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Abstract

This thesis is concerned with an investigation of the adjoint approach for the
EEG forward problem. It is deduced from the adjoint method and compared
to the partial integration approach using transfer matrices for tetrahedral and
hexahedral 4-layered spherical shell models. Furthermore a realistic hexahedral
head model with anisotropic gray and white matter compartments is used to
investigate the L2 sensitivity distribution for a given lead positioned at the
surface of the head model. This head model is used to investigate the effect on
the L2 sensitivity distribution and the orientation of the lead field if the CSF
compartment within the volume conductor is neglected. The adjoint approach
and the partial integration approach attain exactly the same results concerning
required arithmetic operations, relative difference error and magnitude error
and both approaches use a continuous source space. The adjoint approach can
be further used to investigate the L2 sensitivity for a given lead for dipoles in
the source space.



Acknowledgments

I want to thank

• Carsten Wolters for introducing me into the field of bioelectromagnetism
and the continuous discussions during the last two years.

• Martin Burger for giving me the chance to write this thesis in his lab and
many fruitful discussions.

• Benjamin Lanfer for many helpful discussions and proofreading this thesis.

• Johannes Vorwerk for providing me many models and scirun nets.

• Felix Lucka for proofreading this thesis and for ideas presented in Chapter
6.

• Philipp Schmauck and Lars Ruthotto for making this thesis readable.

• My parents Peter and Karola for their financial and mental support.

• My girlfriend Nadine for the nice time beside writing this thesis.

iii



Contents

1 Introduction 1

2 Basic Information 4

2.1 Physiological basics and the generators of the EEG signals . . . . 5
2.2 EEG forward problem . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Potential equation . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Mathematical monopole, dipole and dipole moment . . . 10
2.2.4 Characterization of current density function . . . . . . . . 11
2.2.5 Boundary condition and EEG forward equation . . . . . . 11

2.3 Lead vector and lead field . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Lead vector . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Lead field and lead field matrix . . . . . . . . . . . . . . . 15

2.4 Helmholtz reciprocity . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 The basic idea of reciprocity . . . . . . . . . . . . . . . . 17
2.4.2 Mathematical theory . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Reciprocal lead field computation . . . . . . . . . . . . . . 22

2.5 Using reciprocity for the EEG source simulation . . . . . . . . . 24

3 EEG forward approaches 25

3.1 Full subtraction approach . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Partial integration approach . . . . . . . . . . . . . . . . . . . . . 27
3.3 The adjoint approach . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Implementation 34

4.1 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Transfer matrix approach . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Implementation of the adjoint approach . . . . . . . . . . . . . . 38
4.4 Implementation of the partial integration approach . . . . . . . . 41
4.5 Comparison of arithmetic operations . . . . . . . . . . . . . . . . 43

5 Numerical simulation 47

5.1 Tetrahedral meshes . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



Contents

5.2 Hexahedral meshes . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Adjoint approach analytically 59

7 Realistic head model 62

7.1 Sensitivity distribution . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Sensitivity without CSF compartment . . . . . . . . . . . . . . . 67

8 Summary and conclusion 73

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Outlook 75

A Appendix 77

A.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Sobolev theory and Lebesque theory . . . . . . . . . . . . . . . . 80

Bibliography 83

Erklärung der Eigenständigkeit 88
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1 Introduction

Electroencephalography (EEG) is a non-invasive tool that can be used to re-
construct sources of cerebral activity generated in the human brain. The EEG
is used in many different medical fields like clinical diagnosis ,e.g., Michel et
al. [12] investigated the imaging of interictal epileptic activity using a 128-
channel EEG recording device. Furthermore the EEG is used in the field of
cognitive neuroscience, see ,e.g., the work of Baillet et al. [2].

The first human EEG was recorded in 1924 by Hans Berger, a german psychi-
atrist [4]. Berger studied medicine at the university of Jena, where he obtained
his medical degree in 1897 [19]. Bergers work [4] was disbelieved until 1934,
where Adrian and Matthews confirmed his results [1]. Detecting the generators
of the recorded EEG signals located in the pyramidal cells of the human brain is
called EEG source analysis. This localization task was the first time introduced
by Brazier [6] in 1949. It requires to solve a forward problem and an inverse
problem. For the forward problem the potential at the EEG scalp electrodes
generated by an electrical source configuration has to be computed. This source
configuration represents the active neurons in the human brain. For a measured
EEG signal, the inverse problem consists of finding the corresponding electrical
sources within the human brain.

Many inverse source localization algorithms use the lead field approach, which
was the first time explained by Robert McFee and Franklin D. Johnston [28]
in 1953. For this, the continuous current distribution within the human head
is discretized into a finite number of possible dipolar sources. The partial dif-
ferential equation for the EEG forward problem has to be solved three times
per possible dipolar source. In the past, doing so using 3D discretization meth-
ods was considered a computationally expensive task, see Wolters et al. [52].
To circumvent this, the reciprocity principle is introduced. With it the partial
differential equation for the EEG forward problem has not to be solved three
times per possible dipolar source, but rather a number of times bounded by
the number of EEG scalp electrodes minus one. The transfer matrix approach
presented in Wolters et al. [51] and Weinstein et al. [49] is another approach
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which considerably reduced the computation time. The mathematical law of
associativity with respect to the matrix multiplication is used.

This thesis is concerned with an investigation of the adjoint approach pre-
sented in Vanrumste [45], Mohr [31] and Vallaghe [46], which uses both the
lead field theory and the reciprocity principle. It is compared to the partial
integration approach using transfer matrices presented in Lew et al. [27]. Val-
laghe stated in [46] that both the adjoint approach and the transfer matrix
approach change the forward problem from a dipolar source point of view to a
sensor point of view. Furthermore Vallaghe stated that the difference between
both approaches is that the adjoint approach uses the original continuous space
whereas the transfer matrix approach uses a discretized one. Based on this
statement, we compare both approaches theoretically and practically with re-
gard to different error measures in different tetrahedral and hexahedral finite
element models. Additionally, we want to calculate and compare the arithmetic
operations needed to solve the EEG forward problem. The described difference
with regard to continuous space and discretized space will be investigated in
the summary and conclusion of this thesis.

This thesis is organized as follows:
In the first part we introduce to the field of bioelectromagnetism. Some physi-
ological basics are given and then the partial differential equation for the EEG
forward problem is derived. Furthermore, the lead field theory and the reci-
procity theory are introduced. The reciprocity theorem is very important for
the derivation of the adjoint approach. With it, the computation time to solve
the EEG forward problem can be reduced considerably. In the next chapter,
three different EEG forward approaches are presented. The adjoint approach
is deduced from the adjoint method presented in Vallaghe et al. [46]. Further-
more, we describe how the adjoint method can be used to calculate the lead field
matrix in a feasible calculation time. In Chapter 4 and 5 the implementation
of both approaches and the calculation of the required arithmetic operations to
solve the EEG forward problem are described. Furthermore, some numerical
simulations for the adjoint approach and the partial integration approach are
presented. The potential at a given sensor node for the adjoint approach is
calculated analytically in Chapter 6. A realistic, geometry adapted hexahedral
head model is presented in Chapter 7 to show the L2 sensitivity distribution
for a given EEG lead. This head model is further used to investigate if a head
model without CSF compartment leads to the same L2 sensitivity distribu-
tion within the human brain and if the orientation of the vector field differs
in that case. A summary and a conclusion is presented in Chapter 8, where
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the statement of Vallaghe [46] is discussed. In Chapter 9 a possible outlook
is given, where some ideas are presented how the relative difference error and
the magnitude error might be improved. Furthermore, we want to compare the
orientation of the vector field Ow if a head model with isotropic gray and white
matter compartments is used instead of the same head model with anisotropic
compartments. The thesis closes with some mathematical background in the
Appendix A.1 and a derivation of the Sobolev space W k

p (Ω) in the Appendix
A.2.
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2 Basic Information

In this chapter we present some neurological basics and explain how the EEG
signals are generated. The so called pyramidal cells are introduced which are
able to generate fields measurable by the EEG electrodes. Maxwell’s equa-
tions and the quasi-static approximation of Maxwell’s equations will be used
to develop the partial differential equation for the EEG forward problem. We
obtain the lead field, if the partial differential equation for the EEG forward
problem is solved three times per possible dipolar source. The reciprocity prin-
ciple invented by Helmholtz can be used to reduce the computational amount.
Helmholtz’ reciprocity theorem and a field theoretic formulation of Helmholtz’
reciprocity theorem will be introduced. We will end this chapter with a compar-
ison of the so called reciprocal electric field and the lead field generated due to
a set of scalp electrodes. Furthermore we explain how the reciprocity principle
can be used in the field of bioelectromagnetism.

In this chapter the books

• Simulation of Bioelectric Fields: The Forward and Inverse Problem of
Electro-encephalographic Source Analysis by M. Mohr [31],

• Bioelectromagnetism - Principles and Applications of Bioelectric and Bio-
magnetic Fields by J. Malmivuo and R. Plonsey [29]

and the paper

• Review on solving the forward problem in EEG source analysis by H.
Hallez et al. [21],

are used, where further information and figures can be found.
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2.1 Physiological basics and the generators of the EEG signals

2.1 Physiological basics and the generators of the EEG

signals

The main task of the EEG forward problem is to compute the potential at the
scalp electrodes located at the surface of the human head. In the following part
we explain which cells are able to generate fields measurable by the EEG scalp
electrodes. We follow the work of Hallez et al. [21] and Mohr [31].
In the human brain are 1010 to 1011 nerve cells or neurons located. Most of
them vary in size and shape, but all of them have the same anatomical struc-
ture, see Figure 2.1. A neuron can be divided, following the structure and
functions, into three subparts, the dendrites, the cell body called soma and the
axon. They handle signals generated in the human brain in the following way:
Signals from other nerve cells in the brain are picked up from the dendrites and
transfered to the soma, which combines them and generates if it is possible a
new signal. If a new signal is generated, the axon sends it to other neurons or
muscle cells.

Figure 2.1: A Neuron see: [29], Figure 2.1.

When a neuron does not treat any signal, there is a potential difference between
the intracellular and the extracellular domain of approximatively -60 mV, which
is called transmembrane potential. The connection between the axon and the
next cell is called the synapse. The synapse forwards informations, generated
in the soma, to the next nerve cell. The part of the synapse on the side of
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2.1 Physiological basics and the generators of the EEG signals

the axon is called presynaptic terminal and the part on the connected cell is
called postsynaptic terminal. The signals can only cross the synapse in one di-
rection, from the presynaptic to the postsynaptic part, due to the fact that the
presynaptic cell creates a chemical transmitter. If this transmitter reaches the
receptors of a postsynaptic neuron the permeability for charged ions changes.
We distinguish between two sorts of chemical transmitter, the inhibitory and
the exhibitory ones. On the one side, exhibitory neurotransmitters allow signals
to increase. Thus, it causes an influx of positive ions. This leads to a depolar-
ization, that is, the potential difference across the cell membrane decreases. On
the other side, inhibitory neurotransmitters cause an outflow of positive ions.
This leads to a hyperpolarization, that is, the potential difference across the cell
membrane increases. When a certain amount of depolarization in the intracel-
lular compartment is reached, an action potential is generated and forwarded
via the axon to other neurons or nerve cells.

The action potential has a large amplitude of 70-110 mV. Due to the fact that
the brain is separated from the EEG electrodes by the skull, which has a very
low conductivity, a large number of neurons must be synchronously active to
generate a field measurable by the EEG scalp electrodes. The action potential
has only a very short time course of about 0.3 ms. It is therefore not nor-
mal that a large number of neighbouring neurons create an action potential at
exactly the same time. Changes in the transmembrane potentials located in
the postsynaptic parts of the neurons change the potential field measured by
the EEG electrodes. This changes have a smaller amplitude of 0.1-10 mV but
a time course of 10-20 ms, which is many times larger compared to the time
course of the action potential.

It is not sufficient that the activity is only synchronous. The fields have to be
similarly arranged so that different fields do not cancel each other. A class of
neurons that being able to generate fields measurable by the EEG electrodes
are the so called pyramidal cells. This is based on the fact that their dendrite
trees are parallel to each other and orthogonal to the cortical surface, see Hallez
et al. [21] for more details. Thus it is assumed that these pyramidal cells are
the generators of the EEG signal.
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2.2 EEG forward problem

2.2 EEG forward problem

This section will derive the partial differential equation for the EEG forward
problem. It is based on Maxwell’s equations which describe the connection be-
tween electric and magnetic fields. Due to the fact that we deal with frequencies
that are below 100 Hz in bioelectromagnetism, the quasi-static approximation
of Maxwell’s equations can be applied in order to neglect the time dependency.
This gives us the possibility to derive the potential equation for the EEG for-
ward problem.

Another interesting question is the modelling of the primary current vector Jp in
the potential equation. We introduce the so called point sources or monopoles,
which are the simplest source models. Based on the fact that we have to pre-
serve the current in the volume conductor, we are not able to use point sources
to model the primary current vector Jp. Thus another interesting source model
is introduced, the so called current dipole model. It is given by two monopoles
separated by a short distance h where the magnitudes of both monopoles have
exactly the same value and the opposite sign. If the distance between both
monopoles is decreased to zero, the real mathematical dipole model is received.
The mathematical dipole is used in many applications to model the primary
current vector Jp, see [33],[34],[14] for further details.

Since the potential equation is an elliptic partial differential equation, a bound-
ary condition at the surface of the volume conductor Ω is needed. Based on
the fact that the air is a non conductive medium, a homogeneous Neumann
boundary condition is considered. In this section the work of Mohr [31] and the
work of Malmivuo and Plonsey [29] are used, where many further details could
be found.

2.2.1 Maxwell’s equations

Maxwell’s equations are four coupled partial differential equations, which are a
fundamental part of physics and electrical engineering. They were derived by
James Clerk Maxwell during the years 1861 to 1864 [30].
In the next definition, Maxwell’s equations are presented.

Definition 1 (Maxwell’s equations [30]). Let E be the electric field, B the
magnetic field, ε0 the electrical permittivity, µ the magnetic permeability, ρ the
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2.2 EEG forward problem

charge density and J the current density. Then Maxwell’s equations are given
by

O ·E =
ρ

ε0
(2.1)

O×E = −∂B
∂t

(2.2)

O ·B = 0 (2.3)

O×B = µ(J + ε0
∂E

∂t
) (2.4)

Maxwell’s equations describe the relationship between electric and magnetic
fields due to the effect of charge and current density. Additionally they de-
scribe how the magnetic field B and the electric field E change in time.

Brandt and Dahmen [7] explained that the continuity equation can be used in
bioelectromagnetism

O · J = −∂ρ
∂t
. (2.5)

It says that the divergence of the current density is given by the temporal
change of the charge density.

The current density J can be divided in a passive non-magnetic medium into
the Ohmic current and the polarization current [47]

J = σE +
∂P
∂t

(2.6)

with σ being the conductivity and P = (ε− ε0)E being the polarization of the
volume with the permittivity of the medium ε.

2.2.2 Potential equation

The quasi-static approximation presented in Faugeras et al. [17] holds for fre-
quencies we are dealing with. This allows us to neglect the time derivative of
the magnetic field B and the electric field E in Maxwell’s equations. Tempo-
ral changes of both fields are nearly the same in the whole volume conductor.
This means that we are able to investigate both fields for different time points
completely independent.
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2.2 EEG forward problem

Neglecting the time derivative in (2.2) leads to O× E = 0, so that the electric
field E can be expressed by a scalar potential V

E = −OV. (2.7)

Due to the fact that we are able to neglect the time derivative of the electric
field E, the expression ∂P

∂t = (ε− ε0)∂E∂t is zero. This leads to

J
(2.6)
= σE

(2.7)
= −σOV (2.8)

Since the brain is an active medium, we add a primary current vector Jp for
the active sources within the human brain

J
(2.8)
= Jp − σOV. (2.9)

Furthermore, we are able to neglect the time derivative in the continuity equa-
tion (2.5). This gives us the possibility to describe the potential equation for
the EEG forward problem

0
(2.5)
= O · J (2.9)

= O · Jp − O · σOV. (2.10)

Definition 2. The potential equation for the EEG forward problem is given by

O · σOV = O · Jp. (2.11)

The EEG forward problem describes the distribution of the electric potential
V in the human head due to the primary current Jp caused by brain activity.
The conductivity σ can be described for an arbitrary point within the volume
conductor Ω by a 3× 3 matrix. Based on the fact that the conductivity at an
arbitrary point is exactly the same for currents flowing to or away from that
point, the conductivity σ will be symmetric. This fact gives us the possibil-
ity to transform σ into the basis of eigenvectors, which leads to a matrix with
eigenvalues on the diagonal axis. All diagonal entries are positive, since the
conductivity into one direction is positive. It follows that the conductivity σ is
positive definite.

Since the divergence of Jp is scalar we define according to Malmivuo and Plonsey
[29]

IF = −O · Jp,

where IF is the so called flow current density. Thus we are able to rewrite the
potential equation (2.11) as

− O · σOV = IF . (2.12)
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2.2 EEG forward problem

As described above, the conductivity σ is symmetric and positive definite. Thus
equation (2.12) is an elliptic partial differential equation, see Braess [5] for
further details on that topic. Additionally, it is easy to show that the potential
equation (2.11) is also an elliptic partial differential equation that requires a
boundary condition at the boundary ∂Ω of the domain Ω, see Section 2.2.5 for
further details on that issue.

2.2.3 Mathematical monopole, dipole and dipole moment

In bioelectromagnetism, the easiest source configuration we are able to deal
with are the so called monopoles or point sources. Due to the fact that we
have to preserve the current in the volume conductor, we are not able to use
single point sources to model the current density vector Jp. Another interesting
source configuration are the so called dipoles. We distinguish between two sorts
of dipoles, the current dipole and the mathematical dipole.
For the definition of a current dipole, we need a current source and a corre-
sponding current sink. Both should have the same magnitude I and have to be
separated by a short and finite distance h. The current dipole is directed from
the current sink to the current source.
A mathematical dipole, also called real dipole, can be obtained if we decrease
the distance h between the current source and the current sink to zero. If we
decrease the distance h to zero and let the magnitude I stay constant, the dipole
moment hI goes to zero. To receive a constant dipole moment hI, the limit
I →∞ has to be considered. This leads to the following setting

h→ 0 and I →∞.

An important point to mention is that the dipole moment q = hI has to be
finite in the limit. Let ed be the unit vector oriented from the current sink to
the current source. The dipole moment vector q can then be defined by

q := qed = hIed. (2.13)

If the distance h in the current dipole case is sufficiently small, the field gener-
ated by a current dipole and the field generated by a mathematical dipole will
be nearly the same and we are able to approximate a real dipole by means of a
current dipole.
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2.2 EEG forward problem

2.2.4 Characterization of current density function

The formerly discussed facts can be used to describe a feasible characterization
of the right-hand side vector Jp. As mentioned before, the primary currents
occur due to movements of ions within the dendrites of the pyramidal cells in the
active regions of the human brain. Following Wolters [52], stimulus-introduced
activation of many excitatory synapses of a whole pattern of neurons leads to
negative current monopoles under the brain surface and to positive monopoles
quite closely underneath, see the work of Nunez [33] for more details. DeMunck
stated in his work [14] that the mathematical dipole is usually accepted in the
field of bioelectromagnetism.
Thus, the current density function Jp for a mathematical dipole at position x0

with moment q can be characterized by

Jp = qδ(x− x0),

where δ is the so called Dirac delta distribution defined in Chapter 4.
This notation can be used to rewrite the right-hand side of equation (2.11)

O · Jp = O · (qδ(x− x0)). (2.14)

This expression is very helpful in many cases. For example, it is used to derive
the partial integration approach presented in Section 3.2.

2.2.5 Boundary condition and EEG forward equation

To obtain a complete model for the EEG forward problem, a boundary condition
on the surface ∂Ω of the volume conductor Ω is needed. This is based on the
fact that the potential equation for the EEG forward problem is an elliptic
partial differential equation, see Section 2.2.3 for details.
In bioelectromagnetism we deal with head models which consists of different
compartments, for example, the scalp, the skull, the CSF and the brain tissue
with different conductivity values. Thus, the conductivity σ could have jumps
at interfaces between two compartments. Let us assume that the conductivity
is constant and isotropic within each compartment. Consequently the potential
V is not differentiable between two compartments with different conductivity
values. But the following continuity condition is fulfilled

lim
Ωl3p→p∗

Vl(p) = lim
Ωk3p→p∗

Vk(p), (2.15)

where Ωl is the l-th compartment of Ω and p∗ an arbitrary point on the interface
between the l-th and k-th compartment. This is a physical requirement, since
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2.2 EEG forward problem

the potential V is continuous in the volume conductor and the values at an
arbitrary interface between two compartments of both sides have to be equal.
Another important fact is that the flow of currents σOV is continuous in the
volume conductor and along the interfaces, lying in it. This can be represented
by the following formula

lim
Ωl3p→p∗

< σl(p)OVl(p),n > = lim
Ωk3p→p∗

< σk(p)OVk(p),n > . (2.16)

We are now able to introduce the boundary condition to complete the model
for the EEG forward problem. If the interface is the surface of the volume
conductor Ω, equation (2.16) leads to

lim
Ω3p→p∗

< σ(p)OV (p),n > = 0. (2.17)

This is due to the fact that the air surrounding the human head is non con-
ductive which leads to a zero conductivity σ on the right-hand side. Since the
term σOV describes a flow of currents, equation (2.17) explains in the physical
sense that no current can flow out of the head into the air and vice versa.
Boundary conditions like (2.17) are called homogeneous Neumann boundary
conditions.
With the potential equation (Definition 2) and the boundary condition (2.17)
we are now able to introduce the EEG forward problem.

Definition 3 (Partial differential equation for the EEG forward problem). The
EEG forward problem is defined by the following partial differential equation

O · σOV = O · Jp in Ω (2.18)

< σOV,n > = 0 on ∂Ω (2.19)

The EEG forward problem does not have a solution in the classical sense, due
to the fact that a classical solution V of equation (2.18)-(2.19) has to be in
the space C2(Ω) ∩ C0(Ω). Since we use multi-layered volume conductors with
different conductivities, the conductivity σ is discontinuous at the interface
between different compartments. In order to obtain a classical solution V of
the EEG forward problem, the expression σOV has to be continuous through
the different compartments of the volume conductor Ω. It is therefore necessary
that OV has also jumps at the interface between different compartments, which
exactly cancel out the jumps of σ. The gradient of V is not defined in the sense
of classical calculus along such interfaces, see Mohr [31]. If we use a volume
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2.3 Lead vector and lead field

conductor Ω with Lipschitz continuous boundary and interfaces and assume
that O · Jp ∈ L2(Ω) the potential V will be in the Sobolev space W 1(Ω). A
definition of L2(Ω) and W 1(Ω) can be found in Appendix A.2. Since we use
dipolar sources to model the current density Jp, the condition O · Jp ∈ L2(Ω)
does not hold. In this thesis, we discuss those singularities and present different
forward approaches.

2.3 Lead vector and lead field

A very important point for many inverse source localization algorithms is the
lead field theory. If the so called lead field matrix is once calculated, the inverse
problem can be reformulated as a finite dimensional linear problem. In this
section we follow the basic ideas presented in Mohr [31] and Malmivuo and
Plonsey [29].
In the first subsection we introduce the concept of a lead vector. It describes
how the three dipoles with unit strength in the three Cartesian directions at a
fixed location within a volume conductor influence the potential within or at
the surface for a given pair of EEG electrodes. This concept can be expanded
further. If we calculate the lead vector for each possible dipolar source location
within the volume conductor, a vector field is generated, the so called lead field.
Calculating the lead field for each sensor node pair results in the so called lead
field matrix. The lead field matrix for different synchronously activated dipoles
and a set of S scalp electrodes will be derived at the end of this section.

2.3.1 Lead vector

Let ix, iy and iz be three dipoles with unit strength at position x0 oriented
parallel to the x-,y- and z-axis, respectively. In the first part of this section we
investigate the potential field U at a certain position p generated by the dipole
ix with unit strength oriented parallel to the x-axis. Note that this potential
must be evaluated with respect to another point or a reference point. A zero
potential reference point is used in the following.
Let cx be the corresponding potential U at position p caused by the dipole
ix and let dx be the dipole ix scaled with an arbitrary strength rx, that is,
dx = ixrx. The potential U at position p caused by the dipole dx can be
calculated using the so called linearity assumption presented in Malmivuo and
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2.3 Lead vector and lead field

Plonsey [29]

Up(dx) = cxrx.

Analogous formulations hold for the dipoles dy and dz scaled with strength ry

and rz, oriented parallel to the y- and z-axis. Due to the assumed linearity
assumption, the principle of superposition can be applied. Each dipole d at
position x0 with arbitrary strength or orientation can thus be decomposed into
the three orthogonal components dx, dy and dz and the potential U at position
p caused by the dipole d can be calculated via

Up(d) = cxrx + cyry + czrz,

where the terms cx,cy and cz are the potentials U at position p caused by the
three unit dipoles ix, iy and iz, respectively.
If we denote c := (cx, cy, cz)T and r := (rx, ry, rz)T we can use them to calculate
the potential U at position p

Up(d) = < c, r > .

The expression r is called the dipole orientation vector [31], which can be
used to calculate the dipole moment q via q = ||r||2.

In the next part of this section two points a and b within or at the surface
of a volume conductor are assumed. For both points a and b we are able to
calculate the vectors ca and cb caused by the three dipoles ix, iy and iz located
at x0. Following the procedure above, we receive for a dipole d with arbitrary
strength located at position x0

Ua(d) = < ca, r > Ub(d) = < cb, r > .

The potential difference Uab(d) between a and b can be obtained by

Uab(d) := Ua(d)− Ub(d). (2.20)

If we denote

Iab := ca − cb, (2.21)

Iab describes the potential difference of U between a and b caused by the three
dipoles ix, iy and iz, respectively.
We finally receive

Uab(d)
(2.20)

= Ua(d)− Ub(d) = < ca, r > − < cb, r >
(2.21)

= < Iab, r > (2.22)
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2.3 Lead vector and lead field

A pair of surface electrodes is called a lead and the vector Iab is called a lead
vector for the lead positioned at a and b. The name originates from the fact
that the lead vector can be used to calculate the potential difference between
the lead for each dipole d with arbitrary strength or orientation located at po-
sition x0.

Burger and van Milan introduced the concept of a lead vector in 1946 in [9].
Malmivuo and Plonsey explained in [29] that the lead vector concept was for
the first time employed in electrocardiographic (ECG) source analysis. They
deeply described the Einthoven, Frank and Burger triangles in their work.

2.3.2 Lead field and lead field matrix

In this section we introduce the lead field and the lead field matrix. As de-
scribed above, the potential difference between two points a and b depends on
the location x0 where the dipole d is located. If the dipole position is changed,
the lead vector Iab will also change. But if the orientation or strength of the
dipole is changed, the lead vector will not change. A change in the orientation
or strength of the dipole will only cause a change of the dipole orientation vec-
tor r in equation (2.22), which is a very powerful property. Based on that fact,
we calculate the corresponding lead vector Iab(x0) for each possible point x0

within the volume conductor by evaluating the potential difference between a
and b for the three dipoles ix, iy and iz positioned at x0. This creates a vector
field, which is called lead field. The lead field theory was first explained by
Robert McFee and Franklin D. Johnston in 1953 [28].

In Figure 2.2, a lead field is shown. We fixed two electrodes A and B forming
a lead and investigate the variation of the lead vector IAB at different source
locations within the volume conductor. The resulting field of lead vectors is the
lead field. This concept can be used to investigate the L2 sensitivity distribution
for a given lead presented in Chapter 7. The arrows are oriented from the EEG
scalp electrode at position A to the reference electrode at position B.

In the next part the case where we have a set of S scalp electrodes will be
explained. Fixing one electrode as reference, we are able to choose (S-1) leads
and calculate for a dipole d with arbitrary strength or orientation positioned
at x0 within Ω and for each lead the corresponding lead vector Ii(x0), i =
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2.4 Helmholtz reciprocity

1, · · · , S − 1 by evaluating the potential difference between the lead for the
three dipoles ix, iy and iz positioned at x0. The dipole orientation vector r
can be calculated using the linearity assumption. Let us denote the vector of
potential differences between the leads by U(d). This leads to

U(d) =

( < I1(x0), r >
...

< IS−1(x0), r >

)
= L(x0)r. (2.23)

The matrix L(x0) ∈ R(S−1)×3 is called the lead field matrix.

This concept can be extended further. Mohr presented in [31] the lead field ma-
trix for different dipoles that are simultaneously active. For m simultaneously
activated dipoles at position x1, · · · ,xm and S different scalp electrodes, this
leads to a lead field matrix

L(x1, · · · ,xm) ∈ R(S−1)×3m.

The potential difference between the lead depends on the angle between the
lead vector Iab and the dipole orientation vector r. If Iab and r are oriented
parallel to each other, the potential difference between the lead will be high.
But if the lead vector and the dipole orientation vector are nearly orthogonal,
the potential difference will be small.

2.4 Helmholtz reciprocity

In the second section of this chapter, we discussed the EEG forward problem.
The lead field theory, presented in Section 2.3, is used by many methods that
solve the inverse problem. Those methods discretize the lead field by many
dipoles with unitary moments. For each dipole and orientation we have to
solve the partial differential equation (2.18)-(2.19). Since this is a very time
consuming part, we introduce the reciprocity principle. Instead of solving the
EEG forward problem three times per dipolar source, the lead field matrix
is calculated from a sensor point of view. This will reduce the computation
time considerably since we have to solve the forward problem only S − 1 times
with S the number of sensors. We follow the work of Mohr [31] and the work
of Malmivuo and Plonsey [29] in this section, where further details could be
found.
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2.4 Helmholtz reciprocity

Figure 2.2: Lead field, see: [29], Figure 11.19.

The reciprocity principle was introduced into the area of biophysical research
by Hermann von Helmholtz [24] in 1853. Over 100 years later, in 1969, Rush
and Driscoll [38] applied the reciprocity principle to EEG source simulation.

The transfer matrix approach, described in Wolters et al. [51] and Weinstein
et al. [49], is another approach which transfers the calculation of the lead field
matrix from a source point of view to a sensor point of view. The transfer
matrix approach will be introduced in Section 4.2.

2.4.1 The basic idea of reciprocity

According to Malmivuo and Plonsey [29] Helmholtz presented the following
example in [24]. It distinguishes between two cases:

• A galvanometer G is connected at the surface of a volume conductor Ω. A
double layer source element with voltage Vd is placed within the volume
conductor. This double layer source element causes a current IL in the
galvanometer circuit.

• The galvanometer is replaced by an electromotive force with the same
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magnitude Vd as the source element in the former case, which will be
removed in this case. This setting produce a reciprocal current ir at the
position where the double layer source element was placed in the first
case.

Both cases can be seen in Figure 2.3.

Figure 2.3: Volume conductor for reciprocity principle, see: [29], Figure 11.20.

Helmholtz’ reciprocity principle leads to

IL
Vd

=
ir
Vd
.

This means that the current IL in the first case measured in the galvanometer
circuit is equal to the current ir which can be measured at the position of the
removed double layer source element.
In this example a double layer source element was used to measure the corre-
sponding current. In our case, current dipoles are used which create signals in
voltage.

Malmivuo and Plonsey [29] demonstrated that the reciprocity principle does
not depend on the location where the double layer source element is positioned.
They increased the area of the double layer source element in the first case by
a factor of f . Due to the linearity assumption this leads to an increasement of
the current IL measured in the galvanometer circuit by a factor of f . Due to
the fact that the voltage over the double layer source element stays equal in the
first case, the electromotive force Vd in the second case remains the same and
it produces the same amount of current density. This causes an increasement
of the reciprocal current ir by a factor of f since the area of the double layer
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element is now f times larger. This finally leads to

fIL
Vd

=
fir
Vd

,

which can be divided by the factor f to receive the above form.

2.4.2 Mathematical theory

In this section, the reciprocity theorem introduced by Helmholtz is presented.
As a further point, a field theoretic formulation of the reciprocity theorem is
presented.

Theorem 1 (Helmholtz’ reciprocity theorem, see: [31], page 20, Theorem 1).
Let us consider the following two settings:
First we assume that in a volume conductor a source I consisting of a point
source and a point sink located at positions psource and psink is present

I = I∗δ(psource − r)− I∗δ(psink − r). (2.24)

In the next setting, we assume that the scalar current density K on the surface
of the volume conductor consists of a point source and a point sink located at
pin and pout

K = K∗δ(pin − r)−K∗δ(pout − r). (2.25)

Then the relationship between both settings is given by

I∗[V2(psource)− V2(psink)] = K∗[V1(pin)− V1(pout)], (2.26)

where V1 is given by the potential field generated by a source I and V2 is given
by the potential field generated by K.

Equation (2.26) states that the ratio between the potential difference between
two points psource and psink caused by a current K∗ between points pin and
pout and the potential difference between two surface points pin and pout gen-
erated by a current I∗ flowing from psource to psink is exactly given by the ratio
K∗
I∗

between the currents.

A field theoretic formulation of Helmholtz’ reciprocity theorem was first pub-
lished by Rush and Driscoll [38]. It is presented in the following
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2.4 Helmholtz reciprocity

Theorem 2 (Field theoretic formulation, see: [31], page 21, Theorem 2). Let
Ω be a volume conductor consisting of k = 1, · · · , n compartments Ωk in which
the conductivity tensor σ is continuously differentiable and may be anisotropic.
Let I1 and I2 be two different volume current sources, K1 and K2 be two current
densities on the surface ∂Ω and let V1 and V2 be the potential fields resulting
from I1,K1 and I2,K2.
We now assume, that the interfaces separating the compartments and the bound-
ary ∂Ω of the domain Ω are sufficient smooth. Furthermore, we assume

V1, V2 ∈ C1(Ωk), (σOV1), (σOV2) ∈ C1(Ωk), (2.27)

then it holds that∫
Ω
V1I2 dx−

∫
Ω
V2I1 dx =

∫
∂Ω
V1 < K2,n > ds−

∫
∂Ω
V2 < K1,n > ds

(2.28)

with n the outward normal vector to ∂Ω.

Proof. We will only show a proof for a single compartment Ωk. Due to (2.27)
the functions Vi and (σOVi) are sufficient smooth and therefore, we are able to
write

O · V1(σOV2) = V1O · (σOV2) + OV1(σOV2)

O · V2(σOV1) = V2O · (σOV1) + OV2(σOV1)

Subtracting the second term from the first term yields

O · V1(σOV2)− O · V2(σOV1) = V1O · (σOV2) + OV1(σOV2)

− V2O · (σOV1)− OV2(σOV1)

Since the conductivity σ is symmetric, we are able to write

OV1(σOV2) = σTOV1OV2

= σOV1OV2

= OV2(σOV1)

Thus, the above equation reduces to

O · V1(σOV2)− O · V2(σOV1) = V1O · (σOV2)− V2O · (σOV1)

The following condition is fulfilled

O · V1(σOV2)− O · V2(σOV1) = O · (σOV2)V1 − O · (σOV1)V2
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2.4 Helmholtz reciprocity

Rewriting the above term and integrating over the compartment Ωk yields∫
Ωk

O · (σOV2)V1 dx−
∫

Ωk

O · (σOV1)V2 dx =∫
Ωk

[V1O · (σOV2)− V2O · (σOV1)] dx

Both terms on the left-hand side can be circumscribed using the divergence
theorem∫

Ωk

O · (σOV2)V1 dx =
∫
∂Ωk

< V1(σOV2),n > ds−
∫

Ωk

(OV1)(σOV2) dx∫
Ωk

O · (σOV1)V2 dx =
∫
∂Ωk

< V2(σOV1),n > ds−
∫

Ωk

(OV2)(σOV1) dx

Following the notations above, we have∫
Ωk

(OV1)(σOV2) dx =
∫

Ωk

(OV2)(σOV1) dx

Thus, we finally receive∫
∂Ωk

< V1(σOV2),n > ds−
∫
∂Ωk

< V2(σOV1),n > ds =∫
Ωk

[V1O · (σOV2)− V2O · (σOV1)]dx

Rearranging this equation and summing up over all compartments leads to∫
Ω
V1O · (σOV2)− V2O · (σOV1)dx =

n∑
k=1

∫
∂Ωk

< V1(σOV2)− V2(σOV1),n > ds

(2.29)

We now define Ωjk = Ωj ∩ Ωk as the shared interface of the compartments
Ωj and Ωk. Equation (2.29) contains Ωjk two times. The first time in the
surface integral over Ωj and the second time in the surface integral over Ωk.
But the outward normal vectors at both surfaces have the opposite sign, that
is, nj = −nk. Therefore, the sum of both integrals is zero and equation (2.29)
reduces to∫

Ω
[V1O · (σOV2)− V2O · (σOV1)]dx =

∫
∂Ω

< V1(σOV2)− V2(σOV1),n > ds

(2.30)

We have O ·(σOVi) = -Ii and (σOVi) = −Ki and the theorem is established.

Equation (2.30) is a well-known formula in the area of physical sciences. It is a
version of Green’s second formula. For more information about Green’s formula
see O. Forster [18].
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2.4.3 Reciprocal lead field computation

The reciprocity theorem gives us the possibility to calculate the lead field in an
alternative way. In the following part we describe how this can be done.
A volume conductor with a fixed lead is investigated. A reciprocal unit current
is introduced at electrode position pin and removed at electrode position pout.
This introduced current creates a potential field VLE within the volume con-
ductor. This potential field is called the reciprocal potential field, see the right
volume conductor in Figure 2.3.
The reciprocal electrical field ELE is given by

ELE = −OVLE

and the corresponding reciprocal current density field is given by

JLE = σELE = −σOVLE .

Let us furthermore consider a current dipole given by a current source located at
psource and a current sink located at psink with exactly the same magnitude and
the opposite sign, see Section 2.2.3 for further details. For a current I∗ flowing
between psource and psink, the dipole orientation vector r can be defined by

r = I∗(psource − psink). (2.31)

Based on the fact that the reciprocal potential field VLE is created by currents
introduced at the surface of a volume conductor, which is assumed to be source-
free in the interior, we are able to calculate a Taylor series expansion of VLE

VLE(psource) = VLE(psink)+ < OVLE(psource), (psource − psink) > + · · ·
(2.32)

Note that we are not able to calculate such an expansion between conductivity
jumps.
We now decrease the distance between psink and psource and keep the dipole
orientation vector r constant by increasing the current I∗ between psource and
psink. If the distance between psink and psource is sufficiently small, the second
order terms and the higher terms in equation (2.32) can be neglected. This
leads to

I∗(VLE(psource)− VLE(psink))
(2.32)

= I∗(< OVLE(psource), (psource − psink) >)
(2.31)

= < OVLE(psource), r > .

Let us denote the potential field generated by a dipolar source within the volume
conductor with Vdip. In addition, we denote the potential difference caused by

22



2.4 Helmholtz reciprocity

the dipolar source between two electrodes pin and pout located at the surface
of the volume conductor by

ULE := Vdip(pout)− Vdip(pin). (2.33)

Using Theorem 1 with K∗ = 1, VLE = V2, Vdip = V1 yields

ULE
(2.33)

= Vdip(pout)− Vdip(pin)

= −(Vdip(pin)− Vdip(pout))
Theorem 1= −I∗(VLE(psource)− VLE(psink))
Taylor

= < −OVLE(psource), r >

Comparing this result with the lead field computation (2.22) yields

lpinpout
(psource) = −OVLE(psource). (2.34)

This is a very powerful result. The lead field at an arbitrary point p∗ can be
obtained by the negative gradient of the corresponding reciprocal potential field
at the same position. Thus we can see that the lead field is exactly equal to
the reciprocal electrical field

lpinpout
= ELE , (2.35)

which is generated if a unit current is introduced to the lead. The lead is called
reciprocally energized in that case. The lead field concept combined with the
reciprocity principle is very powerful. It can be used in the following way:

• It can be used to visualize and evaluate the sensitivity distribution for a
given lead, see Chapter 7 for an example.

• The lead field matrix can be calculated very fast and easily using reci-
procity, see Section 2.5 for more details.

• We are able to calculate the sensitivity distribution in the measurement
of electric impedance of the tissue, see Kauppinen et al. [26].

• Both, the lead field concept and the principle of reciprocity are also avail-
able for magnetic methods.

This description holds for arbitrarily shaped, inhomogeneous volume conductors
since no assumptions have been made with respect to the volume conductor [29].
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2.5 Using reciprocity for the EEG source simulation

The reciprocity principle can be used to calculate the lead field for a given
lead in an alternative way. For many inverse source simulation approaches one
needs to build the lead field matrix for many different dipole positions and
orientations, see Section 2.3. For each column of the lead field matrix, the par-
tial differential equation (2.18)-(2.19) for the EEG forward problem has to be
solved. This is a very time consuming procedure.

To overcome this problem, the reciprocity principle can be applied. It is used to
build the lead field matrix in a reciprocal way, which will considerably reduce
the computation time. Instead of solving the partial differential equation for the
EEG forward problem for each dipolar source, we set a unit current source and
sink at each lead and calculate the resulting reciprocal potential field within the
volume conductor. This has to be done for each lead and the resulting potential
fields have to be stored. After the computation of the reciprocal potential field
for each lead, we can easily calculate the lead field with equation (2.34). The
lead field is given by the gradient of the reciprocal potential field, which can be
calculated very fast and easily. The most time consuming part is the calculation
of the reciprocal potential fields.

The reciprocal procedure has a big advantage: If the dipole position p is
changed, we do not have to repeat solving the partial differential equation
for the EEG forward problem again. Instead of this, only the gradient of the
reciprocal potential field has to be calculated at the new dipole position.
If the lead field matrix is calculated in the standard way, the partial differential
equation for the forward problem has to be solved new for each different dipo-
lar position. If many different dipole positions are investigated, the reciprocal
procedure will reduce the computation time drastically.
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In this chapter we introduce three different approaches that can be used to solve
the EEG forward problem. The first one is the full subtraction approach, which
is mathematically well-understood, see Wolters et al. [55]. The second approach
we introduce is a direct potential approach called partial integration approach
in Lew et al. [27]. The partial integration approach has the disadvantage that
we do not have a well-understood mathematical theory. The last approach dis-
cussed in this chapter is the adjoint approach presented in Vallaghe et al. [46].
A derivation of the adjoint partial differential equation is presented in Section
3.3. Each approach is able to deal with arbitrary geometries and allows to treat
tissue inhomogeneities as well as tissue anisotropies.

The solution of the EEG forward problem for an unbounded volume conduc-
tor with constant homogeneous conductivity can be calculated analytically as
shown in the following example.

Example 1 (See Drechsler et al. [15]). Let Ω be an unbounded volume conductor
and let the conductivity σ be constant and homogeneous for all elements in the
volume conductor Ω. Furthermore let Y be the source space and x0 ∈ Y the
position where the dipole is located. The solution V∞,x0 of the EEG forward
problem can be calculated analytically via

V∞,x0(x) =
1

4π
√
det σ(x0)

< q(x0), σ(x0)−1(x− x0) >

< σ(x0)−1(x− x0), (x− x0) >
3
2

(3.1)

and the gradient of V∞,x0 can be easily obtained

OV∞,x0(x) =
1

4π
√
det σ(x0)

σ(x0)−1q(x0)

< σ(x0)−1(x− x0), (x− x0) >
3
2

(3.2)

− 1
4π
√
det σ(x0)

3 < q(x0), σ(x0)−1(x− x0) > σ(x0)−1(x− x0)

< σ(x0)−1(x− x0), (x− x0) >
5
2

(3.3)

Since the denominator at position x = x0 is zero, we can see that V∞,x0(x) has
a singularity at position x = x0, which is of second order. It follows that V∞,x0
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does not belong to the Sobolov space W 1(Ω) and to the Lebesque space L2(Ω).
In the following part of this chapter, we present different forward approaches
and investigate if and how they treat the singularity at x = x0.

3.1 Full subtraction approach

In this section, we briefly discuss some basics of the full subtraction approach
presented in Wolters et al. [55] and Drechsler et al. [15].
Let Y be the gray matter compartment in which the dipolar sources are located
and let Ω be the head domain. For the full subtraction approach let us assume
that for each y ∈ Y we are able to find a small subarea Ωε in which the
conductivity σ is homogeneous for each x ∈ Ωε, the so called homogeneity
assumption.
In order to get rid of the singularity presented in Example 1, we split the
total potential V (x) into the singularity potential V∞,x0(x) and the correction
potential V corr,x0(x)

V (x) = V∞,x0(x) + V corr,x0(x), (3.4)

where V∞,x0(x) is the solution for the unbounded volume conductor Ω with
constant homogeneous conductivity σ presented in Example 1. For a complete
solution of the EEG forward problem, the full subtraction approach calculates
the solution for the correction potential V corr,x0(x) such that

O · σ(x)O(V∞,x0(x) + V corr,x0(x)) = O · Jp(x) x in Ω (3.5)

< σ(x)O(V∞,x0(x) + V corr,x0(x)),n(x) > = 0 x on ∂Ω (3.6)∫
Ω

(V∞,x0(x) + V corr,x0(x)) dx = 0 (3.7)

This equation system is called the subtraction forward problem.
The subtraction forward problem can be reorganized to

O · σ(x)OV corr,x0(x) = f(x) x in Ω (3.8)

< σ(x)OV corr,x0(x),n(x) > = g(x) x on ∂Ω (3.9)∫
Ω
V∞,x0(x) = −

∫
Ω
V corr,x0(x) dx (3.10)

where the right-hand sides f(x) and g(x) are given by

f(x) = O · (σ(x0)− σ(x))OV∞,x0(x) x in Ω

g(x) = − < σ(x)OV∞,x0(x),n(x) > x on ∂Ω
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For a numerical computation of V corr,x0(x) we need V∞,x0(x) and OV∞,x0(x),
which can be solved analytically following Example 1.
Solving V corr,x0(x) numerically leads to the following linear system

KV = b,

where the stiffness matrix is given by

Kij =
∫

Ω
< σ(x)Oφi,Oφj > dx, i, j = 1, · · · , N

and the right-hand side vector b is given by

bi =
∫

Ω
< (σ(x0)− σ(x))OV∞,x0(x),Oφi(x) > dx

−
∫
∂Ω
φi(x) < σ(x0)OV∞,x0(x),n(x) > ds, i = 1, · · · , N.

After solving this system, the potential V (x) is the sum of V∞,x0(x) and
V corr,x0(x). The existence and uniqueness of a solution of the subtraction for-
ward problem is presented in Wolters et al. [55].
Solving the full subtraction approach yields the question:

• What happened to the singularity in the volume conductor Ω? Is the
singularity eliminated?

Since we have assumed that we are able to find a non empty subset Ωε where
the homogeneity assumption holds, we have

σ(x)− σ(x0) = 0 ∀ x ∈ Ωε

where the function V∞,x0(x) is singular. And therefore, the right-hand side
f(x) in equation (3.8) equally to zero. The full subtraction approach can thus
be used to eliminate the singularity on the right-hand side O ·Jp. Furthermore,
the right-hand side f(x) in equation (3.8) is now square integrable over Ω.

3.2 Partial integration approach

Instead of building a singularity function as done in the subtraction approach,
the partial integration approach, presented in Lew et al. [27], calculates the
solution of the EEG forward problem in a direct way. The singularity in the
domain Ω is neglected. Thus, we multiply the potential equation (2.18) with a
linear finite element basis function φi and integrate over the head domain Ω∫

Ω
O · (σOV )φi dx =

∫
Ω

O · Jpφi dx. (3.11)
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3.2 Partial integration approach

Now, we integrate both sides by parts

−
∫

Ω
< σOV,Oφi > dx+

∫
∂Ω

< σOV,n > φi ds = −
∫

Ω
< Jp,Oφi > dx

+
∫
∂Ω

< Jp,n > φi ds.

The second term on the left-hand side vanishes due to the homogeneous Neu-
mann boundary condition (2.19) and the second term on the right-hand side
due to the fact that we do not have a current Jp on the surface of the volume
conductor.
As mentioned in Section 2.2.4, the current density Jp on the right-hand side
can be represented by

Jp = qδ(x− x0).

This leads to the following representation∫
Ω
< σOV,Oφi > dx =

∫
Ω
< qδ(x− x0),Oφi > dx = < q,Oφi(x0) > .

(3.12)

In order to solve this equation with the finite element method, the function V

is projected into the finite element space by

V (x) ≈ Vh(x) =
N∑
j=1

φj(x)Vj , Vj = V (xj).

This leads to the following system of linear equations

KV = b

with the stiffness matrix

Ki,j =
∫

Ω
< σOφj ,Oφi > dx, i, j = 1, · · · , N.

Following equation (3.12) the right-hand side vector can be obtained by

bi =

{
< q,Oφi(x0) >, if i ∈ NodesOfEle(x0)

0, otherwise
(3.13)

the function NodesOfEle(x0) calculates the corner nodes of the element, in
which the dipole is located.

When we investigate the deduction of the partial integration approach, we ob-
tain the following question:
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3.3 The adjoint approach

• Is the derivation of the partial integration approach mathematically cor-
rect?

Integration by parts of the right-hand side is used in equation (3.11). In this
case, it is assumed that the current source Jp is differentiable. In the partial
integration approach, we used a dipole source as current source, modelled as
a Dirac-delta distribution, which is not differentiable. Thus, another question
appears:

• Does the partial integration approach lead to correct results for the EEG
forward problem?

In [27], Lew et al. investigated different forward approaches for EEG source
analysis. They compared the full subtraction approach to the Venant approach
and the partial integration approach. In Table 3, they describe the maximal rel-
ative error and the maximal magnitude error for 6 different tetrahedral meshes.
We can see that the partial integration approach leads to acceptable results.
Lew et al. concluded that the full subtraction approach performs better as long
as the homogeneity assumption is sufficiently fulfilled. In addition, they men-
tioned an oscillatory behavior of the partial integration approach. In that work,
Lew at al. used tetrahedral meshes with linear finite element shape functions for
the partial integration approach. Thus, to compute the right-hand side vector
b via equation (3.13), the gradient of linear finite element shape functions has
to be calculated. This leads to constant values within the complete element.

3.3 The adjoint approach

The adjoint approach for the EEG forward problem is presented in this section.
In the first part, the adjoint partial differential equation is deduced from the
adjoint method presented in Vallaghe et al. [46]. In the last part of this section
we will explain how the adjoint method can be used to calculate the lead field
for a given sensor configuration. The notations presented in Vallaghe et al. [46]
are used.

In the further steps, the function g(Jp) describes the difference between the
electric potential V measured at the positon ri of the EEG electrode and the
reference electrode located at r0 .
The following parameters are used [46]:

• We assume E = L2(Ω), the head domain Ω ⊂ R3 and the inner product
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3.3 The adjoint approach

< u, v > =
∫

Ω u(x)v(x) dx (L2(Ω) is a Hilbert space, following Theorem
6 in the Appendix A.2)

• The parameter p is the primary current vector field Jp(x) ∈ E3 = (L2(Ω))3.

• The parameter v is the electric potential V (x) ∈ C0(Ω) ∩ E = C0(Ω) ∩
L2(Ω).

• We have g(Jp) = f(V (Jp)) = V (ri)− V (r0) =
∫
∂Ω V (δri − δr0) ds.

• V is solution of the EEG forward problem (2.18)-(2.19)

O · (σOV ) = O · Jp in Ω

< σOV,n > = 0 on ∂Ω

• The Lagrangian L is given by

L(Jp, V, w) =
∫
∂Ω
V (δri − δr0) ds+

∫
Ω

(O · (σOV )− O · Jp)w dx.

In order to obtain the adjoint partial differential equation the Lagrangian L has
to be rewritten. This has to be done, since we have to calculate the differential
of L with respect to the electric potential V . According to Section 2.2.5, the
electric potential V and σOV are continuous within the volume conductor and
along the interfaces lying in it, which gives the possibility to use the divergence
theorem∫

Ω
(O · (σOV ))w dx =

∫
∂Ω
w < σOV,n > ds−

∫
Ω
< σOV,Ow > dx (3.14)

The first term on the right-hand side is zero, since a homogeneous Neumann
boundary conditions is considered. Next, we have∫

Ω
(O · (σOw))V dx =

∫
∂Ω
V < σOw,n > ds−

∫
Ω
< σOw,OV > dx (3.15)

The conductivity σ is symmetric, therefore σ = σT and we can write∫
Ω
< σOw,OV > dx =

∫
Ω
< σTOw,OV > dx

We can now combine the steps above to obtain∫
Ω

(O · (σOV ))w dx = −
∫

Ω
< σOV,Ow > dx

= −
∫

Ω
< Ow, σOV > dx

= −
∫

Ω
< σTOw,OV > dx

= −
∫

Ω
< σOw,OV > dx

(3.15)
=

∫
Ω

(O · (σOw))V dx−
∫
∂Ω
V < σOw,n > ds
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3.3 The adjoint approach

The corresponding term in the Lagrangian can be replaced

L(Jp, V, w) =
∫
∂Ω
V (δri − δr0) ds+

∫
Ω

(O · (σOw))V dx

−
∫
∂Ω
V < σOw,n > ds−

∫
Ω

(O · Jp)w dx

We are now able to calculate the differential of L(Jp, V, w) with respect to V .
We have

∂L

∂V
(Jp, V, w) =

∫
∂Ω

(δri − δr0) ds+
∫

Ω
O · (σOw) dx−

∫
∂Ω

< σOw,n > ds

Thus, the condition ∂L
∂V (Jp, V, w) = 0 is fulfilled, if w is the solution of

O · (σOw) = 0 in Ω (3.16)

< σOw,n > = δri − δr0 on ∂Ω (3.17)

This equation system is called the adjoint partial differential equation.

In the next part of this section we describe, how the adjoint method can be
used to calculate the lead field for a given lead at position ri and r0. We have
the following relationship between the derivative of the functional g and the
derivative of the Lagrangian L with respect to Jp

∂g

∂Jp
=

∂L

∂Jp
.

Thus the lead field for a given sensor configuration can be calculated with the
derivative of the Lagrangian L with respect to Jp.
The Lagrangian L only depends on Jp via the expression

−
∫

Ω
(O · Jp)w dx

which can be rewritten as

−
∫

Ω
(O · Jp)w dx =

∫
Ω
< Ow,Jp > dx−

∫
∂Ω

< Jp,n > w dx.

The last term is zero due to the known fact, that the primary current vector
Jp is zero on the boundary ∂Ω. We finally obtain

∂g

∂Jp
=

∂L

∂Jp
= Ow. (3.18)

The lead field is given by the expression ∂g
∂Jp , see Vallaghe et al. [46], which can

be calculated using equation (3.18). Summing up, to be able to calculate the
lead field for a given lead at position ri and r0, the adjoint partial differential
equation (3.16)-(3.17) has to be solved for a finite number N of grid nodes.
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3.3 The adjoint approach

Then, equation (3.18) has to be used to calculate the gradient of the solution
w of (3.16)-(3.17) at the corresponding grid nodes. Since the calculation of the
solution w of the adjoint partial differential equation is the major time con-
suming part and it has to be solved only sensor nodes minus one times, this
procedure will speed up the calculation of the lead field matrix. The adjoint
method gives us the possibility to calculate the lead field matrix for a big num-
ber N of discrete sources in a feasible calculation time. This is based on the
fact, that the calculation of Ow is very fast and easy.

To summarize, the partial differential equation for the EEG forward problem
is given by

O · σOV = O · Jp in Ω

< σOV,n > = 0 on ∂Ω

and the adjoint partial differential equation is given by

O · σOw = 0 in Ω

< σOw,n > = δri − δr0 on ∂Ω

The adjoint partial differential equation is a Laplace equation with inhomoge-
neous Neumann boundary condition, see Braess [5] for further details. Related
to Helmholtz’ reciprocity principle, the expression δri − δr0 stands for the lead,
where the current source and sink is placed.

After solving the adjoint partial differential equation, there are some questions:

• 1. How do we obtain the desired potential V at each electrode position?

• 2. What happened to the singularity in the partial differential equation
for the EEG forward problem. Is the singularity alleviated?

To the first question:
Solving (3.16)-(3.17) leads to a solution w at each grid point within the volume
conductor Ω. In this case, only the resulting potential at the electrode positions,
given by the adjoint solution w is obtained. But we want to obtain the potential
difference between a given lead of the electric potential V . It is thus the goal
to combine the solution V of the EEG forward problem and the solution w of
the adjoint partial differential equation. If dipolar sources are used, this can be
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3.3 The adjoint approach

done in the following way:
The lead field for a given measurement between a lead is exactly given by Ow.
If a dipolar source positioned at x0 with dipole moment q is used, we have
according to Section 2.2.4 Jp = qδ(x− x0). Using Example 2 in the Appendix
A.1 with Li0(x) = Ow yields

V (ri)− V (r0) =
∫

Ω
< Ow,Jp > = < q,Ow(x0) > .

Thus, the potential difference between the i-th scalp electrode and the refer-
ence electrode located at r0 can be obtained by calculating the gradient of the
adjoint solution w and evaluating the calculated gradient of w at the dipole
position, multiplied with the dipole moment q.

This step is very problematic. We considered the primary current vector Jp to
be an element in the space L2(Ω). But a dipole is not an element of the space
L2(Ω). The following condition is fulfilled

δp(x) ∈W−
3
2
−ε(Ω) ∀ε > 0.

This point has to be investigated, but is not part of this thesis.

To the second question:
The singularity in the volume conductor Ω is eliminated. But due to the bound-
ary condition in the adjoint partial differential equation, we have a singularity
on the boundary. This singularity is caused by the missing divergence operator
in the boundary condition, of one order lower, that is, a singularity of first
order, than the singularity in the volume for the partial integration approach.
Therefore, we have to check the following questions:

• Which singularity can be handled better?

• Do we receive significant differences with regard to numerical errors?

In the numerical simulation part, we are going to present the resulting error
curves for the partial integration approach and the adjoint approach for different
tetrahedral and hexahedral meshes, where we deeply discuss this questions.
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4 Implementation

Since we want to solve the partial differential equation for the EEG forward
problem, the volume conductor has to be modelled. The human head con-
sists of different compartments, for example, scalp, skull, CSF, gray matter
and white matter with different conductivities. Additionally, Wolters explained
in [52] that the white matter compartment is anisotropic and Dannhauer [13]
recommended that the skull should be modelled three-layered with spongiosa
and compacta. To be able to reconstruct the EEG sources precisely, the exact
modeling of the tissue inhomogeneity and anisotropy is needed, see, for exam-
ple, Wolters [52] and Haueisen et al. [23].
There are different numerical approaches which can be used to solve the EEG
forward problem, like the boundary element method (BEM), the finite differ-
ences method (FDM) and the finite element method (FEM). Only the FEM and
the FDM are able to deal with both, realistic head models and inhomogeneous
and anisotropic compartments. According to Wolters [52] the FEM is used in
this thesis due to the fact that a big advantage of the FEM is that the Galerkin
discretization and the weak formulation of the forward problem (2.18)-(2.19)
gives on the one hand the chance to model the physics appropriately and ac-
curately and on the other hand it gives a clear mathematical treatment of low
regularity cases. The EEG source analysis task with discontinuous conductivity
values is an example for those low regularity cases, see Section 2.2.5 for more
details on that topic.

4.1 Finite element method

In 1852 Karl Schellenbach [42] described the solution of minimal surface prob-
lems. In his work, Schellenbach used methods, that can be seen as early forms
of the finite element method used today. His approach could be compared to the
finite element method with linear triangle elements on a regular grid. Over 50
years later, Ritz [37] and Galerkin invented their Ritz and Galerkin approach.
The finite element method is a special form of a Ritz and Galerkin approach.
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4.1 Finite element method

For more details on that topic, see, for example, Braess [5].
In the work The finite element method in plane stress analysis by R. W. Clough
in the [11], Clough introduced the notation finite element method.
In the following, we briefly explain some basics of the finite element method:

We will follow the basic ideas of Burger [10]. The finite element method decom-
poses the domain Ω into a finite number of subareas, which are called elements.
Examples are triangles or rectangles in 2D and tetrahedras or cubes in 3D. The
next point is the definition of finite element shape functions on every element,
which can, for example, be linear, quadratic or cubic. Another interesting point
to explain is how the domain Ω can be decomposed into subdomains. We will
restrict the following topic to the twodimensional case. Note that an analogous
procedure is also available for higher dimensions.

A feasible decomposition is explained in the following

Sentence 1. (Feasible division, see: [5]) A decomposition τ = T1, · · · , Tm of a
domain Ω is called feasible if the following conditions are fulfilled

1. Ω =
⋃M
i=1 Ti

2. If Ti ∩ Tj has exactly one point, this point is a corner node of Ti and Tj

3. If Ti ∩ Tj has more than one point, Ti ∩ Tj is an edge of Ti and Tj

It is thus important that the complete domain Ω is overlapped by elements.
Furthermore we can see that Ti ∩ Tj is empty or exactly one point or exactly
an edge.
The neighborhood of a node Pi is defined by

N(Pi) =
⋃

Pi∈∂Tj

Tj .

The neighborhood is therefore given by the neighboring elements of the grid
node. For each grid point a finite element shape function with the following
properties is defined:

φ ∈ C(Ω)

φi|xl
= δil

φi(x) = 0 x /∈ N(Pi)

φi|Tj ∈ Pk(Tj) Tj ⊂ N(Pi)
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4.1 Finite element method

The expression Pk(Tj) describes the set of polynomials, with a degree smaller
or equal to k. For the adjoint approach and the partial integration approach,
linear finite element shape functions are used, that is, k = 1.

We are now able to use the finite element method for a discretization of the
adjoint partial differential equation presented in (3.16)-(3.17). In order to solve
the adjoint partial differential equation with the FEM, we multiply equation
(3.16) with a finite element basis function φ ∈ C∞(Ω) and integrate over the
domain Ω ∫

Ω
O · (σOw)φ dx = 0. (4.1)

The divergence theorem yields

−
∫

Ω
< σOw,Oφ > dx+

∫
∂Ω

< σOw,n > φ ds = 0.

We use the boundary condition (3.17) to reformulate the second term on the
left-hand side ∫

Ω
< σOw,Oφ > dx =

∫
∂Ω

(δri − δr0)φ ds. (4.2)

Once again the function w is projected into the finite element space by

w(x) ≈ wN (x) =
N∑
j=1

φj(x)wj , wj = w(xj), (4.3)

where N is the number of grid nodes and w(xj) is given by the value of the
solution of the adjoint partial differential equation w at the j-th grid node. In
addition, the following stiffness matrix K is used

Kij =
∫

Ω
< σOφi,Oφj > dx, i, j = 1, · · · , N

and the following right-hand side vector b

bj =
∫
∂Ω

(δri − δr0)φj ds, j = 1, · · · , N, (4.4)

to be able to rewrite equation (4.2) in the following form

Kw = b. (4.5)

The same proceeding for the EEG forward problem (2.18) leads to a linear
system with another right-hand side vector b

KV = b. (4.6)
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4.2 Transfer matrix approach

4.2 Transfer matrix approach

To solve the linear system (4.6) is the major time consuming part within the
source localization process. Many inverse solution approaches need to solve the
system (4.6) for many different right-hand sides. In Section 2.4 we discussed the
reciprocity principle invented by Helmholtz. In the reciprocal case, the system
(4.6) has to be solved only sensor nodes less one time.
In this section we introduce the transfer matrix approach presented in Wolters
et al [51] and Weinstein et al. [49]. It is another approach that considerably
reduces the computation time. Instead of solving the forward problem for each
possible dipolar source and orientation, a restriction matrix R ∈ R(S−1)×N is
introduced. An important point is that each of the S EEG electrodes exactly
correspond to a finite element node at the surface of the volume conductor Ω.
The matrix R has only one non zero entry per row. To map the potential
vector V to the (S-1) non-reference electrodes, the value 1 is placed at the
corresponding grid node of R and we receive

VEEG := RV. (4.7)

Following Wolters et al. [51], we define the transfer matrix T as follows

T := RK−1 ∈ R(S−1)×N . (4.8)

Then, we multiply equation (4.6) with the transfer matrix T from the left-hand
side

Tb
(4.6)
= TKV

(4.8)
= RK−1KV = RV

(4.7)
= VEEG. (4.9)

If the transfer matrix is once calculated, the potential at the EEG electrodes
can be calculated using the product of the transfer matrix T with the right-
hand side vector b.

An interesting question is how the transfer matrix T could be calculated. The
calculation of T will be very difficult, due to the fact that the sparsity of the
stiffness matrix K will be lost when inverting it. Thus, another approach to
calculate the transfer matrix T is introduced. The stiffness matrix K will be
multiplied from the right-hand side to equation (4.8). This leads to

TK = RK−1K = R. (4.10)

Using the fact that K is symmetric and transposing both sides of equation
(4.10) yields

KT T = KTT T = RT . (4.11)

37



4.3 Implementation of the adjoint approach

Thus, to calculate the transfer matrix T , we have to solve (S-1) sparse finite
element linear equation systems. If the source location is changed, we do not
have to solve the linear system (4.6) completely new with another right-hand
side vector b. The transfer matrix is valid for each possible source location
within the volume conductor Ω. Once the transfer matrix T is calculated, the
forward computation for an arbitrary source location is reduced to a single
matrix multiplication with T . The transfer matrix approach can be applied
to inverse reconstruction algorithms in the continuous and the discrete source
parameter space for EEG and MEG, see Wolters et al. [51].

4.3 Implementation of the adjoint approach

A possible realization of the adjoint approach for the EEG forward problem is
presented in this section. A major work of this thesis was the development and
the implementation of the presented algorithms. The algorithms were realized
and implemented into the SimBio software package, see [44] for further details.

We divided the calculation of the potential difference V (ri) − V (r0) between
each lead positioned at ri and r0 into three subparts:

1. Solve the partial differential equation (3.16)-(3.17) for each sensor config-
uration and save the calculated values of the adjoint solution w.

2. Calculate Oφj(x0) at the corresponding dipole element nodes.

3. Calculate potential difference V (ri)−V (r0) for each sensor configuration.

For each of the three subparts we developed algorithms which will be presented
and explained in the following part of this section.

Algorithm 1 Solve the adjoint partial differential equation for each lead
for i = 1 to SensorNodes.length() do
b(SensorNodes[0]) = -1;
b(SensorNodes[i]) = 1;
Solve: Kw = b;
b(SensorNodes[i]) = 0;
for j = 0 to NumberOfGridNodes do
W (j + (i-1)*NumberOfGridNodes) = w(j);

end for
end for
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In the first algorithm, a N × (S − 1) matrix W is calculated. Here N stands
for the number of grid nodes and S is given by the number of sensors. The i-th
column of W contains the solution of the adjoint partial differential equation
(3.16)-(3.17) at each grid node within the volume conductor Ω, corresponding
to the i-th lead. When the first algorithm is finished, the matrix W contains
the solution w of the adjoint partial differential equation for each grid point
and each lead.
In order to be able to solve the linear system (4.5), the stiffness matrix K has
to be created, see Section 4.1 for further details. It is a N × N matrix with
coefficients

Kij =
∫

Ω
< σOφi,Oφj > dx, i, j = 1, · · · , N.

This is done in a former step. The computation of the matrix W starts with a
loop over all EEG leads. This has to be done since we have to solve the system
(4.5) for each different right-hand side vector b, that is, for each different EEG
lead. Since we set a reference electrode at the first scalp electrode position, we
have exactly sensor nodes less one scalp electrode pairs. This leads to (S-1)
loop steps. Let us denote in the following the i-th loop step with an index i.
In order to solve the adjoint partial differential equation, the right-hand side
vector b has to be built. Following equation (4.4), b has only two non zero en-
tries. The grid node corresponding to the first electrode, that is, the reference
electrode has the value -1 and the grid node corresponding to the i-th EEG
scalp electrode has a value of 1.
After that step, we are able to solve the linear system (4.5). We use an algebraic
multigrid - conjugate gradient solver (AMG-CG) [51] to solve Kw = b. Based
on the fact that the right-hand side vector b changes in the next loop step, we
have to set, after solving Kw = b, the i-th grid node value of the right-hand
side vector b to zero. Since the first electrode is used as reference, we do not
have to set the grid node corresponding to the first scalp electrode to zero. As
a last step the results have to be stored in the matrix W . The calculation of
W could be seen as a preparatory step. This notation is based on the fact that
the calculation of the solution matrix W has to be finished until the second and
third algorithm could be started. If the solution matrix W is once calculated,
the potential difference V (ri)− V (r0) for each lead can be calculated very fast
and easily.

In the second algorithm we calculate Oφi(x0) at the dipole position x0. Since
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Algorithm 2 Calculate Oφj(x0) for the element, which contains the dipole
Find DipolElement;
for i = 0 to nodespelem do

locnode[i] = i-th NodeOfDipoleElement;
coords[i*3 + 0] = x-coordinate;
coords[i*3 + 1] = y-coordinate;
coords[i*3 + 2] = z-coordinate;

end for
Find DipolPosition;
fofagn(DipolElement, DipolPosition, locnode, coords, phi-grad);

we have

Ow(x) ≈
N∑
j=1

Oφj(x)wj ,

and the definition of finite element shape functions

φi(xj) =

{
1, if i = j

0, otherwise
(4.12)

only the values of Oφi(x0) have to be calculated for the element, which contains
the dipole. Therefore, we have to find the dipole element. This can be done
very easily in SimBio, since there is a function called find-dipole-ele. Then, we
have to find the corner nodes and the corresponding coordinates (x,y,z) for the
element, in which the dipole is located. This has to be done, since we use a
Fortran routine called fofagn, which gives us the values of the derivative of finite
element shape functions within elements. Naturally, the function fofagn needs
the exact position of the examination point, that is, the exact dipole position.
If tetrahedral models with linear finite element shape functions are used, the
corresponding derivative is constant and therefore, we do not have a resolution
in the element. We receive exactly the same values for the derivative of the
finite element shape functions for each dipole position within the element. For
second or third order shape functions, the exact position of the dipole within
the element is needed, see Chapter 9 for further details. For hexahedral models
we have a slightly different situation. The derivative of the finite element shape
functions is not exactly constant. This is due to the transformation of the cube,
in which the dipole is located into a unit cube located at the point of origin.
Due to the fact that the dipole element does not change for a modification of
the lead, Oφi(x0) has to be calculated only once per dipole. The function fofagn
provides us the values of Oφi(x0) at each corner node in direction of the x,y
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and z-axis and the solution is stored in phi-grad.

Algorithm 3 Calculate potential difference V (ri)− V (r0) for each lead
for i = 1 to SensorNodes.length() do

Ow = 0;
for j = 1 to nodespelem(DipolElement) do

Ow(x0) = Ow(x0) + Oφj(x0)wj ;
end for
V (ri)− V (r0) = < q,Ow(x0) >;

end for

In the third algorithm, the potential difference V (ri) − V (r0) for each lead is
calculated. To calculate the potential difference for all leads, the algorithm
starts with a loop over all sensor node pairs. Then, we have to set Ow to zero,
so that the previously calculated values are eliminated. As mentioned in the
discussion for the second algorithm, we do not have to sum over all grid nodes.
We only have to sum over the corner nodes of the dipole element. Thus, we
have to find out, how many nodes the element, in which the dipole is located
has, for example, for tetrahedral meshes, we have 4 nodes, for cubic grids, the
dipole element has 8 nodes. To sum up Ow at each grid node, we have to
build a loop over the former calculated number of corner nodes of the dipole
element. Then, we calculate Ow(x0) at each corner node of the corresponding
dipole element. Here we use the former calculated values of wi at the i-th grid
node and the values of Oφi(x0) at each corner node of the dipole element. As
mentioned before, the function fofagn calculates the values of finite element
shape functions at the corresponding element corner nodes with regard to the
examination point within the element. Since this is done in direction of the x-
,y- and z-axis, we have to sum up Oφj(x0)wj in all three coordinate directions.
This will lead to the required 3 × 1 vector Ow, which is needed for the inner
product with the 3×1 dipole moment vector q. The potential difference between
the lead positioned at ri and r0 is then given by

V (ri)− V (r0) = < q,Ow(x0) > .

4.4 Implementation of the partial integration approach

In this section we give some information about the implementation of the par-
tial integration approach.
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Following Section 3.2 a possible realization of the partial integration approach
is presented in Algorithm 4.

Algorithm 4 Algorithm: Partial integration approach
Find DipolElement;
for i = 0 to nodespelem do

locnode[i] = i-th NodeOfDipoleElement;
coords[i*3 + 0] = x-coordinate;
coords[i*3 + 1] = y-coordinate;
coords[i*3 + 2] = z-coordinate;

end for
Find DipolPosition;
fofagn(DipolElement, DipolPosition, locnode, coords, phi-grad);
for i = 0 to nodespelem do
b(locnode[i]) = < q,Oφi(x0) >;

end for
Solve KV = b;
for i = 0 to SensorNodes.length() do
V (ri) = V (SensorNodes[i]);

end for

The first point is to find the element that contains the dipole. To be able to use
the Fortran routine fofagn, we have to find the corresponding corner nodes and
the coordinates of that element. Since we use finite element shape functions,
the same argumentation for the derivative of the shape function holds as in
the adjoint approach. For tetrahedral meshes the derivative is constant and for
hexahedral meshes the derivative is not completely constant. After that step,
we set up the right-hand side vector b in the following way

bi =

{
< q,Oφi(x0) >, if i ∈ NodesOfEle(x0)

0, otherwise

The AMG-CG solver is then used to solve the following linear system

KV = b.

This leads to a solution V at each grid node. The resulting potential at the
sensor nodes can then be evaluated by

V (ri) = V (SensorNodes(i)).
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4.5 Comparison of arithmetic operations

The partial integration approach was implemented in SimBio using the FEM
Software library COLSAMM, see [54]. Due to the fact that we want to compare
the arithmetic operations of the adjoint approach with the arithmetic opera-
tions of the partial integration approach, we implemented the calculation of the
right-hand side vector b without COLSAMM. We used Fortran routines imple-
mented in SimBio to calculate the right-hand side vector b. This will speed
up the forward calculation with the partial integration approach since those
routines are fast compared to the old COLSAMM routines.

Instead of comparing the adjoint approach with the partial integration approach
presented in this chapter, we present a comparison to the partial integration
approach with transfer matrices presented in Wolters et al. [51] and Section 4.2.

4.5 Comparison of arithmetic operations

In order to make a clear statement about the speed of the partial integration
approach with respect to the speed of the adjoint approach, the aim of this sec-
tion is the calculation of arithmetic operations needed to solve the EEG forward
problem. A time dependent comparison of both approaches would strongly de-
pend on the implementation.

We are going to present the results for three tetrahedral models with a different
number of grid nodes, to show that the result does not depend on the number
of grid nodes. The results for different hexahedral models are traced back to
the results of the tetrahedral models at the end of this section.

The AMG-CG solver is needed in both approaches to solve the linear system
Kw = b and KV = b, respectively. Thus an estimate of the complexity of
the AMG-CG solver is the starting point for this section. Wolters et al. [51]
presented the complexity of the AMG-CG solver, where further details could
be found.
To solve the linear system with the AMG-CG solver, we need i ·k ·N operations
with:

• i the number of iterations, we set i = 20 in the following,

• N the number of grid nodes,

• k = 8
7(2Cs + Cd + 2 + Cp+7

cnz
) · cnz
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4.5 Comparison of arithmetic operations

and the values

• cnz being the sparsity of the stiffness matrix, for example, for tetrahedral
meshes 27.

• Cs the smoother costs, in the AMG-CG case, we have a Gauss-Seidel
smoother with Cs = 2− 2

cnz
.

• Cp and Cd depends on the chosen prolongation operator.

This gives us the possibility to estimate the complexity of both approaches. We
begin with the adjoint approach.
The calculation of the desired potential difference for all leads can be divided
following Section 4.3 into three subtasks. To create the N × (S− 1) matrix W ,
where the solution of the adjoint partial differential equation for each lead are
stored

(S - 1) · (3 + i · k ·N + N)

arithmetic operations are needed. This task requires 2 operations to build the
right-hand side vector b and one operation to erase the i-th value of b after
solving the linear system Kw = b. The solution of the linear system Kw = b

with the AMG-CG solver requires i · k · N operations and the storage of the
calculated values N arithmetic operations.
For the second and the third part of the calculation of the solution V (ri) - V (r0)

dip · (4 · (1 + 3) + 207 + ((S - 1) · (3 + 4 · 3 + 2 · 3)))

arithmetic operations are needed. Here dip is given by the number of calculated
dipoles. To save and calculate the nodes and the corresponding coordinates of
the element, in which the dipole is located, 4 · (1 + 3) arithmetic operations
are needed. Furthermore, the Fortran routine fofagn, see Section 4.3, needs 207
arithmetic operations to calculate and save the gradient of the finite element
shape function. Algorithm 3 combines the values computed before to create the
solution V (ri)− V (r0). This requires ((S - 1) · (3 + 4 · 3 + 2 · 3)) arithmetic
operations. First, Ow has to be erased, this needs 3 operations. Then, 4 · 3
operations are needed to calculate Ow and 2 · 3 operations to calculate the
inner product with the dipole moment q.
To summarize, to solve the forward problem with the adjoint approach

(S - 1) · (3 + i · k ·N + N) + dip · (4 · (1 + 3) + 207 + ((S - 1) · (3 + 4 · 3
+ 2 · 3)))
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4.5 Comparison of arithmetic operations

Method 71,896 nodes 360,056 nodes 503,180 nodes

Adjoint 2,7135 ·1011 1,3589 ·1012 1,8991 ·1012

Partial integration 2,7140 ·1011 1,3592 ·1012 1,8995 ·1012

Table 4.1: Arithmetic operations needed for tetrahedral meshes

operations are needed.

The complexity for the partial integration approach with transfer matrices can
be calculated in the following way: To compute the transfer matrix T ,

(S - 1) · (N + i · k ·N + N)

operations are needed. The calculation requires N operations to set up the
right-hand side vector b. A value of 1 is set to the grid node, corresponding
to the i-th sensor electrode. All other grid nodes were set to zero. Then, the
solution V of KV = b can be calculated with the AMG-CG solver. This requires
i · k ·N arithmetic operations and the storage of the calculated values requires
N operations.
To calculate the potential with the partial integration approach

dip · (4 · (1 + 3) + 207 + 4 + (S - 1) · (1 + 4 + 1))

operations are needed. The term 4 · (1 + 3) + 207 + 4 is given by the calculation
of the nodes and the coordinates of the dipole element and the calculation of
the gradient of the finite element shape function φ at each corner node of the
element, in which the dipole is located. Furthermore the partial integration
approach requires (S - 1) · (1 + 4 + 1) arithmetic operations to calculate the
resulting potential of V at the corresponding sensor nodes. In comparison, for
a solution of the EEG forward problem with the partial integration approach
with transfer matrices

(S - 1) · (N + i · k ·N + N) + dip · (4 · (1 + 3) + 207 + 4 + (S - 1) · (1 + 4
+ 1))

arithmetic operations are needed.

The resulting arithmetic operations for three different tetrahedral models are
presented in Table 4.1. We can see that both approaches require the same
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4.5 Comparison of arithmetic operations

amount of arithmetic operations. The major time consuming part is the cal-
culation of the N × (S − 1) matrix W and the transfer matrix T , respectively.
Since the required arithmetic operations for the calculation of both matrices are
the same for hexahedral and tetrahedral models, we receive exactly the same
results for hexahedral models. The small difference between both approaches
is negligible.

We showed in this chapter, that the calculation of the partial integration ap-
proach calculated with transfer matrices is as fast as the adjoint approach pre-
sented in Vallaghe et al. [46]. Another important point is which approach will
lead to better results with regard to relative difference error and magnitude er-
ror. This point will be discussed in the next chapter, where we present different
tetrahedral meshes as well as hexahedral meshes to show the resulting error
curves.
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5 Numerical simulation

To make a clear statement which approach leads to better results, we are now
going to show error curves for different tetrahedral and hexahedral meshes for
both approaches. The following two error criteria are investigated in the fol-
lowing part of this section.
The first error criteria is the relative difference error (RDM). The RDM can be
calculated via:

RDM = || 1
||Vana||2

Vana −
1

||Vnum||2
Vnum||2

with the numerically computed potential Vnum, the analytically computed po-
tential Vana and the L2 norm ||.||2, presented in Appendix A.2. The lower the
difference between the calculated potential Vnum and the analytical potential
Vana is, the better is the presented approach. The best result, we are able to
obtain is given by Vnum = Vana. This means, the numerically calculated poten-
tial is exactly the same as the analytically computed potential. It is thus the
goal, to receive a RDM as close to zero as possible.
The next error criteria is the so called magnitude error (MAG). The magnitude
error can be calculated as follows:

MAG =
||Vnum||2
||Vana||2

.

Thus, the best MAG we are able to obtain is a MAG of 1.
Since the error curves of both approaches are very similar, we present the results
in a special way:
For each of the different meshes we present a figure for the relative difference
error and for the magnitude error. Each figure is divided into three subfigures.
The top figure shows the results for the adjoint approach, the middle figure
the results for the partial integration approach and the bottom figure shows
the difference between both approaches. The difference is presented in the
following way:

Errdiff = Erradjoint − Errpartial.
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5.1 Tetrahedral meshes

If we consider the relative difference error, a negative sign of Errdiff means,
that the error of the adjoint approach is lower than the error of the partial
integration approach and vice versa. Since the best MAG we are able to obtain
is 1, we are not able to argue in the same way, for example, if the MAG of
both approaches is below 1, a negative sign of Errdiff would mean, that the
MAG of the partial integration approach is nearer to one and if the MAG of
both approaches is above 1, a negative sign would mean that the MAG of the
adjoint approach is nearer to one.

In the following we distinguish between two grid types. We show results for
tetrahedral as well as for hexahedral meshes. In the tetrahedral case we are
going to present three models with a different number of grid nodes to show,
that the result does not depend on the number of grid nodes. In the hexahedral
case we present a regular grid as well as a geometry adapted hexahedral grid
model.

5.1 Tetrahedral meshes

In this section, we present three tetrahedral spherical shell models with a dif-
ferent number of grid nodes, radii of 92, 86, 80 and 78mm and anisotropic con-
ductivities. We equally distribute 748 EEG sensors at the surface of the model.
In the volume conductor, we place 77 dipoles as a series from the middle of
the sphere to the right, starting from coordinates 127-128-127 to 127-204-127,
thus the distance between two dipoles is 1mm. On the x-axis the source eccen-
tricities are presented from 0 to 1. The eccentricity has the value zero in the
middle of the sphere and increases for each step until the dipole at coordinate
127-204-127. In other words, the eccentricity is given by the percentage of the
difference between the source location and the sphere midpoint divided by the
radius of the inner shell. The tangential sources are oriented in the +z axis and
the radial sources in the +y axis. We set the dipole amplitudes to 1 nAm. In
Section 7.2 we use a regular hexahedral head model and a geometry adapted
hexahedral head model with the same setting.
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5.1 Tetrahedral meshes

Figure 5.1: RDM for a tetrahedral model with 72k nodes.

The first tetrahedral model we are going to present is a model with 71,896
nodes and 438,013 elements. Figure 5.1 shows the results for the RDM. We
can see, that the tendency between both approaches is always the same. The
error difference Errdiff between the partial integration approach and the ad-
joint approach is of magnitude 10−7 and therefore negligible. There are only 7
eccentricities where we have a difference of 10−7.
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5.1 Tetrahedral meshes

Figure 5.2: MAG for a tetrahedral model with 72k nodes.

In Figure 5.2 the results for the MAG are shown. We can see that the error
difference Errdiff is zero for each source eccentricity. Thus both approaches
attain exactly the same result concerning magnitude error.
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5.1 Tetrahedral meshes

Figure 5.3: RDM for a tetrahedral model with 360k nodes.

As a next model, a tetrahedral model with 360,056 nodes and 2,165,281 elements
is used. In Figure 5.3 the results for the RDM are presented. Both approaches
attain nearly the same results and the maximal difference Errdiff between both
approaches is exactly of magnitude 10−7.
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5.1 Tetrahedral meshes

Figure 5.4: MAG for a tetrahedral model with 360k nodes.

The results for the MAG are presented in Figure 5.4. We have Errdiff = 0 for
all source eccentricities.
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5.1 Tetrahedral meshes

Figure 5.5: RDM for a tetrahedral model with 503k nodes.

The model we are going to use now is the last tetrahedral model in this section
for the dipole series from the middle to the right. It has 503,180 nodes and
3,068,958 elements. For source eccentricities between 0.4 and 0.6 there is a
small difference in the RDM between both approaches, see Figure 5.5. But
the difference is below 10−5. For source eccentricities between 0.4 and 0.5,
the difference has a negative sign and between 0.5 and 0.6 is has a positive
sign. We are thus not able to make a clear statement, which of the approaches
performs better. Additionally, Errdiff is not zero near eccentricity 0.9. But
the magnitude of the difference is of order 10−5.
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5.1 Tetrahedral meshes

Figure 5.6: MAG for a tetrahedral model with 503k nodes.

For the 503k model, the MAG has the same tendency as the presented RDM.
Between source eccentricities 0.4 and 0.6 we have a small difference between
the adjoint approach and the partial integration approach of magnitude 10−5,
which can be seen in Figure 5.6.
To conclude, for tetrahedral meshes both approaches attain exactly the same
results concerning RDM and MAG, independent on the number of grid nodes.
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5.2 Hexahedral meshes

5.2 Hexahedral meshes

Figure 5.7: RDM for a hexahedral grid model with 425k nodes.

The first model, we are going to use is a regular hexahedral grid model with a
side length of 2 mm. This model has 425,631 nodes and 405,545 elements.
The RDM of both approaches is nearly the same, see Figure 5.7. The difference
between both approaches is of magnitude 10−6 and therefore negligible.
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5.2 Hexahedral meshes

Figure 5.8: MAG for a hexahedral grid model with 425k nodes.

The MAG is exactly the same for each source eccentricity, that is, Errdiff =
0, see Figure 5.8.
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5.2 Hexahedral meshes

Figure 5.9: RDM for a geometry adapted hexahedral grid model with 3,300k
nodes.

The last model, we use in this section is a geometry adapted hexahedral grid
model with 3,200k nodes and 3,240k elements.
We do not have a difference between the partial integration approach and the
adjoint approach, see Figure 5.9. We have Errdiff = 0 for all source eccentric-
ities.
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5.2 Hexahedral meshes

Figure 5.10: MAG for a geometry adapted hexahedral grid model with 3,300k
nodes.

The MAG has exactly the same tendency as the RDM, see Figure 5.10. We do
not have a difference between both approaches.
Both approaches attain exactly the same results with respect to RDM and
MAG. This holds for tetrahedral meshes with a different number of grid nodes
as well as for regular and geometry adapted hexahedral meshes.
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6 Adjoint approach analytically

Since the RDM and the MAG are nearly identical for both approaches, we com-
pare what the adjoint approach and the partial integration approach calculate
analytical.
The adjoint approach calculates analytical:
According to Algorithm 1 let B be the N × (S − 1) matrix summing up the
different right-hand sides presented in equation (4.4)

B = (bi)i=1,··· ,N =



0 0 0 . . .
...

...
... . . .

0 0 0 . . .

−1 −1 −1 . . .

0 0 0 . . .
...

...
... . . .

0 0 0 . . .

1 0 0 . . .

0 0 0 . . .
...

...
... . . .

0 0 0 . . .

0 1 0 . . .

0 0 0 . . .
...

...
...

. . .


and iref the row of B, where the value -1 of the reference electrode is posi-
tioned. Let furthermore W be the N × (S− 1) matrix presented in Section 4.3,
containing the solutions w of the adjoint partial differential equation. Let us
denote wi := W(·,i) the solution of equation (4.5) for the i-th column of B, that
is, the solution of KW(·,i) = B(·,i).
In Algorithm 2 the gradient of the finite element shape functions φi are calcu-
lated. Since the support of φi is very small, only the gradient of φi is calculated
for the element, which contains the dipole. The gradient of φi is zero for all
other grid nodes. Thus we are able to define a 3×N matrix OΦ(x) as

OΦ(x) = [Oφ1(x), · · · ,OφN (x)].
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The third algorithm is used to calculate the potential difference between each
lead. According to equation (4.3) the solution wi is projected into the finite
element space and we obtain

Owi(x) ≈
N∑
j=1

Oφj(x)wij = OΦ(x)wi.

Following Section 3.3 the potential can be calculated via

Ṽi = < q,
N∑
j=1

Oφj(x0)wij > = < q,OΦ(x0)wi > = < q,OΦ(x0)K−1B(·,i) >

= (OΦ(x0)K−1B(·,i))
Tq

= (B(·,i))
T (K−1)T (OΦ(x0))Tq

= (BT )(i,·)K
−1(OΦ(x0))Tq

:= R̃(i,·)K
−1(OΦ(x0))Tq

and the complete potential Ṽ is given by

Ṽ = R̃K−1(OΦ(x0))Tq︸ ︷︷ ︸
=:U∈Rn

= R̃U (6.1)

The partial integration approach with transfer matrices is described in Section
4.2 and Section 3.2. The potential V for a dipole at position x0 with dipole
moment q can be calculated analytically in the following way:

V
(4.9)
= RK−1b

(3.13)
= RK−1


〈q,Oφ1(x0)〉

...
〈q,OφN (x0)〉

 = RK−1
(
qT∇Φ(x0)

)T
with the restriction matrix R ∈ R(S−1)×N and the right-hand side vector b
presented in equation (3.13). Note that only some entries of b are not zero.
To summarize, the partial integration approach with transfer matrices can be
calculated analytically:

V = RK−1(OΦ(x0))Tq︸ ︷︷ ︸
=:Ũ∈Rn

= R̃Ũ = R̃U + Uiref
Id (6.2)

The analytical calculation of the adjoint approach and the analytical calcula-
tion of the partial integration approach only vary in the (S− 1)×N restriction
matrix R and the (S − 1) × N matrix R̃, which is given by the transpose of
the right-hand side matrix B. Furthermore, R and R̃ only vary in one column,
that is, the column, representing the reference electrode has in the adjoint case
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a value of -1 and in the partial integration case a value of zero. Thus the only
difference between both approaches is given by the type of referencing, that
is, Ṽ = V − Uiref

Id. The small difference in the numerical simulation section
originates by the fact that we solve the linear system (4.5) and (4.6) iteratively
with a finite precision. Since we have in both cases different right-hand sides,
we have slightly different results for the RDM and the MAG.

In Section 3.3 we asked ourselves the question, if a singularity of higher order in
the volume conductor or a singularity of lower order on the boundary leads to
different results. We showed in Chapter 4 and 5 that both approaches leads to
exactly the same results with regard to RDM and MAG and both approaches
require the same amount of arithmetic operations. In this chapter we derived
closed formulas for the potential computed by both approaches and showed that
the formulas are identical.
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7 Realistic head model

In this chapter we present the sensitivity distribution for a given lead. Ac-
cording to Malmivuo and Plonsey [29], the lead field describes the sensitivity
distribution for a given lead. The notation lead field is used in [29] for the
reciprocal current density field JLE , see Section 2.4.3, which can be calculated
with the adjoint approach presented in Section 3.3. As discussed in equation
(3.18), the lead field for a given lead is exactly given by the gradient of the
solution w of the adjoint partial differential equation. Following Section 2.3
the potential difference Uab caused by a dipole d between a given lead can be
calculated as follows

Uab(d) = < Iab, r >

with the lead field Iab and the dipole orientation vector r. The arrows presented
in the following figures show the lead field. If the dipole is oriented parallel to
the presented arrows, the potential difference Uab(d) will be very high. Thus,
the figures show how dipoles should be oriented to maximize the potential dif-
ference measured between the lead.
We present a realistic head model of a young male patient who suffers from
epilepsy due to a brain tumor, for details see Rullmann et al. [39]. A geometry
adapted hexahedral head model with 3,020k nodes and 3,098k elements and
the conductivities presented in Table 7.1 is used. According to Baumann et

Head compartment Conductivity

Skin 0.43 S/m
Skull 0.0042 S/m
CSF 1.79 S/m
Gray matter 0.33 S/m anisotropic
White matter 0.142 S/m anisotropic
Lesion 0.33 S/m

Table 7.1: Conductivity values, see Rullmann et al. [39]
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7.1 Sensitivity distribution

al. [3] the conductivity of the CSF is set to 1.79 S/m. A sensor cap with 24
electrode positions is used to investigate the sensitivity distribution for a given
lead. Fixing one electrode as reference, this results in 23 leads that can be used
to investigate different sensitivity distribution scenarios.

7.1 Sensitivity distribution

The L2 sensitivity distribution for a given lead is calculated as presented in
Algorithm 5.

Algorithm 5 Sensitivity distribution for a given lead
for i = 1 to SensorNodes.length() do
b(SensorNodes[0]) = -1;
b(SensorNodes[i]) = 1;
Solve: Kw = b;
b(SensorNodes[i]) = 0;
for j = 0 to NumberOfGridElements do

Find j-th Element;
for i = 0 to nodespelem do

locnode[i] = i-th NodeOfDipoleElement;
coords[i*3 + 0] = x-coordinate;
coords[i*3 + 1] = y-coordinate;
coords[i*3 + 2] = z-coordinate;

end for
fofagn(Element, Barycentre, locnode, coords, phi-grad);
for k = 0 to nodespelem do
sensx[j] += phi-grad[3*k + 0] * w(locnode[k]);
sensy[j] += phi-grad[3*k + 1] * w(locnode[k]);
sensz[j] += phi-grad[3*k + 2] * w(locnode[k]);

end for
end for
for j = 0 to NumberOfGridElements do
sensl2 [j] = (sensx[j]2 + sensy[j]2 + sensz[j]2)

1
2 ;

end for
end for

In the adjoint approach the solution matrix W was created as a preparatory
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7.1 Sensitivity distribution

step. This step is not necessary for the calculation of the sensitivity distribution.
In each iteration the solution w of the adjoint partial differential equation is
calculated, that is, for each given lead. To obtain the L2 sensitivity for each
element, we need a loop over the number of grid elements. In order to use the
Fortran routine fofagn, we calculate for each element the corner nodes and the
corner coordinates. Vorwerk showed in his diploma thesis [48] that the minimal
error is reached in the barycentre of a cube. Thus we choose the barycentre
of each element as the evaluation point of fofagn, which gives us the derivative
of the finite element shape functions at each corner node with respect to the
evaluation point. As a next step each component of Oφi is multiplied with the
solution wi of the adjoint partial differential equation. This provides us with
the required Ow at each grid node of that element. To obtain the sensitivity
distribution into all three coordinate directions for that element, we have to
sum up Ow at each corner node. This gives us the sensitivity distribution into
the direction of the x-,y- and z-axis. The L2 sensitivity distribution is then
given by

S̃ = ||Ow||2 =
√

(Ow1)2 + (Ow2)2 + (Ow3)2

with wi the i-th component of Ow.

The figures in Section 7.1 and 7.2 are presented in the following way:
Each figure is divided into four subfigures. In Figure 7.1 and 7.2 both subfig-
ures on the left-hand side present the L2 sensitivity distribution and the two
subfigures on the right-hand side present Ow as a vector field with a distance of
4mm between each vector. The top figures present the L2 sensitivity and Ow as
a vector field for the same lead and the bottom figures show them for another
given lead. To be able to show the vector field, each subfigure shows a plane on
which both electrodes are located. The color on the figures on the left-hand side
indicate the L2 sensitivity which is higher for red colored areas and lower for
blue colored areas. The bigger the arrows on the right-hand side are the bigger
is the sensitivity. In Figure 7.3 and 7.4 the L2 sensitivity for a head model with
CSF compartment on the left-hand side is compared to the L2 sensitivity for
the same head model without CSF compartment on the right-hand side. Again,
both top figures and both bottom figures present the results for the same lead.
In order to see any difference between both cases, the scale of the L2 sensitivity
is fixed from 0 to 1. In Figure 7.5 and 7.6 the orientation of the vector field
Ow is presented for a head model with CSF compartment on the left-hand side
and for the same head model without CSF compartment on the right-hand side.
The positions of the EEG electrodes are marked by two gray balls in each figure.
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7.1 Sensitivity distribution

Figure 7.1: L2 sensitivity distribution (left) and orientation of Ow (right)

Figure 7.1 shows the sensitivity distribution for two different leads. The L2

sensitivity is for both leads very high in the scalp compartment and the skull
compartment nearby the EEG electrodes. Additionally, the L2 sensitivity is
higher in the brain compartment nearby both electrodes and decreases for areas
which are located far away from the electrodes. The L2 sensitivity in the scalp
compartment nearby the EEG electrodes is around 30 compared to a value
below 1 in the brain compartment. In order to see any variation of the L2

sensitivity within the brain compartment, we choose a color scale between 0
and 1. The figures on the right-hand side show the corresponding vector field
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7.1 Sensitivity distribution

Figure 7.2: L2 sensitivity distribution (left) and orientation of Ow (right)

Ow. A unit current is introduced at the scalp electrode and removed at the
reference electrode. The arrows are oriented inwards at the scalp electrode
and outwards at the reference electrode and flow from the current source to
the current sink. Since the gray matter and white matter compartments are
modelled anisotropic, some arrows located in that compartments are not exactly
flowing from the current source to the current sink. Due to the high conductivity
of the CSF compartment, some vectors located in the CSF are also not flowing
from the source to the sink.
Another interesting point to mention is the orientation of the vectors located
in the skull compartment. Vectors which are located in the skull compartment
are radially oriented. It is thus important to choose a radial skull conductivity
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7.2 Sensitivity without CSF compartment

Figure 7.3: L2 sensitivity distribution with (left) and without (right) CSF com-
partment

which is as realistic as possible. The tangential conductivity is not so important
due to the fact that the vectors are radially oriented. In Figure 7.2 two other
leads are presented. We can see that the L2 sensitivity is also higher in the
area nearby both electrodes and decreases for areas which are located far away
from the electrodes. Additionally, the sensitivity is higher in the scalp and skull
compartments and most vectors are oriented from the source to the sink.

7.2 Sensitivity without CSF compartment

In this section we investigate if the sensitivity distributions change for head
models where the CSF compartment is neglected. In that case, we explain how
and especially where the sensitivity distributions differ. To be able to investi-
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7.2 Sensitivity without CSF compartment

Figure 7.4: L2 sensitivity distribution with (left) and without (right) CSF com-
partment

gate that topic a head model with CSF compartment is compared to the same
head model without CSF compartment. For the head model without CSF, the
conductivity of the CSF compartment is set to 0.33 S/m. For the head model
with CSF compartment, the CSF has a conductivity of 1.79 S/m.

If the CSF compartment is neglected, the values of the L2 sensitivity change.
This setting causes an increase of the L2 sensitivity in the complete brain tis-
sues, see Figure 7.3 and 7.4. This is due to a lower conductivity of the CSF
compartment. Thus, the potential caused by a dipole which is located at an
arbitrary position within the volume conductor is overestimated compared to
the potential caused by a dipole at the same position for the head model sepa-
rating the CSF and gray matter compartment.

The minimal and maximal values of the L2 sensitivity within the brain com-
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7.2 Sensitivity without CSF compartment

Figure 7.5: Orientation of Ow with (left) and without (right) CSF compartment

partments are presented in Table 7.2. If the CSF compartment is neglected,
the values of the L2 sensitivity within the brain compartments are higher as
compared to the values of the head model, separating the CSF and gray mat-
ter compartments. The minimal L2 value increases between a factor of 2.5 in
the third case and a factor of 4.9 in the first case. Furthermore, the maximal
L2 value increases between a factor of 1.4 in the last case and a factor of 2.5
in the third case. Neglecting the CSF compartment cause a higher potential
measured at the EEG scalp electrodes due to a higher sensitivity within the
complete brain compartments, where the dipolar sources are located.
This is in agreement with Ramon et al. [35]. They showed that the CSF tissue
affects the potential measured at the scalp electrodes. Using more realistic head
models in EEG forward simulations improves the accuracy of the EEG source
localization process and we advice to use head models which are as realistic
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7.2 Sensitivity without CSF compartment

Figure 7.6: Orientation of vector field with (left) and without (right) CSF
compartment

as possible. Another interesting point to investigate is the orientation of the
vector field Ow in both figures.

In Figure 7.5 the vector field Ow is presented for the same EEG electrodes pre-
sented in Figure 7.3. If the CSF compartment is neglected, the orientation of
the vector field Ow differs in the CSF compartment. In that case, the vectors
are flowing directly from the current source to the current sink. This is due to
the fact, that the conductivity of the CSF compartment is set to 0.33 S/m which
is exactly the conductivity of the gray matter compartment. The orientation
of vectors located in the CSF compartment for the head model separating the
CSF and gray matter compartment differs. They are flowing along the CSF
due to a higher conductivity. In addition, the arrows of Ow are slightly bigger,
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7.2 Sensitivity without CSF compartment

Figure WithCSF WithOutCSF

Figure 7.3 top 0.0011 - 0.49 0.0054 - 0.8
Figure 7.3 bottom 0.0068 - 0.47 0.021 - 0.67
Figure 7.4 top 0.0017 - 0.31 0.0043 - 0.78
Figure 7.4 bottom 0.019 - 0.61 0.065 - 0.86

Table 7.2: Minimal and maximal L2 sensitivity values for different leads

if the CSF compartment is neglected. This is in agreement with the L2 sensi-
tivity distribution presented above. The L2 sensitivity is higher in the complete
volume conductor Ω which leads to bigger arrows of the vector field Ow.

Figure 7.6 presents the vector field Ow for the same EEG electrodes as pre-
sented in Figure 7.4. Furthermore, the orientation of the vector field Ow and
the size of the vectors change. Neglecting the CSF compartment leads to big-
ger arrows and a slightly different orientation in the CSF compartment of the
vector field Ow. Again, vectors which are located in the skull compartment are
radially oriented. This is exactly what we presented in Section 7.1.

Since the L2 sensitivity distributions differ between the head model with CSF
and the same head model without CSF, we want to show some detailed figures
in areas, where the sensitivity distributions differ most. The figures show the
same electrode positions as presented in Figure 7.1. The top figure shows the
electrode, where the current is introduced and the bottom figure the reference
electrode, where the current sink is located. We use a head model with CSF
compartment on the left-hand side and the same head model without CSF on
the right-hand side (Conductivity of the CSF is set to 0.33 S/m).

The orientation between the arrows on the left-hand side and the arrows on
the right-hand side differs. The orientation of some vectors located in the
brain compartments completely differs between both settings. For example the
orientation of vectors located in the mid part of the top figures are completely
different. Additionally, we can see that the vectors are pointing inwards at the
EEG electrode and outwards at the reference electrode and neglecting the CSF
compartment leads to bigger arrows of the vector field Ow. The bottom figure
shows another area, where the sensitivity distribution differs. Again, we have
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7.2 Sensitivity without CSF compartment

Figure 7.7: Zoom into Figure 7.1 with (left) and without (right) CSF compart-
ment. The distance between each vector is 1mm.

a different orientation of some vectors located in the brain compartments and
a higher magnitude of the arrows in the brain compartments.
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8 Summary and conclusion

8.1 Summary

The main results of this thesis are:
We developed an algorithm for the adjoint approach. The calculation of the de-
sired potential difference between each lead is divided into three subalgorithms.
For more details we refer to Chapter 4.
The next step was the implementation of the adjoint approach into SimBio (see
[44]) with linear finite element basis functions. We implemented the adjoint ap-
proach for tetrahedral and hexahedral finite element models. It is now possible
to use regular cubes as well as geometry adapted hexahedral elements, see, for
example, Wolters [53].
After the implementation, the adjoint approach is validated for three tetrahe-
dral and two hexahedreal finite element models in a 4-layer sphere model. In
the hexahedral case a regular hexahedral grid and a geometry adapted hexahe-
dral grid are used. The RDM and MAG of the adjoint approach were compared
to the RDM and MAG of the partial integration approach.
Since both approaches lead to exactly the same results, we compared the arith-
metic operations of both approaches. To do so another approach to calculate the
right-hand side vector b for the partial integration approach was implemented.
In the old implementation the right-hand side vector b was calculated using the
FEM Software library COLSAMM (see Wolters [54]). We used Fortran rou-
tines implemented in SimBio to replace the calculation with COLSAMM. The
partial integration approach is now working without COLSAMM.
We derived closed formulas for the potential computed by both approaches and
showed that the formulas are identical.
Since the adjoint approach can be used to calculate the lead field, which is ex-
actly the sensitivity distribution for a given lead, we calculated and visualized
the L2 sensitivity distribution for a given lead. The algorithms are developed
and described in Chapter 7. Furthermore, we showed that the L2 sensitivity
increases in the complete brain, if a head model without CSF compartment is
used and showed that the orientation of the lead field differs in that case.
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8.2 Conclusion

8.2 Conclusion

Following the numerical simulation chapter we can see that the partial integra-
tion approach delivers exactly the same results with respect to RDM and MAG
as the presented adjoint approach. For tetrahedral meshes the maximal differ-
ence measured by the RDM between both approaches is of magnitude 10−5 and
the maximal difference measured by the MAG is of magnitude 10−5. For hex-
ahedral meshes the maximal difference measured by the RDM is of magnitude
10−6 and measured by the MAG of magnitude 10−7. In the presented Figures
5.1 - 5.10 we can see that the tendency in the error curves for the RDM and
MAG between both approaches is exactly the same. Additionally, we showed
that both approaches require the same amount of arithmetic operations.

Vallaghe et al. stated in their work [46] that the adjoint approach keeps the orig-
inal continuous space whereas the transfer matrix approach uses a discretized
space. This statement is not correct. In the adjoint approach only the volume
conductor and the sensor configuration are fixed. The source grid is not fixed.
We are able to calculate for each possible point within the volume conductor the
corresponding potential difference. But the same result holds for the transfer
matrix approach. Only the volume conductor and the sensor configuration are
fixed and not the source configuration.

We showed in this thesis that the adjoint approach does not have the advantage
proposed in [46]. The partial integration approach with transfer matrices at-
tains exactly the same results and needs exactly the same amount of arithmetic
operations. Furthermore, we showed that both approaches use a continuous
space and explained in Chapter 6 that both approaches analytically calculate
the same.

However, the adjoint approach is a tool that can be used to investigate topics
related to sensitivity distribution and EEG sensor sensitivity for a given dipole
within the volume conductor, see Chapter 7. This might be of practical inter-
est. We showed in Chapter 7 that the CSF compartment affects the measured
potential at the scalp electrode.
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9 Outlook

With regard to the adjoint approach, there are many interesting further topics
to investigate:

We want to investigate second and third order shape functions due to the fact
that we do not have a resolution in the element, which contains the dipole if we
use linear shape functions. The derivative of second and third order shape func-
tions is not constant, it is linear for second order and quadratic for third order
shape functions. For the evaluation of Oφ at the dipole position, we have to
implement a function, which determines the correct local dipole position within
the element. In addition, a big advantage of higher order shape functions is
that the shape of the head domain Ω can be approximated more accurately and
appropriately. In SimBio, second and third order shape functions are imple-
mented, we only have to adapt those implementations to our needs.

With regard to the work of Lew et al. [27], we want to compare the partial in-
tegration approach with the newly implemented second and third order shape
functions to the full subtraction approach and the Venant approach, presented
in [27]. We want to investigate the maximal RDM and the maximal MAG
between those approaches. Hopefully, the oscillations with the new implemen-
tations are eliminated.

The adjoint approach gives us the possibility to investigate different topics re-
lated to the sensitivity distribution. After the measurement of a tactile stimuli,
a dipole fit can be used to place a dipole in the volume conductor which de-
scribes the measured stimuli. The adjoint approach can be used to examine,
which EEG electrodes are very sensitive for such a dipole. We select the elec-
trodes with a very high sensitivity and investigate, if the location of the dipole
changes, if we only use the selected electrodes for a completely new dipole fit.
Another interesting case to investigate is how many electrodes are sensitive for
dipoles which are located near the surface and for dipoles which are located in
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the lower parts of the human brain.
This concept might be used to investigate and develop completely new electrode
configurations, which are sensitive for dipoles in a certain region of interest.

With regard to the work of Haueisen et al. [23] we want to compare the L2

sensitivity of a head model with isotropic white and gray matter compartments
to the same head model with anisotropic white and gray matter compartments.
Additionally, we want to the present the vector field Ow to investigate, if the
orientation of the arrows in the gray matter and white matter compartments
differs between both settings. Haueisen et al. [23] showed that the magnitude
of the potential is higher if anisotropic conductivities are used compared to
isotropic ones.

In Chapter 7 we showed that the vectors in the skull compartment are radially
oriented. With regard to the work of Dannhauer et al. [13] we want to investi-
gate the orientation of the vector field Ow for a head model with three-layered
skull compartment and present different sensitivity distribution scenarios.
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A Appendix

A.1 Mathematical background

Let us first start with a short introduction to functional analysis. It is necessary
to introduce a Banach space, a dual space of a Banach space and a corresponding
linear functional. Then, we present Riesz representation theorem.
To introduce a Banach space, we need some groundwork.

Definition 4. (Vector space, see: [25], page 79) Let x, y ∈ X and α, β ∈ R.
Then X is called a vector space, if αx+ βy ∈ X

We are able to define a norm in a vector space. It is a function, which allocates
for each element in a vector space a non negative value. Furthermore, a norm
fulfills other conditions like the triangle inequality.

Definition 5. (Norm, see: [25], page 81) A function ||.|| : X → R is called
norm on X if we have for all x, y ∈ X and λ ∈ R

1. ||x|| ≥ 0 and ||x|| = 0⇔ x = 0

2. ||λx|| = |λ|||x||

3. ||x+ y|| ≤ ||x||+ ||y||

In the next definition, we define a normed space, which is a vector space
equipped with a norm.

Definition 6. (Normed space, see: [25], page 84) Let X be a vector space with
corresponding norm ||.|| : X → R. The pair (X, ||.||) is called normed space.

We are now able to introduce a Banach space. It is a special form of a normed
space which fulfills Cauchy’s condition.

Definition 7. (Cauchy’s condition, Banach space, see: [25], page 89) Let (xi)
be a sequence in a normed space (X, ||.||). The sequence (xi) is called convergent,
if there exists an element x0 ∈ X such that

||xi − x0|| → 0 for i→∞.
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A.1 Mathematical background

The sequence (xi) is called Cauchy sequence, if there exists for every ε > 0 an
index N(ε) ∈ N such that

||xn − xm|| < ε for n,m ≥ N(ε).

A normed space (X, ||.||) is called Banach space, if every Cauchy sequence is
convergent.

One of the major points of this section is the definition of a Hilbert space H.
To do so, we first introduce an inner product.

Definition 8. (Inner product, see: [50], page 201) Let X be a R vector space.
A map < ., . > : X × X → R is called an inner product if we have for all
x, y, x1, x2 ∈ X and for all λ ∈ R

1. < x1 + x2, y > = < x1, y > + < x2, y >

2. < λx, y > = λ < x, y >

3. < x, y > = < y, x >

4. < x, x > ≥ 0

5. < x, x > = 0⇔ x = 0

We are now able to use the former discussed points to introduce a Hilbert space
H.

Definition 9. (Hilbert space, see: [50], page 202) A Hilbert space H is a Ba-
nach space X whose norm is generated by an inner product such that

||x|| =
√
< x, x >.

For the adjoint approach presented in Section 3.3 we have to introduce a linear
functional.

Definition 10. (Linear functional, see: [50], page 45) Let X be a normed
space. A linear functional A is a map A : X → R, which fulfills for all x, y ∈ X
and all λ ∈ R

A(x+ y) = A(x) +A(y)

A(λx) = λA(x)

A linear functional maps from a normed space into a field, in our case into the
field R. If we want to introduce Riesz representation theorem, the dual space
of a normed space is needed.
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A.1 Mathematical background

Definition 11. (Dual space, see: [50], page 58) Let X be a normed space. The
space X ′ of all continuous linear functionals on the normed space X is called
the dual space of X.

The next theorem gives us an impression under which condition the dual space
is also a normed space.

Theorem 3. (Dual space conditions, see: [50], page 59) Let A be a continuous
linear functional and X be a normed space with corresponding dual space X ′.
With

||A||X′ = sup
x∈X−{0}

|A(x)|
||x||

= sup
x∈X,||x||≤1

|A(x)|

the dual space X ′ is also a normed space. If X is a Banach space than X ′ is
also a Banach space. The same condition holds if X is a Hilbert space.

We want to present Riesz representation theorem invented by Riesz in the year
1907 [36].

Theorem 4. (Riesz representation theorem, see: [50], page 226) Let H be a
Hilbert space. For each linear functional A there exists an unique element x ∈ H
such that the following equation holds

A(y) = < x, y > ∀ y ∈ H

Proof. See: [50], page 226 Theorem V. 3.6

Riesz representation theorem is a very powerful tool. It can be used to calculate
the lead field for a given measurement, which is explained in the following

Example 2. (Vallaghe et al. [46]) The electric potential V in the partial differ-
ential equation for the EEG forward problem is linear with regard to the primary
current Jp. Since V is linear, we are able to set up a linear operator L, which
describes the mapping of the primary current Jp on the EEG electrodes, L is
the lead field. If we restrict the lead field L to a given sensor, we obtain a linear
functional.
We are then able to calculate the lead field Li0 for a lead positioned at ri and
r0 using Riesz representation theorem

V (ri)− V (r0) =
∫

Ω
< Li0(x),Jp(x) > dx,

with the potential difference V (ri)− V (r0) measured between the lead.
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A.2 Sobolev theory and Lebesque theory

A.2 Sobolev theory and Lebesque theory

In this section, we develop the so called Sobolev spaces W k
p (Ω). Sobolev spaces

are important for the theory of partial differential equations and especially for
the finite element method discussed in Chapter 4. To introduce Sobolev spaces,
we first give a short overview of the so called Lebesque integration theory. Then,
we introduce the concept of weak derivative of a function, which gives us the
possibility to define Sobolev spaces.
This introduction follows the book The Mathematical Theory of Finite Ele-
ment Methods by S. C. Brenner and L. R. Scott [8], where further details can
be found.
We restrict ourselves in the following to an open or closed subsets of Rn, with
non empty interior, which is Lebesque measurable.

In the next definition, we want to introduce the so called Lebesque norm.

Definition 12 (Lebesque norm and Lebesque space). Let 1 ≤ p < ∞. The
Lebesque norm is defined by

||f ||p := ||f ||Lp(Ω) := (
∫

Ω
|f(x)|p dr)

1
p .

In the case p = ∞, we define

||f ||∞ := ||f ||L∞(Ω) := ess sup{|f(x)| | x ∈ Ω}.

In both cases, we are able to define the Lebesque spaces by

Lp(Ω) := {f ∈ R | ||f ||Lp(Ω) <∞}. (A.1)

One of the main results obtained in the Lebesque integration theory is shown
in the following

Theorem 5. Lp(Ω) is a Banach space for all 1 ≤ p ≤ ∞.

Proof. See: [8], page 25.

The Lebesque space L2(Ω) is under the following condition a Hilbert space.

Theorem 6 (L2(Ω) Hilbert space, see [16], page 73, Korollar (4.18)). The
Lebesque space L2(Ω) equipped with the inner product

< u, v > =
∫

Ω
u(x)v(x) dx

is a Hilbert space.
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A.2 Sobolev theory and Lebesque theory

In the next part of this section, we introduce the concept of weak derivative.
To do so, we have to introduce some special spaces. The first space we present
is the space of all continuous functions with compact support

C∞0 (Ω) := {φ ∈ C∞(Ω) | supp(φ) ⊂ Ω is compact}.

The support of the function φ is defined in the following fashion

supp(φ) := {x ∈ Ω | φ(x) 6= 0}.

The next set we introduce is the space of locally integrable functions. This set
is needed for the definition of the weak derivative. It is defined by

L1
loc(Ω) := {f | f ∈ L1(K) ∀K ∈ int(Ω)}.

Due to the fact, that we will investigate partial derivatives, we have to introduce
the so called multi-index notation. It is defined by

α = (α1, · · · , αn) αi ≥ 0 ∀ i

and the length of the multi-index α can be calculated via

|α| :=
n∑
i=1

αi.

For φ ∈ C∞, we define the derivative of the order |α| by

Dαφ = (
∂

∂x1
)α1 · ( ∂

∂x2
)α2 · · · · ( ∂

∂xn
)αnφ

and for a given vector x = (x1, · · · , xn), we define

xα := xα1
1 · x

α2
2 · · ·x

αn
n .

We are now able to define the weak derivative.

Definition 13 (Weak derivative). Let f be a given function in L1
loc(Ω). Then

f has a weak derivative Dα
wf if there exists a function g ∈ L1

loc(Ω) such that∫
Ω
g(x)φ(x) dr = (−1)|α|

∫
Ω
f(x)Dαφ(x) dr ∀ φ ∈ C∞0 (Ω)

If such a function g exists, we define the weak derivative by Dα
wf = g.

The weak derivative can be seen as a generalization of the principle of the
derivative of functions, not assumed to be differentiable. Following the given
definition, those functions have to be only integrable. A generalization of weak
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A.2 Sobolev theory and Lebesque theory

derivative can be found in distribution theory. But this is not part of this thesis.
For more details about this topic, we refer to Schwartz [43].

With the former definitions and the notation of the weak derivation we are now
able to generalize the Lebesque spaces and norms to Sobolev spaces and norms,
which includes derivatives.

Definition 14 (Sobolev space and Sobolev norm). Let k ∈ N and let f ∈
L1
loc(Ω). Assume that the weak derivatives Dα

wf exist for all |α| ≤ k. Then we
define the Sobolev norm by

||f ||Wk
p (Ω) := (

∑
|α|≤k

||Dα
wf ||

p
Lp(Ω))

1
p ,

for all 1 ≤ p <∞. For p =∞, we define

||f ||Wk
∞(Ω) := max

|α|≤k
||Dα

wf ||L∞(Ω).

We define in both cases the Sobolev space via

W k
p (Ω) := {f ∈ L1

loc(Ω) | ||f ||Wk
p (Ω) < ∞}.

We can see, that ||.||Wk
p

is a norm and therefore, W k
p (Ω) is a normed linear space.

The next theorem shows us, that the Sobolev space W k
p (Ω) is also complete.

Theorem 7. The Sobolev space W k
p (Ω) is complete and thus a Banach space.

Proof. See: [8] page 30, (1.3.2) Theorem.
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