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Abstract

Determining the centers of electrical activity in the human
body and the connectivity between different centers of activ-
ity in the brain is an active area of research. To understand
brain function and the nature of cardiovascular diseases
requires sophisticated methods applicable to non-invasively
measured bioelectric and biomagnetic data. As it is difficult
to solve for all unknown parameters at once, several strains
of data analysis have been developed, each trying to solve a
different part of the problem and each requiring a different
set of assumptions. Current trends and results from major
topics of electro- and magnetoencephalographic data analysis
are presented here together with the aim of stimulating
research into the unification of the different approaches. The
following topics are discussed: source reconstruction using
detailed finite element modeling to locate sources deep in
the brain; connectivity analysis for the quantification of
strength and direction of information flow between activity
centers, preferably incorporating an inverse solution; the
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conflict between the statistical independence assumption of
sources and a possible connectivity; the verification and val-
idation of results derived from non-invasively measured data
through animal studies and phantom measurements. This list
already indicates the benefits of a unified view.

Keywords: autoregressive modeling; electro-/magnetoence-
phalography; finite element method; inverse problem; statis-
tical independence; validation.

Introduction

This paper summarizes a special session of the Biosignal
Processing workshop held at University of Potsdam in July
2008. The subject addressed was recent advances in source
estimation and signal decomposition of multivariate surface
potential and magnetic field measurements of the human
brain. The aim of this paper is to identify current trends and
to provide recent results related to the main research themes
in this field.

Research attempts to answer questions such as: Where in
the brain is an activity occurring? Are there multiple centers
of activity for a given task? Is there a connection between
the different activity centers? To answer these questions sev-
eral procedural stages have to be accomplished: Is the meas-
urement setup appropriate for the type of activity under
investigation? Is the signal quality sufficient to draw mean-
ingful conclusions? Does the spatial and temporal source
model represent the known physiology? Is connectivity
between activity centers plausible and observable? And final-
ly, how can our conclusions be verified or validated?

Multichannel electro- or magnetoencephalographic (EEG,
MEG) recordings taken non-invasively from outside the
brain provide intricate multivariate data sets. To extract the
information of interest, tools from rather diverse fields of
mathematics are required such as time series analysis, mod-
eling of the electromagnetic properties of the body tissues,
and the estimation of sources in the brain. Both the temporal
and spatial dimensions of these multivariate data sets appear
equally important to retrieve knowledge about brain
function.

For retrieving location, orientation, extent, shape, and
strength of bioelectric sources in the brain, often only a sin-
gle time instant of the measured EEG or MEG data is used,
i.e., only the spatial dimension of the data is needed. This
source reconstruction comprises the computation of bioelec-
tric and biomagnetic fields in a sensor space owing to given
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configurations in a source space (forward problem) and the
source parameter estimation based on given measurements
(inverse problem) w35, 36x. In the low-frequency range (up
to a few kHz), which is the domain of bioelectricity, electric
and magnetic fields can be described by the quasi-static
Maxwell equations. This allows for a separate treatment of
the generated electric and magnetic fields. Fortunately, only
one important material parameter needs to be considered: the
predominantly Ohmic tissue impedance. Another important
simplification is the practically instantaneous propagation of
electric and magnetic field. Accordingly, at a given instant
in time and for a given set of bioelectric sources, one can
assume that the sensor measurement constitutes a zero time
delay and linear superposition of the source activity. In the
past, the above listed considerations were combined into the
spherical volume conduction model w35x, which is supersed-
ed nowadays by far more advanced methods such as finite
element (FE) modeling w27x. These models allow incorpo-
ration of well known physiological details such as anisotrop-
ic conductivity.

Information contained in the temporal dimension of the
data can be used at least twofold. Firstly, the already men-
tioned superposition of sources can be resolved by the pop-
ular independent component analysis method (ICA) w18x,
which assumes statistical independence between the sources.
This seems valid for a superposition of artifactual and brain
sources. However, the view that several stationary brain
sources embedded in passive tissue are always independent
could be incomplete for several reasons. Thus, it appears
obligatory to study to what extent the results of ICA are
compromised if the condition of independence is not met.
Secondly, connectivity between different brain areas w1, 38x
is probably the key to performance of the brain. Brain areas
are connected through neural fibers, for which transmission
speed is limited. Based on measurements in peripheral
nerves, the upper limit of transmission velocity in nerve
fibers is 120 m/s w28x. This causes a time delay of at least
1 ms over a distance of 100 mm (e.g., across hemispheres).
If electrical activity propagates through the mechanism of
volume conduction, no time delay is visible. In other words,
a non-zero time delay between two sources at different loca-
tions in the brain discovered by EEG or MEG is an important
marker for functional connectivity. One approach of analyz-
ing this marker is the multivariate autoregressive (MVAR)
model and the derived coupling measures.

The extraction of parameters from multivariate data using
advanced theoretical models in the time and spatial domain
requires some form of validation. This is difficult for results
related to brain function because of ethical reasons. For
source reconstruction, phantom models are a valuable tool
despite all their limitations, as it has been demonstrated for
magnetocardiography (MCG) w43x. Connectivity results,
however, deduced from measurements on the living brain are
more difficult to validate directly. But secondary knowledge
of anatomical or psychobehavioral nature can help to assess
connectivity results.

As a broad range of topics is described in this paper the
order of the sections is naturally not unique. To stress the

importance of physiologically and technically sound exper-
iments, the next section ‘‘Identification of deep sources in
the brain’’ mainly describes the detection of weak brain sig-
nals, e.g., from deep subcortical sources, by EEG and MEG.
The successful detection of several sources immediately
leads to the question whether the sources are interrelated or
coupled. This requires adequate coupling measures, which
can be estimated using, e.g., MVAR, as presented in the sec-
tion ‘‘The MVAR model with application to electroenceph-
alogram and other biosignals’’. Any type of coupling violates
the assumptions of the ICA method, probably limiting the
scope of applicability of ICA. Therefore, synthetic MEG data
with deliberately coupled sources are investigated in the sec-
tion ‘‘Performance of ICA for dependent sources using syn-
thetic stimulus evoked MEG data’’. Then in the section
‘‘EEG/MEG source analysis based on realistic finite element
volume conductor models’’, FE modeling incorporating a
precise description of anatomical and physical properties of
the brain is used for source analysis. Finally, in the section
‘‘Assessment of source reconstruction methods’’, a case is
made for the necessity to validate and verify source recon-
struction methods using real measurements on phantoms and
animals. Owing to space limitations and the topical organi-
zation of this research, numerous relevant general reviews
could not be cited.

Identification of deep sources in the brain

Brain activity is a complex interplay between cortical areas
and subcortical structures, such as thalamus, basal ganglia,
hippocampus, and brain stem. Although the major contri-
bution to EEG and MEG signals is usually generated by
postsynaptic potentials of cortical pyramidal cells aligned in
parallel w25x, deeper structures below the cortex (e.g., thal-
amus, brainstem, basal ganglia) are also known to generate
measurable signals w29x. However, these structures generally
lack aligned pyramidal cells. Hence, it is unlikely that post-
synaptic potentials contribute much to these signals. Trains
of action potentials are therefore the most likely candidates
for their generation w29x. The application of source locali-
zation algorithms to such signals is a challenge owing to low
signal-to-noise ratios (SNRs) and rather unspecific scalp
topographies. In the case of MEG, the increasing compen-
sation of the primary currents by volume currents also con-
tributes to the relative inaccessibility of deep sources. By
contrast, an accurate localization of such sources would be
very interesting, because it would help to better specify func-
tional networks, e.g., by determining which thalamic nucleus
is involved in a certain process. Moreover, because in some
cases the locations of the potential sources are well known
(e.g., ascending auditory pathway), such settings could be
valuable for the validation of source localization techniques.

We took a closer look at source localization using the sig-
nals from MEG magnetometers and EEG electrodes. First,
we performed a sensitivity analysis to find out how strong
the activity has to be in order to be detectable outside the
head. EEG/MEG sensitivity analyses have been performed
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Figure 1 Localization of auditory brain stem potentials.
The dots represent localizations of wave V (7 ms after chirp offset) for different translation factors between diffusion anisotropy and
conductivity anisotropy in the white matter (from low to high: 740, 1200, 1800); the green arrow indicates the dipole direction. The purple
line denotes the course of the lateral lemniscus.

previously. For example, lead field theory was used to com-
pare the sensitivity profiles of different sensor configurations
(pairs and triples of EEG electrodes, single MEG gradio-
meters and magnetometers) in a spherical volume conductor
w26x. Here, we target the detectability of EEG and MEG
signals with multi-sensor configurations and realistically
shaped head models. As criterion for detectability, we as-
sumed that the spontaneous background activity has a typical
amplitude of 50 mV for EEG and 300 fT for MEG. A signal
was considered detectable if in at least one channel the signal
amplitude was twice the noise amplitude. Our analysis yields
minimum source strengths (depending on precise source
position and orientation) for EEG: cortex 50–150 nAm, hip-
pocampus 175–650 nAm, thalamus and basal ganglia
175–550 nAm, and brain stem 200–650 nAm. For MEG, the
sensitivities dramatically depend upon the dipole orientation.
Although for the most favorable direction, we obtain mini-
mum source strength of 10–15 nAm for the cortex and
25–150 nAm for most subcortical structures, unfavorable
(i.e., radial) dipole directions can lead to 5–70 mAm. Note
that for averaged signals, the necessary dipole strength must
be divided by the square root of the number of trials. A
complex cognitive experiment is conducted with approxi-
mately 25–200 trials, whereas psychophysical measurements
can feature 10,000 and more trials. It turns out that for EEG
deep sources need to be approximately 4 times as strong
compared to cortical sources. In normal cognitive experi-
ments with up to 200 trials, this should lead to detectable
signals also from subcortical sources. For MEG, in contrast,
detectability is even better provided that the dipoles are max-
imally tangentially oriented, whereas both in the cortex w17x
and in subcortical structures non-detectable sources are pos-
sible, particularly if dipole direction is rather radial, e.g., in
the case of the ascending auditory pathway. Note that all
numbers given above are subject to the assumed background
noise levels and detectability criterion. Therefore, in reality
the given minimum source strengths must be corrected by

multiplication with the respective factors. There are several
techniques to deal with initially bad SNRs. For example,
prior information on the frequency spectrum or the coher-
ence structure of the sources can be exploited by filtering
techniques or frequency/coherence-specific reconstruction
methods (e.g., DICS w14x). Moreover, subtracting suitable
experimental conditions can improve the SNR of previously
hidden signals w12x. If the overlaying unwanted signals (i.e.,
the noise) can be reasonably described as Gaussian and their
covariance can be estimated with sufficient accuracy, Baye-
sian inference techniques w47x can be used to reconstruct the
sources of the signal in spite of poor SNR. Another technique
to improve the SNR, with particular emphasis to deep
sources, has been proposed in Ref. w44x.

Next, we recorded brain stem auditory evoked potentials
and magnetic fields. To a healthy volunteer we delivered
30,000 chirp stimuli (short burst, changing frequency from
low to high) to the right ear. As predicted by sensitivity
analysis, the brain stem responses could be clearly observed
in EEG, whereas it is more difficult to find responses in
MEG w9x. This means that deep structures are observable
with EEG, but only to a limited degree with MEG. In the
section ‘‘EEG/MEG source analysis based on realistic finite
element volume conductor models’’, it will be shown that
it is possible to somewhat accurately localize the sources of
brain stem auditory evoked potentials. The localization result
shown in Figure 1 can only be achieved after a careful anal-
ysis of localization errors as a result of factors such as mis-
specification of skull and white matter anisotropy.

The MVAR model with application to

electroencephalogram and other biosignals

An important key to the understanding of the human brain
is the structure of connectivity in the brain. Although ana-
tomical connections have been known for around 100 years,
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the investigation of functional coupling between different
brain areas is a much more recent topic. Methods probing
coupling such as coherence (i.e., normalized cross-spectrum)
have been in use on MEG and EEG data and related biosig-
nals for more than 30 years. However, coherence has been
criticized because the influence of volume conduction leads
to spurious results. Several approaches, such as partial coher-
ence, phase estimates, or imaginary coherence w30, 39x have
been proposed as an alternative. Despite their advantages,
these measures are unable to distinguish between direct and
indirect connections (Figure 2). Nowadays, measures of
Granger causality similar to the directed transfer functions
and the partial directed coherence (PDC) can be used to
address the issue of causal relationship. The first causality
measure in the spectral domain was probably the directed
transfer function (DTF w19x). However, in Ref. w1x it was
shown that DTF cannot distinguish between direct and indi-
rect connections; the PDC was proposed to solve this prob-
lem. If the time series are scaled differently, the PDC might
yield incorrect causality; a refined version of PDC, the gen-
eralized PDC (GPDC w2x), addressed this problem.

The comparison of different measures is often complicated
by the fact that different software tools are needed, each
having their own implications and limitations. Fortunately,
the MVAR model provides a common basis for analyzing
the various coupling measures w39x.

A MVAR model is described by Eq. (1), where are the
™
Yt

observed time series of m channels, arew xA (k)s a kŽ .m=m i, j

m=m matrices of the model coefficients, p is the order of

the model, and is the innovation process. It is a zero mean
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white noise process with covariance matrix . Thew xS ssX i, j

parameters ai, j (k) model the influence of channel j on chan-
nel i with time delay k. Because the time delay is always
larger than 0, the model is a causal model, only past values
influence the actual value:
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In the frequency domain, this corresponds to the transfer
function H( f )swhi, jx with:
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Several MVAR estimation algorithms are available and
have been compared w38x. The MVAR-based analysis pro-
vides information on time-delayed correlations between sen-
sors and the influence from channel i to j can be different
from the influence of channel j to i. This enables the dis-
tinction between forward and backward connections. If the
model preconditions are preserved, the reconstruction of a
causal structure can be achieved as demonstrated in Figure 2.

The imaginary coherence (iCOH) is antisymmetric, i.e.,
. If the iCOH is used as a cou-imag C f s-imag C fŽ Ž .. Ž Ž ..i, j j, i

pling metric, a coupling from i to j has the same magnitude
as coupling from j to i. The PDC and GPDC are, in general,
not symmetric and can describe a large coupling from i to j
and a zero coupling in reverse direction. Figure 3 shows an
example of a time-varying PDC during motor imagery task
of a single subject. This PDC of real world data is not sym-
metric. The example shows a significant increase of PDC in
the gamma range from C3 to Cz without a significant change
from Cz to C3. These details cannot be identified by
(anti)symmetric coupling measures such as iCOH.

Unfortunately, volume conduction phenomena and the
influence of a common reference electrode can cause an
instantaneous mixture of activities. This causes an instanta-

neous correlation of the observed time series and
™ ™
U sMØYt t

a second MVAR model is obtained:
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where the model parameters are B(i)sMØA(i)ØM-1 and the
covariance of the innovation process becomes S sMØS ØV X

.TM
This mixing matrix influences all coupling parameters

including PDC, iCOH, etc. and causes, typically, a ‘‘smear-
ing effect’’. A significant non-zero iCOH indicates a func-
tional coupling different from a spurious effect owing to
volume conduction, but a proper localization is impossible
without knowledge of the mixing matrix. The underlying
network structure can only be identified if the mixing matrix
M is known and invertible. If some additional assumptions
about the mixing matrix are introduced (e.g., a smearing
effect is localized) these assumptions can be used to interpret
the results from all metrics alike.

A possible mixing matrix satisfying Eq. (7) can be iden-
tified through eigenanalysis of SV or by ICA w11x. Unfor-
tunately, there is not a unique solution and a manifold of
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Figure 2 Coupling parameters from a 5-variate autoregressive model as defined in Ref. w2x.
The MVAR model is based on the structure as defined in (A). (B) to (G) show the corresponding cross-spectra, coherence, imaginary
coherence, partial coherence, directed transfer function (DTF), and partial directed coherence (PDC), respectively. Only PDC is able to
reproduce the correct model structure in (A). Note that DTF and PDC are not symmetric and can distinguish between forward and backward
connections. Biosig (http://biosig.sf.net) was used for this analysis (see demo7.m to reproduce the results of these and other coupling
measures).

mixing matrices fulfill the above condition. Purely data-driv-
en approaches cannot tell which unmixing matrix yields
approximately correct source activations. Therefore, an esti-
mate of the mixing matrix based on a priori information such
as geometry and conductivity is required, i.e., a source local-

ization procedure should be applied w42x to account for a
possible volume conduction effect.

With advanced models such as those described in the sec-
tion ‘‘EEG/MEG source analysis based on realistic finite ele-
ment volume conductor models’’, the problem of volume
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Figure 3 Example of a time frequency plot of the PDC for real data.
Electrode labels, time range (in s), and frequency ranges (in Hz) are indicated. The subject was instructed by a ‘‘cue’’ at ts3 s to imagine
a movement of the right hand. The PDC changes subsequently particularly in the g range (30–50 Hz) at electrode C3 (reproduced from
Ref. w39x, with permission from Elsevier, Amsterdam, The Netherlands).

Figure 4 Generation of synthetic MEG data using the SSEJR model.
Two well-defined sources are combined with 23 noise sources. Using ECDs as forward model, synthetic MEG data are generated.

conduction is alleviated particularly if coupling between cor-
tical and subcortical sources is considered. In view of the
shortcomings of MVAR-based methods, it should be noted
that alternative methods are subject to the same limitations.
Moreover, only the MVAR-based methods can distinguish
direct from indirect causal relationships. This is a clear
improvement for the characterization of functional brain
connectivity.

Performance of ICA for dependent sources

using synthetic stimulus evoked MEG data

Continuing with a topic related to connectivity, the conse-
quence of coupled sources for models relying on statistical
independence is discussed in this section. The class of algo-
rithms known as ICA w6, 18, 34, 46x assumes statistical inde-

pendence between sources to identify them in (typically) raw
data without prior knowledge about either temporal or spatial
properties of the sources. Considering the chirp experiment
outlined in the section ‘‘Identification of deep sources in the
brain’’, a sequence of brain areas will become activated by
the auditory stimulus, i.e., different evoked sources can be
triggered by the same stimulus. These sources will be cou-
pled and the assumption of statistical independence could be
violated. The performance of ICA for such a scenario of
dependent evoked sources is currently unclear and synthetic
data will be used to study this.

A synthetic MEG model w20x was introduced, namely the
synthetic stimulus evoked jittered response (SSEJR) model,
which allows generation of source signals with gradually
adjustable dependencies. Synthetic MEG data are obtained
by a processing chain as depicted in Figure 4. Two equivalent
current dipoles (ECDs) describing evoked signal (black) and
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Figure 6 Example of closely spaced dipoles: the recovered field
maps for dependent SSEJR sources do not correspond to the original
sources.

Figure 5 Performance of established ICA methods with regard to
the jitter parameter in the SSEJR: for two dependent sources, i.e.,
at zero jitter, the unmixing error, and the mutual information are
large reaching values of 0.75.

23 ECDs describing noise (gray) are placed in a conducting
sphere. Magnetic fields are calculated at MEG sensor coor-
dinates (diamonds), using the quasi-stationary Maxwell
equations w35x. The superposition of evoked and noise ECD
field patterns yields synthetic MEG data, where each sensor
records temporal dynamics corresponding to 100 generated
epochs. Each epoch contains a response from the two sources
to simulate neuronal activity following each individual stim-
ulus. Choosing equal onset times (latencies) and equal dura-
tions of these responses leads to a correlation of the energy
profiles of the source signals. Hence, the resulting source
signals are dependent. Adding a zero mean normally distrib-
uted random number to the latencies of each source in each
epoch leads to a jitter in latencies over epochs as illustrated
in Figure 4 (left). The energy profiles are less correlated
which lowers the dependency. The sequence of random num-
bers for each source latency has equal standard deviation,
and the standard deviation will be referred to as jitter for
convenience. The jitter gradually adjusts the degree of
evoked source dependencies. The higher the jitter the lower
the dependencies between the sources and vice versa. Figure
4 (middle) depicts the field maps obtained by forward cal-
culation (the two shades of color define the polarity of the
field), and Figure 4 (right) depicts typical generated sensor
observations. These data should be used to assess the per-
formance of ICA to identify the evoked MEG sensor space
patterns, i.e., the field maps, at varying degrees of
dependency.

Three established ICA methods (see abbreviations in Fig-
ure 5) as well as principal component analysis (PCA) have
been tested to recover the sources, which here are meant to
be sensor space maps and associated temporal functions and
not ECDs as in the other sections. The Amari performance
index is used to evaluate the ICA unmixing error. Specifi-
cally, the median unmixing error for 50 realizations of
the SSEJR signals per jitter value is depicted in Figure 5.
The median binned mutual information quantifies the source
dependencies. It decreases gradually with increasing jitter,
neatly confirming the SSEJR model. As expected, the per-

formance of PCA is poor even in the vicinity of source inde-
pendence. In contrast, the error for all ICA methods drops
under 0.2 in this case and the ICA recovered sources equal
almost the originals. However, it can be observed that all
ICA methods lose performance when the jitter value is
lowered. Strikingly, their unmixing error closely follows the
estimated mutual information. Hence, ICA could fail to sep-
arate dependent evoked sources and the recovered signals as
well as the associated field maps are still mixtures of the
sources. Changing the sites of the source dipoles leads to
another important aspect. For closely spaced dipoles, several
ICA methods recovered clear dipolar patterns even for
dependent sources. These results appear physiologically sig-
nificant owing to their dipolar patterns but turned out to be
incorrect, cf. Figure 6.

The numerical simulations with the SSEJR model show
that ICA is sensitive to a violation of its key assumption,
i.e., source independence. In the application of stimulus
experiments, this could lead to ICA results that are still
mixtures of the sources. Most critically, incorrect recovered
ICA patterns can still show a dipolar structure. Hence, the
common practice of judging an ICA decomposition to be
successful when the estimated source patterns appear phys-
iologically meaningful, i.e., show a dipolar pattern, could be
misleading. A detailed source analysis such as that described
in the next section might be helpful in classifying apparently
dipolar ICA patterns.

EEG/MEG source analysis based on realistic

finite element volume conductor models

This section describes an advanced source analysis with
applications already suggested in the preceding sections. In
Refs. w10, 16, 21, 23, 24, 27, 33, 40, 43, 49x, it was shown
to what extent spatial resolution of both EEG and MEG
source analysis is dependent on the modeling accuracy of the
embedded forward problem, i.e., the simulation of EEG and
MEG fields for a given dipolar source in the brain using a
volume conduction model of the head. Even if the irrota-
tional source model proposed in Ref. w13x might be advan-
tageous for the EEG forward problem because of a reduction
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of the number of unknowns, we use the standard concept of
the current dipole model as proposed by Nolte et al. and
Sarvas w30, 35x, because we are particularly interested in
developing methods for a combined analysis of EEG and
MEG. Multimodal magnetic resonance imaging (MRI) and
computed tomography registration and segmentation tech-
niques are used for the generation of realistically shaped
head volume conductor models. A low-resolution conductiv-
ity estimation method was developed w21x and a technique
based on diffusion-tensor MRI was used w16, 31, 33, 49x to
individually estimate head tissue conductivity inhomogeneity
and anisotropy. Different FE techniques were developed for
solving the forward problem w3, 8, 22, 27, 37, 45, 48, 50,
51x. A key component in FE based source analysis is the
numerical modeling of the singularity introduced into the
differential equation by the current dipole and its interplay
with the conductivity inhomogeneity and anisotropy.

The subtraction approach w3, 8, 27, 45, 51x splits the total
potential into two parts,

FsF qF , (8)0 corr

where the singularity potential, F0, is defined as the solution
for a dipole in an unbounded homogeneous conductor with
constant (anisotropic) conductivity s0 in a non-empty sub-
domain V0 around the source position (the so-called homo-
geneity condition; w8, 51x). The solution of Poisson’s
equation under these conditions for the singularity potential
can be formed analytically for the mathematical dipole in an
infinitely extended anisotropic medium w8, 51x. Subtracting
this differential equation from the starting Poisson equation
for the total potential yields a Poisson equation for the cor-
rection potential,

-=Ø(s=F )s-=Ø((s -s)=F ), (9)corr 0 0

with inhomogeneous Neumann boundary conditions at the
head surface, , and s being-s=F , n)s--s=F , n)corr 0

the conductivity and n the outer normal vector at the head
surface. The advantage of this reformulation is that the right-
hand side of the differential equation, Eq. (9), for the cor-
rection potential is free of any source singularity, because of
the homogeneity condition: the conductivity s0-s is zero in
V0. For the subtraction potential approach, a proof of exis-
tence and uniqueness was achieved for a weak solution in
the function space of zero mean potential functions w51x.
Furthermore, the convergence properties of the FE method
have been proven for the numerical solution to the correction
potential. A full subtraction approach was shown to achieve
forward solutions, which were an order of magnitude more
accurate compared to a projected subtraction approach w8x.
An FE transfer matrix approach for both EEG and MEG was
derived and its combination with algebraic multigrid precon-
ditioned conjugate gradient solver techniques was shown to
yield huge speedup factors and to enable mesh resolutions
that seemed to be impossible previously w22, 50x. Because
of its ability to better model smooth tissue boundaries, an
isoparametric FE approach in a geometry-adapted hexahedral

model was shown to outperform an FE approach using reg-
ular hexahedral models w48x. Using modern inverse
approaches, the developed methods were successfully
applied in the fields of presurgical epilepsy diagnosis w33x
and evoked responses w21x.

FE-based dipole analysis was also used to localize the
sources of the brain stem EEG signals of the section ‘‘Iden-
tification of deep sources in the brain’’. For modeling the
influence of the head tissue we used an FE model with five
compartments for gray matter, white matter, cerebrospinal
fluid, skull, and skin. The skull compartment was modeled
anisotropically with different conductivities in radial and tan-
gential directions w27x. The white matter was also modeled
as anisotropic on the basis of diffusion tensor imaging w16,
33, 49x. We first investigated the impact of various model
parameters onto the forward and inverse solutions associated
to brain stem sources. For the scaling factor between diffu-
sion anisotropy and conductivity anisotropy, we obtained a
relative difference measure (RDM) up to 0.3 and localization
errors up to 6 mm. For skull anisotropy misspecifications,
RDM up to 0.15 and localization errors up to 9 mm were
observed.

The deviation of the volume currents in a realistic mod-
eling approach from a simple spherical approach as used in
the ECD model is immediately evident in Figure 7. It shows
the volume currents for a thalamic dipole source computed
in a finite element volume conductor model. Taking the data
from the experiment described in the section ‘‘Identification
of deep sources in the brain’’ it was possible to accurately
localize a subcortical source (Figure 1). This demonstrates
the potential of FE for reconstructing deep brain activity
from EEG. The example also shows the impact of the white
matter anisotropy, resulting in localization errors of several
mm, whereas orientation and magnitude errors might even
be much more significant as shown previously w15, 16, 33x.

Assessment of source reconstruction methods

Inverse bioelectric and biomagnetic problems are computa-
tionally complex and do not have unique solutions. Conse-
quently, assessment including validation and verification
should be an inherent process not only for newly developed
algorithms but also for new combinations of existing data
preprocessing and data analysis procedures. In an engineer-
ing notation, verification means the internal quality control
of the obtained result (e.g., the correct application of a data
analysis chain under given boundary conditions or the cross-
comparison between two different source localization meth-
ods), whereas validation means the quality assurance with
regard to external evidence (e.g., comparing source locali-
zation results with known positions of invasive stimulation
electrodes or stimulation electrodes in phantoms). Validation
and verification approaches in general include simulations,
phantom measurements, and in vitro and in vivo measure-
ments. In the subclass of linear source reconstruction meth-
ods, this linearity can be exploited for assessment purposes
with the help of resolution kernels w7, 12x. In vivo measure-
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Figure 7 Volume currents for a thalamic dipole source computed in a finite element volume conductor model with 1:10 anisotropic white
matter compartment, visualized on a coronal cut through the model.
(Reprinted from Ref. w49x, with permission from Elsevier, Amsterdam, The Netherlands).

ments can be performed in animals w10x or humans w33x. A
unique opportunity for in vivo validation or verification in
humans is given by intracranial electrode setups in epileptic
patients w33x. As an example the role of phantom and animal
measurements for source localization will be discussed
below.

Although simulations often provide a comparison with
analytical models or between different numerical approaches
w22, 37, 41x, only phantom, in vitro, and in vivo measure-
ments use artificial dipoles and physiological stimulus
modalities to determine procedural limits of the source local-
ization accuracy under real world conditions. In the begin-
ning of each validation or verification procedure, the def-
inition of the problem and derivation of the requirements
should be carried out. Based on that, a decision on the meth-
odology, e.g., the simulation setup and the type of phantom,
needs to be made. Often validation and verification are per-
formed with a set of approaches. Such a line of validation
or verification can, e.g., include simulations, phantoms of
various degrees of complexity, and in vivo measurements. A
typical example where such a line is recommended is the test
of a newly developed inverse algorithm or a newly compiled
data analysis chain.

As an example for the physiological stimulus modality
the electric stimulation of peripheral nerves in sedated rabbits
will be described. The median nerve was stimulated for the
cortical representation of the forepaw and the tibial nerve for
the cortical representation of the hindpaw (interstimulus

interval of 500 ms and 2048 trials averaged). A 16-channel
micro-superconducting quantum interference device
(SQUID) MEG system was employed for recording the mag-
netic field. The electrocorticogram was recorded by a grid
of 4=4 electrodes simultaneously over the contralateral
hemisphere of the stimulated nerves. Data were sampled at
a rate of 2 kHz and preconditioned using a high pass filter
of 0.3 Hz and a low pass filter of 300 Hz. We focus our
investigations on the first peak in the somatosensory evoked
potential/field sequence, which is known as the first answer
in the somatosensory cortex S1 and which is not overlaid by
other cortical activities. Source localization was performed
using both a boundary element model and a finite element
model of the rabbit brain. A single current dipole fit was
carried out for each of the stimulated cortical areas separately
(used software: Curry V4.5, http://www.neuroscan.com/cur-
ry.cfm, and SIMBIO, https://www.mrt.uni-jena.de/simbio).
The location of both cortical areas is known, and they have
an inter-area distance of approximately 2 mm. This is used
to evaluate the results of the source localization procedures.
We find that for peripheral nerve stimulation the localized
sources in the rabbit brain are within an accuracy of 1 mm
in the expected cortical areas. This holds for both the BEM
and FEM models of the rabbit head and for both stimulated
nerves. The difference between the cortical representations
of the two nerves based on the source localization results is
found to be 2.1 mm. Similar accuracies are obtainable for
source localization of peripheral nerve stimulation in swine
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w10x. In experiments with single artificial current dipoles in
a saline filled rabbit skull phantom and in a saline filled
spherical phantom of similar size we could show that the
principal procedural source localization accuracy for our
experimental setup is below 1 mm.

We believe that physical phantom measurements provide
a unique means to assess the performance of source locali-
zation techniques. Unlike simulations, they take into account
the real world influences, such as environmental noise or 3D
positioning errors, thus giving an error estimate of the entire
source reconstruction procedure. Unlike in vivo measure-
ments, no physiological uncertainties exist and the ground
truth in terms of source position, strength, orientation, and
extent is known. Limitations of phantom experiments are,
e.g., the typically compartmental geometries owing to the
constraints in mechanical construction, the restricted inclu-
sion of biological noise sources, and the technical difficul-
ties in constructing complex anisotropically conducting
structures.

Phantom setups generally consist of a volume conductor,
an artificial source, and a generator driving the source as will
be described for MCG phantoms. To be compatible with
magnetic measurement systems, non-magnetic materials such
as resin with fiber glass or plastics were needed. We addi-
tionally embedded in our realistically shaped hollow torso
phantom MCG compatible Ag/AgCl electrodes for combined
electric and magnetic measurements. The phantom was filled
with saline solution with a fixed conductivity. An artificial
dipole inside the torso driven by a sinusoidal current served
as source. Separate compartments with differing conductiv-
ities, such as lungs, was used to assess the influence of these
conductivity inhomogeneities onto the source localization
results for focal dipolar sources w43x. Also the influence of
anisotropic conductivity onto several aspects of magnetic
fields and electric potentials was experimentally investigated.
An improved realistic torso phantom equipped with artificial
current dipole sources inside anisotropic compartments and
in the vicinity of anisotropic compartments was developed
w24, 40x.

The estimation of the extent of active areas is of interest
both in neuroscience and in cardiac applications. Here, phan-
tom measurements can provide an objective measure of the
ability of inverse algorithms to localize and describe extend-
ed sources w4x. Moreover, phantom experiments can be used
to validate theoretical concepts, such as the vortex current
concept (closed loop currents), which are considered as one
reason for diverging information content in electric and mag-
netic signals w5, 32x. With a torso phantom as described
above and a set of dipoles forming a closed loop, the theo-
retically predicted differences between electric and magnetic
signals could be quantified w23x.

Conclusion

In this paper, we have presented recent results covering a
broad range of EEG and MEG data analysis topics. In par-
ticular, the potential and the limits of some current state-of-

the-art methods were discussed. For EEG and MEG, there
exist clear sensitivity limits with regard to locating deep
sources. This means in turn that less challenging problems
can be readily solved. A similar reasoning holds for connec-
tivity analysis methods and statistical signal processing using
ICA: an optimal connectivity analysis with MVAR models
depends on a reliable source reconstruction, but meaningful
connectivity results can be obtained without source recon-
struction. The independence assumption is very useful for
artifact rejection using ICA, but with regard to interacting
brain sources ambiguities occur in ICA results. Very detailed
FE modeling is demonstrated and will help to reject or accept
simpler forward solutions in case that only limited anatom-
ical information is available. Validation is a key step in the
assessment of an algorithm for a diagnostic application.

To date, most approaches for EEG and MEG data analysis
are based exclusively on a temporal or spatial property of
the signals, as are the methods discussed here. It is the hope
that this compilation stimulates research into the combination
of the advanced individual approaches for a unified view on
the data. Examples could be the generation of time-depend-
ent phantom data suitable for testing ICA or a connectivity
analysis based on FE-modeled sources.

The necessity to understand various types of diseases of
the brain on a functional level is as important as ever. There-
fore, different tools as described here need to be combined
with each other behind an easy-to-use interface suitable for
a clinician. This requirement is fulfilled by other technolo-
gies applied for medical purposes. For EEG and MEG the
software-based research methods developed by individuals
and groups still have to be integrated in a coherent manner.
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