
1 23

Brain Topography
A Journal of Cerebral Function and
Dynamics
 
ISSN 0896-0267
Volume 26
Number 2
 
Brain Topogr (2013) 26:229-246
DOI 10.1007/s10548-012-0263-9

Spatio-temporal Regularization in Linear
Distributed Source Reconstruction from
EEG/MEG: A Critical Evaluation

Moritz Dannhauer, Eric Lämmel,
Carsten H. Wolters & Thomas
R. Knösche



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



ORIGINAL PAPER

Spatio-temporal Regularization in Linear Distributed Source
Reconstruction from EEG/MEG: A Critical Evaluation

Moritz Dannhauer • Eric Lämmel •
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Abstract The high temporal resolution of EEG/MEG

data offers a way to improve source reconstruction esti-

mates which provide insight into the spatio-temporal

involvement of neuronal sources in the human brain. In this

work, we investigated the performance of spatio-temporal

regularization (STR) in a current density approach using a

systematic comparison to simple ad hoc or post hoc fil-

tering of the data or of the reconstructed current density,

respectively. For the used STR approach we implemented a

frequency-specific constraint to penalize solutions outside

a narrow frequency band of interest. The widely used

sLORETA algorithm was adapted for STR and generally

used for source reconstruction. STR and filtering approa-

ches were evaluated with respect to spatial localization

error and spatial dispersion, as well as to correlation of

original and reconstructed source time courses in single

source and two source scenarios with fixed source locations

and oscillating source waveforms. We used extensive

computer simulations and tested all algorithms with dif-

ferent parameter settings (noise levels and regularization

parameters) for EEG data. To verify our results, we also

used data from MEG phantom measurements. For the

investigated scenarios, we did not find any evidence that

STR-based methods outperform purely spatial algorithms

applied to temporally filtered data. Furthermore, the results

show very clearly that the performance of STR depends

very much on the choice of regularization parameters.

Keywords Source localization � Spatio-temporal

regularization � sLORETA � EEG

Introduction

There are many techniques for mapping neural function,

which differ in numerous aspects including the physio-

logical processes they observe, their degree of invasiveness

as well as their spatial and temporal resolution. Among

these, MEG and EEG are directly sensitive to electro-

physiological neural mass action, are completely non-

invasive and provide excellent temporal, and moderate

spatial resolution. These properties make them attractive

for studying the dynamics of neural networks in both

neuroscientific experiments and clinical conditions, for

example epileptic seizures. Therefore, the questions of

spatial location and temporal evolvement of the underlying

neuronal generators of EEG and MEG are of great interest.

In the last few decades, a considerable range of method-

ologies for the reconstruction of these generators, or sources,

has emerged. All these methods are based on a forward model,

which provides a physical description of the electromagnetic

properties of the head tissues1 and the sensors (usually their

positions and, in case of MEG, additional properties, such as

coil orientations) and thereby links the neuronal activity to the

EEG/MEG measurements. Depending on the quality and

quantity of the information available on head geometry and

tissue conductivities, various head modeling techniques can

be used, ranging from analytical equations for a simple
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amount to the spatial distribution of the electrical conductivity.
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spherical approximation of the head (de Munck and Peters

1993) to more complex and individually shaped head models,

which need to be treated numerically (e.g., by using boundary

element modeling (Fuchs et al. 2007; Huiskamp et al. 1997,

1999; Kybic et al. 2005; Zanow 1997) or finite element

modeling techniques (Awada et al. 1997; Buchner et al. 1997;

Güllmar et al. 2006, 2010; Lew et al. 2009; Marin et al. 1998;

Vallaghe and Papadopoulo 2010; van den Broek et al. 1998;

Wolters et al. 2007b). Subsequently, the inverse problem has

to be solved. For this purpose, the neuronal sources are

described by a source model, and the parameters of this model

(e.g., locations, orientations and time course) are estimated

from the measurements. The most universally used building

block for such source models is the current dipole, which

describes a quasi point-like current flow and is characterized

by the location and orientation of this current as well as by the

temporal evolvement of the current strength (de Munck et al.

1988; Lew et al. 2009; Wolters et al. 2007a, b). Combinations

of multiple current dipoles can be used to describe virtually

any possible source configuration underlying EEG and MEG.

In general, the solution of the inverse problem suffers

from two fundamental problems: they are non-unique and

ill-conditioned. The former describes the fact that, no

matter how much data is acquired and with what accuracy

this is done, there is no unique solution to the inverse

problem. Instead, we have to deal with a multidimensional

manifold of solutions and additional criteria must be used

to select a representative solution from this manifold. The

latter problem refers to the fact that the problem is often ill-

conditioned and therefore noise in the data may have a

large effect on the solution. Both non-uniqueness and bad

condition are closely interrelated and refer to the eigen-

value spectrum of the problem. Solutions to these problems

are commonly referred to as regularization.

Distributed Source Modeling

As already stated, solving the inverse problem requires speci-

fication of a source model, which, in most cases, is based upon

current dipoles. There are two main strategies. The first is based

on the optimization of a small number of source parameters

(source locations, source orientations, and source time courses),

which are considerably fewer in number than the measurement

channels (e.g., Scherg and von Cramon 1986). The second main

strategy involves the reconstruction of the strengths of a large

number of dipolar sources, which densely cover the space of

possible source locations and orientations. In this approach,

which is known as distributed source model, there are usu-

ally many more source parameters than measurements. The

resulting inverse problem is underdetermined and hence has no

unique solution. This approach is the focus of the current paper.

To make the solution unique, additional criteria for the selec-

tion of the solution have to be introduced.

A widely used criterion is the minimum norm constraint

(Hämäläinen and Ilmoniemi 1994, see also ‘‘Method’’ section).

Here, on the manifold of possible solutions, the one with the

smallest L2 norm is selected. This approach has been very

popular since it leads to a linear formulation based on the

Moore–Penrose pseudoinverse. However, the minimum norm

does not treat all brain regions that might contribute to the

observed signal equally. Instead, it suffers from a depth bias,

which means that the algorithm preferentially composes the

reconstructed activity of sources that have a major impact on

the sensor outputs, like superficial rather than deep sources.

This phenomenon can be partially compensated for by the

introduction of certain weighting matrices, such as in weighted

minimum norm estimation (WMN: Fuchs et al. 1999; Jeffs

et al. 1987, see Eq. 1), which ensures that all dipoles have the

same average impact on the sensors. Since the introduction of

minimum norm estimation for EEG/MEG data, a whole range

of linear distributed source reconstruction methods have been

proposed to further improve localization performance and to

avoid methodological biases by applying different a priori

(Pascual-Marqui 2007; Pascual-Marqui et al. 1994) as well as a

posteriori (Pascual-Marqui 2002) weighting schemes. Such

weighting schemes can embody different kinds of additional

information and may be formulated to select solutions with

very specific properties, such as the spatially smoothest solution

(LORETA, Pascual-Marqui et al. 1994). It is often possible to

partially replace these rather arbitrary mathematical minimum

norm constraints by using additional knowledge on the source

parameters, drawn from alternative measurement modalities or

from general anatomical or physiological knowledge (Ahlfors

and Simpson 2004; Dale et al. 2000; Dale and Serano 1993; Liu

et al. 1998).

As explained above, usable source reconstruction

methods have to cope not only with the non-uniqueness

problem, but also with the low condition (i.e., the insta-

bility of the solution towards uncertainties in the mea-

surements). In reality, EEG and MEG signals originating

from the brain processes targeted by the respective exper-

iment are contaminated with large quantities of noise. In

particular, source localization of single trials is not a simple

matter, due to high levels of noise. In order to make the

solutions unique and well-conditioned (see above), one

has to apply appropriate constraints together with regular-

ization methods. For example, a widely used technique

involves the Moore–Penrose pseudo-inverse in combina-

tion with Tikhonov regularization.

Spatio-temporal Regularization (STR)

Most distributed source reconstruction methods solve the

inverse problem separately for each time sample. These,

therefore do not take advantage of any reasonable

assumptions on the temporal evolvement of the activity.
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However, in order to profit from the high temporal reso-

lution of EEG/MEG, a considerable amount of research has

been conducted in order to include temporal information

about the source activity in discrete source models to fur-

ther reduce the space of possible solutions (Baillet and

Garnero 1997; Scherg and Berg 1991). Temporal infor-

mation enhances the stability of these solutions (Zhang

et al. 2005) against disturbances and provides insight into

the dynamics of neuronal sources (Scherg 1990).

There also have been attempts to incorporate temporal

constraints into distributed source reconstruction schemes.

Brooks et al. (1999) proposed a method for electrocardi-

ography, which introduces a temporal constraint to the

minimum L2 norm problem. The method works effectively

as a low-pass filter, as a smooth time course is favored and

high frequency components of the solution are suppressed.

Both spatial and temporal regularization can be adjusted

using separate regularization parameters. Brooks et al.

(1999) also proposed various techniques to reduce the

numerical costs by avoiding solving the problem directly

and instead using block Jacobi iterative schemes or matrix

diagonalization techniques. Based on the work of Brooks

et al. (1999), Schmitt and colleagues (Darvas et al. 2001;

Schmitt and Louis 2002; Schmitt et al. 2001, 2002) were

able to improve this STR approach by further reducing the

numerical costs using Sylvester equation solver techniques.

Moreover, these authors extended the application of STR to

EEG/MEG, computerized tomography and dynamic elec-

trical impedance tomography (Schmitt et al. 2002). They

also combined the STR approach with additional spatial

constraints such as depth weighting (WMN, Fuchs et al.

1999; Jeffs et al. 1987) and spatial smoothing (LORETA,

Pascual-Marqui et al. 1994) to reduce the solution space

and the localization errors for deep sources in particular

(Schmitt et al. 2001). This STR approach was also imple-

mented in the SimBio software (Schmitt et al. 2004;

SimBio 2011).

As these approaches seem to effectively apply a tem-

poral filter to the solution during the reconstruction pro-

cess, the question arises how the results obtained relate to

noise reduction by simple temporal filtering of the data

before source reconstruction (ad hoc) or filtering of the

source time courses after reconstruction (post hoc). This

question is of importance since the computationally more

costly STR approach is only useful if it is significantly

superior to these simple filtering techniques.

In this paper, we investigate the combination of the STR

approach with a currently popular spatial reconstruction

method called standardized LORETA (sLORETA) (Pasc-

ual-Marqui 2002). It has been shown that sLORETA per-

forms with zero localization error (i.e., the peak of the

current density coincides with the original dipole position

within the accuracy given by the resolution of the

reconstruction grid) in the theoretical case of one active

source and no measurement noise (Pascual-Marqui 2007).

Also, in comparison papers, Lucka et al. (2011) as well as

Wagner et al. (2004) showed that the method performs well

for single sources and Wagner et al. (2004) additionally

reported a good performance for multiple sources, if they are

distinct enough and of similar strength. In order to allow a

direct comparison between STR and simple filtering, we

modified the general approach put forward by Brooks et al.

(1999) and Schmitt et al. (2001). These authors used a rather

unspecific general smoothness assumption to constrain the

solution. In contrast, we designed a specific temporal

weighting matrix that embodies a finite impulse response

(FIR) filter so that the results of the STR reconstruction can

be directly compared to those of classical filtering applied ad

hoc to the data or post hoc to the reconstructed time series. As

it is well known that particular frequencies, such as alpha,

beta or gamma oscillations, which are present in spontaneous

brain activation, are relevant for brain function (e.g., Klim-

esch 1999), it can be sensible to use narrow band-pass filters.

For brain activity that is expected to be restricted to certain

frequency bands, in particular brain oscillations, such a

technique is expected to greatly improve the SNR, thereby

strongly regularizing the solution and rendering the tech-

nique suitable for the analysis of single trial data.

To deal with the theoretical and practical issues dis-

cussed above, we sought to answer the following questions:

(1) Is it possible to combine the concept of sLORETA

(Pascual-Marqui 2002) with the frequency specific STR

framework? (2) Does STR perform better than simple ad

hoc or post hoc data filtering? (3) How does STR perform

in more realistic settings?

To answer these questions, we use both computer sim-

ulations of EEG data and MEG measurements using a

physical phantom. Our investigations will include single

source and two source scenarios with fixed source locations

and oscillating source waveforms.

Methods

Source Analysis with Post-Weighted Minimum Norm

Estimation (sLORETA)

Let X e <N9T denote a real-valued measurement matrix (N

representing the number of EEG/MEG sensors, T being the

number of samples in time). The spatio-temporal current

density J e <M9T in the brain is modeled by M dipolar

sources at K source positions and T samples. At each source

position ok (k = 1…K), multiple dipoles with different

directions can be modeled (usually, S 2 f1; 2; 3g;
M ¼ S � K) depending on the intended dimensionality of the
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source space and the volume conductor properties. The

forward solutions for all sources are combined in the lead-

field matrix L e <N9M, which serves as an essential ingre-

dient for distributed source reconstruction methods. Under

the quasistatic assumption (Plonsey and Heppner 1967),

the relationship between source currents and resulting EEG/

MEG measurements can be considered linear, hence

X = L�J ? noise. Since the leadfield matrix is generally not

square (more specifically, there are more sources than mea-

surement channels) the solution to the inverse problem is not

unique (i.e., there is an entire manifold of possible solutions).

The linear minimum norm estimation (MNE) approach

(Hämäläinen and Ilmoniemi 1994) selects one solution out of

this manifold, which not only fits the measurement data X,

but simultaneously has a minimum L2 norm of some

weighted version of the current density:

ĵMNE ¼ minarg
j
ð L � j� xk k2

2þk � W � jk k2
2Þ

¼ WT �W
� ��1�LT � ðL � WT �W

� ��1�LT þ k � INÞ�1 � x
¼ G � x ð1Þ

In Eq. (1), W 2 <M�M is a spatial weighting matrix,

IN 2 <N�N denotes the identity matrix with dimension

N and �h iT indicates a matrix transpose. The spatial regu-

larization parameter k controls the relative influences of the

error term (first summand, which measures how well the

model L�j explains the data x) and the model term (second

summand, which measures the norm of the weighted

solution). Low k reflects high confidence in the data and

allows for a more detailed solution, while high k produces

solutions that are more governed by the smoothing influ-

ence of the model term. The regularization parameter can

be derived from the Bayesian formulation of the problem

and represents in that context the ratio between the vari-

ance of the data noise and the expected variance of

the sources (which is usually not known). It is measured

in units of (V/Am)2 for EEG and (T/Am)2 for MEG.

As mentioned before, W can be specified to select a solu-

tion with specific properties, e.g., the smoothest solution

(LORETA; Pascual-Marqui et al. 1994) or a solution that

guarantees unbiased localization of single dipolar sources

from noise-free data (eLORETA; Pascual-Marqui 2007).

Hence, the spatial weighting matrix W represents prior

knowledge or assumptions on the sources.

Besides the pre-weighting of the current density dis-

tribution, there have been some attempts to use post-

weighting strategies. One popular example is the sLORETA

method (Pascual-Marqui 2002), which estimates the current

density distribution as a statistical map for each source

k individually:

P̂sLORETA
k ¼ ðĵMNE

k ÞT � R�1
k � ĵMNE

k ð2Þ

with the resolution kernel for a single source position Rk 2
<S�S and minimum norm estimate ĵMNE

k 2 <1�S. Note that

ĵMNE denotes the minimum norm current density estimate

and P̂sLORETA stands for the estimated normalized current

density power (sLORETA).

In the following, it will be described how the entries of

Rk 2 <S�S are determined in the sLORETA approach.

Minimum norm reconstructions of focal sources are

generally biased (i.e., blurred and often shifted, see, e.g.,

(Lucka et al. 2011)). The resolution kernel of the entire

problem, R 2 <M�M which is the product of the inverse

operator G 2 <M�N and the leadfield matrix L 2 <N�M ,

reflects this bias. Since the resolution kernel is singular

(Grave de Peralta Menendez et al. 2004), this bias cannot be

completely corrected for. However, it is possible to reduce

the bias by filtering the current density estimate through the

inverse of the block-diagonalized resolution kernel

RBD 2 <M�M , that is only composed of the diagonal block

elements Rk(k = 1…K) (Pascual-Marqui 2002). Thus, this

block-diagonalized resolution kernels computes as

RBD ¼ R � ðIK � lSÞ ¼ G � L � ðIK � lSÞ

¼
R 1 0 0

0 . .
.

0

0 0 R K

0

B@

1

CA ð3Þ

where � is the element-wise product, 1S 2 <S�S is a matrix

of ones and � is the Kronecker product, for A 2 <C�D

defined as

A� B ¼
a11B . . . a1DB

..

. . .
. ..

.

aC1B � � � aCDB

0

B@

1

CA: ð4Þ

Source Analysis with STR and sLORETA

Brooks et al. (1999) as well as Schmitt and colleagues

(Darvas et al. 2001; Schmitt and Louis 2002; Schmitt et al.

2001, 2002) proposed a spatio-temporal extension to the

MNE approach, which additionally minimizes the temporal

derivative ( d
dt jðtÞ
�� ��! Min, approximated by a certain

filter matrix F of the current density distribution.

While in (Schmitt et al. 2001), a filter matrix F 2
<ðT�1Þ�T was used, we use F 2 <T�T here. In Schmitt et al.

(2001), the authors showed, that the STR problem can be

solved in sensor space as well as in source space, and that

both representations are equivalent. Because of the much

smaller computational costs we decided to solve the STR

problem in sensor space:

232 Brain Topogr (2013) 26:229–246
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ĵ� ¼minarg
j�

ð L� � j� � x�k k2
2þk � W� � j�k k2

2

þ l � ðF � IMÞ �W� � j�k k2
2Þ

¼ WT
� �W�

� ��1�LT
� � ðL� � WT

� �W�
� ��1�LT

�

þ k � IN�T þ l � ðFT � FÞ � INÞ�1 � x�
¼ WT

� �W�
� ��1�LT

� � A�1 � x� ¼ G� � x� ð5Þ

In Eq. (5), the temporal filter matrix F 2 <T�T is intro-

duced and its impact can be effectively adjusted by a second

regularization parameter l. Its function and meaning is anal-

ogous to the spatial regularization parameter k, as explained

below Eq. (1). All symbols using the subscript ½��� denote

spatio-temporal operator matrices. They are extended in size

multiplicatively by T as compared to their purely spatial

counterparts: W� ¼ IT �W 2 <T �M�T �M , G� 2 <T �M�T �N ,

j� 2 <M�T�1, x� 2 <N�T�1. Since sLORETA (Pascual-Marqui

2002) is a purely unweighted minimum norm estimation, a

spatial weighting matrix is not considered in any computation,

hence W = I.

Within that approach, the highest computational costs

(cubic complexity) occur while inverting the matrix

A� 2 <N�T�N�T . Schmitt et al. (2001) suggested an elegant

way to convert the STR problem into a so-called Sylvester

equation problem, in which an approximate solution can be

computed numerically in a very efficient way. Accord-

ingly, we used this approach to implement a spatio-tem-

poral version of sLORETA. The STR problem can be

mathematically reformulated (described in Schmitt et al.

2001, Eq. 15) as the following

ðL� � LT
� þ k � IT �N þ l � ðFT � FÞ � INÞ � u� ¼ x�; ĵ�

¼ LT
� � u� ð6Þ

ðu�; x� 2 <M�T�1; ĵ� 2 <M�T�1Þ:

This is equivalent to the Sylvester equation system

(Schmitt et al. 2001, Eq. 16):

ðL � LT þ k � INÞ � U þ U � ðl � FT � FÞ ¼ X ð7Þ

with U 2 <N�T and JSTR ¼ LT � U, which can be solved

using the Sylvester equation solver function ‘‘syl’’ (inclu-

ded in OctaveTM, which is based on LAPACK subrou-

tines). This way, the spatio-temporal minimum norm

solution can be computed very fast and with very low

memory consumption, as only ðL � LT þ k � INÞ 2 <N�N ,

ðFT � FÞ 2 <T�T , LT 2 <M�N and X 2 <N�T are needed for

one computation of JSTR. Therefore the usually very large

inverse operator matrix G� is not computed explicitly and

also all needed values of the resolution kernels Rk can be

computed this way for STR1 (RSTR1
k , see approach 3 below)

and for STR2 (RSTR2
k , see approach 4 below).

Generally, sLORETA standardization is performed for

each location and each time step separately, which is just a

spatial weighting of the current density. This approach is

represented by our method STR1 (see below). Alternatively,

we explore a different method, STR2, where we perform a

spatio-temporal weighting, which uses the whole recon-

structed time series for each dipole activation estimate. For

this purpose, the size of Rk 2 <S�S for each dipole k is

enlarged from RSTR1
k 2 <S�S to RSTR2

k 2 <S�T�S�T . Each col-

umn of the resolution kernel R = G�L represents the spatial

blurring of one reconstructed unit dipole. For each column in

RSTR2
k a single computation (using the Sylvester solver) is

done to obtain the spatio-temporal spreading of a single

active source (with one specific dipole orientation) at a cer-

tain time step as explained in more detail below. In the fol-

lowing computation, the data matrix X 2 <N�T contains only

zeros except for the one column associated to the respective

time step (forward solution of a unit dipole for a particular

location pointing to a fixed direction is inserted there).

Through the mapping of the resulting U onto the forward

solution of all (e.g. S = 3) dipole directions the spatio-tem-

poral spreading over all considered time steps for each dipole

direction (x, y, z) can be computed:

LðkÞT � U ¼
ĵSTR x
t¼1 . . . ĵSTR x

t¼T

ĵSTR y
t¼1 � � � ĵSTR y

t¼T

ĵSTR z
t¼1 � � � ĵSTR z

t¼T

2

4

3

5 2 <S�T ð8Þ

LðkÞ ¼ ½LxðkÞLyðkÞLzðkÞ� 2 <N�S:

This spreading matrix, which represents the impact of

the used filter, is then reshaped and stored as one column of

RSTR2
k . The columns of RSTR2

k are sorted as follows, e.g. ith

column ofRSTR2
k ; S ¼ 3

RSTR2
k ðiÞ ¼ ĵSTR x

t¼1 ĵSTR y
t¼1 ĵSTR z

t¼1 . . .ĵSTR x
t¼T ĵSTR y

t¼T ĵSTR z
t¼T

h i T

2 <S�T�1: ð9Þ

This guarantees that the spatio-temporal spreading, which

belongs to the particular dipole, can be computed using the

syl function. To fill the spatio-temporal resolution matrix for

dipole k, S�T of these computations have to be performed.

Finally, this procedure must be performed for all M dipoles

resulting in RSTR2 2 <M�T�M�T . This means that the compu-

tational complexity increases quadratically with the used

filter length. The procedure can be subdivided into small

computational tasks and distributed over several computers

or processors with standard memory requirements. In con-

trast, the direct solution of the problem is not feasible, even

for comparatively small scenarios. Finally, note that the

STR2 approach effectively computes a weighted average

over all time samples for each dipole.
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We used the spatial localization error to select the

optimum regularization parameters. There are several other

methods to find appropriate regularization parameters (e.g.,

generalized cross validation and L-curve/L-surface: Brooks

et al. (1999); Schmitt et al. (2001)) but these have been

criticized (e.g., Hansen and O’Leary 1993) for their poor

performance. Please note, however, that in real situations

the true source positions, and therefore also the true

localization error, are not known and other methods,

though imperfect, have to be utilized.

The temporal filter matrix F, proposed by Brooks et al.

(1999) and similarly by Schmitt et al. (2001), performs

high-pass filtering, which penalizes high frequencies and

hence selects solutions that are smooth between successive

samples.

We extend this concept to focusing on a specific fre-

quency band by a simple exchange of the filter matrix. The

temporal filter matrix F lets pass certain parts of the fre-

quency content of the solution (see Eq. 5) and therefore

causes the temporal regularization term to penalize exactly

these frequencies. For example, if we want to reconstruct

oscillatory activity with frequencies in the alpha band

around 10 Hz, the filter should be a band-stop, which lets

all frequencies except 10 Hz pass, so that they can be

minimized in the current density estimate. The filter matrix

F is a diagonal band matrix, each row of which contains the

FIR filter coefficients, shifted by the respective time index.

This, of course, generates problems for the first and last

few time samples, referred to as edge effects. Brooks et al.

(1999) used modifications (for the simple high-pass filter)

to avoid edge effects, which are not easily transferable to

our more complex band-stop filters. Therefore, at the upper

left and at the lower right corner of the F matrix, some FIR

coefficients were simply left out in such a way that at least

half of the filter coefficients are used for each row of F. In

this way, the matrix generated remains invertible. In sim-

ulations, it was shown that this simplification plays no role

in the reconstruction result. The filter matrix scheme was

used for all computations (see Tables 1 and 2). Based on

simulations, we verified that the inverse of the band-stop

filter matrix had exactly the opposite filtering effect and

behaved as a band-pass filter. Because of the structure of

the filter matrix, it is guaranteed that the condition of the

problem is not affected and therefore stronger regulariza-

tion is not needed.

All FIR filter coefficients were computed using the

program xfir (EEProbe tools, ANT 2003).

Evaluation by Computer Simulations

As stated in the introduction, the source reconstruction

techniques with spatio-temporal regularization need to be

compared with their purely spatial counterparts (i.e.,

sLORETA) where the respective temporal filter is applied

ad hoc to the data or post hoc to the reconstruction result.

Hence, if G is the purely spatial inverse operator, G* is

the spatio-temporal inverse operator and F is the respective

temporal filter matrix, we compare the following

approaches:

1. Spatial sLORETA (referring to as ‘‘Gx’’): Application

of a purely spatial inverse operator without filtering:

Ĵ ¼ G � X, and followed by a sLORETA postweighting

described in (Pascual-Marqui 2002).

2. Simple filtering (referring to as ‘‘GFx’’): This is here

realized as ad hoc filtering, i.e., application of spatial

inverse operator (as in approach 1) with prior filtering

in data space with the inverse of the filter used in the

penalty term of Eq. (5): Ĵ ¼ G � ðX � ðFFTÞ�1Þ, with

F 2 <T�T , and followed by a sLORETA postweigh-

ting described in (Pascual-Marqui 2002). Note that

post hoc filtering, i.e., the application of spatial inverse

operator with posterior filtering in source space:

Ĵ ¼ ðG � XÞ � ðFFTÞ�1
, is equivalent to ad hoc filtering,

due to matrix associativity.

Table 1 31 FIR coefficient

from the band-stop filter used

(EEG simulations)

See ‘‘Methods’’ section for

further explanation

fn?15 = fn-15 -1.26e-02

fn?14 = fn-14 5.46e-02

fn?13 = fn-13 2.53e-02

fn?12 = fn-12 4.41e-02

fn?11 = fn-11 5.90e-02

fn?10 = fn-10 6.77e-02

fn?9 = fn-9 6.89e-02

fn?8 = fn-8 6.20e-02

fn?7 = fn-7 4.79e-02

fn?6 = fn-6 2.83e-02

fn?5 = fn-5 5.59e-02

fn?4 = fn-4 -1.76e-02

fn?3 = fn-3 -3.88e-02

fn?2 = fn-2 -5.55e-02

fn?1 = fn-1 -6.63e-02

fn 9.30e-01

Table 2 Band-stop filter schematics (EEG simulations, similar for

MEG simulations)

fn fn?1 … fn?15 0 0 0 0 0 0

fn-1 fn fn?1 … fn?15 0 0 0 0 0

. . . . . . . . . .

. . . . . . . . . .

0 fn-15 … fn-1 fn fn?1 … fn?15 0 0

0 0 fn-15 … fn-1 fn fn?1 … fn?15 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . fn-15 … fn-1 fn fn?1

. . . . . . fn-15 … fn-1 fn
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3. STR ? spatial sLORETA (referring to as ‘‘STR1’’):

Application of the spatio-temporal inverse operator

ĵSTR
k ¼ G� � x�; ĵSTR

� 2 <T �M�1, and followed by a post-

weighting [adapted from (Pascual-Marqui 2002)] using

only the spatial weights from a spatio-temporal

resolution matrix and reshaped to ĴSTR1
k 2 <M�T , see

details below.

4. STR ? spatio-temporal sLORETA (referring to as

‘‘STR2’’): Using ĵSTR
� (from approach 3) followed by

full spatio-temporal postweighting [adapted from

(Pascual-Marqui 2002)] for each dipole resulting in

ĵSTR2 2 <M�1, see details below.

For purely spatially weighted source localization

(approaches 1 and 2), the same inverse operator

G = LT � (L � LT ? k � I)-1 and resolution kernel R is

used. In order to compute ĴSTR (needed for approach 3 and

4), a single computation has to be performed using the

Sylvester equation solver. All values for spatio-temporal

standardization using the resolution kernel are efficiently

computed (see above) in advance for all tested combina-

tions of regularization parameters k and l. For STR1

(approach 3) all needed spatio-temporal weights are

determined based on the previously computed STR2

weights. The current density reweighting (sLORETA) for

STR1 (approach 3) and STR2 (approach 4) is performed as

P̂STR1
k ðtÞ ¼ ĵSTR

k ðtÞ � ðRSTR1
k ðtÞÞ�1 � ĵSTR

k ðtÞ
T

and P̂STR2
k ðtÞ ¼

reshapeðĵSTR
k Þ � ðRSTR2Þ�1 � reshapeðĵSTR

k Þ
T
, respectively.

In the latter approach, ĵSTR
k 2 <S�T is reshaped to a

vector, ĵSTR
k 2 <1�S�T , to fit matrix dimensions used for

STR2, RSTR2
k 2 <S�T�S�T , by matching corresponding dipole

directions and time steps. Therefore, as a final result, we

get P̂STR1
k ðtÞ ð8t ¼ 1; ::; T; 8k ¼ 1; ::;KÞ and P̂STR2

k

8k ¼ 1; ::;Kð Þ. In order to evaluate the performance of

STR2 (involving temporal weighting in both ad hoc and

post hoc operators), we computed the time averages of the

approaches 1 through 3. This is motivated by the fact that

the STR2 approach effectively computes a weighted

temporal average. Thus, for a fair comparison, the results

of the other methods should be based on temporal averages

as well.

In all simulations, we used uncorrelated normally distrib-

uted noise (randn function, octave), which was added to the

simulated signal at each sensor. The noise level was described

by the relative noise amplitude, defined as the standard

deviation of noise divided by the standard deviation of the

signal (over all sensors and time steps) RNA ¼ stddevðnoiseÞ
stddevðsignalÞ (the

proportion of noise in the simulations was not expected to be

higher than the signal). For all single source simulations, we

used the same 100 noise realizations, which were scaled for

each defined noise level (RNA = 0.01, 0.1, 0.2, 0.3, 0.4 and

0.5). The resulting solutions were analyzed with respect to the

localization errors and spatial dispersion (Molins et al. 2008),

which were averaged over all time samples considered

(approaches 1–3). In the case of comparing the proposed

STR2 approach to its counterparts (approaches 1–3) the

weighted current density is averaged before evaluating the

spatial localization error. The averaged localization error over

all noise realizations for each noise level was compared for all

used (depending on the approach and the imaging modality)

regularization parameter combinations. This means, for

approach 3 (STR1) and approach 4 (STR2), all combinations

k and l (for EEG: log10 l ¼ log10 k ¼ �2; 0; 2; 4; 6; 8;½
10; 12; 14; 16�; for MEG: log10 l ¼ log10 k ¼ �6; �4;½
�2; 0; 2; 4; 6; 8; 10; 12�) and for approaches 1 and 2 (spa-

tial sLORETA with or without simple filtering), only the

defined values ofkwere used. Large ranges of values fork and

l were used to cover both over- and underregularization.

In the following, we will describe the simulation sce-

narios employed in greater detail.

Localization of Simulated EEG Measurements

from Oscillating Sources

For volume conductor modeling, an individual 1 mm

geometry-adapted hexahedral finite element model was

used, which had been prepared for the same subject in

Dannhauer et al. (2011) (subject 3, reference model). The

skin and brain compartments were modeled homoge-

neously with conductivities commonly used in the litera-

ture, rSkin = 0.43 S/m and rBrain = 0.33 S/m (Ramon

et al. 2006). From a T2-weighted magnetic resonance

image, an estimation of soft and hard bone tissue distri-

bution could be segmented and modeled separately, with

isotropic conductivities rSoft Bone = 0.02865 S/m and

rHard Bone = 0.0064 S/m (Akhtari et al. 2002; Fuchs et al.

2007). The electrodes were placed on N = 118 positions

on the scalp surface taken from a real experiment.

At each of the 3,724 source positions (regular hexahedral

mesh, 7 mm edge length, K = 3724) in the brain compart-

ment (minimum distance to brain surface 5 mm), three

orthogonal dipoles (S = 3) were placed and a leadfield

matrix (L 2 <118�11172) for all dipoles and directions was

computed with the SimBio-toolbox (SimBio 2011). Single

dipolar probe sources were placed at 6 representative loca-

tions in the brain compartment: at somatosensory, frontal,

temporal left/right, thalamus and occipital positions. For the

simulations artificial Gaussian noise was added as described

in the last paragraph. For each of these positions, a radial and

a tangential (with respect to the inner skull surface) orien-

tation were tested, which are known to produce very different

topographies and might lead to different results. We inves-

tigated, both, the localization error (i.e., distance between the
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true source position and the maximum of the estimate) and

the spatial dispersion as proposed by Molins et al. (2008):

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PK

k¼1
bjk � dki

� �
=

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PK

k¼1
bjk

� �2
r

, where dki is the

distance between source position k and the peak position in

the estimate i. In addition, we studied the performance of the

algorithms on a pair of equally strong dipoles located in both

auditory cortices and oriented in anterior–superior direction

(45�). This scenario was chosen because it is known that

sLORETA works for multiple sources only if they are suf-

ficiently distinct and of similar strength (Wagner et al. 2004).

Two cases were tested: (i) both dipoles had the same sinu-

soidal activation time course (10 Hz), and (ii) there was a

120� phase shift between the time courses. For these con-

figurations, besides the spatial localization error (averaged

over left and right sources), we evaluated the reconstruction

accuracy of the time courses (as correlation between original

and reconstructed time courses, approaches 1–3). For the

original time courses an oscillation of 10 Hz, mimicking

alpha activity was modeled using 61 time samples and a

sampling frequency of 200 Hz, yielding an epoch length of

305 ms. The source space was divided into the two brain

hemispheres. For each time sample the local maximum of the

sLORETA estimate (for all approaches 1–4) was evaluated in

each hemisphere and the spatial localization error (Euclidian

distance) with respect to the simulated source location was

computed. Both localization errors (one per hemisphere)

were averaged for visualization purposes. The time courses

of both sources were sampled in a way to ensure that none of

them was completely deactivated at any time.

The band-stop filter was created using xfir (ANT 2003),

with a sample frequency of 200 Hz and 31 filter coeffi-

cients in total (see Table 1), whereas Fn represents the

center element of the band pass filter which appears as the

biggest filter coefficient value. The filter has a lower/upper

cutoff frequency of 7.0/14.0 Hz. All other filter coefficients

are mirrored to the center coefficient, which means that

Fn-1 = Fn?1, …, Fn-15 = Fn?15.

Evaluation Using Measurements from MEG Phantom

Single Trial Data

Using physical phantoms, it is possible to combine the main

advantage of computer simulation, namely the precise

knowledge of the sources to be reconstructed, with the

presence of realistic noise conditions and measurement

errors. We used an MEG multiple dipole phantom (Elekta

Neuromag Oy, Helsinki, Finland) in combination with a

306-channel whole-head MEG system (Elekta Neuromag

Oy). In this system, at each of the 102 sensor positions, two

planar gradiometers (orthogonally oriented) and one mag-

netometer are installed. The MEG phantom, which is

constructed in a way that it behaves like a spherically sym-

metric volume conductor, provides 3 current dipoles (called

CD 1, 2, 3), each at a different depth from the surface of the

phantom (compared to human anatomy, it covers cortical to

subcortical source locations). Forward modeling and source

reconstruction were performed using the measurements

from all 306 MEG channels. We activated one dipole at a

time and used two different dipole strengths (25, 50 nAm)

and an oscillation frequency of 20 Hz, corresponding to the

beta frequency band. All measurements were sampled at

1,000 Hz and internally band-pass filtered between 0.1 and

330 Hz. For each configuration (dipole number, dipole

strength), 200 trials were recorded. Each trial comprised

750 ms of oscillatory data (15 cycles) and 50 ms baseline.

For inverse analysis, we used a FIR filter (101 coefficients)

and a sampling frequency of 500 Hz (data were downsam-

pled) in order to get a narrow frequency response centered

around 20 Hz (lower/upper cutoff frequency 11.4/29.0 Hz).

Based on the 53 digitization points covering the phantom’s

spherical surface a sphere could be fitted and its parameters

(sphere radius, sphere center) were used for specifying the

forward model. For the source space, we used a 5 mm reg-

ular hexahedral grid (M = 11,698 locations) covering the

entire hemisphere of the fitted sphere. At each source loca-

tion, two tangentially (S = 2) oriented dipole directions

were computed using the center of the spherical head model.

As the volume conductor is well accounted for by a sphere,

we used the analytical equation according to Sarvas (1987).

We modeled each sensor accurately using integration points

(8 for each gradiometer and 16 for each magnetometer)

which were provided by the manufacturer. The analysis of

the MEG measurement noise revealed a super-Gaussian

distribution which differs from the artificial Gaussian noise

used for EEG simulations. For the MEG measurement (for

each dipole strength and each dipole location) an RNA

estimate was computed based on the residuals from alter-

nating averaging: for dipole positions CD 1, 2, 3 with dipole

moment 25 nAm: RNA = [0.34, 0.44, 0.63]; with dipole

moment 50 nAm: RNA = [0.62, 0.85, 1.11].

Results

Localization of Simulated EEG Measurements

from Single Oscillating Sources

In Fig. 1, the source localization results for the EEG sim-

ulations are summarized. For each noise level, the best case

(smallest averaged localization error) with respect to the

regularization parameter(s) of the respective method is

plotted. The benefit of using a filter can be clearly seen.

The spatio-temporally regularized sLORETA method
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(STR1) does not perform significantly better than the

simple filtering approaches.

Figure 2 (upper row) shows, at the example of a thalamic

source, how these results depend on the regularization

parameter(s) chosen. For the spatial sLORETA methods, the

localization error converges to small values for k[104 for

the filtered versions (error less than 5 mm) and k[106 for the

unfiltered version (error less than 20 mm). For STR1, the

same magnitude of error as found for simple filtering is

obtained for l[1010 and roughly k B l. Clearly, STR1 does

not outperform significantly any of the filtered sLORETA

algorithms. Similar results were obtained for all other source

locations and orientations tested.

As can be seen from Fig. 2 (middle row), the time-

averaged current density computed with STR1 and GFx

perform with zero localization error for wide ranges of the

parameter space. The convergence limits for k remain

roughly the same for spatial sLORETA. STR2 (Fig. 2,

lower row) also performs with zero localization error. It

needs considerably lower l compared to the pure tempo-

rally filtered spatial sLORETA to achieve a similar per-

formance. This is expected, as temporal regularization

affects both the inverse solution and post hoc weighting for

STR2, while for STR1 the post hoc operator only contains

the spatial regularization.

In Fig. 3 the regularization dependence of the spatial

dispersion of the reconstructed current source density is

shown in an analogous way. Interestingly, for the STR1

approach (with or without time averaging), the regulariza-

tion scheme with the smallest spatial dispersion did not at all

Fig. 1 EEG source localization

versus noise contamination:

smallest localization error over

all regularization parameters per

noise level, for sLORETA with

spatio-temporal regularization

(STR1), simple filtering (GFx),

and classical spatial sLORETA

(Gx). For each dipole location, a

radial (rad.) and a tangential

(tan.) dipole orientation were

considered. The localization

errors were averaged over 100

trials with independent noise

realizations and 61 time steps

per trial. All approaches, which

are based on averaging of the

reconstruction results (including

STR2) perform with zero

localization error for all

considered noise levels for at

least one regularization

parameter (combination). RNA
denotes the relative noise

amplitude, see text for further

explanation
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coincide with the one with the best localization accuracy. For

example, the smallest spread for STR1 (without temporal

averaging) amounts to SD&42 and occurs at regularizations

(k &10-2…104, l &106), where the localization error is

about 50 mm (Fig. 2, upper left). Vice versa, where the

localization error is fairly small (3.6 mm for l[1010), the

spread is clearly larger (SD &60). In contrast, for the GFx

method the smallest spatial dispersion is only slightly larger

(SD &45), but almost coincides with the smallest localiza-

tion error (3.9 mm for k &106). For larger regularization

parameters, the performances of STR1 and GFx are nearly

identical (SD&60 with localization error of about 4 mm, see

Fig. 2 Localization accuracy

for a single thalamic source

pointing in dorsal direction

(relative noise amplitude

RNA = 0.5). Upper left:
Contour plot showing the

dependence of the EEG source

localization error (in mm) of the

STR1 method on the

regularization parameters. The

minimum localization error is

3.6 mm. Upper right:
Localization errors for the

purely spatial methods. See

legend of Fig. 1 for

abbreviations. The plotted

localization errors were

averaged over 100 trials with

independent noise realizations

and 61 time steps per trial.

Middle row same as upper row
except that the current densities

were here averaged over time,

the localization errors

determined on these averaged

current densities and then

averaged over 100 trials (with

independent noise realizations).

Lower row: Localization error

for sLORETA with STR2 using,

both, ad hoc and post hoc

weighting
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Figs. 2, 3). Comparing the time average variants of STR1

and GFx with STR2 leads to similar conclusions.

Localization of Simulated EEG Measurements

from Two Simultaneously Oscillating Sources

In Fig. 4, the source localization results for the dipole

pair are summarized. For each noise level, the best case

(smallest averaged localization error) with respect to the

regularization parameter(s) of the respective method is

plotted. Again, it can be seen that for the simultaneously

active sources (Fig. 4 right) filtering (approaches 2–4)

enhances localization results. All averaging approaches

(including STR2) come up with similar results. For the phase

shifted time courses (Fig. 4 left) it is interesting to see that

STR1 basically behaves as badly as using no filtering at all. It

Fig. 3 Spatial dispersion for

the same source as used in

Fig. 2 (single thalamic source

pointing in dorsal direction,

RNA = 0.5). The arrangement

is identical to Fig. 2
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shows that in such a case the spatio-temporal cross talk

cannot be compensated for, simply by using spatial weights

(STR1, RSTR1), since information about the total spatio-

temporal spreading (RSTR2) would be needed. Moreover,

even STR2 does not perform better than simple filtering.

Figure 5a (top row) and 5b present the reconstruction

results for the case of non-synchronous time courses. For

the spatial sLORETA methods (Gx and GFx), the locali-

zation error has an optimum for k between 104 and 106 for

the unfiltered and between 102 and 104 for the filtered

version. However, the errors remain quite high (28 mm for

the filtered and 46 mm for the unfiltered version). For

STR1, the same magnitude of error (minimum 46 mm) is

obtained for a strip roughly defined by k = 104…106 and

l = 10-2…102. Clearly, STR1 does not at all outperform

any of the filtered sLORETA algorithms. However, while

both STR1 and simple sLORETA (Gx) can, with proper

regularization, reconstruct the time courses almost perfectly,

simple filtering cannot (correlations \0.7). The reason for

this is illustrated in Fig. 6—the filter applied produces edge

effects, which have a substantial impact on the correlation for

the low number of time steps in our simulations. For larger

time series, these problems are likely to diminish.

If both time courses are synchronous (Fig. 7a, top row,

7b), the errors are generally higher. The time courses are of

course much more accurate (with the same edge effect

problem for GFx) because mixing between two different

temporal patterns cannot occur. Inaccuracies are purely due

to underregularization in the presence of noise.

The lower two rows of Figs. 5a and 7a show the results

for the STR2 method in comparison to averaged results of

the other algorithms. The dependence on the regularization

parameters is quite similar to the ones described above.

Evaluation Using Measurements from MEG Phantom

Data

The localization of dipoles in the physical phantom from

MEG data yielded the following average localization errors

for STR1: At source strength 25 nAm, the dipoles CD 1, 2,

3 were localized with minimum errors 0.9, 4.1 and 7.9 mm,

respectively, while at source strength 50 nAm, the locali-

zation errors were 0.2, 1.6 and 4.1 mm. These localizations

were performed on single trial data (see treatment of

reconstruction of induced activity in the ‘‘Discussion’’

section), and the localized positions were averaged. Due to

the high number of filter coefficients and data samples a

fairly good localization performance for all methods could

be achieved. There was no difference in localization error

between filtered spatial sLORETA (GFx) and spatio-tem-

porally regularized sLORETA (STR1).

The dependence of the localization error is plotted in

Fig. 8. The pattern is qualitatively similar to the results

from the simulated EEG data (Fig. 2). In any case, the

best results obtained by STR1 (for higher l) can be easily

achieved by spatial sLORETA with simple filtering for a

wide range of spatial regularization parameters. The fact

remains that GFx performs equal to STR1 for a wide

range of parameters. For STR2, the minimal localization

error is in the same range compared to GFx. It also seems

that smaller temporal regularization is needed—similar to

the EEG simulation study. Nonetheless, there are only

very small differences between the patterns of avr(STR1)

and STR2 (with similar localization performance). We

find no advantage in using current density averaging

(approaches 1 and 2) compared to the performance of

STR2.

Fig. 4 Smallest localization

errors for the tested

regularization schemes for a

pair of dipoles (averaged over

hemispheres) in the auditory

cortices, as function of noise

level
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Fig. 5 Localization accuracy

and quality of time course

reconstruction (correlation) for

a pair of simultaneously active

sources in the auditory cortices

with oscillatory activation time

courses of 10 Hz, shifted by

120� towards each other

(relative noise amplitude

RNA = 0.3). a Top left:
Contour plot showing the

dependence of the EEG source

localization error (in mm; left)
of the STR1 method plotted

versus the regularization

parameters. The values are

averaged over the two dipoles.

Top right: Localization errors

for the purely spatial methods.

See legend of Fig. 1 for

abbreviations. The plotted

localization errors were

averaged over 100 trials with

independent noise realizations

and 61 time steps per trial.

Middle: Localization errors for

STR1 as well as purely spatial

methods, with current densities

averaged over time. The

localization errors were

determined on these averaged

current densities and then

averaged over 100 trials (with

independent noise realizations).

Bottom: Localization errors for

sLORETA with STR2 using,

both, ad hoc and post hoc

weighting. b Correlation

between original and

reconstructed time courses for

STR1 (left) and the purely

spatial methods (right)
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Discussion

STR of distributed source reconstruction algorithms has

been proposed in the literature (Brooks et al. 1999; Darvas

et al. 2001; Schmitt and Louis 2002; Schmitt et al. 2001,

2002) and discussed as one possibility to stabilize inverse

solutions and fill the information gap caused by the non-

uniqueness of the inverse problem. Effectively, these

methods enrich the linear inverse operator by providing a

temporal filter. This raises the question of whether simple

ad hoc (to the data) or post hoc (to the reconstructed source

time courses) temporal filters applied in combination with a

purely spatial reconstruction algorithm could be used to

achieve the same results. This is particularly important

because the STR methods are computationally very

expensive. In the initial studies by Brooks et al. (1999), no

systematic investigation of this issue was offered. Indeed,

Schmitt et al. (2001) did compare their results with ad hoc

application of one particular temporal low-pass filter and

demonstrated the superiority of STR in this particular case.

However, there was no apparent correspondence between

the definitions of their temporal regularization (i.e., the

filter within the inverse operator) and this ad hoc filter. In

other words, it cannot be ruled out that other definitions of

the ad hoc filter would have performed better or at least

equally well compared to the STR. Moreover, this com-

parison additionally depends on the proper choice of the

regularization parameters. Finally, most of the previous

results for EEG/MEG have been achieved with strongly

simplified configurations of head models and sensor posi-

tions, with one exception in (Darvas et al. 2001), where a

pair of dipoles was reconstructed from simulated data in a

realistically shaped volume conductor model.

Here, we used realistic EEG configurations with a finite

element volume conductor model to systematically evalu-

ate the performance of STR-based source reconstruction

methods. We used a number of practically relevant source

configurations, including single and double dipole

schemes. Moreover, we systematically varied both the

spatial and temporal regularization parameters. Most

importantly, we compared the STR (both variants STR1,

STR2) method to simple ad hoc (and post hoc) filtering

using identical filter definitions, thus allowing a precise

assessment of the potential benefit of the STR method over

the computationally much cheaper filtering methods.

Finally, we applied our methods to MEG data from a

phantom measurement in order to confirm the results under

even more realistic conditions.

In contrast to previous studies, we used the sLORETA

method, which is known to be able to reconstruct single

dipoles without any depth bias (Pascual-Marqui 2002).

Moreover, the method allowed us to assess the effect

of temporal regularization incorporated in the post hoc

weighting operator as well. Another difference to previous

work (Brooks et al. 1999; Darvas et al. 2001; Schmitt and

Loui 2002; Schmitt et al. 2001, 2002) is that we did not use

a high-pass, but a band-stop filter in the penalty term

because we consider single-trial reconstruction from

induced oscillatory activity as one of the major potential

applications of spatio-temporal regularization.

We found that STR based on sLORETA yielded

improved reconstructions of single sources from realistic

data, in comparison to sLORETA without filtering or spatial

regularization, thus confirming the findings of previous

researchers (Brooks et al. 1999; Darvas et al. 2001; Schmitt

and Louis 2002; Schmitt et al. 2001, 2002). We also

Fig. 6 Reconstructed time courses for reconstruction (relative noise

amplitude RNA = 0.3) of dipole pair with 120� phase shift using

STR1 (left) and GFx (right). Red curves represent the reconstructed,

black curves the original time courses (amplitudes are squared). For

both algorithms, regularization parameters were chosen for which

both localization error and time course reconstruction accuracy are

close to optimum (see Fig. 4). The figures demonstrate that the lower

time course reconstruction accuracy for GFx seen in Fig. 4 is due to

edge effects of the filter, which have less effect in the STR1 scheme
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Fig. 7 Localization accuracy

and quality of time course

reconstruction (correlation) for

a pair of simultaneously active

sources in the auditory cortices

with oscillatory activation time

courses of 10 Hz, without

mutual phase shift (relative

noise amplitude RNA = 0.3).

a Localization accuracies—for

further details, see legend of

Fig. 4a. b Correlation between

original and reconstructed time

courses for STR1 (left) and the

purely spatial methods (right)
(Color figure online)
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demonstrated that the localization success hinges on prop-

erly chosen spatial and temporal regularization parameters.

In practice, this could mean that a two-dimensional L-sur-

face would have to be computed (Brooks et al. 1999), but

our simulations suggest, that a rather high l, and a some-

what smaller k is a reasonable choice to achieve optimal

results. Note that both parameters l and k also depend on

spatial and temporal properties (spatiotemporal resolution,

condition number, etc.), which are application specific.

However, we also found that using simple filtering (ad

hoc or post hoc—both yield exactly the same results)

performs equally well. The MEG phantom results

Fig. 8 Localization accuracy

for reconstruction from MEG

phantom data. Upper left:
Contour plot showing the

dependence of the MEG source

localization error (in mm) of the

STR1 method on the

regularization parameters for

the deepest dipole (CD3) at

strength of 25 nAm. The

minimum localization error is

about 7.9 mm. Upper right:
Localization errors for the

purely spatial methods. See

legend of Fig. 1 for

abbreviations. The plotted

localization errors were

averaged over 200 trials with

independent noise realizations

and 151 time steps per trial.

Lower row same as upper row;

however, here the current

densities were averaged over

time, the localization errors

determined on these averaged

current densities and then

averaged over 200 trials (with

independent noise realizations)
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essentially confirm these findings. When looking at the

spatial dispersion of the reconstructed solutions, they were

found very similar between STR and simple filtering, in

particular for those regularization parameter combinations,

for which the localization accuracy reasonable was rea-

sonably small.

Schmitt et al. (2001) compared a double dipole recon-

struction with STR to one without temporal regularization,

but with ad hoc filtering. They claim superiority for the

STR, but, unfortunately, only report qualitative results.

However, as they did not ensure correspondence between

the ad hoc filter and the STR temporal weighting and they

did not systematically vary regularization parameters, this

claim is not in contradiction to our findings.

Another important criterion for the reconstruction per-

formance is the accuracy of the time course reconstruction, in

particular, when more than one source is active and mixing

problems can occur. Schmidt and colleagues (Schmitt et al.

2001) have shown that, at least in their simplified configu-

ration, STR reconstructs the original time series with high

accuracy. Here, we confirm this finding. When using simple

filtering, the time course reconstruction accuracy (as mea-

sured by correlation) is not as good. The reason for this

appears to lie in the edge effects of the band-pass filter

applied, which have a high impact on the overall correlation

due to the short time series. Using longer time series will

likely reduce this problem. Hence, if, for some reason, very

short time series have to be used that cannot be filtered before

epoching, the STR method may offer an advantage, in par-

ticular, if the temporal information is important (e.g., in

connectivity analysis). It is, however, conceivable that

alternative filter designs (less steep, different windowing)

might reduce or eliminate this advantage of STR.

Although our results appear quite clear-cut and univo-

cally suggest that, at least for the sLORETA method, STR

does not offer a significant advantage over simple filtering,

the limits of the generalizability should be discussed. First,

we apply the STR concept to one particular linear inverse

method, that is, sLORETA. Therefore, strictly speaking,

our results are only valid for this method. However, it is

likely that the results can be generalized to other linear

methods, including (weighted) minimum norm and

LORETA. We tested the main findings of this paper using

the minimum norm method instead of sLORETA and

found no major difference to the ones reported here. On the

other hand, it is not as obvious, and remains to be inves-

tigated, how non-linear distributed source algorithms [e.g.,

L1 norm-based, see, e.g., (Fuchs et al. 1999)] or hierar-

chical Bayesian modeling (see, e.g., Lucka et al. 2011)

perform with spatio-temporal regularization.

Second, we used a band-stop filter in order to focus on

narrow frequency bands. Although it seems plausible that

the equivalence between simple filtering and STR using the

inverse of the same filter as a penalty is universal, this

cannot be definitely proven and remains to be investigated.

Conclusion

In this work, we investigated the concept of STR in linear

estimation-based distributed source reconstruction. We

used sLORETA and focused on oscillatory activity in

narrow frequency bands. In particular, we sought to answer

the question whether, in the context of the sLORETA

framework, the computationally very costly STR outper-

forms the classical purely spatial method applied to tem-

porally filtered data. We systematically varied source

configurations and both spatial and temporal regularization

parameters. Within the scenarios tested in this study, STR

did not offer any significant advantage.
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spatio-temporal approach for accurate and efficient current density

reconstruction. In: Halgren E, Ahlfors S, Hämäläinen M, Cohen D
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