

Mass-Preserving Motion Correction of PET: Displacement Field vs. Spline Transformation

Fabian Gigengack 1,2,* , Lars Ruthotto 3,4 , Martin Burger 3 , Carsten H. Wolters 4 , Xiaoyi Jiang 2 , and Klaus Schäfers 1

European Institute for Molecular Imaging (EIMI), 2 Department of Mathematics and Computer Science,

³ Institute for Computational and Applied Mathematics, ⁴ Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany, * gigengack@wwu.de

Introduction

Motivation:

- Cardiac and respiratory motion cause artifacts and spatial blurring
- ullet Non-linear cardiac motion o PVE induced intensity modulations

Contribution:

- Given: Mass-Preserving (MP) transformation model VAMPIRE [1]
- Evaluation of different motion models
 - ... displacement field (DF), compute an individual displacement for each voxel
 - ... spline transformation (ST), i.e., free-form deformation
- Focus on parametrization of ST
 - 1. Number of spline coefficients
 - 2. Regularization type and parameter

Materials and Methods

XCAT Software Phantom Data

- Generation of two gates (Processing: simulation of PVE (Gaussian blurring), forward projection, Poisson noise, EM reconstruction [2])
 - \mathcal{T} : Template image systolic heart phase at maximum inspiration (see Fig. 1 (a))
 - \mathcal{R} : Reference image diastolic heart phase at mid-expiration (see Fig. 1 (b))

VAMPIRE - Variational Algorithm for Mass-Preserving Image REgistration [1]

- Implementation based on FAIR toolbox [3] in MATLAB
 - Multi-level strategy along with a Gauss-Newton optimization
- Find optimal transformation y by minimizing the following functional:

$$\min_{y} \mathcal{D}^{\mathsf{SSD}} \left[(\mathcal{T} \circ y) \det(\nabla y), \ \mathcal{R} \right] + \alpha \ \mathcal{S} \left[y \right]$$

 \mathcal{D}^{SSD} : SSD distance functional; \mathcal{S} : Regularization functional; α : scalar value

Displacement Field (DF) Regularization

• Hyperelastic [4] (parameter search by minimizing the error measure e below)

Spline Transformation (ST) Regularization

- Hyperelastic (same values as estimated for the hyperelastic DF registration)
- Internal FAIR regularization of the spline coefficients' norm
 - Evaluation of different scalar values $\alpha \in \{5 \cdot 10^5, 10^6, 5 \cdot 10^6\}$

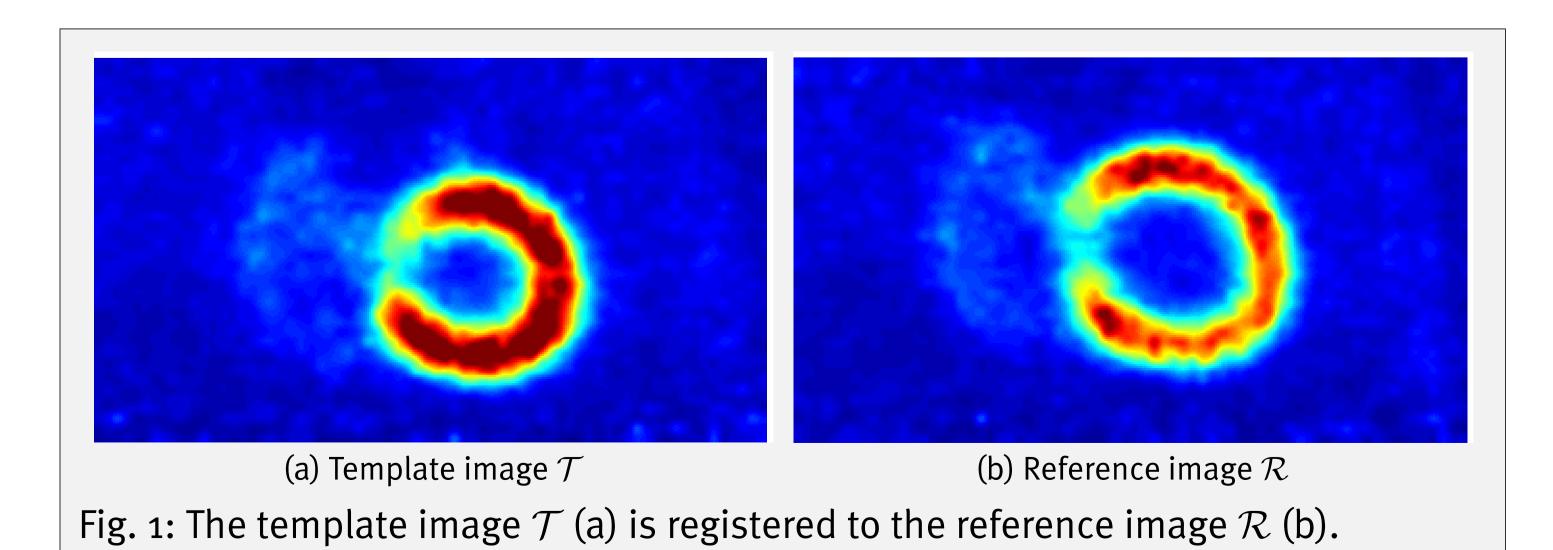
Spline coefficients

- Optimization of spline coefficient factor $s \in \{2, 4, 6, 8, 10, 12, 14, 16, 18\}$
 - \rightarrow image size is divided by s to define the number of spline coefficients; given an image size of $80 \times 80 \times 44$, the number of spline coefficients ranges between $40 \times 40 \times 22$ (s = 2) and $4 \times 4 \times 2$ (s = 18)

Evaluation

- 1. Error measure $e(y, y_{GT}) := \frac{1}{|\Omega|} \int_{\Omega} \|y(x) y_{GT}(x)\| dx$
 - y_{GT} is the ground-truth deformation provided by the XCAT phantom
 - Ω is the left ventricle
- 2. Total processing time *t*

Results: DF vs. ST



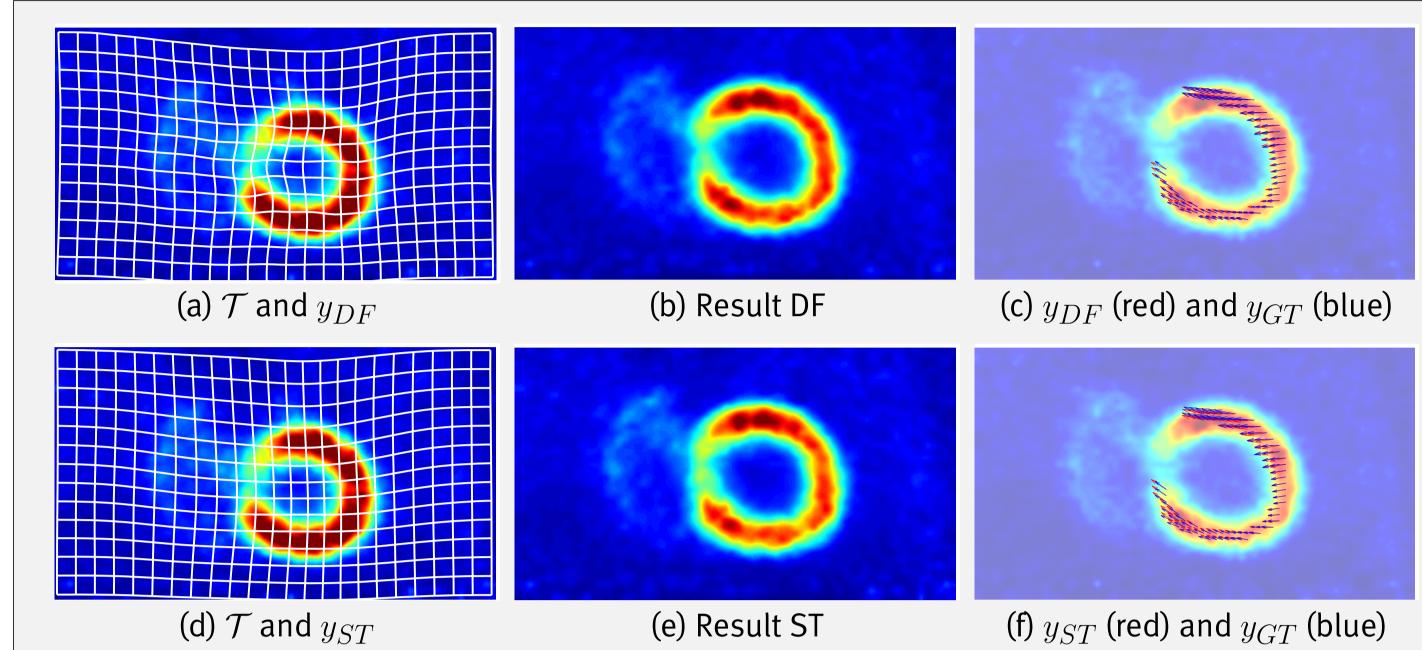


Fig. 2: Results of VAMPIRE registration with deformation field (DF) (a)-(b) and spline transformation (ST) (s=10, $\alpha=5\cdot 10^6$) (d)–(e). A ground-truth comparison is shown in (c) for DF and in (f) for ST.

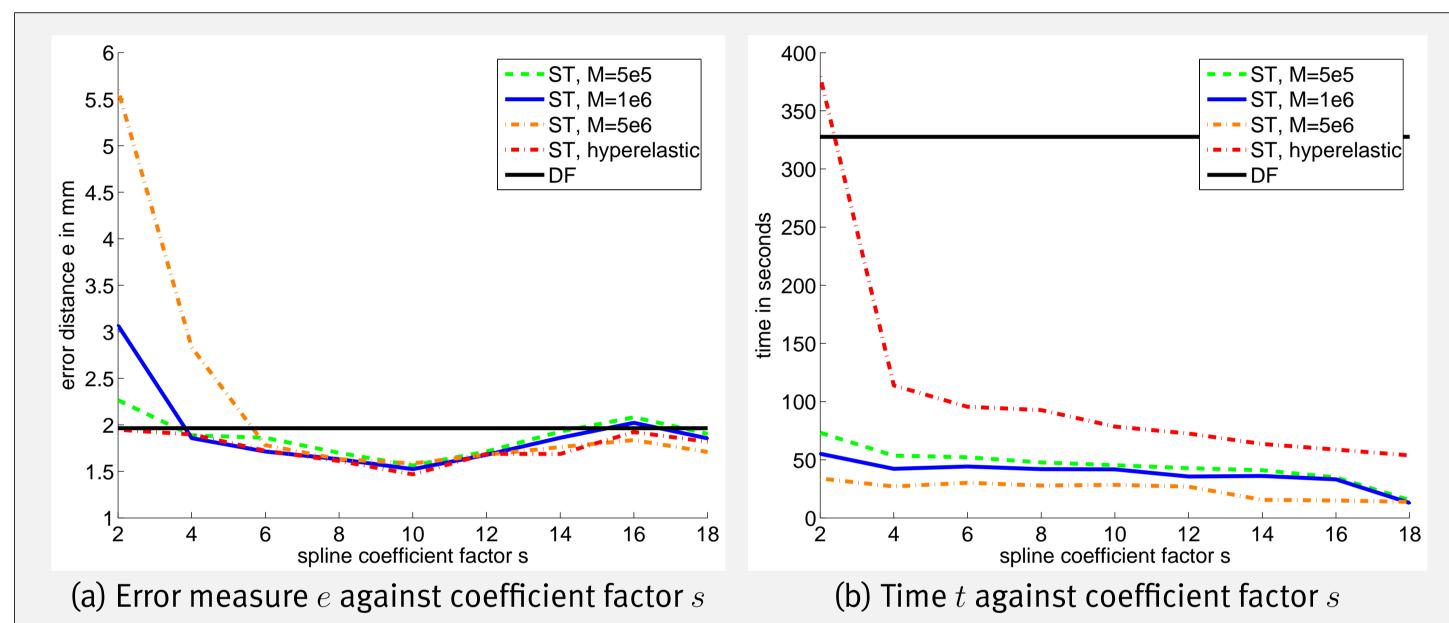


Fig. 3: The error measure e (ground-truth distance) and the processing time t is plotted against the spline coefficient factor s. The solid black horizontal line represents the DF result. The voxel size is $3.375 \,\mathrm{mm}$.

Tab. I: Detailed comparison of the DF and ST results. For ST only the values for s=10 (optimal coefficient factor) are shown. Best results are labeled in green.

	DF	ST	ST	ST	ST
	(Fig. 2 (a)–(c))				(Fig. 2 (d)–(f))
Coefficient factor	_	s = 10	s = 10	s = 10	s = 10
Regularization	hyperelastic	hyperelastic	$\alpha = 5 \cdot 10^5$	$\alpha = 10^6$	$\alpha = 5 \cdot 10^6$
$e(y,y_{GT})$	$1.96\mathrm{mm}$	$1.47\mathrm{mm}$	$1.56\mathrm{mm}$	1.52 mm	$1.59\mathrm{mm}$
processing time t	$326\mathrm{s}$	79 s	$45\mathrm{s}$	$42\mathrm{s}$	28 s

Discussion and Conclusion

- ST model is superior to DF strategy in terms of processing time and accuracy
- Optimal number of spline coefficients:
 - $8 \times 8 \times 4$ (s = 10) \rightarrow comparable results for all regularizations with subvoxel accuracy for s=10 (voxel size: $3.375 \,\mathrm{mm}$)
- Optimal regularization for ST:
 - Hyperelastic regularization (highest accuracy; guaranteed diffeomorphism)
 - FAIR regularization with $\alpha = 5 \cdot 10^6$ (good accuracy; short processing time)

References

- [1] F. Gigengack, L. Ruthotto, M. Burger, C.H. Wolters, X. Jiang, and K.P. Schaefers. Preserving Motion Correction of Dual Gated Cardiac PET. In NSS/MIC, IEEE, 2011. http://vampire.uni-muenster.de/
- [2] T. Kösters, K.P. Schäfers, and F. Wübbeling. EMRECON: An expectation maximization based image reconstruction framework for emission tomography data. In NSS/MIC, IEEE, 2011.
- [3] J. Modersitzki. FAIR: Flexible Algorithms for Image Registration. SIAM, Philadelphia, 2009. [4] M. Droske and M. Rumpf. A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math., 64(2):668–687, 2003.

