DOF of uh.
Important to note is that not every vh ∈ Dh can be written as in (4.2.18), since uh
is continuous at regular nodes a ∈ Nr due to the usage of the nodal functions ϕKi .
Nevertheless uh can be discontinuous at hanging nodes as shown before.

It has to be mentioned what continuity of uh on the element boundaries ⋃K∈T ∂K is,
because uh is only locally constructed on open, convex hexahedrons K and therefore
uh is not defined in boundary-points x.

Definition 4.2.4 Let x ∈ ∂K be an arbitrary boundary-point of K, the value
uh|K (x) is determined as the value of the continuous extension of uh|K given by
(4.2.18) on the boundary ∂K. Then uh is called continuous at x, if all values
uh|K (x) are equal for any element K ∈ T with x ∈ ∂K.
Hence uh is trivially continuous on all elements K ∈ T , we call uh globally con-
tinuous if the above introduced condition holds for all x ∈ ⋃K∈T ∂K.
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The continuity of uh can be assured by determining so called jumps [uh]E of uh
across 2-dimensional faces E ∈ Es ∪ Er. The jump is defined as

[uh]E(x) := uh|K(E) (x)− uh|K′(E) (x), (4.2.19)

where K(E) and K ′(E) denote the uniquelly associated elements for x ∈ E. The
following Lemma then gives a criterion to verify continuity of uh:

Lemma 4.2.5 uh ∈ Dh is globally continuous if and only if

[uh]E(x) = 0 for all x ∈ E and E ∈ Es ∪ Er. (4.2.20)

Proof. The assertion follows directly by definition:

[uh]E(x) = 0⇔ uh|K(E) (x) = uh|K′(E) (x)

for all x ∈ E due to the fact that ⋃E∈Es∪Er
E = ⋃

K∈T ∂K\E∂Ω. Continuity on
boundary faces E ′ ∈ E∂Ω is trivially given, because only one single element K is
associated to E ′.

Following [28] we then can take advantage of the analytical structure of uh ∈ Dh

as the linear combination of appropriate nodal functions ϕi to specify an easier
condition for the continuity of uh.

Lemma 4.2.6 Let uh ∈ Dh be defined locally by (4.2.18) and E ∈ Es ∪Er be a face.
Then the following proposition is valid:

[uh]E(x) = 0 for all x ∈ E ⇔ [uh]E(ai) = 0 for all i ∈ J(E), (4.2.21)

where J(E) denotes the set of all vertices of E.

Proof. ” ⇒ ” : This is implied directly by the choice of x ∈ E as x = xi for all
i ∈ J(E).

” ⇐ ” : Representing an arbitrary x ∈ E as a linear combination of the vertices xi
for all i ∈ J(E) and using the local structure of uh, i.e. the linearity of the nodal
basis functions ϕi, yields this implication.

In Lemma 4.2.2 a way of writing hanging nodes uniquely as a linear combination
of neighboring regular nodes was introduced. This Lemma will be used together
with the above stated results to derive an important condition for the continuity of
functions on 1-irregular meshes.

Theorem 4.2.7 Let uh ∈ Dh be defined locally on every hexahedral element K ∈ T
by (4.2.18). Let the global DOF-vector

(u1, u2, . . . , un)t, (4.2.22)
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be given, where ui is the DOF associated to the node ai. Then uh is globally contin-
uous, i.e. uh ∈ Rh, if and only if

ui =
∑

aj∈Λ(ai)
c(ai)uj (4.2.23)

holds for all ai ∈ Nh, where Λ(ai) and c(ai) are determined by Lemma 4.2.2.

Proof. Using Lemma 4.2.5 and Lemma 4.2.6 it remains to show that

[uh]E(ai) = 0 for all i ∈ J(E) and E ∈ Es ∪ Er. (4.2.24)

As mentioned before uh is clearly continuous across an arbitrary face E ∈ Er due to
the dependence of uh on the nodal functions ϕK(E)

i , ϕK
′(E)

i for i ∈ J(E) on K(E)
and K ′(E) as the associated elements, which are identical across E.

Therefore (4.3.14) has to be shown for all E ∈ Es, thus consider such an E with
vertices associated to regular nodes Nr(E) := {aj|j ∈ J(E) and aj ∈ Nr} and
vertices associated to hanging nodes Nh(E) := {aj|j ∈ J(E) and aj ∈ Nh}.

For all ai ∈ Nr(E) the property [uh]E(ai) = 0 can be computed easily, so that the
main problem is to prove this condition for an arbitrary hanging node ai ∈ Nh(E).
Let K and K ′ denote the associated elements of E with L(K) < L(K ′), thus xi is
only a vertex of the hexahedron K ′.

Firstly consider a hanging node xi as the midpoint of an element edge e with vertices
aj1 ∈ e and aj2 ∈ e, then the following equation hold:

[uh]E(ai) = uh|K (ai)− uh|K′ (ai) =
∑

j∈J(K)
ujϕ

K
j (ai)−

∑
k∈J(K′)

ukϕ
K′

k (ai)

= (uj1 ϕKj1(ai)︸ ︷︷ ︸
= 1

2

+uj2 ϕKj2(ai)︸ ︷︷ ︸
= 1

2

)− ui

= 1
2(uj1 + uj2)− ui

(4.2.9)= 0

Secondly treating a hanging node xi as the barycenter of the face E can be done
analogously.

In conclusion the continuity of a function uh ∈ Dh can be achieved by eliminaton
of DOFs, which are associated to hanging nodes. Elimination in this context means
that we take advantage of the geometric properties of the hexahedral mesh presented
in Lemma 4.2.2 and interpolate the DOF linear by DOFs associated to regular nodes.
It is important to point out that uh ∈ Dh was defined locally on every element K
as the linear combination of appropriate nodal basis functions ϕKi on K, whereas
we used a global nodal basis of T in the FEM-approach from chapter 3 to gain a
solution uh. For the theoretical investigations in the following only local nodal basis
will be used, while a global conforming nodal basis will be derived for the application
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in chapter 5 by modifying global nodal basis functions associated to regular nodes.
This will be done in a similar way as above to assure continuity of a possible solution
uh, which then can be represented globally by a linear combination of modified nodal
functions.

4.3. AFEM on 1-irregular meshes

In this section the adaptive finite element method will be defined. Therefore we will
introduce and motivate the use of an error estimator, which will be an indicator for
errors between the computed left-hand side of the weak formulation and the exactly
given right-hand side on a single elements K ∈ Th as well as on the whole mesh
Th. The main idea is to refine those elements in the mesh, that overcome a certain
error bound such that the sum of errors on all son-elements is less than the original
error. In this context important marking strategies will be presented and compared
briefly. We end this chapter giving the AFEM-algorithm.

First a suitable interpolation operator for a given function u ∈ H1(Ω) that maps u
into the solution space Dh on the 1-irregular mesh T := Th will be presented. We
follow the ideas of Scott-Zhang [15] and assign to each node aj ∈ N a face Ej ∈ E
such that

aj ∈ Ej (4.3.1)
aj ∈ ∂Ω⇒ Ej ⊂ ∂Ω (4.3.2)
aj ∈ Nh ⇒ Ej ∈ Ei and aj ∈ N (K(Ej)). (4.3.3)

Obviously the choice of a corresponding face Ej to aj is not uniquely determined,
so that different possibilities are given.

To define an appropriate interpolation operator we need nodal functionals as used
in [28] and [36]. Let aj ∈ Nr be an arbitrary regular node, then the nodal functional
Nj : H1(Ω)→ R is defined by

Nj(v) := 1
|Ej|

∫
Ej

vds for all v ∈ H1(Ω). (4.3.4)

For a hanging node ai ∈ Nh we use a similar representation for the corresponding
nodal functional Ñi : H1(Ω)→ R as for a hanging node in the previous section:

Ñi(v) :=
∑

aj∈Λ(ai)
c(ai)Nj(v) for all v ∈ H1(Ω), (4.3.5)

where the above notations are given as before. Hence the interpolation operator
IT : H1(Ω)→ Dh can be defined locally on any element K ∈ T as

ITv|K :=
∑

aj∈Nr(K)
Nj(v)ϕKj +

∑
ak∈Nh(K)

Ñk(v)ϕKk for all v ∈ H1(Ω). (4.3.6)
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The following Lemma shows the continuity of ITv with the help of the previous
chapter.

Lemma 4.3.1 Let IT be defined as before, then for all v ∈ H1(Ω)

IT (v) ∈ Rh (4.3.7)

is valid, where Rh := Dh ∩ C0(Ω). I.e. IT (v) is a globally continuous function.

Proof. The result follows directly from Theorem 4.2.7 together with (4.3.5) since
the global DOF-vector of IT (v) is

(Mk)k=1,...,n with Mk =

Nk(v), if ak ∈ Nr,
Ñk(v), if ak ∈ Nh.

(4.3.8)

Besides the operator IT also preserves homogeneous boundary conditions, i.e. when
v ∈ H1

0 (Ω) is chosen, and reproduces constant functions, i.e. IT (v) = v for constant
v ≡ c ∈ R, as stated in [28]. Thus it can be proven that this interpolation operator
guarantees first order accuracy in the L2(Ω) norm, which is optimal if no more than
v ∈ H1(Ω) holds. Hence the choice of IT is sufficient in order to solve the given
problem.

Furthermore Heuveline et al. [28] showed the following important approximation
properties:

Theorem 4.3.2 Let K ∈ T and the operator IT defined in (4.3.6) be given. Then the
following properties hold for all v ∈ H1(Ω) and for a positive constant C independent
of v, hK :

|ITv|1,K ≤ C|v|1,ω(K) (4.3.9)
‖v − ITv‖0,K ≤ ChK |v|1,ω(K), (4.3.10)

where hK = |K| 13 as well as

ω(K) := int

 ⋃
K̃∈Λ(K)

δ(K̃)
 with δ(K̃) := int

 ⋃
K′∈Λ(K)

K ′


and

Λ(K) :=
{
K̃ ∈ T |K ∩ K̃ 6= ∅

}
(4.3.11)

is the set of all neighboring elements of the element K ∈ T .

Proof. We refer to [28] pages 215-216, where the key ingredients are the definition
of the interpolation operator and appropriate interpolation estimates.
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Additionally an interpolation error estimation on interior faces K ∈ E0 similar to
the above theorem can be derived.

Lemma 4.3.3 Let E ∈ E0 be an interior face and IT be defined as in (4.3.6). Then

‖v − ITv‖0,E ≤ Ch
1
2
E|v|1,ω(E) (4.3.12)

holds for hE := |E| 12 and the positive constant C , where

ω(E) :=
⋃

K∈T,K∩E∈E0

ω(K).

Proof. See [36], page 629.

The next goal is to derive a residual-based error estimator, which can be used to
specify different marking strategies. The error estimator should be chosen such
that it represents a good upper bound for the discretization error between an exact
solution u ∈ H1

∗ (Ω) and the approximated solution uh ∈ Rh.

To be as accurate as possible we first define uh properly:

Definition 4.3.4 (linear finite element method on 1-irregular meshes) Let Ω ⊂ R3

a polygonal-bounded domain, Th a 1-irregular mesh on Ω and Rh the space defined
in (4.2.17).
Furthermore a continuous and H1(Ω)-elliptic form B : H1(Ω) × H1(Ω) → R and
a right-hand side functional f ∈ H−1(Ω) shall be given. Then Rh ⊂ H1(Ω) and
uh ∈ Rh is called solution of the linear finite element method on 1-irregular meshes
if

B(uh, vh) = f(vh) holds for all vh ∈ Rh. (4.3.13)

Consequently IT (u) is a solution in the sense of the previous definition if

B(IT (u), vh) = f(vh) holds for all vh ∈ Rh, (4.3.14)

where the given notations with uh := IT (u) are valid from now on. The existence of
such a solution is clear due to the fact that Rh is a finite dimensional space. Since
no Dirichlet boundary conditions are given, the uniqueness of a solution then follows
by giving additional constraints. For instance fixing a value of uh at a Dirichlet node
or demanding average 0 for uh as in definition of the space H1

∗ (Ω) is sufficient to do
so.

Henceforth we will use the following notations and simplifications, first define

e := u− uh (4.3.15)
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as the discretization error. The bilinear form B and right-hand side functional f
are introduced in motivation of the concrete definitions (3.2.1) and (3.2.2) as

B(u, v) :=
∫

Ω
〈σ∇u,∇v〉dΩ (4.3.16)

f(v) :=
∫

Ω
〈l,∇v〉dΩ +

∫
∂Ω
gv d∂Ω, (4.3.17)

where σ is a conductivity tensor in the sense of chapter 1 and 2, u, v ∈ H1(Ω),
l ∈ (L2(Ω))3 and g ∈ L2(∂Ω). Thus B is a symmetric bilinear form, as shown in
section 2 of chapter 3. From now on we assume that σ is constant on every element
K ∈ Th, which is reasonable in reference to the used source model in chapter 1.

Since B is linear in each component the following equation holds for all v ∈ H1(Ω):

B(e, v) = B(u, v)−B(uh, v) = f(v)−B(uh, v), (4.3.18)

where we used the the fact, that B(u, v) = f(v) holds according to Theorem 2.2.4 .
Furthermore the so called Galerkin orthogonality property holds, that is

B(e, vh) = 0 for all vh ∈ Rh, (4.3.19)

which can be calculated easily:

B(e, vh) = B(u, vh)−B(uh, vh) = f(vh)− f(vh) = 0

due to the fact that Rh ⊂ H1(Ω) and uh is the solution of (4.3.13). Then a residual-
based error estimator can be derived in the following fashion:

Thanks to the assumption of an existing 1-irregular mesh T as a decomposition of
the polygonal-bounded domain Ω we can split B(e, v) into a sum over all elements
K ∈ T :

B(e, v) = f(v)−B(uh, v)

=
∑
K∈T

(∫
K
〈l,∇v〉dK +

∫
∂K∩∂Ω

gv d∂K −
∫
K
〈σ∇uh,∇v〉dK

)

=
∑
K∈T

(∫
K

(l + div σ∇uh)vdK +
∫
∂K∩∂Ω

(g − 〈σ∇uh,n〉)v d∂K

−
∫
∂K\∂Ω

〈σ∇uh,n〉v d∂K
)

(4.3.20)

for all v ∈ H1(Ω) and the unit surface outer normal n, where we integrated by parts
over each element. Let

rI(uh) := l + div σ∇uh (4.3.21)

denote the interior residual and

rB(uh) := g − 〈σ∇uh,n〉 (4.3.22)
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the boundary residual, which are well defined on each element due to the regularity
of f, g and the smoothness of the approximation uh on every K. Thanks to the fact
that vh ∈ Rh is a globally continuous function and any edge E ∈ Es∪Er is associated
to two elements K(E), K ′(E) , the last term in (4.3.20) can be rearranged as follows:

∑
K∈T

∫
∂K\∂Ω

〈σ∇uh,n〉v d∂K =
∑

E∈Es∪Er

∫
E

[〈σ∇uh,n〉] v dE, (4.3.23)

with the jump discontinuity of the approximation uh across E:

[〈σ∇uh,n〉] = nK(E) · (σ∇uh)|K(E) + nK′(E) · (σ∇uh)|K′(E), (4.3.24)

where nK(E) and nK′(E) denote the unit outer normal to ∂K(E) and ∂K ′(E) re-
spectively. Following the idea of Ainsworth et al. [17] page 22, we extend the above
definition of the boundary residual rB on interior faces E by

rB(uh) = − [〈σ∇uh,n〉] . (4.3.25)

As a consequence (4.3.20) can be rewritten as

B(e, v) =
∑
K∈T

∫
K
rI(uh)vdK +

∑
E∈Es∪Er∪E∂Ω

∫
E
rB(uh)vdE (4.3.26)

for all v ∈ H1(Ω).

An a posterori error estimation now can be derived by using the Galerkin orthogo-
nality (4.3.19) and the shape of the interpolation operator IT . Therefore

B(e, IT (v)) =
∑
K∈T

∫
K
rI(uh)IT (v)dK +

∑
E∈Es∪Er∪E∂Ω

∫
E
rB(uh)IT (v)dE = 0. (4.3.27)

Summation of (4.3.26) and (4.3.27) as well as applying the Cauchy-Schwarz inequal-
ity gives

B(e, v) = B(e, v)−B(e, IT (v))

=
∑
K∈T

∫
K
rI(uh)(v − IT (v))dK +

∑
E∈Es∪Er∪E∂Ω

∫
E
rB(uh)(v − IT (v))dE.

≤
∑
K∈T
‖rI(uh)‖0,K‖v − IT (v)‖0,K +

∑
E∈Es∪Er∪E∂Ω

‖rB(uh)‖0,E‖v − IT (v)‖0,E.

(4.3.28)

Reconsidering the interpolation estimates from theorem 4.3.2 and lemma 4.3.3
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(4.3.28) leads to

B(e, v) ≤
∑
K∈T
‖rI(uh)‖0,KC1hK |v|1,ω(K) +

∑
E∈Es∪Er∪E∂Ω

‖rB(uh)‖0,EC2h
1
2
E|v|1,ω(E)

≤ max{C1, C2}
(∑
K∈T
‖rI(uh)‖0,KhK |v|1,ω(K)

+
∑

E∈Es∪Er∪E∂Ω

‖rB(uh)‖0,Eh
1
2
E|v|1,ω(E)


≤ max{C1, C2}

∑
K∈T

h2
K‖rI(uh)‖2

0,K +
∑

E∈Es∪Er∪E∂Ω

hE‖rB(uh)‖2
0,E

 1
2

·

∑
K∈T
|v|21,ω(K) +

∑
E∈Es∪Er∪E∂Ω

|v|21,ω(E)

 1
2

≤ max{C1, C2}︸ ︷︷ ︸
=:C

|v|1,Ω

∑
K∈T

h2
K‖rI(uh)‖2

0,K +
∑

E∈Es∪Er∪E∂Ω

hE‖rB(uh)‖2
0,E

 1
2

,

(4.3.29)

where we again used the Cauchy-Schwarz inequality. In reference to the notation
‖v‖2

E,Ω = B(v, v) as the energy norm of v and the fact that |v|1,Ω ≤ ‖v‖E,Ω the a
posteori error estimate is given by

‖e‖2
E,Ω = B(e, e) ≤ C|e|1,Ω

∑
K∈T

h2
K‖rI(uh)‖2

0,K +
∑

E∈Es∪Er∪E∂Ω

hE‖rB(uh)‖2
0,E

 1
2

≤ C‖e‖E,Ω

∑
K∈T

h2
K‖rI(uh)‖2

0,K +
∑

E∈Es∪Er∪E∂Ω

hE‖rB(uh)‖2
0,E

 1
2

⇔ ‖e‖2
E,Ω ≤ C2

∑
K∈T

h2
K‖rI(uh)‖2

0,K +
∑

E∈Es∪Er∪E∂Ω

hE‖rB(uh)‖2
0,E


≤ C2 ∑

K∈T

(
h2
K‖rI(uh)‖2

0,K + hK‖rB(uh)‖2
0,∂K

)
. (4.3.30)

Finally the following definition in reference to the notation of Zhao et al. [36] gives
the residual based error estimator, which will be used in the AFEM-algorithm.

Definition 4.3.5 Let Th be an 1-irregular mesh of Ω and uh ∈ Rh, then the error
indicator for uh on the element K ∈ Th is defined by

η2
h(uh, K) := h2

K‖rI(uh)‖2
0,K + hK‖rB(uh)‖2

0,∂K (4.3.31)

with hK = |K| 13 and rI as well as rB from (4.3.21) and (4.3.22). For U ⊂ Th we set

η2
h(uh, U) :=

∑
K∈U

η2
h(uh, K) (4.3.32)

and ηh := ηh(uh, Th) for simplicity.
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Thanks to the derivation of the error estimator above leading to inequality (4.3.30)
we can state the next theorem.

Theorem 4.3.6 Using all the above presented notations the following inequality
holds:

‖u− uh‖2
E,Ω ≤ Cη2

h (4.3.33)

Thus the error estimator ηh represents an upper bound for the error e in the energy
norm. Moreover error estimates in the L2-norm for e can be shown quite easily, see
Ainsworth et. al [17] for further information on the matter.

As mentioned before the error estimator now gives a meisure for local and global
errors, so that we present three important and appropriate marking strategies, which
determine the setM of hexahedrons K ∈ Th to be refined in the next adaption step.

• The maximum strategy marks all those elements K, whose error estimator
η2
h(uh, K) gives a value, which exceeds the maximum local error estimation of
the whole mesh multiplied with a certain factor θ ∈ (0, 1]. In detail K ∈M if
and only if

η2
h(uh, K) ≥ θ max

K′∈Th

η2
h(uh, K ′). (4.3.34)

• The equidistribution strategy follows the idea of splitting the global error
estimate among all elements K ∈ Th such that the local estimates η2

h(uh, K)
give the same value. Therefore K ∈M is valid if and only if

η2
h(uh, K) ≥ θ

η2
h√

#Th
(4.3.35)

for θ ∈ (0, 1].

• The Dörfler strategy determines the set M such that

η2
h(uh,M) ≥ θη2

h (4.3.36)

for θ ∈ (0, 1]. Hence it is a strategy limiting the global error by the error
estimates on the marked elements. Thereby a greedy algorithm to generateM
is recommended for efficiency reasons, such that as few elements as possible
are marked in the process.

Before presenting the AFEM-algorithm we specify an abort condition, which shall
stop the algorithm when the error is sufficiently small. Here a simple, absolute
criterion is used: If

ηh ≤ TOL (4.3.37)

holds for a fixed scalar TOL ∈ R+ the AFEM-algorithm below stops at step 4 with
solution uh.
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AFEM-algorithm
1: Decomposition of Ω into a 1-irregular mesh T0 of mesh-size h consisting of hex-

ahedrons and specification of adaption parameter θ ∈ (0, 1] as well as l := 0
2: Solving of discrete problem (4.3.13) on Tl, obtaining solution ul
3: Computation of error estimator ηl(ul, K) for each element K ∈ Tl
4: Stop if abort criterion fulfilled, otherwise continue
5: Execution of marking strategy to gain set of marked elements Ml

6: Refinement of Tl in reference to Ml by local bisection refinement algorithm from
Section 4.1

7: l:=l+1
8: Back to step 2

In the implementation chapter of this thesis the maximum marking strategy is used,
so that the theoretical investigations in the next chapter will be done in respect to
this strategy.

4.4. Convergence of the Adaptive Finite Element
Method

In this section the convergence of the adapitve fintie element method presented in
the previous section will be proven. Following the ideas of Zhao et. al [36] we there-
fore introduce different error indicators and highlight their relation to one another.
In order to achieve this goal we will use elemetary techniques like Young’s inequal-
ity, which are mentioned in the Appendix. The notations will be used as before,
especially the definition of the bilinear form B and the right-hand side functional f
in (4.3.16) and (4.3.17).

Define u as the exact solution and uh as the discrete solution on the 1-irregular mesh
Th of the common problem. Additionally let uH denote a second discrete solution
in the sense of definition 4.3.4 on the 1-irregular mesh TH . Then let

eh := u− uh, eH := u− uH , εH := uh − uH (4.4.1)

be the differences between these solutions. Then

B(eh, εH) = B(eh, uh − uH) = B(eh, uh)︸ ︷︷ ︸
=0

−B(eh, uH)︸ ︷︷ ︸
=0

= 0 (4.4.2)

holds if RH ⊂ Rh due to the Galerkin orthogonality (4.3.19). Thanks to the fact
that B is also symmetric (4.4.2) yields B(εH , eh) = 0. Then the following Lemma
shows the relationship between eh, eH and εH (see a more general case in [36], page
631):
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Lemma 4.4.1 (Orthogonality) Taking the above stated notations into account, the
equation below holds for RH ⊂ Rh:

‖eh‖2
E,Ω = ‖eH‖2

E,Ω − ‖εH‖2
E,Ω (4.4.3)

Proof. The assertion follows directly due to the fact that B(v, v) = ‖v‖2
E,Ω for

arbitrary v ∈ H1(Ω). It is clear that

eH = u− uH = u− uh + uh − uH = eh + εH .

Thus

B(eh, eh) = B(eH − εH , eH − εH)
= B(eH , eH)−B(εH , εH)−B(eH , εH)︸ ︷︷ ︸

=0

−B(εH , eH)︸ ︷︷ ︸
=0

⇔ ‖eh‖2
E,Ω = ‖eH‖2

E,Ω − ‖εH‖2
E,Ω

holds trivially.

The condition RH ⊂ Rh is naturally given in the case that TH was generated by
refinement of Th . As next an estimation between the hessian and the jacobian of a
discrete function v ∈ Rh is shown.

Lemma 4.4.2 Let Th define a 1-irregular mesh, then there exists a constant C in
dependence of the shape regularity of Th, such that for every v ∈ Rh

‖D2v‖0,K ≤ Ch−1
K ‖∇v‖0,K (4.4.4)

holds for all K ∈ Th, where hK := |K| 13 .

Proof. Zhao et al. [36] prooved this Lemma in the 2D case, we will follow their ideas
showing the 3D case in detail.

Reconsidering the reference mapping F : K0 → K from Lemma 3.1.3, where K0 is
the unit cube in R3, let v0 ∈ Q1(K0) be the function defined by

v(x, y, z) = v0(F−1(x, y, z)) =: v0(x̃, ỹ, z̃) for all x, y, z ∈ K.

Then we will prove the inequality by using the properties of the reference mapping
and v0 on the reference element K0. First using the chain rule yields

∂v

∂x
= ∂(v0 ◦ F−1)

∂x
= ∂v0

∂x̃

∂(F−1)1

∂x
+ ∂v0

∂ỹ

∂(F−1)2

∂x
+ ∂v0

∂z̃

∂(F−1)3

∂x
.

Since

∂

∂y

∂v0

∂x̃
= ∂2v0

∂2x̃

∂(F−1)1

∂y
+ ∂2v0

∂x̃∂ỹ

∂(F−1)2

∂y
+ ∂2v0

∂x̃∂z̃

∂(F−1)3

∂y
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holds (analogously in ỹ and z̃ direction), we arrive at

∂2v

∂y∂x
= ∂2v0

∂x̃2︸ ︷︷ ︸
=0

∂(F−1)1

∂y

∂(F−1)1

∂x
+ ∂2v0

∂ỹ2︸ ︷︷ ︸
=0

∂(F−1)2

∂y

∂(F−1)2

∂x
+ ∂2v0

∂z̃2︸ ︷︷ ︸
=0

∂(F−1)3

∂y

∂(F−1)3

∂x

+ 2 ∂
2v0

∂x̃∂ỹ

∂(F−1)2

∂y

∂(F−1)1

∂x
+ 2 ∂

2v0

∂x̃∂z̃

∂(F−1)3

∂y

∂(F−1)1

∂x

+ 2 ∂
2v0

∂ỹ∂z̃

∂(F−1)3

∂y

∂(F−1)2

∂x
+ ∂v0

∂x̃

∂2(F−1)1

∂y∂x︸ ︷︷ ︸
=0

+ ∂v0

∂ỹ

∂2(F−1)2

∂y∂x︸ ︷︷ ︸
=0

+∂v0

∂z̃

∂2(F−1)3

∂y∂x︸ ︷︷ ︸
=0

,

where we used the fact that F is linear and v0 ∈ Q1(K). The terms ∂2v/∂x2,
∂2v/∂y2 and ∂2v/∂z2 are zero due to the condition v ∈ Rh, i.e. v|K ∈ Q1(K).

Considering theH0-norm of ∂2v/(∂y∂x) and using the triangle inequality then yields∥∥∥∥∥ ∂2v

∂y∂x

∥∥∥∥∥
0,K

=
∥∥∥∥∥2 ∂2v0

∂x̃∂ỹ

∂(F−1)2

∂y

∂(F−1)1

∂x
+ . . .+ 2 ∂

2v0

∂ỹ∂z̃

∂(F−1)3

∂x

∂(F−1)2

∂x

∥∥∥∥∥
0,K

≤
∥∥∥∥∥2 ∂2v0

∂x̃∂ỹ

∂(F−1)2

∂y

∂(F−1)1

∂x

∥∥∥∥∥
0,K

+ . . .+
∥∥∥∥∥2 ∂2v0

∂ỹ∂z̃

∂(F−1)3

∂x

∂(F−1)2

∂x

∥∥∥∥∥
0,K

.

(4.4.5)

Thanks to the transformation formula the different terms above can be estimated
as follows for α ∈ K and β ∈ K0:

∥∥∥∥∥2 ∂2v0

∂x̃∂ỹ

∂(F−1)2

∂y

∂(F−1)1

∂x

∥∥∥∥∥
0,K

=
∫

K

∣∣∣∣∣2 ∂2v0

∂x̃∂ỹ
(F−1(α))∂(F−1)2

∂y
(α)∂(F−1)1

∂x
(α)

∣∣∣∣∣
2

dα
 1

2

=

∫
K0

∣∣∣∣∣2 ∂2v0

∂x̃∂ỹ
((F−1 ◦ F )(β))∂(F−1)2

∂y
(F (β))∂(F−1)1

∂x
(F (β))

∣∣∣∣∣
2

· | det(DF )|︸ ︷︷ ︸
=|K|

dβ


1
2

= |K| 12
∫

K0

∣∣∣∣∣2 ∂2v0

∂x̃∂ỹ
(β)∂(F−1)2

∂y
(F (β))∂(F−1)1

∂x
(F (β))

∣∣∣∣∣
2

dβ
 1

2

≤ |K|
1
2

∫
K0

∣∣∣∣∣2 ∂2v0

∂x̃∂ỹ
(β)‖∇F−1‖2

∣∣∣∣∣
2

· dβ
 1

2

(4.4.6)



4.4. Convergence of the Adaptive Finite Element Method 43

= |K| 12‖∇F−1‖2
∥∥∥∥∥2 ∂2v0

∂x̃∂ỹ

∥∥∥∥∥
0,K0

This estimation holds analogously for the other mixed terms in (4.4.5). Now the
above stated estimations yield

∥∥∥∥∥ ∂2v

∂y∂x

∥∥∥∥∥
0,K
≤ C|K|

1
2‖∇F−1‖2

∥∥∥∥∥ ∂2v0

∂x̃∂ỹ

∥∥∥∥∥
0,K0

+
∥∥∥∥∥ ∂2v0

∂x̃∂z̃

∥∥∥∥∥
0,K0

+
∥∥∥∥∥ ∂2v0

∂ỹ∂z̃

∥∥∥∥∥
0,K0



Moreover∥∥∥∥∥ ∂2v0

∂x̃∂ỹ

∥∥∥∥∥
0,K0

+
∥∥∥∥∥ ∂2v0

∂x̃∂z̃

∥∥∥∥∥
0,K0

+
∥∥∥∥∥ ∂2v0

∂ỹ∂z̃

∥∥∥∥∥
0,K0

≤ C|∇v0|1,K0 ≤ C‖∇v0‖1,K0

follows by definition of the semi-norm | . . . |1,K0 . Taking advantage of the equivalence
of norms of the finite dimensional space Q1(K0) the inequality

‖∇v0‖1,K0 ≤ C‖∇v0‖0,K0

is valid. We now use the estimations concerning the reference mapping F introduced
in Lemma 3.1.3 and the fact, that the mesh Th is shape regular in the sense of
definition 3.1.2, which give

‖∇F−1‖
(3.1.6)
≤ hK0

%K
= hK
%K︸︷︷︸
≤C

hK0

hK
≤ C

hK0

hK
=: Ch−1

K .

Consequently the following inequality holds:∥∥∥∥∥ ∂2v0

∂x̃∂ỹ

∥∥∥∥∥
0,K
≤ C|K|

1
2h−2

K ‖∇v0‖0,K0 ≤ Ch−1
K ‖∇v‖0,K ,

where the last inequality follows from a similar transformation from K0 to K.
Estimating the other terms in D2v in the same way then prooves the assertion.

The next lemma shows the relationship between the error estimators of different
functions u, v ∈ Rh on the same mesh Th.

Lemma 4.4.3 Let Th be a 1-irregular mesh, then for all K ∈ Th and any u, v ∈ Rh

the inequality

ηh(u,K) ≤ ηTl
(v,K) + C‖u− v‖1,ω(K) (4.4.7)
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holds with

ω(K) :=
⋃

K′∩E∈E0,K′∈Th,E∈E(K)
K ′ (4.4.8)

as the set of all elements K ′, which have a common inner edge with K. Thereby the
constant C is depends only on the shape regularity of Th and the introduced tensor
σ.

Proof. Again we follow the main ideas of Zhao et al. [36] with certain changes due
to the given problem. First of all the triangle inequality yields

ηh(u,K)

=
√
h2
K‖rI(u)‖2

0,K + hK‖rB(u)‖2
0,∂K

≤ hK‖rI(u)‖0,K + h
1
2
K‖rB(u)‖0,∂K

= hK‖rI(u+ v − v)‖0,K + h
1
2
K‖rB(u+ v − v)‖0,∂K

≤ hK‖f + div(σ∇(u− v + v))‖0,K

+ h
1
2
K

 ∑
E∈E(K)\E∂Ω

∥∥∥∥1
2 [〈σ∇(u− v + v),n〉]

∥∥∥∥
0,E

+
∑

E∈E(K)∩E∂Ω

‖g − 〈σ∇(u− v + v),n〉‖0,E


≤ hK‖rI(v)‖0,K + h

1
2
K‖rB(v)‖0,∂K + hK‖ div(σ∇(u− v))‖0,K

+ h
1
2
K

 ∑
E∈E(K)\E∂Ω

∥∥∥∥1
2 [〈σ∇(u− v),n〉]

∥∥∥∥
0,E

+
∑

E∈E(K)∩E∂Ω

‖〈σ∇(u− v),n〉‖0,E


= ηh(v,K) + hK‖ div(σ∇(u− v))‖0,K

+ h
1
2
K

 ∑
E∈E(K)\E∂Ω

∥∥∥∥1
2 [〈σ∇(u− v),n〉]

∥∥∥∥
0,E

+
∑

E∈E(K)∩E∂Ω

‖〈σ∇(u− v),n〉‖0,E

 .
(4.4.9)

Then the next step is to estimate every summand in the statement above. We start
with the inner residual term ‖ div(σ∇(u− v))‖0,K , where we take advantage of the
equivalence

div(σ∇(u− v)) = div(σ)∇(u− v) + σD2(u− v).

Note that in the case of a constant σ the first term is trivially zero. Thus

‖ div(σ∇(u− v))‖0,K ≤ ‖ div(σ)‖0,∞‖∇(u− v)‖0,K + ‖σ‖0,∞‖D2(u− v)‖0,K

≤ ‖ div(σ)‖0,∞‖∇(u− v)‖0,K + Ch−1
K ‖∇(u− v)‖0,K

holds, where we used Lemma 4.4.2 with a positive constant C.
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Next we consider the boundary term ‖〈σ∇(u− v),n〉‖0,E for a boundary face E ∈
E(K) ∩ E∂Ω. Using the scaled trace inequality from Lemma A.2.4 of the appendix
and Lemma 4.4.2 again we arrive at the desired result, that is

‖〈σ∇(u− v),n〉‖0,E ≤ ‖σ‖0,∞‖∇(u− v)‖0,E

≤ ‖σ‖0,∞

(
h
− 1

2
K ‖∇(u− v)‖0,K + h

1
2
K‖D2(u− v)‖0,K

)
≤ ‖σ‖0,∞

(
h
− 1

2
K ‖∇(u− v)‖0,K + h

1
2
K · h−1

K C‖∇(u− v)‖0,K

)
≤ C ′h

− 1
2

K ‖∇(u− v)‖0,K .

Henceforth let E ∈ E(K) ∩ Er be a regular face, i.e. a face associated uniquelly to
the elements K(E) and K ′(E). Then we can estimate the jump term in (4.4.8) as
follows:∥∥∥∥1

2 [〈σ∇(u− v),n〉]
∥∥∥∥

0,E
≤ ‖〈(σ∇(u− v))|K(E) − (σ∇(u− v))|K′(E),nK(E)〉‖0,E

≤ ‖(σ∇(u− v))|K(E)‖0,E + ‖(σ∇(u− v))|K′(E)‖0,E.

≤ . . .

≤ Ch
− 1

2
K(E)‖∇(u− v)‖0,K(E)

+ C ′h
− 1

2
K′(E)‖∇(u− v)‖0,K′(E)

≤ Ch
− 1

2
K(E)‖∇(u− v)‖0,K(E)

+ C ′h
− 1

2
K(E)‖∇(u− v)‖0,K′(E),

where we estimated the last terms in the same fashion as above for E on the bound-
ary ∂Ω.

For E ∈ E(K) ∩ Es we need to specify the involved elements K(E) and K ′(E) and
then proceed as above. Without any loss of generality let K(E) ∈ Th denote the
element, which has E as a face, and K ′(E) a cuboid in the neighbored element J
with L(J) = L(K(E)) − 1, where E ⊂ E ′ for a face E ′ ∈ E(J). K ′(E) is chosen,
such that E is a face of K ′(E) and |K ′(E)| = 1/4 · |J |, i.e. K ′(E) is a cuboid
generated by dividing J in four disjoint cuboids of the same size appropriately.
Using this seperation the before seen result follows analogously. Since we work on
the 1-irregular mesh Th the sum of ‖∇(u− v)‖0,... on the four described cuboids of
J associated to son-faces E is ‖∇(u− v)‖0,J .

In conclusion the following inequality holds:

ηh(u,K)
≤ ηh(v,K) + hK(‖ div(σ)‖0,∞‖∇(u− v)‖0,K + Ch−1

K ‖∇(u− v)‖0,K)

+ h
1
2
K(Ch−

1
2

K(E)‖∇(u− v)‖0,ω(K)).

Summarizing all the prefactors to a constant C then gives the assertion with the
remark that ‖∇(u− v)‖0,ω(K) ≤ ‖∇(u− v)‖1,ω(K) holds naturally.
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The following Lemma shows the relation of the error estimators in reference to the
solutions ul and ul+1 on meshes Tl and Tl+1. Let Tl+1 be the mesh, which was
generated by refinement of the 1-irregular mesh Tl according to the before presented
AFEM-algorithm and define Rl := Rh on Tl.

Lemma 4.4.4 Let Tl be a 1-irregular mesh andMl ⊂ Tl a subset of marked elements
of Tl as well as Tl+1 the refinement of Tl in reference to Ml. Then there exists a
constant γ ∈ (0, 1) and C > 0 depending on the shape regularity of Tl and σ, such
that for every δ > 0 and any ul ∈ Rl, ul+1 ∈ Rl+1 the following inequality holds:

η2
l+1(ul+1, Tl+1) ≤ (1 + δ)η2

l (ul, Tl)− γ(1 + δ)η2
l (ul,Ml) + C

(
1 + 1

δ

)
‖ul+1 − ul‖2

E,Ω

(4.4.10)

Proof. Using Young’s inequality (see Appendix A.2.) on (4.4.6) with ul ∈ Rl and
ul+1 ∈ Rl+1 for K ∈ Tl+1 yields

η2
l+1(ul+1, K)
≤ (ηl+1(ul, K) + C‖ul+1 − ul‖1,ω(K))2

= η2
l+1(ul, K) + C2‖ul+1 − ul‖2

1,ω(K) + 2(ηl+1(ul, K)‖ul+1 − ul‖1,ω(K))

≤ η2
l+1(ul, K) + C2‖ul+1 − ul‖2

1,ω(K) + 2
(
δ
η2
l+1(ul, K)

2 + 1
δ

C2‖ul+1 − ul‖2
1,ω(K)

2

)

= (1 + δ)η2
Tl+1

(ul, K) +
(

1 + 1
δ

)
C2‖ul+1 − ul‖2

1,ω(K)

for a parameter δ > 0. Summarizing the inequality above over all elements K ∈ Tl+1
then gives

η2
l+1(ul+1, Tl+1) ≤ (1 + δ)η2

l+1(ul, Tl+1) +
(

1 + 1
δ

)
C‖ul+1 − ul‖2

E,Ω (4.4.11)

for a constant C > 0 due to the fact that any patch ω(K) only intersects with a
finite number of neighboring patches ω(K ′). We then arrive at the energynorm of
the term ul+1− ul by taking advantage of its equivalence to the H1-norm on Ω. We
refer to [36], page 634, which yields

η2
l+1(ul, K) =

∑
K′∈Tl+1,K

η2
l+1(ul, K ′) ≤ C̃

1
3η2

l (ul, K).

by using Lemma 4.1.1 for all marked elements K ∈ Ml. Trivially η2
l+1(ul, K) ≤

η2
l (ul, K) holds for all elements K ∈ Tl+1\Ml and thus we obtain

η2
l+1(ul, Tl+1) = η2

l+1(ul, Tl+1\Ml) + η2
l+1(ul,Ml)

≤ η2
l (ul, Tl\Ml) + C̃

1
3η2

l (ul,Ml)
≤ η2

l (ul, Tl)− (1− C̃ 1
3 )η2

l (ul,Ml).

Defining γ := 1− C̃ 1
3 then gives the desired result.
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To show the main theorem in this section an estimation in reference to the used
maximum marking strategy has to proved.

Lemma 4.4.5 For a set of marked elements Ml ⊂ Tl generated by the maximum
strategy for the 1-irregular mesh Tl and ul ∈ Rl the following inequality holds for the
marking parameter θ ∈ (0, 1]:

η2
l (ul,Ml) ≥

|Ml|
|Tl|

θη2
l (4.4.12)

Proof. Since

η2
l (ul, K) ≥ θ max

K′∈Tl

η2
l (ul, K ′)

holds for all K ∈Ml we can easily estimate

η2
l (ul,Ml) ≥ |Ml|θ max

K′∈Tl

η2
l (ul, K ′) = |Ml|θ

1
|Tl|

∑
K∈Tl

max
K′∈Tl

η2
l (ul, K ′)

≥ |Ml|
|Tl|

θ
∑
K∈Tl

η2
l (ul, K) = |Ml|

|Tl|
θη2

l .

Finally we can show the main theorem, which gives an estimation concerning the
energy norm of the error and the value of the estimator in dependence of the actual
adaption step.

Theorem 4.4.6 Let {Tl, ul}l≥0 be a sequence of meshes and solutions from the
AFEM-algorithm. Let el := u − ul+1 and εl = ul+1 − ul denote the errors for the
exact solution u. Then there exist constants 0 < αl < 1 and 0 < βl depending on
the shape regularity of T0, |Tl|, marking parameter 0 < θ ≤ 1 and σ such that

‖el+1‖2
E,Ω + βlη

2
l+1 ≤ αl(‖el‖2

E,Ω + βlη
2
l ). (4.4.13)

Proof. The assertion follows by using the before stated lemmata and choosing appro-
priate parameters. Defining t ∈ (0, 1) and taking the orthogonality property 4.4.3
into account as well as considering lemma 4.4.4, lemma 4.4.5 and theorem 4.3.6 the
following inequalities hold for β > 0:

‖el+1‖2
E,Ω + βη2

l+1

= ‖el‖2
E,Ω − ‖εl‖2

E,Ω + βη2
l+1

≤ ‖el‖2
E,Ω − ‖εl‖2

E,Ω + β
(

(1 + δ)η2
l − γ(1 + δ)η2

l (Ml) + C1

(
1 + 1

δ

)
‖εl‖2

E,Ω

)
≤ ‖el‖2

E,Ω − ‖εl‖2
E,Ω + β

(
(1 + δ)η2

l −
1
|Tl|

γθ(1 + δ)η2
l + C1

(
1 + 1

δ

)
‖εl‖2

E,Ω

)
(4.4.14)
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= ‖el‖2
E,Ω − ‖εl‖2

E,Ω

+ β

(
(1 + δ)η2

l −
1
|Tl|

γθ(1− t+ t)(1 + δ)η2
l + C1

(
1 + 1

δ

)
‖εl‖2

E,Ω

)
= ‖el‖2

E,Ω − ‖εl‖2
E,Ω

+ β(1 + δ)
(

1− 1
|Tl|

γθ(1− t)
)
η2
l − β

1
|Tl|

γθt(1 + δ)η2
l︸ ︷︷ ︸

≥β 1
|Tl|

γθt(1+δ)‖el‖E,Ω/C2

+βC1

(
1 + 1

δ

)
‖εl‖2

E,Ω

≤
(

1− β1/|Tl|γθt(1 + δ)
C2

)
‖el‖2

E,Ω + β(1 + δ)
(

1− 1
|Tl|

γθ(1− t)
)
η2
l

+
(
βC1

(
1 + 1

δ

)
− 1

)
‖εl‖2

E,Ω

for positive constants C1 and C2. To conclude the proof certain parameters have to
be specified, such that the above stated demands are valid. Therefore each factor is
considered in the following enumeration:

• 0 < (1 + δ)(1 − 1/|Tl|γθ(1 − t)) < 1 holds if 0 < t < 1 − δ/(1/|Tl)|γθ(1 + δ)
and therefore δl := δ > 0 should be chosen such that

1− δl
(1/|Tl|)γθ(1 + δl)

> 0.

• βlC1
(
1 + 1

δl

)
− 1 ≤ 0 yields the choice of βl := β as

0 < βl <
1

C1(1 + 1/δl)

• 1− βl(1/|Tl|)γθt(1 + δl)/C2 < 1 is already satisfied since C2, βl, γ, δl, θ, t > 0.

In conclusion we determine the value of 0 < αl < 1 as

αl := max
{

1− βl(1/|Tl|)γθt(1 + δl)
C3

, βl(1 + δl)
(

1− 1
|Tl|

γθ(1− t)
)}

.

The convergence of the AFEM-algorithm in the sense of reduction of the energy
norm of the error can not be shown for the maximum strategy here due to the fact
that the parameters αl and βl tend to zero for increasing l since

1
|Tl|

l→∞−→ 0. (4.4.15)

On the contrary Zhao et al. [36] proved a similar estimate using the Döfler-marking
strategy, where the parameters α and β are independent of the adaption step l
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and therefore gives convergence of the AFEM-algorithm. This is caused by the
characteristic property

η2
l (uh,M) ≥ θη2

l (4.4.16)

of the Dörfler marking, which can be used in line 3 of the estimation in the above
proof to arrive at the same result without the dependence on the mesh Tl.



5. Implementation and tests

After the theoretical investigations in the previous chapters the actual implemen-
tation of the AFEM-algorithm and the results for the subtraction forward problem
for the source model presented in chapter 1 are considered. Therefore we will intro-
duce the modular toolbox DUNE as a C++ library for solving partial differential
equations. Furthermore algorithms detecting and treating hanging nodes in the
DUNE-context will be presented and certain modifications to the before introduced
theories are explained to assure conformity of the derived theorems in chapter 4 and
the real implementation. Subsequently the validation of the error estimator will be
done in respect to a simple sinus-problem. Afterwards we test several source posi-
tions and adaption parameters to illustrate the convergence of the AFEM-algorithm
and especially to evaluate the results concerning conductivity jumps in the sphere
model.

5.1. Introduction to DUNE and DUNE-FEM

DUNE (Distributed and Unified Numerics Environment) is a modular toolbox for
solving PDEs available as a free software under the GNU Public License. It is
written in the programming language C++ with focus on modern programming
techniques (e.g. template based programming) to make the use of different imple-
mentations and libraries possible in respect to efficient interfaces at low overhead.
Hence DUNE supports high-perfomance applications at maximal efficiency. DUNE
is based on the main principles: "Separation of data structures and algorithms by
abstract interfaces", "Efficient implementation of these interfaces using generic pro-
gramming techniques" and "Reuse of existing finite element packages with a large
body of functionality" (see [6]). Especially the last principle leads to the possible use
of the external ALUGrid package to model the mesh Tl consisting of hexahedrons,
see [1] for details.

The DUNE framework consists of several modules, which are seperated into the
essential core modules and different discretization modules to name just a few (see
figure 5.1 for illustration). Details concerning DUNE and its modules can be found
in [4], [5] and [6].

50
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Figure 5.1.: design principle of DUNE, source: [6]

One of these discretization modules is the DUNE-FEM module, which is used for
the implementation of the AFEM-algorithm in this thesis. DUNE-FEM provides
interfaces for the implementation of methods like FEM, Finite Volume Methods
(FV) and Discontinuous Galerkin Methods(DG), we refer to [9] and [2] for further
information.

In the context of this thesis the dune-module DUNE-ADAPT was developed to
model the AFEM-algorithm for problems with jumping coefficients and for the sub-
traction forward problem in particular. It is based on the module "dune-school"
introduced to the participants of the "DUNE School 2012", which took place at the
department of applied mathematics in Freiburg on october 08th to 12th 2012. For
more details on the components of dune-adapt we refer to Appendix A3.

5.2. Hanging node treatment in DUNE-FEM

In this section the Lagrange discrete function space used in the DUNE-FEM imple-
mentation for the AFEM-algorithm is introduced. Therefore we deal with hanging
nodes once more and need to modify the global base functions appropriately to as-
sure a solution uh ∈ Rh on the 1-irregular mesh Th. In chapter 4.2. we already
introduced a condition for the continuity of uh ∈ Dh, i.e. the DOFs associated
to hanging nodes had to be written as a linear combination of neighboring DOFs
associated to regular nodes with certain scaling factors.

Important to note is, that a function uh ∈ Dh was defined locally on every element
K ∈ Th as a linear combination of local nodal base functions only defined on K. In
contrast to that we will derive a set of global continuous Lagrange base functions as
a basis of Dh ∩ C0(Ω) to motivate the actual implementation.

Let N (K) denote the set of all vertices of the element K, then we first of all define
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the global basis of Dh in reference to chapter 4.2. as follows:

BL
Th

:= {ϕi ∈ Dh| ϕi(aj)|K = δij ∀K ∈ Th with ai ∈ N (K),
ϕi|K ≡ 0 ∀K ∈ Th with ai /∈ N (K)} (5.2.1)

for the set of all nodes {a1, a2, . . . , an} in the mesh Th, where Dh is the space of
linear finite elements introduced in chapter 4. Thus defining uh ∈ Dh globally by

uh :=
n∑
i=1

uiϕi (5.2.2)

for the DOFs {ui}1≤i≤n gives a discontinuous function across son-faces E ∈ Es.

By modifying the DOFs of uh associated to hanging nodes as in Theorem 4.2.7 gives
a continuous function. Besides this modification we define a composite basis BC

Th
,

such that uh ∈ 〈BC
Th
〉 is naturally continuous.

First let

{a1, . . . , am−1, am, . . . , an} (5.2.3)

define the set of all nodes or vertices in the mesh Th, where a1, . . . , am−1 denote
regular and am, . . . , an denote hanging nodes.

Following the ideas of Peter Bastian [3] a conforming composite basis suitable for
hanging node treatment will be derived in what follows. Therefore we determine
new nodal base functions ψi for all 1 ≤ i ≤ m− 1 associated to regular nodes with

ψi := ϕi +
n∑

k=m
ci(ak)ϕk, (5.2.4)

where the coefficients ci(ak) are defined as follows:

ci(ak) =

c(ak), as defined in Lemma 4.2.2 if ak ∈ Λ(ai) ∩Nh,
0, otherwise.

(5.2.5)

Thus ψi is the modification of the original function ϕi by addition of appropriate
scaled base functions associated to neighboring hanging nodes. In the actual imple-
mentation ci(ak) is determined by evaluation of the element shape function Ψi of
the fatherelement F (K) of the involved element K ∈ Th at the hanging node ak. Ψi

is defined by

Ψi ∈ Q1(F (K)),Ψi(ai) = 1 and Ψi(aj) = 0, (5.2.6)

for all vertices aj of F (K) with j 6= i. This modification is illustrated in the figure
5.2 for a base function ϕi in the 2D-case.
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Figure 5.2.: (top) values of ϕi at all vertices; (bottom) values of ψi as modification
of ϕi at all vertices

Hence we define the composite nodal basis as BC
Th

:= {ψ1, . . . , ψm−1} and then the
next Lemma shows that it is an actual basis of Dh ∩ C0(Ω).

Lemma 5.2.1 Let BC
Th

be defined as before, then BC
Th

is a basis of Rh = Dh∩C0(Ω),
i.e. 〈BC

Th
〉 = Rh.

Proof. Let uh ∈ Rh be arbitrary chosen, then uh ∈ 〈BL
Th
〉 together with continuity

condition (4.2.23) holds. Thus

uh =
n∑
i=1

uiϕi =
m−1∑
i=1

uiϕi +
n∑

k=m
ukϕk

(4.2.23)=
m−1∑
i=1

uiϕi +
n∑

k=m

 ∑
ai∈Λ(ak)

c(ak)ui


︸ ︷︷ ︸

=
∑m−1

i=1 ci(ak)ui

ϕk

=
m−1∑
i=1

ui

(
ϕi +

n∑
k=m

ci(ak)ϕk
)

=
m−1∑
i=1

uiψi,

consequently uh ∈ 〈BC
Th
〉 and vice versa.

Therefore the constructed basis BC
Th

is suitable for our application and can be used
to derive a concrete AFEM-algorithm in the next section.
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5.3. Algorithmics

Refering to the previous constructions we will give the important algorithms in this
chapter concerning the implementation of the AFEM algorithm from section 4.3.
in the DUNE-framework. Starting with an algorithm for hanging node detection
and treatment in the mesh Th we derive the modified linear system with the help of
the basis BC

Th
in contrast to the standard FEM system from chapter 3 and conclude

with the implemented AFEM-algorithm in DUNE.

For hanging node detection common terms for our purposes are introduced first. It
is important to note, that the terms presented in the following do not represent the
mathematical object only, see [2] for the exact definitions in the DUNE-context.
The algorithm starts with a regular mesh T0, which will be refined locally in refer-
ence to the AFEM-algorithm from chapter 3. This procedure generates a sequence
{Ti}0≤i≤l, which is modeled with an ALUCube-grid (see [1]) G as an adaptive, mul-
tilevel grid consisting of hexahedrons. An element K ∈ Tl is called (codim 0) entity
and its faces E ∈ E(K) intersections. Furthermore Tl denotes the leaf grid and its
entities are named leaf entities, which are entities without any son-elements. The
DUNE implementation then makes it possible to access father elements of these leaf
entities without any restriction. Moreover there is an unique, global index number
assigned to every (sub-)entity of the grid G, which makes it possible to store the
indices of found hanging nodes to treat them later on.

In reference to the definition 4.2.1 of a hanging node we then state the hanging node
detection algorithm in pseudo-code below.

Hanging node detection
1: Given is the leaf grid Tl of G
2: Setup of vector<IndexType> hangingNodeIndexVector
3: for leaf entity Ki, i = 1, . . . ,#{codim 0 leaf entities of Tl} do
4: for vertex aj ∈ E /∈ E∂Ω of Ki, j = 1, . . . ,#{ vertices of Ki } do
5: if L(Ki) > L(NKi

) for the neighboring entity NKi
of Ki regarding E

then
6: if aj is not a vertex in NKi

then
7: hangingNodeIndexVector.pushback( index of aj)
8: end if
9: end if

10: end for
11: end for
12: Output:hangingNodeIndexVector

After the detection of hanging nodes in the leaf grid Tl a method to treat them
appropriately to gain a continuous solution for our problem is derived. Without any
restriction we assume that the indices of hanging nodes, calculated by the algorithm
above, are conform to the numbering in (5.2.3) for simplicity. Naturally this is not
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given in the application, but can be achieved easily by appropriate renumbering.

Reconsidering the standard FEM-approach from section 3 and the notation in sec-
tion 4.3. the stiffness matrix A and right-hand side vector b are given as follows:

A = (aij)1≤i,j≤n, aij := B(ϕj, ϕi) =
∫

Ω
〈σ(x)∇ϕj(x),∇ϕi(x)〉dx, (5.3.1)

b = (bi)1≤i≤n, bi := f(ϕi) =
∫

Ω
〈l(x),∇ϕi(x)〉dx−

∫
∂Ω
g(x)ϕi(x)dx (5.3.2)

for all possibly discontinuous base-functions ϕi ∈ BL
Tl
. Since we search for a solution

ul ∈ Rl, such that
B(un, ψ) = f(ψ) (5.3.3)

holds for all ψ ∈ Rl, we modify the given linear system Au = b according to the
above stated suggestions of introducing a new composite basis BC

Tl
. Keeping the

construction (5.2.4) of the continuous base-function ψi ∈ BC
Tl
in mind, which started

with the discontinuous basis BL
Tl

= {ϕ1, . . . , ϕn}, the following equivalences for the
solution uh ∈ 〈BL

Tl
〉 ∩ C0(Ω) can be derived for 1 ≤ i < m:

B(uh, ψi) = B

 n∑
j=1

ujϕj, ψi

 (5.2.4)= B

 n∑
j=1

ujϕj, ϕi +
n∑

k=m
ci(ak)ϕk


=

n∑
j=1

uj

(
B(ϕj, ϕi) +

n∑
k=m

ci(ak)B(ϕj, ϕk)
)

f(ψi) = f

(
ϕi +

n∑
k=m

ci(ak)ϕk
)

= f(ϕi) +
n∑

k=m
ci(ak)f(ϕk)

Due to the conditions B(uh, ψi) = f(ψi) and uh ∈ C0(Ω) we arrive at the linear
equation system
n∑
j=1

uj

(
B(ϕj, ϕi) +

n∑
k=m

ci(ak)B(ϕj, ϕk)
)

= f(ϕi) +
n∑

k=m
ci(ak)f(ϕk), 1 ≤ i < m

(5.3.4)

ui =
m−1∑
j=1

cj(ai)uj, m ≤ i ≤ n,

(5.3.5)

which yields a new linear system with modified stiffness matrix A′ and right-hand
side vector b′ as follows:

For 1 ≤ i < m : (A′)ij = Aij +
n∑

k=m
ci(ak)Ajk (5.3.6)

For m ≤ i ≤ n, 0 ≤ j < m : (A′)ij = −cj(ai) (5.3.7)

(b′)j = bi +
n∑

k=m
ci(ak)bk (5.3.8)

For m ≤ i, j ≤ n : (A′)ij = δij (5.3.9)
(b′)j = 0 (5.3.10)
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Finally the implemented algorithm to solve the discrete problem (5.3.3) is stated,
which is step 2 of the AFEM-algorithm in section 4.4..

Solving discrete problem (5.3.3)
1: Given is the mesh Tl, the basis BL

Tl
, stiffness-matrix A and right-hand side vector

b according to (5.3.1) and (5.3.2)
2: Execution of hanging node detection algorithm, obtaining hangingNodeIn-

dexVector
3: Setup of solution uh = ∑n

i=1 uiϕi and DOF-vector u = (u1, . . . , un)t
4: Setup of new stiffness matrix A′ and right-hand side vector b′ according to

(5.3.6) to (5.3.10)
5: Solving of system A′u = b′ and obtaining approximated solution DOF-vector u

Since the new stiffness matrix A′ is obviously not symmetric, the use of standard
symmetric solvers (like the CG-method) is impossible. Hence a preconditioned GM-
RES (Generalized Minimum Residual method) solver was used in the actual imple-
mentation, see [32] and [2] for further information on the matter.

5.4. Validation of the error estimator

Before starting tests for the AFEM-algorithm solving the EEG forward equation in
a simplified model, we will validate the error estimator, locally defined by

η2
l (ul, K) := h2

K‖rI(ul)‖2
0,K + hK‖rB(ul)‖2

0,∂K (5.4.1)

for the 1-irregular mesh Tl, element K ∈ Tl and solution ul ∈ Rl, with the help of a
simple model problem. In this context validation means to check the convergence of
the AFEM-algorithm and especially the significance of the estimation ‖u−ul‖2

E,Ω ≤
Cη2

l in theorem 4.3.6 for the exact solution u. This will be done solving the following
PDE with Neumann-boundary conditions.

Definition 5.4.1 (Sinus-problem with Neumann-boundary conditions) Let Ω :=
(0, 1)3 be given, then the sinus-problem with Neumann-boundary conditions is to
find u ∈ H1(Ω) such that

−4u(x) = 12π2
3∏
i=1

sin(2πxi) ∀x = (x1, x2, x3)t ∈ Ω (5.4.2)

〈∇u(x),n(x)〉 =
〈
∇
( 3∏
i=1

sin(2πxi)
)
,n(x)

〉
∀x ∈ ∂Ω (5.4.3)

and

u(0) = 0. (5.4.4)
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Thus the exact solution of the sinus-problem is obviously given by

u(x) =
3∏
i=1

sin(2πxi) ∀x = (x1, x2, x3)t ∈ Ω. (5.4.5)

The used initial regular mesh T0 is defined as the uniform decomposition of Ω into
64 hexahedron determined by

T0 :=
{(
x0, x0 + 1

4

)
×
(
x1, x1 + 1

4

)
×
(
x2, x2 + 1

4

)
∣∣∣∣xi ∈ {k · 1

4

∣∣∣∣0 ≤ k < 4
}
, i = 0, . . . , 2

}
. (5.4.6)

Hence all requirements of the AFEM-algorithm are given except the specification of
the adaption parameter θ ∈ (0, 1]. Table 5.1. on the next page shows the errors in
the energynorm as well as the values of the error estimator for different choices of θ
and for several adaptions-steps.

To analyse the results above the following figure 5.3 shows the real error in the
energy norm as well as the value of the error estimator for every θ regarding the
number of DOFs (#DOFs) in a logarithmic scale. It can be seen, that the estimated
error and the real error behave equally with a fixed difference to each other.

Figure 5.3.: estimated and real error for different adaptions parameters θ
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θ adaption step l # DOFs # hanging nodes ‖ul − u‖E,Ω ηl
0 125 0 1.708 10.474
1 729 0 0.866 5.2345
2 2041 1248 0.516 2.941
3 10369 4608 0.286 1.644

0.2 4 18705 6528 0.232 1.362
5 73089 20448 0.147 0.853
. . . . . . . . . . . . . . .
7 543333 86304 0.075 0.442
8 1043857 116352 0.058 0.347
0 0 0 1.708 10.474
1 125 0 0.866 5.2345
2 937 576 0.699 4.021
3 2041 1248 0.516 2.941

0.4 4 8981 2976 0.366 2.089
5 11713 4608 0.268 1.555
. . . . . . . . . . . . . . .
9 112477 26784 0.123 0.721
10 168229 38112 0.109 0.651
0 125 0 1.708 10.474
1 729 0 0.866 5.2345
2 937 576 0.699 4.021
3 2041 1248 0.516 2.941

0.6 4 4949 2400 0.397 2.287
5 7269 4128 0.337 1.901
. . . . . . . . . . . . . . .
9 33745 12864 0.199 1.151
10 58193 16992 0.162 0.943
0 125 0 1.708 10.474
1 729 0 0.866 5.2345
2 937 576 0.699 4.021
3 2041 1248 0.516 2.941

0.8 4 4133 1248 0.432 2.534
5 4949 2400 0.397 2.287
. . . . . . . . . . . . . . .
9 11713 4608 0.268 1.555
10 12769 5184 0.257 1.496

Table 5.1.: Results of the AFEM-algorithm for the sinus-problem with different pa-
rameters θ
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5.5. Tests on subtraction forward problem

In this section we will apply the introduced AFEM-algorithm to solve the subtrac-
tion forward problem (2.1.10) on a simplified domain Ω and evaluate the results in
reference to the values of the error estimator. Especially the number of adaption-
steps until fulfilling the abort condition will be taken into account. The behaviour
of the algorithm when the source position comes close to a conductivity-jump is the
most interesting observation to be made.

Before presenting the results the basic setting is introduced in what follows. As men-
tioned before the subtraction problem will be solved on a simple domain Ω := (0, 1)3,
where the corresponding initial, regular mesh T0 shall be defined as in (5.4.6). Two
compartments in this mesh are defined by assigning two different, isotropic conduc-
tivity tensors σ0, σ1 to each of these compartments (reconsidering the definition of
the source model in chapter 1):

(Ω0, σ0) with Ω0 := (0, 1)× (0, 0.25)× (0, 1), σ0 := 0, 0000042 (5.5.1)
(Ω1, σ1) with Ω1 := Ω\Ω0, σ1 := 0.00033 (5.5.2)

The values of σ0, σ1 are defined in reference to the electrical conductivities of the hu-
man skull and the human brain respectively (given in the physical quantity S/mm),
so we might call (Ω0, σ0) the skull compartment and (Ω1, σ1) the brain compartment.
Figure 5.4 illustrates the situation.

Figure 5.4.: illustration of given mesh T0 with two compartments of different
conductivity
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Next the bilinearform B and right-hand side functional f from (4.3.16) and (4.3.17)
are specified according to the subtraction problem from chapter 2 as

B(φcorrh , v) :=
∫

Ω
〈σ∇φcorrh ,∇v〉dΩ, (5.5.3)

f(v) :=
∫

Ω
〈(σ∞ − σ(x))∇φ∞(x),∇v(x)〉dx−

∫
∂Ω
〈σ∞∇φ∞(x),n(x)〉v(x)dx,

(5.5.4)

where φcorrh ∈ Rl denotes the desired approximated solution of the correction po-
tential and v ∈ H1(Ω). Following Drechsler et al. [10] second order quadrature
formulas are sufficient and accurate enough for the integrals above regarding the
linear test-functions v and especially the gradient of the singularity potential ∇φ∞
in the volume conductor Ω and on the boundary ∂Ω.

Thus we apply the AFEM-algorithm on this problem for different θ and for the
tolerance TOL := 0.001 for several source positions x0 := (0.5, p, 0.5) with p ∈
{0.26, 0.3, 0.35, . . . , 0.45, 0.5}, which successively approach the conductivity jump at
the interface (0, 1)× 0.25× (0, 1). The dipole moment was chosen asM := (0, 1, 0)t.

Table 5.2. on the next page shows the number of adaption steps needed for each
source position, such that the value of the global error estimator ηl falls below the
given tolerance in respect to the number of DOFs and hanging nodes.

The first important observation is the increasing number of adaption steps and
hanging nodes as well as the increasing value of the initial error estimation η0 when
sources get closer to the conductivity jump. Thus sources near such an interface
require more adaptive refinement steps to reach the same error bound than sources
located in the inner part of the volume conductor, where the number of adaption
steps lay in a common range. Moreover the number of steps increases by increasing
adaption parameter θ due to the reduced number of entities marked in the process,
especially sources at (0.5, 0.26, 0.5) near the conductivity jump need a significant
larger number of steps.
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θ source position x0 step l # DOFs # HN η0 ηl
(0.5, 0.5, 0.5) 8 8279 3507 0.0699 0.000642
(0.5, 0.45, 0.5) 8 7436 3610 0.0950 0.000739

0.2 (0.5, 0.4, 0.5) 9 9200 4143 0.144 0.000706
(0.5, 0.35, 0.5) 11 12469 6717 0.247 0.000676
(0.5, 0.3, 0.5) 11 19120 10600 0.475 0.000691
(0.5, 0.26, 0.5) 20 36765 19110 0.769 0.000892
(0.5, 0.5, 0.5) 12 5329 2830 0.000888
(0.5, 0.45, 0.5) 13 5404 3037 0.000989

0.4 (0.5, 0.4, 0.5) 14 7877 4160 0.000785
(0.5, 0.35, 0.5) 17 8826 6020 0.000904
(0.5, 0.3, 0.5) 21 13407 8213 0.00095
(0.5, 0.26, 0.5) 35 25556 19339 0.000190
(0.5, 0.5, 0.5) 24 4958 2717 0.000937
(0.5, 0.45, 0.5) 22 5246 3272 0.000978

0.6 (0.5, 0.4, 0.5) 24 7144 4554 0.000814
(0.5, 0.35, 0.5) 27 7858 5916 0.000989
(0.5, 0.3, 0.5) 41 12800 10202 0.00094
(0.5, 0.26, 0.5) 77 26339 24096 0.000972
(0.5, 0.5, 0.5) 44 4289 2825 0.000989
(0.5, 0.45, 0.5) 47 4763 3579 0.000981

0.8 (0.5, 0.4, 0.5) 47 5589 4426 0.000967
(0.5, 0.35, 0.5) 66 7300 6217 0.000976
(0.5, 0.3, 0.5) 81 11288 9612 0.000985

Table 5.2.: Results of the AFEM-algorithm for the subtraction forward problem
showing the situation for the last adaption step for different parameters
θ and source positions x0 with #HN as the number of hanging nodes

Next we take a closer look on sources (0.5, p, 0.5) approaching the conductivity
jump with p ∈ {0.255, 0.26, 0.265, 0.27, 0.275, 0.28, 0.285, 0.29, 0.295, 0.3} for θ = 0.4
in the table 5.3. below and the behaviour of the AFEM-algorithm in respect to the
required adaption steps and the initial estimated errors η0 in figure 5.5.

Figure 5.5.: (left) number of adaption steps (right) values of initial error
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p step l # DOFs # hanging nodes η0 ηl
0.3 21 13407 8213 0.475 0.00095
0.295 22 17108 11731 0.509 0.000781
0.29 23 16337 10709 0.545 0.000857
0.285 24 16194 12488 0.581 0.000986
0.28 23 17840 11559 0.620 0.000901
0.275 23 20317 13227 0.659 0.000892
0.27 25 19591 11753 0.698 0.00095
0.265 28 25832 19044 0.735 0.000941
0.26 36 25556 19339 0.769 0.000999
0.255 52 41858 32503 0.799 0.000982

Table 5.3.: Results of the AFEM-algorithm for the subtraction forward problem
showing the situation for the last adaption step for θ = 0.4 near the
conductivity jump

Finally the convergence of the error estimator for the sources (0.5, 0.26, 0.5), (0.5, 0.3,
0.5) and (0.5, 0.4, 0.5) for θ = 0.4 is investigated in the figures 5.6, 5.7 and 5.8 below.
The estimated errors are shown in respect to the number of DOFs and illustrations
of the adaption process are given as a plane at x-coordinate 0.5.

Figure 5.6.: source position (0.5, 0.26, 0.5), (top left) convergence history of the error
estimator (top right) local estimated errors at step 0 (bottom left/right)
approximated solution at step 2/35
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Figure 5.7.: source position (0.5, 0.3, 0.5), (top left) convergence history of the error
estimator (top right) local estimated errors at step 0 (bottom left/right)
approximated solution at step 2/21

Figure 5.8.: source position (0.5, 0.4, 0.5), (top left) convergence history of the error
estimator (top right) local estimated errors at step 0 (bottom left/right)
approximated solution at step 2/14
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5.6. Application in the source model

Reconsidering section 1.4., where an appropriate source model was introduced, we
conclude this chapter by presenting results of the AFEM-algorithm solving the sub-
traction forward problem in a 4-layer sphere model. First of all needed requirements
will be defined, followed by the comparison of a series of numerical and analytical re-
sults at step 0 and concluded by an outlook and motivation for adaptive calculations
in the sphere model for several example sources.

Let the 4-layer sphere domain Ω ⊂ R3 be defined as in (1.4.1) and (1.4.2) with
n := 3 as the number of shells and the radii (in mm)

r0 := 78, r1 := 80, r2 := 86, r3 = 92 (5.6.1)

as well as the associated domains Ωi for 0 ≤ i < 4. To each Ωi the following isotropic
conductivity tensors are assigned (in S/mm):

σ0 := 0.00033, σ1 := 0.00179, σ2 := 0.0000042, σ3 := 0.00033. (5.6.2)

Referring to the actual human head (Ω0, σ0) shall represent the brain, (Ω1, σ1) the
CSF, (Ω2, σ2) the skull and (Ω3, σ3) the skin. Let T0 define a 1-irregular mesh as
a conforming, approximated decomposition of Ω into 405545 hexahedrons of side
length 2mm.

As pointed out in chapter 1 the values of the analytical solution shall be given
at 134 electrodes (see Appendix A3 for details) at the sphere surface, which we
assume to be point-electrodes located at surface-nodes of T0. Thus the evaluation
of an approximated AFEM-solution uh at these electrodes is easily possible. Before
presenting corresponding results appropriate error quantities, that are commmonly
evaluated in source analysis (see [10]), will be given below.

The relative (Euclidean) error (RE) is defined as

RE = ‖uh − u‖2

‖u‖2
, (5.6.3)

where u denotes the exact solution. To indicate the changes in source strength the
magnification factor (MAG) is given by

MAG = ‖uh‖2

‖u‖2
, (5.6.4)

with minimal error value 1.

The following source positions will be used for tests of the FEM-algorithm to com-
pare approximated and analytical solution:

{(−1,−2 + t,−1)|t ∈ {0, 4, 8, . . . , 80}}, (5.6.5)
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so (-1,-2,-1) and (-1,2,-1) are the sources with the lowest and (-1,66,-1) the source
with the highest eccentricity. The dipole moment is defined as M := (0, 1, 0)t, such
that all the sources are strictly radial. The figure 5.9 shows the progression of the
RE and the MAG error regarding the eccentricity, where value 1 is reached at the
inner radius r0.

Figure 5.9.: (left) RE error (right) MAG error

Thus the RE increases strongly, when sources approach the conductivity jump at the
interface Ω0∩Ω1, and the MAG decreases with unusual behaviour from eccentricity
0.8 to 0.95. Considering Drechsler et al. [10], where e.g. the RE error is significantly
smaller, there is much potential to improve the dune-adapt implementation, we will
discuss appropriate possibilities in the outlook later on.

Next we take a closer look on the source positions (−1, 22,−1), (−1, 42,−1), (−1, 62,
−1) and (−1, 72,−1) for θ := 0.8 and the dipole moment M as determined above.
The source positions are illustrated in figure 5.10 .

Figure 5.10.: green cross: (-1,22,-1), yellow cross: (-1,42,-1), red cross: (-1,62,-1)
and orange cross: (-1,72,-1); different colors in mesh indicate shells
with characteristic conductivities
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Table 5.4. shows the results for adaptions step 10 for these source positions. It is
interesting to see that in contrast to the test in the simplified model from section
5 the number of hanging nodes decreases rapidely when a source comes close to a
conductivity jump. This is caused by large errors on just a few entities, therefore
the maximum strategy marks a reduced number of hexahedrons for the refinement
process.

source position # DOFs # HN η0 η10
(-1,22,-1) 433901 34808 0.00372 0.00220
(-1,42,-1) 427866 6846 0.00679 0.00384
(-1,62,-1) 426138 1307 0.00999 0.000706
(-1,72,-1) 425876 426 0.137 0.0367

Table 5.4.: Results of the AFEM-algorithm for the subtraction forward problem for
θ = 0.8 and adaption step 10 in the 4-layer sphere model

The following figure 5.11 shows a comparison of the convergence of the estimated
errors for the four sources above.

Figure 5.11.: estimated errors in respect to number of DOFs

The figures 5.12 and 5.13 show illustrations of the adaption process as planes with
x-coordinate 128 for the sources (−1, 22,−1) and (−1, 62,−1).



5.6. Application in the source model 67

Figure 5.12.: (left) local estimated errors at step 0 (right) approximated solution at
step 10, note that given scale is only valid for left illustration

Figure 5.13.: (left) local estimated errors at step 0 (right) approximated solution at
step 14, note that given scale is only valid for left illustration

The examples above clearly motivate further and more detailed tests for a series of
sources and parameters θ, which is only reasonable for an improved dune-adapt mod-
ule since solvers and constraints in the implementation are too slow at the moment.
Therefore the implementation of local constraints in reference to hanging node de-
tection and specified sparsity patterns in the DUNE context are recommended and
will be achieved in the future.



6. Conclusion

The main goal of this thesis was the derivation of an adaptive finite element method
to solve the EEG forward problem with the help of the subtraction approach. In or-
der to do so the well-known theory about the EEG source analysis and the derivation
of the EEG forward problem was introduced. The difficulties of the Dirac right-hand
side were addressed and avoided by reasonable simplifications, which enabled the
use of standard analysis and finite element methods. Additionally the existence and
uniqueness of a solution of the subtraction approach were recapitulated.

Basic knowledge about finite element methods was provided, followed by a moti-
vation of adaptive calculations. Due to the use of a hexahedral mesh as a decom-
position of the given domain Ω the bisection algorithm for element-wise refinement
caused the occurrence of hanging nodes, which prevent the use of a classical FEM-
approach. To maintain a regular solution in the sense of continuity, ideas to erase
the undesired influence of hanging nodes by using linear representations of neigh-
boring regular nodes were developed. By the derivation of a residual- based error
estimator as an error indicator the use of different marking strategies in the pre-
sented AFEM-algorithm were motivated. An attached convergence analysis showed
the disadvantage of the maximum strategy implying the impossibility of proving a
global convergence of the AFEM. Thus the use of the Dörfler marking strategy was
suggested instead.

An introduction to the used implementation tool DUNE followed helping to illustrate
the convergence of the error estimator in contrast to the energy norm error by
means of a simple sinus problem. Tests of the AFEM-algorithm for the subtraction
problem in a simple domain with two shells of different conductivity showed the
increasing computational effort, initial error and reduced convergence speed when
source positions approach the conductivity jump. Finally the RE and MAG error of
a FEM solution of the subtraction problem for several source positions in a 4 layer
sphere model were computed showing that the dune-adapt implementation at this
state does not provide satisfying results in comparison to the other implementations
as in [10]. Nevertheless the AFEM-experiments in this source model show promising
results and illustrate future possibilities in application of an improved dune-adapt
module.
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7. Outlook

Regarding future work on the AFEM-algorithm there are many interesting aspects
to be examined:

Since we used the maximum strategy in this thesis, investigations on the other
marking strategies (e.g. the Dörfler marking) are potentially promising. Especially
comparisons of corresponding results in an appropriate source model with the known
convergence background are worthwhile. Besides the introduced residual-based error
estimator we shall also consider and discuss the idea of using other estimator-types
like hierarchical basis error estimators or error estimators based on local problems
as presented in [29]. The study of other approaches to the EEG forward problem
(like the Venant approach) is another field of interest.

On the implementation side there are numerous fields of improvement. The use of
faster solvers and better preconditioning in conformity to more efficient DUNE code
is essential to obtain a satisfying runtime for adaptive calculations in the source
model - particularly regarding computations in more realistic head models. Hence
a modification of the hanging node detection and treatment implementation from
the given global approach to local constraints in a well-posed DUNE-FEM context
is needed. An overall goal should be to generalize the dune-adapt code making it
capable of eased exchange of different right-hand sides for instance. Thus additional
applications like TMS (Transcranial Magnetic Stimulation) and tDCS (Transcra-
nial Direct Current Stimulation) in the field of brain stimulation will be pleasantly
possible as already given DUNE results suggest.

In summary the possibilites of the DUNE framework were indicated in this thesis
and are still far from exhaustion. A long-term DUNE consideration in the context
of EEG (or MEG) source analysis promises more efficient and easily modifiable im-
plementations with a large amount of applications in various related fields. Since
the DUNE community including experts on the field of mathematics as well as na-
ture sciences is growing constantly, the future possibilities are encouraging. Besides
that further theoretical studies are deeply interesting and an appealing object of
investigation with regard to the realistic application.
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A. Appendix

A.1. Sobolev and Lebesgue spaces

First we introduce general notations and definitions concerning the basic numerical
theory about Sobolev and Lebesgue spaces. Therefore the Lebesgue integration the-
ory as well as the concept of weak derivatives of a function are presented to conclude
with the definition of appropriate Sobolev spaces and related norms.

Definition A.1.1 (Lebesgue space) Let Ω ⊂ Rs a non-empty, open set, which is
Lebesque measurable, then the Lebesgue norm for 1 ≤ p <∞ is defined by

‖f‖Lp(Ω) :=
(∫

Ω
|f(x)|pdx

) 1
p

(1.1.1)

for a measurable function f : Ω→ R. Then the related Lebesgue space is determined
by

Lp(Ω) := {f : Ω→ R|‖f‖Lp(Ω) <∞}. (1.1.2)

Notably Lp(Ω) is a Banach space and a Hilbert space together with the inner
product

〈u, v〉 :=
∫

Ω
u(x)v(x)dx (1.1.3)

for u, v ∈ Lp(Ω), see [25] for further details.

As next we briefly introduce the concept of weak derivatives, therefore the following
definiton has to be stated.

Definition A.1.2 Let Ω be determined as before, then define

C∞0 := {f ∈ C∞(Ω)| supp(f) ⊂ Ω is compact } (1.1.4)
L1
loc := {f |f ∈ L1(K) for all K ⊂ Ω}, (1.1.5)

where supp(f) := {x ∈ Ω|f(x) 6= 0} denotes the support of f .
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Definition A.1.3 (weak derivatives) Let α := (α1, . . . , αd) ∈ Nd
0 be a multi index,

then a function f ∈ L1
loc has a weak derivative g ∈ L1

loc, if∫
Ω
fDαϕ = (−1)|α|

∫
Ω
gϕ (1.1.6)

holds for all ϕ ∈ C∞0 . In this case we write Dαf instead of g.

Following this definition weak derivatives only require the integrability of functions,
which is a much weaker condition than differentiability. In consequence we are able
to introduce Sobolev spaces and Sobolev norms needed for the numerical investiga-
tions.

Definition A.1.4 (Sobolev space) Let m ∈ N0, 1 ≤ p < ∞ and u ∈ L1
loc be given.

Assuming that all weak derivatives Dαu exist for |α| ≤ m, we define the Sobolev
Norm below:

‖u‖m,p := ‖u‖Hm,p(Ω) :=
 ∑
|α|≤m

‖Dαu‖pLp(Ω)

 1
p

. (1.1.7)

Then the Sobolev space Hm,p(Ω) is defined by

Hm,p(Ω) := {u ∈ L1
loc(Ω)‖‖u‖m,pH (Ω) <∞}. (1.1.8)

Moreover let the Sobolev seminorm be given by

|u|Hm,p(Ω) =
 ∑
|α|=m

‖Dαu‖pLp(Ω)

 1
p

. (1.1.9)

Due to the fact that the Sobolev space Hm,2(Ω) will be used exclusively we introduce
the following notation for simplicity:

Hm(Ω) := Hm,2(Ω), ‖u‖m,Ω := ‖u‖m,2, |u|m,Ω := |u|Hm,2(Ω). (1.1.10)

For the sake of completeness the next theorem concludes this section of the Ap-
pendix.

Theorem A.1.5 Let Ω be defined as before, then Hm,p(Ω) is a Banach space for
m ∈ N0 and 1 ≤ p <∞. Hm(Ω) is a Hilbert space together with the inner product

〈u, v〉Hm(Ω) :=
∑
|α|≤m

∫
Ω
DαuDαv. (1.1.11)

Proof. See [25] page 30.
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A.2. Important theorems and inequalities

Definition A.2.1 (cone condition) Let Ω denote a bounded domain, then Ω fulfills
the so called cone-condition if and only if the interior angles of all corners in Ω are
positive, such that a cone with positive opposite angles can be moved in Ω in a way
that it contacts all corners.

Definition A.2.2 (Continuous and H-elliptic bilinear form) Let H denote a Hilbert-
space. Then a bilinearform B : H × H → R is called continuous if there exists a
constant C ≥ 0 such that

|B(u, v)| ≤ C‖u‖H‖v‖H for all u, v ∈ H. (1.2.1)

Moreover B is called H-elliptic if

B(u, u) ≥ C ′‖u‖2
H (1.2.2)

holds for a constant C ′ ≥ 0 and for all u ∈ H.

The next theorem assures the existence and uniqueness of a solution to our problem.

Theorem A.2.3 (Lax-Milgram) Let V be a closed, convex set in the Hilbert-space
H and B : H ×H → R a H-elliptic bilinear form. Then the variations-problem

J(u) := 1
2B(u, u)− l(u)→ min! (1.2.3)

has a unique solution in V for all l ∈ H ′.

Proof. See [35], pages 148 to 149.

This section ends with the declaration of important inequalities. First we introduce
the scaled trace inequality in the next lemma, details can be found in [14].

Lemma A.2.4 (scaled trace inequality) Let Th be a shape regular mesh of Ω and K0
be the reference element of an arbitrary element K ∈ Th for the reference mapping
F : K0 → K defined in lemma 3.1.3 . Then the following inequality holds

‖v‖0,∂K ≤ (h−
1
2

K ‖v‖0,K + h
1
2
K‖∇v‖0,K) (1.2.4)

for all v ∈ H1(K).

Followed by Young’s inequality:

Lemma A.2.5 (Young’s inequality) Let a, b ∈ R+ be given, then

ab ≤ a2

2δ + δb2

2 (1.2.5)

holds for every δ > 0.
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A.3. The DUNE-ADAPT module

The table A.1 lists the important source-(.cc) and header-files(.hh) included in the
dune-adapt module given on the attached CD as well as a brief description of their
functionality. The data on the CD contains a DUNE super module consisting of the
modules:

dune-common(version 2.2beta2), dune-geometry(version 2.2.0), dune-localfunctions
(version 2.2.0), dune-grid(version 2.2.0), dune-fem(version 1.3.1), dune-stuff(version
2.2.1) and dune-adapt (version 0.5).

For information on building and executing the super module see [6] for instructions.

file description
afemscheme.hh Contains the AFEM struct with basic functionality.

deMunckSolution.hh Contains a method to generate values of the
analytical solution at the sensor nodes with the

help of original C-code.
detectHangingNodes.hh Implementation of the hanging node detection and

treatment algorithm from chapter 5.
dune_adapt.cc Contains main method as well as methods for

obtaining external parameters.
elliptic.hh Implementation of a method to assemble the

stiffness matrix
estimator.hh Implementation of error estimator
femscheme.hh Contains main AFEM-algorithm in

conformity with chapter 4.
model.hh Models the parameters on the left-hand side

of the PDE.
poisson.hh Contains right-hand side and dirichlet condition data.

problemdata.hh Contains namespace with global parameters and
implementation of all φ∞ related functions.

realerror.hh In the case of a given exact solution as a
discrete DUNE-FEM function the calculation
of the error in the energy norm is possible.

rhs.hh Implementation of the right-hand side functional f
sensornodes.hh Evaluates the solution ul at the given

sensornode positions.
uinfty.hh Generates a DUNE-FEM discrete function

representing φ∞ on the recent mesh.
writeErrorindicator.hh Generates -.vtu Output to visualize local

estimated errors on given grid.

Table A.1.: Important source- and headerfiles of dune-adapt module
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