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Abstract

The recovery of brain networks involving deep-lying sources by means of EEG/MEG recordings is still a challenging
task for any inverse method. Hierarchical Bayesian modeling (HBM) emerged as a unifying framework for current den-
sity reconstruction (CDR) approaches comprising most established methods as well as offering promising new methods.
Our work examines the performance of HBM for source configurations consisting of few, focal sources when used with
realistic, high resolution Finite Element (FE) head models. The main foci of interest are the right depth localization, a
well known systematic error of many CDR methods, and the separation of single sources in multiple-source scenarios.
Both aspects are very important in clinical applications, e.g., in presurgical epilepsy diagnosis. The results of our simu-
lation studies show, that HBM is a promising framework for these tasks, which is able to improve upon established
CDR methods in many aspects. For challenging multiple-source scenarios where the established methods show crucial
errors, promising results are attained. In addition, we introduce Wasserstein distances as performance measures for the
validation of inverse methods in complex source scenarios.
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1 Introduction

This article comprises particular results from a diploma
thesis [1]. The focus of the presentation is on the practical
application, properties and results of the methods, aiming
to get the reader interested in this new branch of inference
strategies. A comprehensive description of the inverse
problem of EEG/MEG, the concepts of Bayesian model-
ing and algorithmic and implementation aspects can be
found in [1]. Mathematical formulas are intentionally
avoided to the maximum extent possible.

11 Current Density Reconstructions and
Hierarchical Bayesian Modeling

We consider the instantaneous inverse problem of
EEG/MEG in the formulation of current density recon-
structions (CDR), i.e., we want to find a solution to the
matrix equation
b=1L"s, (1)

where b is the m-dim. vector of the measured potentials, s
is the n-dim. vector describing the discretized source ac-
tivity as the amplitudes of n elementary sources with
fixed locations and orientations and L is the lead-field or
gain matrix of size m x n, which contains our (forward)
model for the relation between source activity and mea-
sured data. Since n » m, infinitely many solutions to (1)
exist. Additionally, L is ill-conditioned due to the charac-
teristics of the forward problem, which is crucial since the
data is corrupted by noise. More details on these issues
can be found in [1]. One approach to overcome the above
difficulties is to account for the high uncertainty and un-
der-determinateness of the problem explicitly by formu-
lating the inverse problem as a statistical estimation prob-

lem. The aim is to make statistical inferences about the
real source configuration based on the information given
by the measurements and the a-priori knowledge about
the underlying brain activity. This concept is called
Bayesian modeling. Formally, the information about the
measurement b is encoded in a probability density called
likelihood and our a-priori knowledge about the source
activity s in a density called prior. The solution of the in-
verse problem within this framework is the probability
density of s, conditioned on b, which can be computed us-
ing Bayes rule of conditional probability. This density re-
flects all available information about s by merging the in-
formation we have before the measurement (the prior)
and after the measurement (the likelihood) and is thus
called posterior density. There are two popular inference
strategies to obtain a concrete estimate for s from the pos-
terior: The maximum a-posteriori (MAP) estimate is the
value of s which maximizes the posterior. Practically, its
computation needs high dimensional optimization tech-
niques. The conditional mean (CM) estimate is the ex-
pected value of the posterior. Practically, its computation
needs high dimensional integration techniques. Hierar-
chical Bayesian modeling (HBM) denotes a specific con-
struction principle in Bayesian modeling that recently at-
tracted attention in EEG/MEG (see, e.g., [2-6]). We refer
to [1] and [5] for a comprehensive introduction of the
concepts behind this approach. In summary, the stochastic
model is extended by an additional level of inference, rep-
resented by a new class of parameters called hyperpa-
rameters, which determine the general behavior of the
model. Our a-priori knowledge about their value is, again,
encoded in a probability density called hyperprior. HBM
is a promising framework for sophisticated reconstruction



tasks like multimodal integration, spatio-temporal exten-
sion or the modeling of neural inhibition or excitation
(see [1,2,5]). The specific HBM we use was introduced
in [2] and further examined in, e.g., [3,5,6]. It reflects the
a-priori knowledge, that the source activity consists of
few, focal sources , but does not constrain their number
beforehand, like dipole-fitting approaches do.

1.2  Depth Bias and Masking

Many inverse methods fail to reconstruct deep-lying
sources in the right depth, reconstructing them too close
to the skull. This effect is called depth bias, and is a well
known systematic error which limits the value of many
inverse methods for clinical applications like presurgical
epilepsy diagnosis. Masking describes the effect that
deep-lying sources are not visible in the estimated activi-
ty, if near-surface ones are simultaneously active. Again,
the oversight of these sources can lead to crucial errors in
clinical applications, e.g., in the diagnosis of patients suf-
fering from multi focal epileptiform discharges. Details
and references for these topics can be found in 4.1. in [1].

2 Methods

2.1 Head Model and Source Space

The head model for our studies is a Finite Element (FE)
model consisting of the compartments skin, skull com-
pacta, skull spongiosa, eyes and a homogeneous inner
brain compartment (see Figure 1). Details and references
on head modeling and model generation are given in [1].
We did not distinguish between the inner brain compart-
ments (csf, white and gray matter) to have a innermost
compartment without holes and enclosures where we can
place the test sources. This facilitates the interpretation of
the results of our studies.

Figure 1 Realistic, high resolution FE head model
(3.176.162 tetrahedron elements) with homogeneous in-
ner brain compartment.

A source space of 1.000 nodes based on a regular grid is
used (grid size: 10.99 mm). At each location 3 orthogonal

dipoles are placed. An artificial sensor configuration is
chosen that consists of 134 EEG electrodes that are dis-
tributed uniformly over the head surface. The reason for
this is to distinguish the effect of insufficient sensor cov-
erage from the effect of depth bias (see [1]).

2.2

To keep the presentation simple, not all inverse methods
that rely on the HBM and were considered in [1] are con-
sidered in this article. In addition, simpler names are cho-
sen to distinguish them. We will consider different meth-
ods for MAP estimation: MAP1 was introduced in [6],
MAP2 and MAP3 were proposed in [1]. For CM estima-
tion, we will rely on a scheme proposed in [3] and [6].
The choice of the parameters of the HBM and the estima-
tion methods is a non trivial issue, which is treated in de-
tail in [1]. Opposed to the new HBM-based methods, the
well established minimum norm estimate (MNE), sLORE-
TA, and two weighted minimum norm estimates (WMNE)
are considered (L2-type and regularized L-inf-type
weighting, denoted WMNE1 and WMNE?2). The WMNE
were proposed with the explicit intention to compensate
for depth bias. All details and references for theses meth-
ods can be found in [1].

Inverse Methods

2.3

We will use the following measures to evaluate our re-
sults: The depth of a location in the head model is de-
fined as the minimal distance to one of the sensors. For
single sources, the well known dipole localization error
(DLE) is the distance from the real location of the source
to the source space node with the largest estimated current
amplitude. The spatial dispersion (SD) is a measure of the
spatial extent of the source (see [1] for details). The DLE
can only be used for single sources (the extension to mul-
tiple sources is not trivial) and is only sensitive to local-
ization and in contrast, the SD does not account for local-
ization at all. To overcome these limitations, we intro-
duced and examined a novel validation measure in [1]
that is sensitive to both localization and spatial extent
mismatches, works in arbitrary complex source scenarios
and with arbitrary estimation formates (SLORETA, e.g.
yields standardized activity estimates rather than real cur-
rent amplitudes): The earth mover's distance (EMD) is a
distance measure between probability densities. It mea-
sures the minimal amount of work to transfer the mass of
one density into the other. Illustratively, one can think of
one density as a pile of sand, and of the other as a bunch
of holes. Then the EMD is the minimal amount of work
one needs to fill up the holes with the sand. The EMD has
many advantages over the other validation measures and
is sensitive to many desired features. More details and a
closer examination are given in [1].

Validation Measures
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In the first study, only single dipole sources are consid-
ered: 1.000 dipoles with random locations and orienta-

Simulation Studies



tions are placed in the inner compartment. Note that they
are not explicitly placed on the source space nodes (which
would be an inverse crime [1,6] and would lead to
overoptimistic results). White noise at noise levels (nl) of
5% and 10% is added to the data.

In the second study the dipoles used in the first study are
combined to form 500 source configurations each consist-
ing of a deep-lying and a near-surface dipole: The dipoles
are evenly divided into three parts by their depth. Then
one dipole from the part with the largest, and one from
the part with the smallest depth are randomly picked.
White noise at a noise level of 5% is added to the data.

3 Results

3.1  First Study: Depth Bias

The mean distance from the test sources to the next
source space node was 5.27 mm. This is a lower bound
for both DLE and EMD. Table 1 shows the mean results
of all methods. The depth bias is examined by the use of
scatter plots (Figures 2-4): On the horizontal and vertical
axis, the depth of the real source and of the source space
node with the largest source estimate amplitude are plot-
ted, respectively. A mark in the area underneath the y = x
line indicates that the dipole was reconstructed too close
to the surface. If a method shows a clear tendency to fa-
vor this area, it suffers from depth bias (see, e.g., the
MNE in Figure 3). A method performs well if its marks
are tightly distributed around the y = x line. For an easier
visualization, only the first 250 sources are shown, and
the methods were grouped such that their marks overlap
the least. Since we found that the addition of noise has no
systematic impact on the phenomenon of depth bias we
omitted the plots for the 10% noise level case.

The results suggest, that the HBM-based methods CM,
MAP2 and MAP3 improve upon the established ones for
this specific source scenario, with MAP3 showing the
best performance in every aspect examined (since the real
source is a single dipole, a low SD is desirable) . Further-
more, they do not seem the suffer from systematic depth
mis-localization.

Table 1 Mean validation measures for the first study.

EMD (mm) DLE (mm) SD

5%nl 10%nl 5%nl 10%nl 5%nl 10% nl

CM 7.31 10.28 6.27 7.59 1.2e-03 2.7¢-3
MAPI1 28.12  53.70 27.00 37.33 1.le-02 2.9e-1
MAP2 6.08 7.30 5.86 7.31 2.3e-04 9.4e-6
MAP3 5.95 6.74 5.81 6.74 1.4e-05 8.6e-7
MNE 53.23 55.93 2947  30.68 2.4e-01 2.9e-1
WMNEI1 52.19 5492 30.35 34.05 2.5e-01 3.le-1
WMNE2 49.58 52.43 29.38  25.07 2.2e-01 2.9e-1
sLORETA  40.56 44.94 6.14 736 1.9e-01 2.4e-1
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Figure 2 MAP1, WMNEI and SLORETA.
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3.2  Second Study: Masking

We show an initial example, where the effect of masking
is very pronounced. In Figures 5-7 the two green cones
represent two sources of which the bottom left one is very
close to the sensors whereas the top right one is very dis-
tant (see Figure A.21 in [1] for more detailed images).
Figure 5 shows the (vector) MNE result with red-yellow
cones, Figure 6 shows the (scalar) sSLORETA result as
red-yellow spheres. Even a careful successive threshold-
ing of the estimated source amplitudes does not reveal
any evidence for the presence of the deep-lying source.
The MAP3 method proposed in [1] is able to detect both
sources (see Figure 7, remember that the test sources are
placed in between the source space grid nodes). Table 2
shows the mean results of all methods. Remember that the
DLE is no longer available in this source scenario.
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Figure 5 MNE result for the initial example.

Figure 6 sLORETA result for the initial examplej
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Figure 7 MAP3 result for the initial example.

Table 2 Mean validation measures for the second study.
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EMD 1501 4325 1242 13.52 4455 4379 4184 36.40

SD 3.1e-3 1.4e-3 83e-4 7.6e-4 2.2e-1 2.5e-1 2.4e-1 1.9e-1

The initial example showed that the examined source sce-
nario is a very challenging one. However, CM, MAP2
and MAP3 show promising results even in this case.

3.3 EMD as a Validation Measure

From Table 1 the behavior of the EMD can compared to
the DLE and the SD, which are only sensitive to localiza-
tion or the spatial extent, respectively. Only methods that
perform well in both aspects attain a low EDM: sLORE-
TA is well known for giving well-localized but blurred
estimates of single focal sources. This is reflected in a
high EMD, when compared to methods attaining similar
DLESs while also reflecting the source extend (i.e., also at-
taining a low SD). A further main advantage of the EMD
is that it is applicable in more complex source scenarios,
where no other validation tools are applicable anymore.

4 Conclusion

Hierarchical Bayesian modeling is a promising frame-
work for EEG source localization, which is able to im-
prove upon established CDR methods for the source sce-
narios examined in many aspects. Wasserstein metrics, in
particular the EMD, are promising validation tools for fu-
ture research on more complex source scenarios.
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